INDIANA STATE BOARD OF HEALTH DIVISION OF WATER POLLUTION CONTROL

CLARKSVILLE NORTH WASTELOAD ALLOCATION

A SIMPLIFIED STEADY STATE MODEL

SEPTEMBER 1981

A. Waterway Description

Silver Creek is a small stream in Clark County which flows south past the Town of Clarksville to the Ohio River. At the Clarksville North Sewage Treatment Plant which discharges to Silver Creek, the drainage area of the stream is approximately 220 square miles, as calculated from the USGS gage station located 8 miles upstream at Sellersburg. The distance from the Clarksville North Plant to the Ohio River is 4 miles. According to USGS (telephone conversation), the updated calculation of the $Q_{7.10}$ values at the Clarksville plant are 0.3 cfs for summer and 0.0 cfs for annual. The downstream slope for the first 2 miles is approximately 5 feet/mile as measured by USGS. Telephone conversations with the STP operator revealed that during the summer low flow, the stream is approximately 35 feet wide and 9 inches deep with a fairly uniform depth, and that it has long pooled areas. Upstream ½ mile is a dam of 70 feet in width over which all water passes. Land use surrounding the stream is woodland, farmland, and residential. A map (Figure 3) showing the stream and Town locations is attached.

B. Municipal Wastewater Facility

The Clarksville North STP is a Class II, 0.9 mgd (1.4 cfs) activated sludge-type treatment plant with effluent clorination. Table 4 shows an operation report summary. The current effluent limits for BOD are 10 mg/1 monthly average and 10 mg/1 SS monthly average. Ammonia monitoring is required for 2 years beginning March 1980.

C. Applicable Water Quality Standards

Silver Creek is included in Indiana's Regulation 330 IAC 1-1. The water quality standard established by this Regulation for dissolved oxygen is an average concentration of at least 5 mg/1. The U.S. EPA recommendation for an un-ionized ammonia concentration of 0.05 mg/1 was used for the effluent ammonia limitation.

D. Model Parameter Estimation

Since the summer Q_{7 10} is 0.3 cfs and the Town's discharge is 1.4 cfs; the stream flow during this period would be 1.7 cfs. The velocity was calculated using the data collected by USGS in surveys conducted in 1977 and 1978. Depth was estimated at 0.75 feet as per STP operator. The resultant K₂ selected of 7.72 day at 20°C is based upon the 0'Conner formula which EPA recommends for this type of slow moving stream with pooled reaches. CBOD, NBOD, and Benthic deoxygenation rate coefficients were determined according to EPA's formulas or recommendations. They are 0.3 day-1, 0.42 day-1, and 0.15 day-1, respectively. Temperature selected was 25°C and pH selected was 7.5 su. Headwater BOD and ammonia-N values were based on data collected by ISBH in the 1977-78 surveys. Documentation of these values is presented in Table 1.

E. Sensitivity Analysis

The sensitivity analysis is presented in Figures 1 and 2. As seen in Figure 1, pH most greatly affects the allowable total ammonia discharge compared to temperature. The results of the analysis indicate that nitrification of the effluent is required for the entire range of pH values calculated. The toxicity of ammonia is a limiting factor in the stream.

The sensitivity of BOD to the variation of reaction rate coefficients one at a time is shown in Figure 2; the widest variation of effluent BOD₅ occurs with K₂. The range of weekly BOD₅ values obtained from this analysis vary from 2 to 32 mg/1.

Table 3 shows the effect of alternative levels of treatment on the receiving stream water quality. Advanced secondary treatment (AST) with filtration and nitrification of the effluent appears to be the alternative which best meets the stream water quality standards.

F. Recommended Effluent Limits

The effluent limits recommended by this analysis are presented in Table 2. The computer analysis outputs are shown in Appendix A. The recommended effluent limits for BOD_5 and S.S. would be 15/22.5 mg/l (monthly/weekly) and 2/3 mg/l (monthly/weekly) for NH₃-N in summer; and the winter limits would be 26/39 mg/l (monthly/weekly) for BOD_5 and S.S., and 5.6/8.4 mg/l (monthly/weekly) for NH₃-N.

TABLE 1

Documentation For Input Variable Selection For Clarksville North

Source USGS Estimated Estimated Estimated Survey/Estimated Survey/Estimated	Permit File Calculated Calculated Estimated	Estimated Calculated USGS STP operator EPA recommended O'Conner EPA recommended EPA recommended EPA recommended	
Range For Sensitivity Analysis		23-25 0.2-0.4 0.21-0.63 3.86-11.58 0.1-0.2 7.3-7.5	
Measured Value			
Base Value 0.3 25 7.5 7.5 0.2 2.0	1.4 5.1 18.0 6.0	25 0.15 5.0 0.75 0.3 7.72 0.15	
Variable Headwater a. Flow Q ₇ 10 (Sfs) b. Temperature (C) c. pH (su) d. D.0. (mg/1) e. NH ₂ -N (mg/1) f. CBOD, (mg/1)	Flow design (cfs) NH ₃ -N (mg/1), weekly BOD ₅ (mg/1), weekly D.0. (mg/1), daily	Temperature (oC) Velocity (ft/sec.) Slope (ft/mi) Depth (ft) CBOD rate coefficient (K, day-1) NBOD rate coefficient (K, day-1) Reaeration rate coefficient (K, day-1) Benthic rate coefficient (Kb, day-1) PH	
Input Vari 1. Headw a. b. c. d. e.	2. STP a. b. c.	3. Stream 3. Stream b. V c. S d. D d. D f. N f. N i. p	

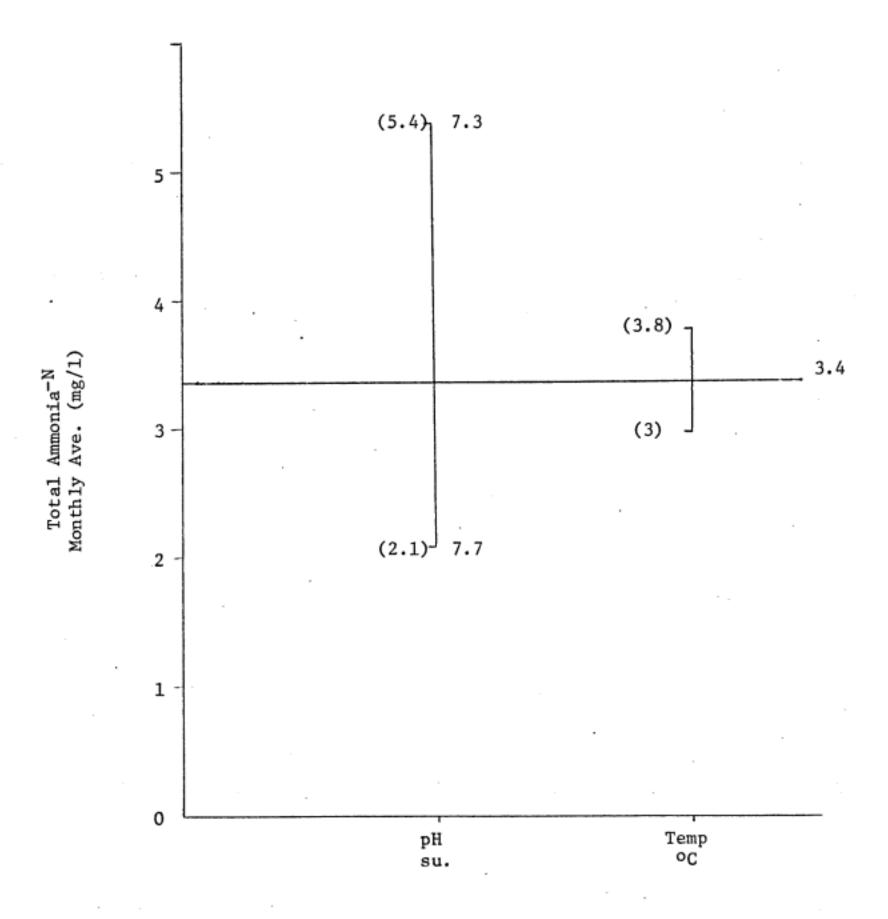


Figure 2 Clarksville North Sensitivity of BOD5 to Rate Coefficients

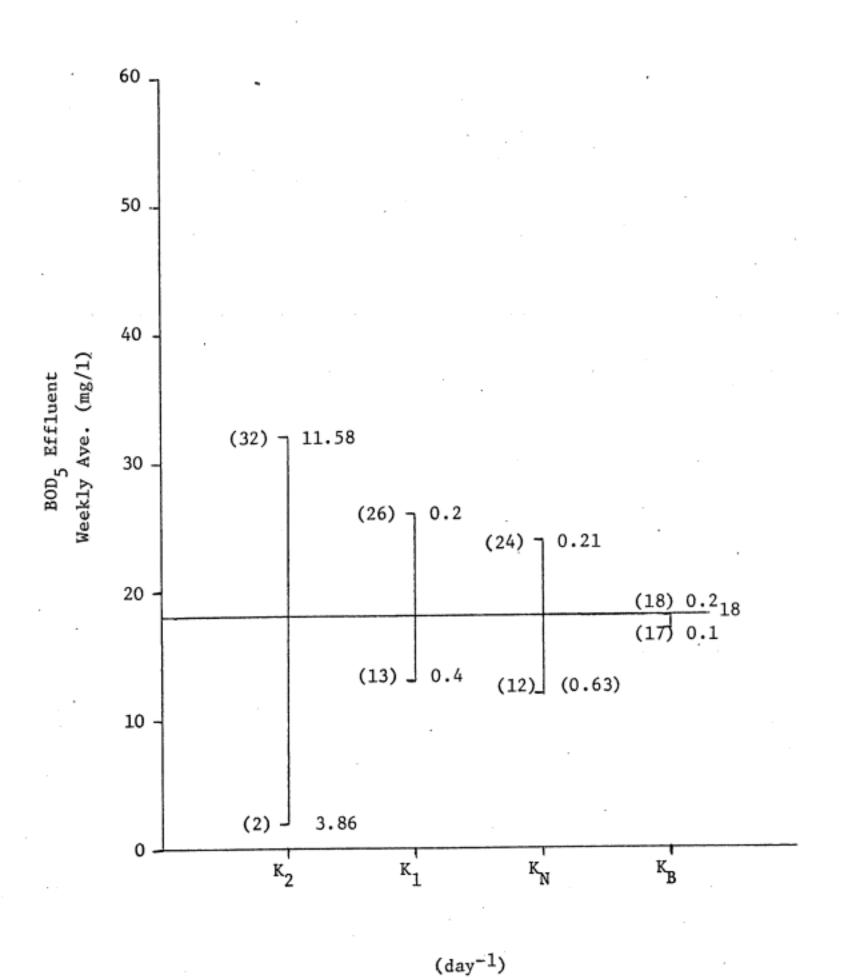


TABLE 2

Recommended Effluent Limits
Clarkesville North

	Sum	mer*	Win	ter**
Parameter	Weekly	Monthly	Weekly	Monthly
BOD _c (mg/1)	22.5	15	39	26
BOD ₅ (mg/1) SS (mg/1)	22.5	15	39	26
Ammonia-N (mg/1)	3	2	8.4	5.6
D.O. (mg/1)	6 (daily)	5 (daily)

^{*}April - November **December - March

TABLE 3

Alternative Treatment Levels
Clarksville North

Treatment Level	Weekly/Monthly Ave	STP Effluent	Instream N	Vater Quality
	BOD ₅	NH ₃ -N	Max NH3-N	Min D.O.
	(mg/1)	(mg/1)	(mg/1)	(mg/1)
Secondary (+)N	45/30	3/2	3	2.031
Secondary (-)N	45/30	22.5/15*	22.5	2.662
AST (-)F (+)N	30/20	3/2	3	4.417
AST (±)F (+)N	22.5/15	3/2	3	5.101
AST (+)F (-)N	15/10	22.5/15*	22.5	1.091
AST (+)F (+)N	15/10	3/2	3	5.768

*Selected Value, insufficient NH_3 -N effluent data available at this STP Ammonia Toxicity limit is 5.1 mg/l weekly average and 3.4 mg/l monthly average.

TABLE 4

Clarksville North
Operation Report Summary

Year	Month	Flow (MGD	BOD (eff1	SS luent,	NH ₃ -N mg/1)	BOD Removal (%)	D.O. (mg/1)	SS Removal (%)
1981	July	0.635	29	33	ND	90	ND	95
1981	June	0.792	34	16	ND	88	1.3	93
1981	May	0.782	81	49 .	9.2	85	2.1	86
1981	April	0.791	78	79	6.1	90	1.6	80
1981	March	0.730	66	59	18.2	95	3.5	91
1981	February	0.830	68	24	ND	94	4.1	96
1981	January	0.581	86	4 40	ND	89	3.1	90
1980	December	0.690	67	26	ND	94	3.6	97
1980	November	0.678	62	23	ND	94	3.4	97
1980	October	0.630	41	21	ND	93	3.0	98
1980	September	0.650	41	18	ND	90	2.5	94
1980	August	0.690	33	16	ND	91	2.1	96
Yearly	Average	0.707	57	34	11.2	91	2.75	93

ND = No Data

bare = 9/17/81	SINULATED LY = CLD	17/17						ARKELIC'S COLIF - 0.035					EQUATION	
TT		0.05600 14/L	10.1	25.00	25.60	25.00		1,625,11,678	52.			LEIGHE	EX OCCUMENTS E	
SCHIEL HASTELOGE ALLOCATION GRALYSIS LASED OR USERA SLIPLIPILD LODGE	= GGIG ALVER	OR-TOLLER SERVICE	7/77	7.54	00.3	6.27		L: II/:1LE = 5.0	r is blic =				2 72	
ATION CACINSIS LASED	.dl. 97326d =	ith/L	2/21	0.51	23.30	15.34		- STALAN DER SLOPE LA IT/LILE -	CONTRACTORSE ECENERY IS NITE			ar Sindai Tunk lii Co 25.60	0.700	0.377
h wasteloar alloc	ELCEIVIGG STRESH - SILVER GREEK	oxxosi 5.00	יי. אראיז יייו	600	54.00	45.52		16 11 = 0.75				AI 20 CC	7.727	0.300
CLALESVILLE NORT SCREE	ELCEIVING STREET	PISULVED OXYGE	. 840 3314	05.30	1.40	1.70	TKEALL	AYDEAULIC DEPTH IN 11		S		~		
		walen quality Stanbands		TITE.	CONTIN	NA SETUR LIMING LELON STR	STICE OF THE S	- 0.150	ELEB IN MALES =	CATOLIC			•	
SEVACE IMENTARIA PLANT =	COULTY = CLANK	- 10		BLASSATER GATER CUALITY	STU EMPLORAT WATER QUALITY	STREET BY SETTLE LIE	INDRAGLIC CRARACIERISTICS OF ICE STREAM	Valcelly In PT/SEC = 0.150	PISTARCE TO LE ROBELEM EN RILES *	Company of the second of the second	MONTH TO THE WATER		ALSERZION ESTE	C-ECD ELCAY NATE

"-" SUSPECSION ; "+" SUBLIBIATION

15 cm/Sq. 55/5AN AT 20 CG

0.205

0.076

0.429

0.000

0.150

SEREGET (DESTRIC) OXYGE, DERMIN

SEDIMENTATION RETE

Kall

N-Lob bleaf

્ય પ

0.000

100 OT

1 / / / /

NODU (1/2/L)	:	GODU = 19.345	NODU = 18.060	NobU = 16.858	MODU = 15.735	NODU = 14.688	NODU = 13.710	NODU = 12.797	KODU = 11.945	NODU = 11.150	NODU = 10.408	0.715 = 0.715	3000 = 9.068	NODU = 8.464
HODE (HC/L)	A CONTRACTOR OF THE PARTY OF TH	E000 = 45.529	BODC = 43.812	LODU = 42.159	BODU = 40.509	Lobu = 35.039	LODU * 37.567	DONU = 36.150	LODU = 34.757	CUU = 33.475	LODU - 32.212	DODU = 30.998	BODU = 29.828	BODU = 28.703
DO (PIC/L)												DO = 5.852		
ALANGER.														
DISTANCE BULOW DISCHARGEN (MILES)		MILE = 0.00	MILE = 0.25	NILE = 0.50	MILE = 0.75	NILE = 1.00	MILE = 1.25	MILE = 1.50	MILE = 1.75	MILE = 2.00	MILE = 2.25	MILE = 2.50	NILE = 2.75	MILE = 3.00
DIST	The state of the state of the state of		The state of the s											
THE (DAYS)		D/X = 0.00	3	Ħ	II	11	ı	II	ı	H	H	D6Y = 1.01	11	1

0.662 LILES BELOW DISCHARGER

0.270 DAYS AND

5.033 NG/L OCCURS AT

MINIMUM DISSOLVED OXYGEN

DATE = 9/17/81 SINULATED BY = GED					FF = 0.035				NOI		SEDIMENTATION	
SIMPLIFIED NODEL LIVER	AMMONIA 0.05000 MG/L	00.0	15.50		O. HANNING'S COEFF	.25		REBARK	by o'conner's Equation	:	"+" SUSPENSION"	IN GM/SQ.N/DAY AT 20
WASTELOAD ALLOCATION AMALYSIS BASED ON USEPA SIMPLI = SILVER CREEK HAIN STREAM = OHIO LIVER	Nobu Do		38.50		STREAM BED SLOPE IN FT/MILE = 5.	COMPUTATIONAL ELEMENT IN MILE -		AT STREAM TENP IN OC 15.50	7.657	0.273	0.000	0.112
G STAEAL	DISOLVED OXYGEN 5.00 NG/L		1.40 95.00		INDRAULIC DEPTH IN FT = 0.67	3 COMPT		 AT 20 CG AT ST	8.520	6.420	00000	0.150
SEWAGE TREATMENT PLANT = CLAMMSVILLE NORT COUNTY = CLARK RECEIVIA	STREAM WATER QUALITY STANDARDS 1	NEADWATER WATER QUALITY 0	STP EFFLUENT WATER QUALITY STREAM WG AFTER HIXING MELOW STP	INDRACLIC CHARACTERISTICS OF THE STREAM	VELOCITY IN FT/SEC = 0.130 HYDRAULI	DISTANCE TO BE MODELED IN MILES =	REACTION RATES (1/DAY)		REALENATION RATE C-LOD DECAY RATE		SEDIMENTATION NATE	SEDILENT (BENTLIC) OXYGEN DENAND

RODU (CC/L)	NODU = 38.500 NODU = 37.282 NODU = 34.960 LODU = 34.960 LODU = 32.763 NODU = 31.746 NODU = 29.770 LODU = 29.770 NODU = 27.033 NODU = 27.033	
BODU (t.C/L)	LUDU = 95.000 LODU = 92.314 LODU = 87.169 LODU = 87.169 LODU = 87.169 LODU = 82.311 LODU = 82.311 LODU = 79.984 LODU = 77.723 LODU = 75.527 LODU = 73.352 LODU = 73.352 LODU = 73.352 LODU = 73.352	
DO (NG/L)	5.000 5.313 5.516 5.529 6.046 6.267 6.267 6.573	
	22222222222	
DISTANCE DELOW DISCLANGER (MILES)	0.00 0.25 0.50 0.75 1.00 1.25 1.75 2.00 2.25 2.75 3.00	
	0.0000000000000000000000000000000000000	
TILE (DAYS)	DAY = 0.00 DAY = 0.11 DAY = 0.23 DAY = 0.23 DAY = 0.58 DAY = 0.95 DAY = 0.95 DAY = 0.95 DAY = 1.05 DAY = 1.129 DAY = 1.129	

0.000 MILES BELOW DISHARGER

O COO DAYS AND

5.000 HG/L OCCURS AT

NININE DISSOLVED OXYGEN