OWQ- WATERSHED ASSESSMENT & PLANNING BRANCH IDEM/OWQ/WAPB/WS VIRTUAL FILE CABINET INDEX FORM

Program:	Watershed
Document Type:	Report
*Document Date:	9/14/2021
*Security:	Public
Project Name:	Maria Creek TMDL
*Report Type	TMDL
Fiscal Year:	No Selection
HUC Code:	05120111 Middle Wabash-Busseron
Contract #:	
County:	Sullivan
Cross Reference ID:	
Comments:	Knox

Redaction Reference ID:

A Total Maximum Daily Load Report for the

Maria Creek Watershed

Final TMDL Report

August 19, 2021

Prepared for: U.S. Environmental Protection Agency Region 5

Prepared by: Indiana Department of Environmental Management

Table of Contents

Table of Contents	i
List of Figures	iv
List of Tables	vi
Executive Summary	viii
1.0 INTRODUCTION	1
1.1 Water Quality Standards	3
1.1.1 <i>E. coli</i>	3
1.1.2 Biological Communities	4
1.2 Water Quality Targets	7
1.2.1 <i>E. coli</i> TMDLs	7
1.2.2 IBC TMDLs	7
Total Suspended Solids (TSS)	7
1.3 Listing Information	8
1.3.1 Understanding Subwatersheds and Assessment Units	8
1.3.2 Understanding 303(d) Listing Information	9
1.4 Water Quality Data	12
1.4.1 Water Quality Data	12
1.4.2 <i>E. coli</i> Data	15
1.4.3 Water Chemistry Data	19
1.4.4 Biological Data	20
2.0 DESCRIPTION OF THE WATERSHED AND SOURCE ASSESSMENT	23
2.1 Land Use	24
2.1.1 Cropland	27
2.1.2 Hay/Pastureland	29
2.1.3 Confined Feeding Operations (CFOs) and Animal Feeding Operations (AFOs)	
2.2 Topography and Geology	31
2.2.1 Karst Geology	
2.3 Soils	
2.3.1 Soil Drainage	
2.3.2 Septic Tank Absorption Field Suitability	
2.3.3 Soil Saturation and Wetlands	

2.3.4 Soil Erodibility	
2.3.5 Streambank Erosion	
2.4 Wildlife and Classified Lands	
2.4.1 Wildlife	
2.4.2 Classified Lands	49
2.5 Climate and Precipitation	51
2.6 Human Population	51
2.6.1 Onsite Sewage Disposal Systems	53
2.6.2 Urban Stormwater	55
2.8 Point Sources	57
2.8.1 Municipal Wastewater Treatment Plants (WWTPs)	57
Permit Compliance	60
2.8.2 Industrial Wastewater	61
Public Water Supply	61
Coal Mining	63
Permit Compliance	
2.8.3 Regulated Stormwater	70
Construction Stormwater	70
Industrial Stormwater	71
Municipal Separate Storm Sewer Systems	71
2.9 Summary	71
3.0 TECHNICAL APPROACH	73
3.1 Load Duration Curves	73
3.2 Stream Flow Estimates	75
3.3 Margin of Safety (MOS)	78
3.4 Future Growth Calculations	79
4.0 LINKAGE ANALYSIS	
4.1 Pollutants of Concern	
4.1.1 E. coli	80
4.1.2 Total Suspended Solids (TSS)	
4.2 Linkage Analysis by Subwatershed	
4.2.1 Cotton Branch	
4.2.2 Tilley Ditch	90
4.2.3 Marsh Creek	95

4.2.4 Headwaters Maria Creek10	01
4.3 Sediment Source Modeling Analysis for the Maria Creek Watershed	07
5.0 ALLOCATIONS	10
5.1 Individual Wasteload Allocations	10
5.1.1 Approach for Calculating General Permit Wasteload Allocations	12
5.2 Critical Conditions	13
6.0 REASONABLE ASSURANCES/IMPLEMENTATION	16
6.1 Implementation Activity Options for Sources in the Maria Creek Watershed	16
6.2 Implementation Goals and Indicators	18
6.3 Summary of Programs	18
6.3.1 Federal Programs	19
6.3.2 State Programs	25
6.3.3 Local Programs	27
6.4 Implementation Programs by Source	29
6.4.1 Point Source Programs	31
6.4.2 Nonpoint Sources Programs1	32
6.5 Potential Implementation Partners and Technical Assistance Resources12	35
7.0 PUBLIC PARTICIPATION	38
References	39
Appendix A. Water Quality Data for the Maria Creek Watershed TMDL	41
Appendix B. Fish and Macroinvertebrate Community Assessment Reports	43
Appendix C. Fish and Macroinvertebrate Community Qualitative Habitat Evaluation Index As	84
Appendix D. Reassessment Notes for the Maria Creek Watershed TMDL A10	63
Appendix E. Sampling and Analysis Work Plan for the Maria Creek Watershed TMDL A10	68
Appendix F. Water Quality Duration Graphs for the Maria Creek Watershed TMDL	58
Appendix G. NPDES Executive Summary	63
Appendix H. Generalized Watershed Loading Function Enhanced (GWLF-E) Modeling for the Maria Creek Watershed	68

List of Figures

Figure 1: Location of Maria Creek Watershed
Figure 2: Subwatersheds (12-Digit HUCs) in the Maria Creek Watershed
Figure 3: Location of Historical Sampling Sites in the Maria Creek Watershed
Figure 4: Streams Listed on the 2020 Section 303(d) List in the Maria Creek Watershed12
Figure 5: 2019 – 2020 Sampling Locations for the Maria Creek TMDL Watershed Characterization 13
Figure 6: E.coli concentrations based on 5-week geometric mean (MPN/100 mL) and sampling site
drainage areas for 2019 and 2020
Figure 7: Total suspended solids concentrations based on single sample maximum concentration (mg/L)
and sampling site drainage areas for 2019-2020
Figure 8: Streams to be listed on the Draft 2022 Section 303(d) List of Impaired Waters in the Maria
Creek Watershed
Figure 9: Land Use in the Maria Creek Watershed
Figure 10: Cash Crop Acreage in the Maria Creek Watershed
Figure 11: Grassland and Pastureland in the Maria Creek Watershed with CFO Locations
Figure 12: Topography of the Maria Creek Watershed
Figure 13: Hydrologic Soil Groups in the Maria Creek Watershed
Figure 14: Suitability of Soils for Septic Systems in the Maria Creek Watershed
Figure 15: Hydric Ratings by Map Unit in the Maria Creek Watershed
Figure 16: Location of Wetlands in the Maria Creek Watershed
Figure 17: Location of Highly Erodible Lands (HEL) in the Maria Creek Watershed
Figure 18: Managed and Classified Lands within the Maria Creek Watershed
Figure 19: Population Density in the Maria Creek Watershed
Figure 20: Municipalities in the Maria Creek Watershed
Figure 21: Municipal Wastewater Treatment Plant Facilities Discharging within the Maria Creek
Watershed
Figure 22: Public Water Supply Facilities Discharging within the Maria Creek Watershed
Figure 23: Coal Mining Facilities located within the Maria Creek Watershed
Figure 24: Location of Surrogate Flow Gage in Carlisle, Indiana
Figure 25: Average Daily Flow Estimate for the Maria Creek Watershed for data from 2011-202078
Figure 26: Substrate + Bank Erosion/Riparian Zone Score in Relation to Fish Community IBI Scores in
the Maria Creek Watershed

Figure 27: Substrate + Bank Erosion/Riparian Zone Score in Relation to Macroinvertebrate Commun	ity
mIBI Scores in the Maria Creek Watershed	83
Figure 28: Sampling Sites in the Cotton Branch Subwatershed	87
Figure 29: E. coli Load Duration Curve for Cotton Branch Subwatershed	88
Figure 30: Graph of Precipitation and E. coli Data for Cotton Branch Subwatershed	88
Figure 31: Total Suspended Solids (TSS) Load Duration Curve for Cotton Branch Subwatershed	89
Figure 32: Graph of Precipitation and Total Suspended Solids (TSS) Data for Cotton Branch	
Subwatershed	89
Figure 33: Sampling Sites in the Tilley Ditch Subwatershed	93
Figure 34: E. coli Load Duration Curve for Tilley Ditch Subwatershed	94
Figure 35: Graph of Precipitation and E. coli Data in Tilley Ditch Subwatershed	94
Figure 36: Sampling Sites in the Marsh Creek Subwatershed	98
Figure 37: E. coli Load Duration Curve for Marsh Creek Subwatershed	99
Figure 38: Graph of Precipitation and E.coli Data at Marsh Creek Subwatershed	99
Figure 39: Total Suspended Solids (TSS) Load Duration Curve for Marsh Creek Subwatershed	. 100
Figure 40: Graph of Precipitation and Total Suspended Solids (TSS) Data at Marsh Creek Subwatersh	ned
	. 100
Figure 41: Sampling Sites in the Headwaters Maria Creek Subwatershed	. 104
Figure 42: E. coli Load Duration Curve for Headwaters Maria Creek Subwatershed	. 105
Figure 43: Graph of Precipitation and E. coli Data at Headwaters Maria Creek Subwatershed	. 105
Figure 44: Total Suspended Solids (TSS) Load Duration Curve for Headwaters Maria Creek	
Subwatershed	. 106
Figure 45: Graph of Precipitation and Total Suspended Solids (TSS) Data at Headwaters Maria Creek	Ξ
Subwatershed	. 106
Figure 46: Average Annual Sediment Loading from Sources in the Maria Creek Subwatersheds	. 109

List of Tables

Table 1: Critical Conditions for TMDL Parameters	X
Table 2: Maria Creek Watershed Aquatic Life Use Support Criteria for Biological Communities	6
Table 3: Target Values Used for Development of the Maria Creek Watershed TMDLs	8
Table 4: Section 303(d) List Information for the Maria Creek Watershed for 2020 and 2022	10
Table 5: Maria Creek Sampling Site Information	14
Table 6: Summary of Pathogen Data in the Maria Creek Watershed	15
Table 7: Summary of Chemistry Data in Maria Creek Watershed for Total Suspended Solids	19
Table 8: Impaired Biotic Community Stream Segments in the Maria Creek Watershed Identified Durin	ng
June/July 2020 Sampling	21
Table 9: Maria Creek Subwatershed Drainage Areas	23
Table 10: Land Use of the Maria Creek Watershed	25
Table 11: Land Use in the Maria Creek Subwatersheds	27
Table 12: Major Cash Crop Acreage in the Maria Creek Watershed	28
Table 13: CFOs in the Maria Creek Watershed	31
Table 14: Hydrologic Soil Groups	33
Table 15: Hydrologic Soil Groups in the Maria Creek Subwatersheds	34
Table 16: Hydric Ratings for Map Units with Hydric Soils in the Maria Creek Watershed	37
Table 17: HEL/Potential HEL Total Acres in the Maria Creek Watershed	46
Table 18: Tillage Transect Data for 2019 by County in the Maria Creek Watershed	48
Table 19: Bacteria Source Load by Species	49
Table 20: Managed Lands within the Maria Creek Watershed	49
Table 21: Classified Lands within the Maria Creek Watershed	50
Table 22: Population Data for Counties in Maria Creek Watershed	52
Table 23: Estimated Population in the Maria Creek Watershed	52
Table 24: Rural and Urban Household Density in the Maria Creek Subwatersheds	55
Table 25: Unsewered Residences/Businesses Reported by County in 2016-2017	55
Table 26: Municipal Wastewater Treatment Plant Facilities Discharging within the Maria Creek	
Watershed	58
Table 27: Summary of Municipal Wastewater Treatment Plant Permit Compliance in the Maria Creek	-
Watershed for the Five-Year Period of 2016-2020.	60
Table 28: Public Water Supply Facilities Discharging within Maria Creek Watershed	62

Table 29: Coal Mining Facilities with Individual Permits Discharging within the Maria Creek Watershed
Table 30: Coal Mining Facilities with General Permits Discharging within the Maria Creek Watershed. 66
Table 31: Summary of Industrial Wastewater Permit Compliance in the Maria Creek Watershed for the
Five-Year Period of 2016-2020
Table 32: Average Annual Land Disturbance from Permitted Construction Activity in the Maria Creek
Subwatersheds from 2016-2020
Table 33: Relationship between Load Duration Curve Zones and Contributing Sources 75
Table 34: USGS Site Assignment for Development of Load Duration Curve
Table 35: Load Duration Curve Key Flow Percentile Estimates 76
Table 36: Summary of Cotton Branch Subwatershed Characteristics
Table 37: Summary of Tilley Ditch Subwatershed Characteristics
Table 38: Summary of Marsh Creek Subwatershed Characteristics 97
Table 39: Summary of Headwaters Maria Creek Subwatershed Characteristics
Table 40: Average Annual Sediment Loads (in tons) by Source for the Maria Creek Subwatersheds 108
Table 41: Individual WLAs for NPDES Individual Permit Municipal and Industrial Facilities in the Maria
Creek Watershed
Table 42: Individual WLAs for NPDES General Permit Coal Mining Facilities in the Maria Creek
Watershed
Table 43: Relationship between Load Duration Curve Zones and Contributing Sources
Table 44: Critical Conditions for TMDL Parameters
Table 45: List of Potentially Suitable BMPs for the Maria Creek Watershed
Table 46: Summary of Programs Relevant to Sources in the Maria Creek Watershed
Table 47: Potential Implementation Partners in the Maria Creek Watershed 135

Executive Summary

The Maria Creek watershed (HUC 0512011118) is located in southwestern Indiana and drains an area of approximately 97 square miles. The watershed originates in southern Sullivan County and then flows south into Knox County where it ultimately empties into the Wabash River north of Vincennes. Land use throughout the watershed is predominantly agriculture with forested areas being the second most abundant land use type.

The Clean Water Act (CWA) and U.S. Environmental Protection Agency (U.S. EPA) regulations require that states develop Total Maximum Daily Loads (TMDLs) for waters on the Section 303(d) List of Impaired Waters. A TMDL is the total amount of a pollutant that can be assimilated by the receiving water while still achieving water quality standards. TMDLs are composed of the sum of individual wasteload allocations (WLAs) for regulated sources and load allocations (LAs) for sources that are not directly regulated. In addition, the TMDL must include a margin of safety (MOS), either implicitly or explicitly, that accounts for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. Conceptually, this is defined by the equation:

 $TMDL = \sum WLAs + \sum LAs + MOS$

This TMDL has been developed to address *E. coli* and biotic communities in the Maria Creek watershed, in accordance with the TMDL Program Priority Framework. Parameters chosen for TMDL development include *E. coli* and total suspended solids (TSS). These parameters will be referred to cumulatively in this report as "pollutants."

The Maria Creek watershed TMDL was prioritized to be completed at this time based on local interest in addressing water quality, IDEM interest in conducting baseline water quality monitoring for local planning, and a competitive Section 319 application from the local partners to develop a watershed management plan in conjunction with the IDEM sampling and TMDL development for streams impaired for *E. coli* and biotic communities.

After the Indiana Department of Environmental Management (IDEM) identifies a waterbody as having impairment and places the waterbody on Indiana's Section 303(d) List of Impaired Waters, IDEM implements a sampling plan to determine the extent and the magnitude of the impairment. The next task is to reassess each waterbody using new sampling data and to examine the watershed as a whole. The reassessment data help IDEM identify the area of concern for TMDL development. As a result of the reassessment of the Maria Creek watershed, the pollutants and the impaired segments for which TMDLs were developed differ from those appearing on the 2020 Section 303(d) List because sampling performed by IDEM in 2019 and 2020 generated new water quality data that were not available at the time the 2020 Section 303(d) List was developed.

Sampling data were collected at 18 sampling sites from November 2019 to October 2020 by IDEM for the TMDL analysis. The data indicate that 16 of the sample sites violated one or more of the Indiana water quality standards (327 IAC 2).

Potential sources of biotic impairment and *E. coli* in the watershed include both regulated point sources and nonpoint sources. Point sources such as a public water supply (PWS) facility, wastewater treatment plants (WWTPs), surface and underground coal mining operations, and stormwater permitted construction activities are regulated through the National Pollutant Discharge Elimination System (NPDES). Nonpoint sources such as agricultural run-off, stream bank erosion, unregulated urban stormwater, wildlife, confined feeding operations (CFOs), pasture animals with access to streams, and faulty and failing septic systems are also potential sources.

Determining the specific reasons for high *E. coli* counts in any given waterbody is challenging. There are many potential sources, and *E. coli* counts are inherently variable. There is only one permitted confined feeding operation (CFO) within the Maria Creek watershed. However, several small unregulated animal feeding operations were observed throughout the watershed. It is therefore possible that these small unregulated operations that allow livestock to have direct access to streams are contributing to the elevated *E. coli* levels. However, with the highest amount of land being agricultural use throughout all of the subwatersheds, land application of manure could be a primary source of high *E. coli* levels. The second highest land use for all subwatersheds was forested, which indicates that wildlife excrement could be a contributing source as well. Additionally, being a very rural watershed, other factors such as failing septic systems or illegal straight pipes could be affecting subwatersheds that also tend to experience lower flows, and thus have less dilution. Specific sources of *E. coli* to each impaired waterbody should be further evaluated during follow-up implementation activities.

Various subwatersheds in the Maria Creek watershed have impaired biotic communities (IBC). Biological communities include fish and aquatic invertebrates, such as insects. These in-stream organisms are indicators of the cumulative effects of activities that affect water quality conditions over time. An IBC listing on Indiana's 303(d) List suggests that one or more of the aquatic biological communities is unhealthy as determined by IDEM's monitoring data. IBC is not a source of impairment but a symptom of other sources. To address these impairments in the Maria Creek watershed, high TSS has been identified as the pollutant for TMDL development. Results of watershed modeling indicate run-off from cropland and stream bank erosion contribute the greatest sediment loads throughout Maria Creek.

An important step in the TMDL process is the allocation of the allowable loads to individual point sources, as well as sources that are not directly regulated. The Maria Creek watershed TMDL includes these allocations, which are presented for each of the 12-digit hydrologic unit code (HUC) subwatersheds containing impairments.

There are seven NPDES permitted facilities located in the Maria Creek watershed. These facilities include a public water supply (PWS), wastewater treatment plants (WWTPs), and coal mining operations. Of these facilities, three have been found to be in violation of their permit limits for TSS. Although these NPDES facilities have been found to be in violation of their permit limits, the majority of the time effluent from permitted facilities meets water quality standards and/or targets.

There are several types of documented and suspected nonpoint sources located in the Maria Creek watershed, including unregulated livestock operations with direct access to streams, agricultural row crop land use, straight pipes, leaking or failing septic systems, wildlife, and erosion. Of these, agricultural row

crop land use, livestock operations, and erosion are found most often in subwatersheds with elevated levels of *E. coli* and TSS. Although Indiana does not have a permitting program for nonpoint sources, many nonpoint sources are addressed through voluntary programs intended to reduce pollutant loads, minimize flow, and improve water quality.

This TMDL report identifies which locations could most benefit from focus on implementation activities. These areas throughout the Maria Creek watershed are referred to as critical conditions. It also provides recommendations on the types of implementation activities, including best management practices (BMPs), that key implementation partners in the Maria Creek watershed can consider to achieve the pollutant load reductions calculated for each subwatershed. Table 1 presents potential critical areas which can be used to recommend BMPs identified as having a high likely degree of effectiveness to achieve the *E. coli* and TSS load reductions allocated to sources in each subwatershed. The critical condition for each TMDL is identified as the flow condition requiring the largest percent reduction based on a 90th percentile concentration of observed water quality data in each subwatershed and flow regime combination. A more detailed explanation of critical conditions can be found in Section 5.2.

Deremeter	Subwetershed (UUC)	Critical Condition (Reduction Needed)				
Parameter	Subwatershed (HUC)	High	Moist	Mid-Range	Dry	Low
	Cotton Branch (051201111804)	99%	59%	79%	76%	7%
	Tilley Ditch (051201111802)	99%	74%	93%	93%	84%
<i>E. coli</i> (MPN/100mL)	Marsh Creek (051201111803)	99%	75%	88%	87%	45%
	Headwaters Maria Creek (051201111801)	89%		85%	88%	72%
	Cotton Branch (051201111804)	95%	0%	0%	0%	0%
Total Suspended Solids (mg/L)	Marsh Creek (051201111803)	91%	0%	0%	0%	0%
	Headwaters Maria Creek (051201111801)	92%	0%	0%	0%	0%

Table 1: Critical Conditions for TMDL Parameters

Note: -- represents no data collected in the flow regime

Public participation is an important and required component of the TMDL development process. The following public meetings and public comment periods have been held to further develop this project:

- A kickoff public meeting was held in Sullivan, IN on December 10, 2019 to introduce the project and solicit public input. IDEM explained the TMDL process and presented initial information regarding the Maria Creek watershed. Questions were answered from the public, and information was solicited from stakeholders in the area.
- On October 14, 2020, IDEM worked with the Sullivan County Soil and Water Conservation District (SWCD) to host a water monitoring demonstration. The event was at the Emison Mill County Park adjacent to Maria Creek in Bruceville, IN. IDEM staff were on site to explain and/or

give demonstrations on their process for collecting water chemistry, fish (through electrofishing techniques), and macroinvertebrates. Results were discussed for the 2019 and 2020 IDEM sampling of the watershed. The details of the partnership between the Sullivan County SWCD and IDEM were presented as well.

- On February 24, 2021, a notice was posted to the Indiana Register to inform stakeholders of new impairments discovered during the 2019 and 2020 watershed characterization study in the Maria Creek watershed. The notice outlined the findings of the study and listed proposed additions/deletions to the 2022 303(d) List of Impaired Waters. Public comments were solicited through May 25, 2021. IDEM received no comments regarding the notice.
- A virtual draft TMDL public meeting was held for the Maria Creek TMDL project on July 8, 2021. The findings of the TMDL were presented at the meeting, and the public had the opportunity to ask questions and provide information to be included in the final TMDL report. A public comment period was from July 12, 2021 to August 12, 2021. IDEM received no comments regarding the notice.

1.0 INTRODUCTION

This section of the Total Maximum Daily Load (TMDL) provides an overview of the Maria Creek watershed location and the regulatory requirements that have led to the development of this TMDL to address impairments in the Maria Creek watershed.

The Maria Creek watershed TMDL was prioritized to be completed at this time based on local interest from the Sullivan County Soil and Water Conservation District (SWCD) in addressing water quality, IDEM interest in conducting baseline water quality monitoring for local planning, and a competitive Section 319 application from the local partners to develop a watershed management plan in conjunction with the IDEM sampling and TMDL development for streams impaired by *E. coli* and biological communities.

The Maria Creek watershed (HUC 0512011118), shown in Figure 1, is located in southwestern Indiana and drains a total of 97 square miles. The Maria Creek watershed originates in southern Sullivan County and then flows south into Knox County where it ultimately empties into the Wabash River north of Vincennes. Land use throughout the watershed is predominantly agriculture with forested areas being the second most abundant land use type. There are no public water supply intakes in the Maria Creek watershed.

The Clean Water Act (CWA) and U.S. Environmental Protection Agency (U.S. EPA) regulations require that states develop TMDLs for waters on the Section 303(d) List of Impaired Waters. U.S. EPA defines a TMDL as the sum of the individual wasteload allocations (WLA) for point sources and load allocations (LA) for nonpoint sources, and a margin of safety (MOS) that addressed the uncertainty in the analysis.

The overall goals and objectives of the TMDL study for the Maria Creek watershed are to:

- Assess the water quality of the impaired waterbodies and identify key issues associated with the impairments and potential pollutant sources.
- Determine current loads of pollutants to the impaired waterbodies.
- Use the best available science and available data to determine the total maximum daily load the waterbodies can receive while fully supporting the designated use(s) that are impaired.
- If current loads exceed the maximum allowable loads, determine the load reduction that is needed.
- Inform and involve the public throughout the project to ensure that key concerns are addressed and the best available information is used.
- Identify critical flow conditions that watershed stakeholders can use to identify critical areas.
- Recommend activities for purposes of TMDL implementation.
- Submit a final TMDL report to the U.S. EPA for review and approval.

Watershed stakeholders and partners can use the final approved TMDL report to craft a watershed management plan (WMP) that meets both U.S. EPA's nine minimum elements under the CWA Section 319 Nonpoint Source Program, as well as the additional requirements under IDEM's WMP Checklist.

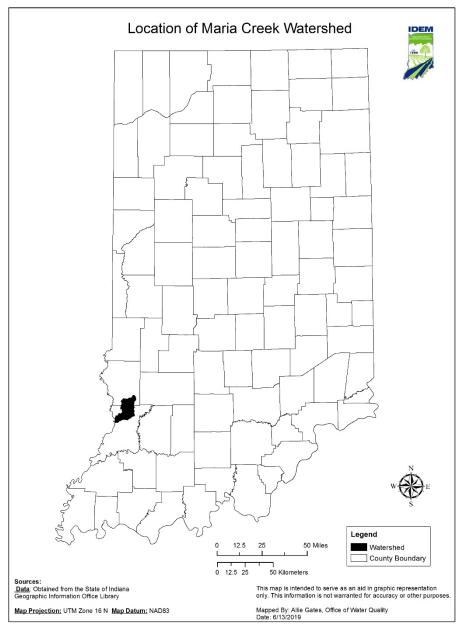


Figure 1: Location of Maria Creek Watershed

1.1 Water Quality Standards

Under the CWA, every state must adopt water quality standards to protect, maintain, and improve the quality of the nation's surface waters. These standards represent a level of water quality that will support the CWA's goal of "swimmable/fishable" waters. Water quality standards consist of three different components:

- **Designated uses** reflect how the water can potentially be used by humans and how well it supports a biological community. Examples of designated uses include aquatic life support, drinking water supply, and full body contact recreation. Every waterbody in Indiana has a designated use or uses; however, not all uses apply to all waters. The Maria Creek watershed TMDLs focus on protecting the designated aquatic life support and full body contact recreational uses of the waterbodies.
- Criteria express the condition of the water that is necessary to support the designated uses. **Numeric criteria** represent the concentration of a pollutant that can be in the water and still protect the designated use of the waterbody. **Narrative criteria** are the general water quality criteria ("free froms…") that apply to all surface waters. Numeric criteria for *E. coli* and narrative criteria for Impaired Biotic Communities (IBC) were used as the basis of the Maria Creek watershed TMDLs.
- Antidegradation policies provide protection of existing uses and extra protection for highquality or unique waters.

The water quality standards in Indiana pertaining to *E. coli* and IBC ("the impairments") are described below.

<u>1.1.1 E. coli</u>

E. coli is an indicator of the possible presence of pathogenic organisms (e.g., enterococcal *E. coli*, viruses, and protozoa) which may cause human illness. The direct monitoring of these pathogens is difficult; therefore, *E. coli* is used as an indicator of potential fecal contamination. *E. coli* is a sub-group of fecal coliform, the presence of *E. coli* in a water sample indicates recent fecal contamination is likely. Concentrations are typically reported as the count of organisms in 100 milliliters of water (count/100 mL) or most probable number (MPN/100 mL) and may vary at a particular site depending on the baseline *E. coli* level already in the river, inputs from other sources, dilution due to precipitation events, and die-off or multiplication of the organism within the river water and sediments.

The numeric E. coli criteria associated with protecting the recreational use are described below.

"The criteria in this subsection are to be used to evaluate waters for full body contact recreational uses, to establish wastewater treatment requirements, and to establish effluent limits during the recreational season, which is defined as the months of April through October, inclusive. E. coli bacteria, shall not exceed one hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean based on not less than five (5) samples equally spaced over a thirty (30) day period nor exceed two hundred thirty-five (235) per one hundred (100) milliliters in any one (1) sample in a thirty (30) day period... However, a single sample shall be used for making beach notification and *closure decisions.*" [Source: Indiana Administrative Code Title 327 Water Pollution Control Board. Article 2. Section 1-6(a).]

1.1.2 Biological Communities

The water quality regulatory definition of a "well-balanced aquatic community" is "an aquatic community which is diverse in species composition, contains several different trophic levels, and is not composed mainly of strictly pollution tolerant species" [327 IAC 2-1-9(49)].

Impaired biotic communities (IBC) is not a source of impairment but a symptom of other sources. To address these impairments in the Maria Creek watershed, TSS has been identified as a pollutant for TMDL development. IDEM has not yet adopted numeric water quality criteria for total suspended solids (TSS). The relevant narrative criteria that apply to the TMDLs presented in this report state the following:

"All surface waters at all times and at all places, including waters within the mixing zone, shall meet the minimum conditions of being free from substances, materials, floating debris, oil, or scum attributable to municipal, industrial, agricultural, and other land use practices, or other discharges that do any of the following:" [327 IAC 2-1-6. Sec. 6. (a)(1)]...

(a)re in concentrations or combinations that will cause or contribute to the growth of aquatic plants or algae to such degree as to create a nuisance, be unsightly, or otherwise impair the designated uses." [327 IAC 2-1-6. Sec. 6. (a) (1)(D)]

(a)re in amounts sufficient to be acutely toxic to, or to otherwise severely injure or kill, aquatic life, other animals, plants, or humans." [327 IAC 2-1-6. Sec. 6. (a) (1)(E)]

In addition, the narrative biological criterion [327 IAC 2-1-3(2)] states the following:

"All waters, except those designated as limited use, will be capable of supporting a well-balanced, warm water aquatic community."

Biological assessments for streams are based on the sampling and evaluation of either the fish communities, the benthic aquatic macroinvertebrate communities, or both. Indices of Biotic Integrity (IBI) for fish and macroinvertebrate (mIBI) assessment scores, or both, were calculated and compared to regionally calibrated models. In evaluating fish communities, streams rating as "poor" or worse are classified as non-supporting for aquatic life uses. For benthic aquatic macroinvertebrate communities, individual sites are compared to a statewide calibration at the lowest practical level of identification for Indiana. All sites at or above background for the calibration are considered to be supporting aquatic life uses. Those sites rated as moderately or severely impaired in the calibration are considered to be non-supporting. Waters with identified impairments to one or more biological communities are considered not supporting aquatic life use. The biological thresholds Indiana uses to make use attainment decisions are shown in Table 2 to provide greater context for understanding the range of biological conditions that is considered either fully supporting or impaired.

IDEM's aquatic life use assessments are never based solely on habitat evaluations. However, habitat evaluations are used as supporting information in conjunction with biological data to determine aquatic life use support. Such evaluations, which take into consideration a variety of habitat characteristics as well as stream size, help IDEM to determine the extent to which habitat conditions may be influencing the

ability of biological communities to thrive. If habitat is determined to be driving a biological community impairment (IBC) and no other pollutants that might be contributing to the impairment have been identified, the IBC may not be considered for inclusion on IDEM's 303(d) List of Impaired Waters (Category 5). In such cases, the waterbody is instead placed in Category 4C for the biological impairment.

Biotic Index Score and Associated Assessment Decision	Integrity Class	Corresponding Integrity Class Score	Attributes
Fish c	community Index of Biotic	: Integrity (IBI) Scores (Rar	nge of possible scores is 0-60)
	Excellent	53-60	Comparable to "least impacted" conditions, exceptional assemblage of species
Fully Supporting IBI ≥ 36 Indicates Full Support	Good	45-52	Decreased species richness (intolerant species in particular), sensitive species present
	Fair	36-44	Intolerant and sensitive species absent, skewed trophic structure
Not Supporting	Poor	23-35	Many expected species absent or rare, tolerant species dominant
IBI < 36 Indicates Impairment	Very Poor	12-22	At least one species present, tolerant species dominant
	No Organisms	0	No fish captured during sampling.
Bent	hic aquatic macroinverte Multihabitat MHAB	brate community Index of methods (Range of possil	Biotic Integrity (mIBI) Scores ble scores is 0-60)
	Excellent	53-60	Comparable to "least impacted" conditions, exceptional assemblage of species
Fully Supporting mIBI ≥ 36 Indicates Full Support	Good	45-52	Decreased species richness (intolerant species in particular), sensitive species present
	Fair	36-44	Intolerant and sensitive species absent, skewed trophic structure
Not Supporting	Poor	23-35	Many expected species absent or rare, tolerant species dominant
mIBI < 36 Indicates Impairment	Very Poor	12-22	At least one species present, tolerant species dominant
	No Organisms	0	No macroinvertebrates captured during sampling.

Table 2: Maria Creek Watershe	d Aquatic Life	Use Support Cr	riteria for Biological Communities	
	1	11	8	

1.2 Water Quality Targets

Target values are needed for the development of TMDLs because of the need to calculate allowable daily loads. For parameters that have numeric criteria, such as *E. coli*, the target equals the numeric criteria. For parameters that do not have numeric criteria, target values must be identified from some other source. The target values used to develop the Maria Creek watershed TMDL are presented below.

<u>1.2.1 *E. coli* TMDLs</u>

The target value used for the Maria Creek watershed TMDL was based on the 235 counts/100 mL single sample maximum component of the water quality standard (i.e., daily loading capacities were calculated by multiplying flows by 235 counts/100 mL). The U.S. EPA report, "An Approach for Using Load Duration Curves in the Development of TMDLs" describes how the monthly geometric mean (125 counts/100mL) is likely to be met when the single sample maximum value (235 counts/100mL) is used to develop the loading capacity (U.S. EPA, 2007). The process calculates the daily maximum bacteria value that is possible to observe and still attain the monthly geometric mean. If the single sample maximum is set as a never-to-be surpassed value then it becomes the maximum value that can be observed, and all other bacteria values would have to be less than the maximum.

1.2.2 IBC TMDLs

The following section describes the TMDL target value used for TSS when developing IBC TMDLs.

Total Suspended Solids (TSS)

Although Indiana has not yet adopted numeric water quality criteria for TSS, IDEM has identified a target value based on IDEM's NPDES permitting process. A target of 30.0 mg/L for TSS has been identified as a permit limit for NPDES facilities. A target value of 30.0 mg/L TSS was therefore used as the TSS TMDL target value to ensure consistency with IDEM's NPDES permitting process. IDEM has determined that meeting the TSS target will result in achieving the narrative biological criterion by improving water quality and promoting a well-balanced aquatic community.

Various subwatersheds in the Maria Creek watershed have IBC impairments. Biological communities include fish and aquatic invertebrates, such as insects. These in-stream organisms are indicators of the cumulative effects of activities that affect water quality conditions over time. An IBC listing on Indiana's 303(d) List of Impaired Waters means IDEM's monitoring data shows one or both of the aquatic communities are not as healthy as they should be. IBC is not a source of impairment but a symptom of other sources. To address these impairments in the Maria Creek watershed, TSS has been identified as a pollutant for TMDL development.

Table 3 reiterates the TMDL target values presented in this section. These are the target values IDEM uses to assess water quality data collected in the Maria Creek watershed.

Parameter	Target Value	
Total Suspended Solids	No value should exceed 30.0 mg/L	
E. coli	No value should exceed 235 counts/100 mL (single sample maximum)	

Table 3: Target Values Used for Development of the Maria Creek Watershed TMDLs

1.3 Listing Information

1.3.1 Understanding Subwatersheds and Assessment Units

This section presents information concerning IDEM's segmentation process as it applies to the Maria Creek watershed. IDEM identifies the Maria Creek watershed and its tributaries using a watershed numbering system developed by the United States Geological Survey (USGS), Natural Resource Conservation Service (NRCS), and the U.S. Water Resources Council referred to as hydrologic unit codes (HUCs). HUCs are a way of identifying watersheds in a nested arrangement from largest (i.e., those with shorter HUCs) to smallest (i.e., those with longer HUCs) (IDEM, 2010). Figure 2 shows the 12-digit HUCs located in the Maria Creek watershed.

Within each 12-digit HUC subwatershed, IDEM has identified several AUIDs which represent individual stream segments. Through the process of segmenting subwatersheds into AUIDs, IDEM identifies streams reaches and stream networks that are representative for the purposes of assessment. In practice, this process leads to grouping tributary streams into smaller catchment basins of similar hydrology, land use, and other characteristics such that all tributaries within the catchment basin can be expected to have similar potential water quality impacts. Catchment basins, as defined by the aforementioned factors, are typically very small, which significantly reduces the variability in the water quality expected from one stream or stream reach to another. Given this, all tributaries within a catchment basin are assigned a single AUID. Grouping tributary systems into smaller catchment basins also allows for better characterization of the larger watershed and more localized recommendations for implementation activities. Variability within the larger watershed will be accounted for by the differing AUIDs assigned to the different catchment basins.

Table 4 contains the AUIDs in the subwatersheds of the Maria Creek watershed, and Table 9 contains the associated drainage areas. Subsequent sections of the TMDL report organize information by subwatershed (if applicable) and AUID.

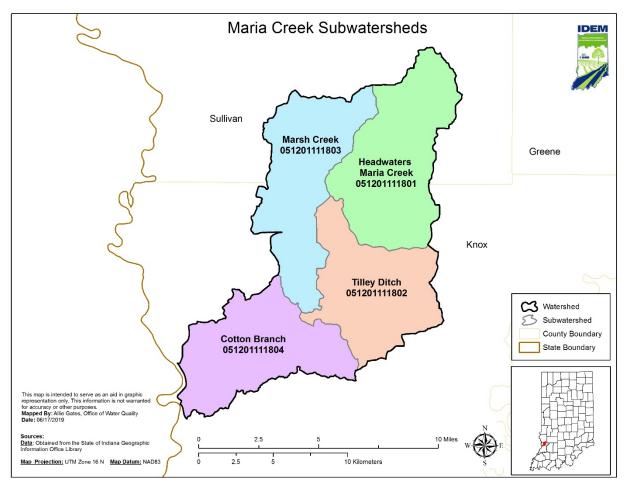


Figure 2: Subwatersheds (12-Digit HUCs) in the Maria Creek Watershed

1.3.2 Understanding 303(d) Listing Information

There are a number of existing impairments in the Maria Creek watershed from the 2020 303(d) List of Impaired Waters. The listings and causes of impairment have been adjusted as a result of reassessment data collected at 18 sampling locations in the watershed. Within the Maria Creek watershed a total of 20 assessment unit IDs (AUIDs) will be cited as impaired for *E. coli*, 5 AUIDs cited as impaired for dissolved oxygen, and 8 AUIDs cited as impaired for biotic communities on Indiana's 2022 303(d) List of Impaired Waters. These impaired segments account for approximately 122 miles. Table 4 presents listing information for the Maria Creek watershed, including a comparison of the updated listings with the 2020 listings and associated causes of impairments addressed by the TMDLs. The reassessment data used in updating the listings for the Maria Creek watershed are available in Appendix D.

Subwatershed	Current AUID	Length (mi)	2020 Section 303(d) Listed Impairment	Updated Impairments to be Listed 2022 303(d)
	INB11I4_03	5.57		E. coli
	INB11I4_T1008	0.59		
	INB11P1117_00	0.13		
	INB11I4_T1007	7.01		
	INB11I4_T1005	3.82		E. coli
Cotton Branch 051201111804	INB11I4_T1004	4.05		E. coli, IBC
001201111001	INB11I4_02	3.19		E. coli, IBC
	INB11I4_T1003	2.42		
	INB11I4_T1002	1.62		
	INB11I4_T1001	5.74		E. coli
	INB11I4_T1009	1.69		
	INB11I2_01	8.11	E. coli	E. coli
Tilley Ditch	INB11I2_T1004	12.51		
051201111802	INB11I2_T1002	5.40		E. coli, DO
	INB11I2_T1001	6.70		E. coli
	INB11I3_05	4.79		E. coli, IBC
	INB11I3_04	7.24		E. coli, IBC
M	INB11I3_03	8.62		E. coli
Marsh Creek 051201111803	INB11I3_T1003	4.02		
001201111000	INB11I3_T1002	2.79		E. coli
	INB11I3_T1001	2.36		
	INB11I3_02	8.73		E. coli, IBC, DO
	INB11I1_T1005	8.08	E. coli	E. coli, IBC, DO
	INB11I1_01	17.50	E. coli, IBC	E. coli
Headwaters	INB11I1_T1004	6.31	E. coli	E. coli, IBC, DO
Maria Creek	INB11I1_01A	1.15	E. coli	E. coli
051201111801	INB11I1_T1003	3.33	E. coli	E. coli
	INB11I1_T1001	5.14	E. coli, IBC, DO	E. coli, IBC, DO
	INB11I1_T1002	5.37	E. coli	E. coli

Table 4: Section 303(d) List Information for the Maria Creek Watershed for 2020 and 2022

Understanding Table 4:

- Column 1: Subwatershed. Shows the name of the subwatershed at the 12-digit HUC scale. The subwatershed found in this column is the appropriate scale for what the IDEM's WMP Checklist defines as a subwatershed for the purposes of watershed management planning.
- Column 2: Current AUID. Identifies the AUID given to waterbodies within the subwatershed for purposes of the 2022 Section 303(d) listing assessment process.
- Column 3: Length (mi). Provides the length in miles of the associated AUID.
- Column 4: 2020 Section 303(d) Listed Impairment. Identifies the cause of impairment associated with the 2020 Section 303(d) listing.

• Column 5: Updated Impairments to be Listed 2022 303(d). Provides the updated causes of impairment if new data and information are available.

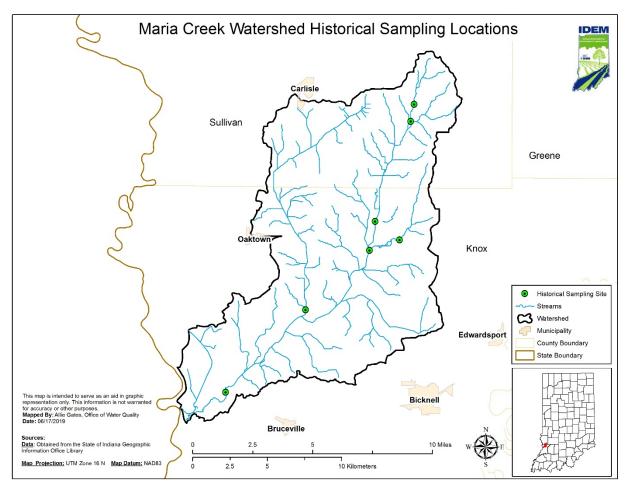


Figure 3: Location of Historical Sampling Sites in the Maria Creek Watershed

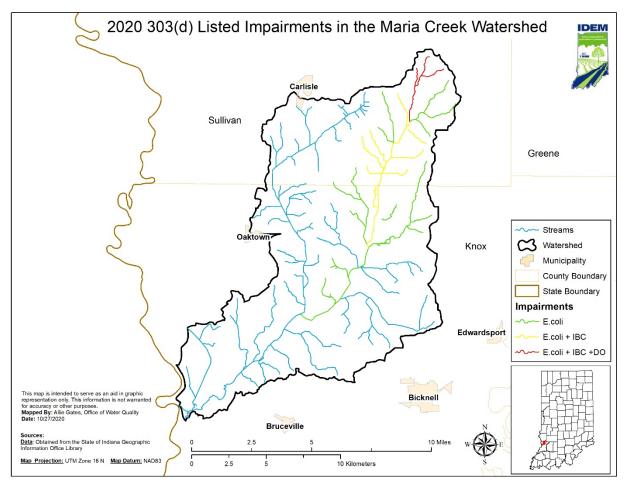


Figure 4: Streams Listed on the 2020 Section 303(d) List in the Maria Creek Watershed

1.4 Water Quality Data

This section of the TMDL report contains a brief characterization of the Maria Creek watershed water quality information that was collected in development of this TMDL. Understanding the natural and human factors affecting the watershed will assist in selecting and tailoring appropriate and feasible implementation activities to achieve water quality standards.

1.4.1 Water Quality Data

Data collected by IDEM from November 2019 through October 2020 were used for the TMDL analysis. Seventeen sites were sampled for pathogens, water chemistry, and biological data and one site was sampled for biological data only in the Maria Creek watershed. Table 5 and Figure 5 show the sampling site locations and information. Table 6 summarizes the pathogen data, and Table 7 summarizes the water chemistry data within the Maria Creek watershed in addition to the maximum concentrations at all impaired stations along with the reduction needed to meet the TMDL.

The percent reductions were calculated as follows:

% Reduction =
$$\frac{(\text{Observed Concentration - Target Value or WQS})}{\text{Observed Concentration}} \times 100$$

Appendix A shows the individual sample results and summaries of all the water quality data for all 18 monitoring stations.

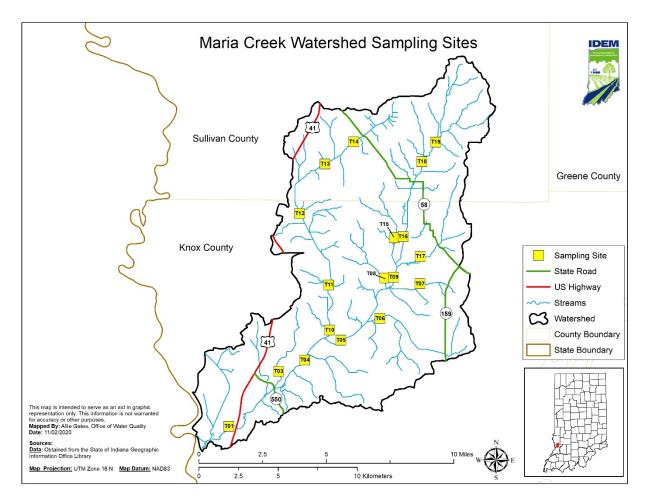


Figure 5: 2019 – 2020 Sampling Locations for the Maria Creek TMDL Watershed Characterization

Site #	EPA Site ID	IDEM Station ID	Stream Name	Road Name	AUID
T01	20T-001	WBU-18-0004	Maria Creek	N Old 41	INB11I4_03
T03	20T-003	WBU-18-0006	Cotton Branch	E Springtown Rd	INB11I4_T1004
T04	20T-004	WBU-18-0007	Maria Creek	N Perry Rd	INB11I4_02
T05	20T-005	WBU-18-0008	Maria Creek	N Risley Rd	INB11I2_01
T06	20T-006	WBU-18-0009	Tilley Ditch	E Pepmeir Rd	INB11I2_T1004
T07	20T-007	WBU-18-0010	Tributary of Maria Creek	CR 700 E (Lane Rd)	INB11I2_T1001
T08	20T-008	WBU-18-0011	Tributary of Maria Creek	CR 900 N (E Lower Freelandville Rd)	INB11I2_T1002
T09	20T-009	WBU-18-0013	Maria Creek	CR 900 N (E Lower Freelandville Rd)	INB11I2_01
T10	20T-010	WBU190-0001	Marsh Creek	CR 500 NE (E Springtown Rd)	INB11I3_05
T11	20T-011	WBU-18-0012	Marsh Creek	E Hunley Rd	INB11I3_04
T12	20T-012	WBU-18-0015	Marsh Creek	E Moody Rd	INB11I3_03
T13	20T-013	WBU-18-0016	Marsh Creek	CR 50 E	INB11I3_03
T14	20T-014	WBU-18-0017	Marsh Creek	CR 5 SE	INB11I3_02
T15	20T-015	WBU-18-0014	Tributary of Maria Creek	Freelandville Rd	INB11I1_T1004
T16	20T-016	WBU190-0002	Maria Creek	CR 1050 N (Freelandville Rd)	INB11I1_01
T17	20T-017	WBU-18-0018	Tributary of Maria Creek	CR 700 E (Lane Rd)	INB11I1_T1005
T18	20T-018	WBU-18-0019	Maria Creek	CR 1050 S	INB11I1_01
T19	20T-019	WBU-18-0020	Maria Creek	CR 975 S	INB11I1_01

Table 5: Maria Creek Sampling Site Information

Understanding Table 5:

- Column 1: Site #. Lists the site number that corresponds to the site location in Figure 5.
- Column 2: EPA Site ID. Provides the U.S. EPA assigned site number.
- Column 3: IDEM Station ID. Provides the IDEM assigned site number.
- Column 4: Stream Name. Identifies the stream name that the site is located on.
- Column 5: Road Name. Identifies the road name that the site is located on.
- Column 6: AUID. Identifies the AUID given to waterbodies within the 12-digit HUC subwatershed for purposes of the 2022 Section 303(d) listing assessment process.

<u>1.4.2 *E. coli* Data</u>

Table 6: Summary of Pathogen Data in the Maria Creek Watershed

Subwatershed	Site #	IDEM Station ID	AUID	Period of	Total Number	Percent of Samples Exceeding <i>E. coli</i> WQS (#/100 mL)		Geomean	<i>E. coli</i> Percent Reduction	Single Sample Maximum	<i>E. coli</i> Percent Reduction
				Record	of Samples	125	235	(#/100 mL)	Based on Geomean (125/100mL)	(SSM) (#/100 mL)	Based on SSM (#/100 mL)
	T01	WBU-18-0004	INB11I4_03	6/16/20- 10/14/20	8	75	50	482.71	74.1	9,870	97.6
Cotton Branch	T03	WBU-18-0006	INB11I4_T1004	6/16/20- 10/14/20	8	100	87.5	887.3	86.0	11,780	98.0
	T04	WBU-18-0007	INB11I4_02	6/16/20- 10/14/20	8	37.5	12.5	306.63	59.2	64,880	99.6
	T05	WBU-18-0008	INB11I2_01	6/16/20- 10/14/20	8	87.5	62.5	734.99	83.0	36,540	99.4
	T06	WBU-18-0009	INB11I2_T1004	6/15/20- 10/13/20	8	50	25	98.57	0	435.2	46.0
Tilley Ditch	T07	WBU-18-0010	INB11I2_T1001	6/15/20- 8/4/20	6	100	100	1,710.68	92.7	>2,419.6	90.3
	T08	WBU-18-0011	INB11I2_T1002	6/15/20- 10/13/20	8	100	87.5	1,237.53	89.9	>2,419.6	90.3
	Т09	WBU-18-0013	INB11I2_01	6/15/20- 10/13/20	8	37.5	37.5	166.32	24.8	1,046.2	77.5
	T10	WBU190-0001	INB11I3_05	6/16/20- 10/14/20	8	75	50	425.09	70.6	5,810	96.0
	T11	WBU-18-0012	INB11I3_04	6/16/20- 10/14/20	8	75	75	499.26	75.0	12,230	98.1
Marsh Creek	T12	WBU-18-0015	INB11I3_03	6/16/20- 10/14/20	8	100	75	2,200.89	94.3	48,840	99.5
	T13	WBU-18-0016	INB11I3_03	6/16/20- 10/14/20	8	87.5	50	439.81	71.6	24,810	99.1
	T14	WBU-18-0017	INB11I3_02	6/16/20- 8/5/20	6	100	66.67	1,209.73	89.7	36,540	99.4
Headwaters Maria Creek	T15	WBU-18-0014	INB11I1_T1004	6/15/20- 8/4/20	6	50	50	165.58	24.5	>2,419.6	90.3

Subwatershed	Site #	IDEM Station ID	AUID	Period of Record	Total Number	Percent of Samples Exceeding <i>E. coli</i> WQS (#/100 mL)		Geomean	<i>E. coli</i> Percent Reduction	Single Sample Maximum	<i>E. coli</i> Percent Reduction
Subwatersneu					of Samples	125	235	(#/100 mL)	Based on Geomean (125/100mL)	(SSM) (#/100 mL)	Based on SSM (#/100 mL)
	T16	WBU190-0002	INB11I1_01	6/15/20- 10/13/20	8	62.5	25	283.88	56.0	686.7	65.8
	T17	WBU-18-0018	INB11I1_T1005	6/15/20- 10/13/20	8	100	100	727.95	82.8	1,553.1	84.9
	T18	WBU-18-0019	INB11I1_01	6/15/20- 10/13/20	8	87.5	75	359.17	65.2	579.4	59.4

Understanding Table 6: Pathogen data for the Maria Creek watershed indicated the following:

- Reductions of 99 percent or greater are needed to meet the TMDL target values for *E. coli* in Cotton Branch.
- Reductions of 99 percent or greater are needed to meet the TMDL target values for *E. coli* in Tilley Ditch.
- Reductions of 99 percent or greater are needed to meet the TMDL target values for *E. coli* in Marsh Creek.
- Reductions of 90 percent or greater are needed to meet the TMDL target values for *E. coli* in Headwaters Maria Creek.

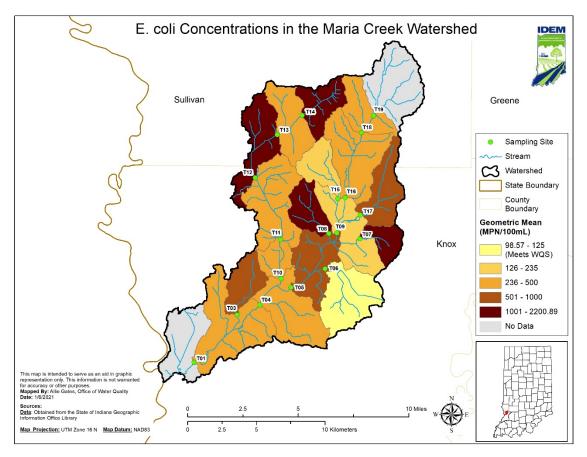


Figure 6: *E.coli* concentrations based on 5-week geometric mean (MPN/100 mL) and sampling site drainage areas for 2019 and 2020. Values over 125 MPN/100 mL are not meeting the water quality standard for *E.coli*.

1.4.3 Water Chemistry Data

Subwatershed	Site #	IDEM Station ID	AUID	Total Suspended Solids Single Sample Maximum (mg/L)	Total Suspended Solids Percent Reduction
	T01	WBU-18-0004	INB11I4_03	690	95.7
Cotton Branch	T03	WBU-18-0006	INB11I4_T1004	13	0
	T04	WBU-18-0007	INB11I4_02	480	93.8
	T05	WBU-18-0008	INB11I2_01	420	92.9
-	T06	WBU-18-0009	INB11I2_T1004	13	0
Tilley Ditch	T07	WBU-18-0010	INB11I2_T1001	14	0
	T08	WBU-18-0011	INB11I2_T1002	44	31.8
	T09	WBU-18-0013	INB11I2_01	370	91.9
	T10	WBU190-0001	INB11I3_05	370	91.9
	T11	WBU-18-0012	INB11I3_04	6.5	0
Marsh Creek	T12	WBU-18-0015	INB11I3_03	14	0
	T13	WBU-18-0016	INB11I3_03	11	0
	T14	WBU-18-0017	INB11I3_02	23	0
	T15	WBU-18-0014	INB11I1_T1004	13	0
Headwaters	T16	WBU190-0002	INB11I1_01	400	92.5
Maria Creek	T17	WBU-18-0018	INB11I1_T1005	24	0
	T18	WBU-18-0019	INB11I1_01	12	0

Table 7: Summary of Chemistry Data in Maria Creek Watershed for Total Suspended Solids

Understanding Table 7: Water chemistry data for the Maria Creek watershed indicated the following:

- Reductions of 96 percent or greater are needed to meet the TMDL target values for TSS in Cotton Branch.
- Reductions of 93 percent or greater are needed to meet the TMDL target values for TSS in Tilley Ditch.
- Reductions of 92 percent or greater are needed to meet the TMDL target values for TSS in Marsh Creek.
- Reductions of 93 percent or greater are needed to meet the TMDL target values for TSS in Headwaters Maria Creek.

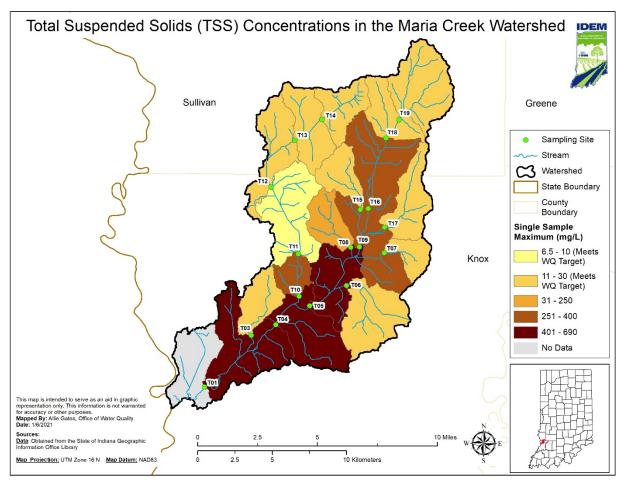


Figure 7: Total suspended solids concentrations based on single sample maximum concentration (mg/L) and sampling site drainage areas for 2019-2020. Values over 30 mg/L are not meeting the water quality target value for TSS.

1.4.4 Biological Data

Sampling performed by IDEM in June, July, and August 2020 documented widespread biological impairments in the Maria Creek watershed as summarized in Table 8. Fish community sampling took place at 18 sample sites in the Maria Creek watershed. Sampling data indicate that the overall biological integrity of the Maria Creek watershed was fair. Sampling resulted in 7 of the 18 sites failing established criteria for aquatic life support for fish and/or macroinvertebrates.

Through the TMDL efforts, IDEM has identified TSS as a potential reason for the widespread impairments. TSS can reduce plants available for consumption by inhibiting growth of submerged aquatic plants, lower dissolved oxygen levels by reducing light penetration which impairs algal growth, impair the ability of fish to see and catch food, increase stream temperature, clog fish gills which may decrease disease resistance, slow growth rates, and prevent the development of eggs and larvae. Attaining the TSS target value shown in Table 3 will address the causes of IBC impairments.

Subwatershed	Stream Name	Site #	IDEM Station ID	Score	Integrity Class	QHEI	Score	Integrity Class	QHEI
				mIBI	mlBl	mIBI	IBI	IBI	IBI
	Maria Creek	T01	WBU-18-0004	38	Fair	55	48	Good	66
Cotton Branch	Cotton Branch	T03	WBU-18-0006	34	Poor	63	42	Fair	65
	Maria Creek	T04	WBU-18-0007	48	Good	28	16	Very Poor	30
	Maria Creek	T05	WBU-18-0008	42	Fair	30	42	Fair	32
	Tilley Ditch	T06	WBU-18-0009	36	Fair	42	42	Fair	38
Tilley Ditch	Tributary of Maria Creek	T07	WBU-18-0010	36	Fair	29	40	Fair	46
	Tributary of Maria Creek	T08	WBU-18-0011	38	Fair	34	44	Fair	33
	Maria Creek	T09	WBU-18-0013	36	Fair	33	46	Good	43
	Marsh Creek	T10	WBU190-0001	44	Fair	35	20	Very Poor	38
	Marsh Creek	T11	WBU-18-0012	42	Fair	43	20	Very Poor	45
Marsh Creek	Marsh Creek	T12	WBU-18-0015	46	Fair	25	44	Fair	37
	Marsh Creek	T13	WBU-18-0016	40	Fair	37	42	Fair	50
	Marsh Creek	T14	WBU-18-0017	-	-	-	20	Very Poor	33
	Tributary of Maria Creek	T15	WBU-18-0014	32	Poor	24	20	Very Poor	37
	Maria Creek	T16	WBU190-0002	48	Good	38	34	Poor	52
Headwaters Maria Creek	Tributary of Maria Creek	T17	WBU-18-0018	42	Fair	44	34	Poor	41
	Maria Creek	T18	WBU-18-0019	40	Fair	45	40	Fair	45
	Maria Creek	T19	WBU-18-0020	42	Fair	64	48	Good	58

 Table 8: Impaired Biotic Community Stream Segments in the Maria Creek Watershed Identified During

 June/July 2020 Sampling

Notes: *IBI* = Index of Biotic Integrity for fish community, *mIBI* = Index of Biotic Integrity for macroinvertebrate community, *QHEI* = Qualitative Habitat Evaluation Index. Scores were calculated using IDEM's Procedures for Completing the Qualitative Habitat Evaluation Index Technical Standard Operating Procedure (IDEM, 2019).

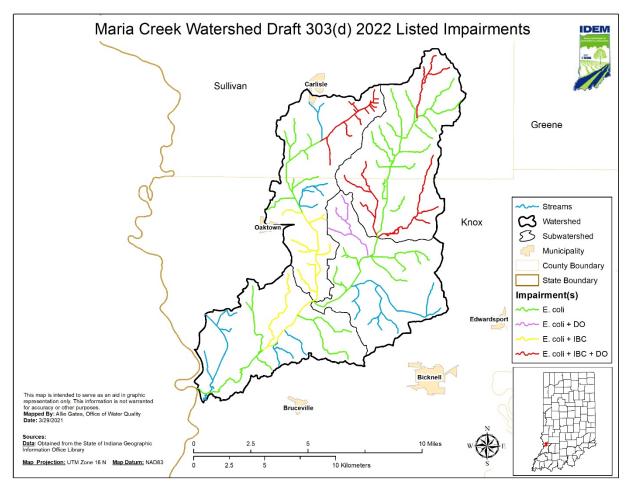


Figure 8: Streams to be listed on the Draft 2022 Section 303(d) List of Impaired Waters in the Maria Creek Watershed

2.0 DESCRIPTION OF THE WATERSHED AND SOURCE ASSESSMENT

This section of the TMDL report contains a brief characterization of the Maria Creek watershed to provide a better understanding of the historic and current conditions of the watershed that affect water quality and contribute to the impairments. Understanding the natural and human factors affecting the watershed will assist in selecting and tailoring appropriate and feasible implementation activities to achieve water quality standards.

As discussed in Section 1.3, the Maria Creek watershed contains four 12-digit HUC subwatersheds. Examining subwatersheds enables a closer examination of key factors that affect water quality. The subwatersheds include:

- Cotton Branch (051201111804)
- Tilley Ditch (051201111802)
- Marsh Creek (051201111803)
- Headwaters Maria Creek (051201111801)

The following table contains the names of the four subwatersheds of the Maria Creek watershed and their associated drainage area.

Subwatershed	12-digit HUC	Area Within Watershed (sq. miles)	Percent of Watershed Area	Drainage Area (sq miles)	Percent of Total Drainage Area
Cotton Branch	0512021111804	23.22	24.05%	96.55	100.00%
Tilley Ditch	051201111802	22.17	22.96%	49.51	51.28%
Marsh Creek	051201111803	23.82	24.67%	23.82	24.67%
Headwaters Maria Creek	051201111801	27.34	28.32%	27.34	28.32%

Table 9: Maria Creek Subwatershed Drainage Areas

Understanding Table 9: Land area helps IDEM to define the pollutant load reductions needed for each AU in each 12-digit HUC subwatershed that comprises the Maria Creek watershed. Information in each column is as follows:

- Column 1: Subwatershed. Lists the name of the subwatersheds.
- Column 2: 12-digit HUC. Identifies the subwatershed's 12-digit HUC.
- Column 3: Area Within Watershed. Provides the area of each subwatershed within the overall watershed in square miles.
- Column 4: Percent of Watershed Area. Indicates the percent of land area of each subwatershed, providing a relative understanding of the portions of each subwatershed compared to the overall Maria Creek watershed.
- Column 5: Drainage Area. Quantifies the area the specific subwatershed drains in square miles.

• Column 6: Percent of Total Drainage Area. Indicates the percent of the total drainage area, providing a relative understanding of the portion of the subwatershed in the overall Maria Creek watershed.

IDEM bases load calculations on the drainage area for each of the 12-digit HUC subwatersheds. The information contained in this table is the foundation for the technical calculations found in Section 3.0. This table will help watershed stakeholders look at the smaller subwatersheds within the Maria Creek watershed and understand the smaller areas contributing to the impaired waterbody, helping to quantify the geographic scale that influences source characterization and areas for implementation.

The term "point source" refers to any discernible, confined and discrete conveyance, such as a pipe, ditch, channel, tunnel or conduit, by which pollutants are transported to a waterbody. It also includes vessels or other floating craft from which pollutants are or may be discharged. By law, the term "point source" also includes: confined feeding operations (which are places where animals are confined and fed); and illicitly connected "straight pipe" discharges of household waste. Permitted point sources are regulated through the National Pollutant Discharge Elimination System (NPDES).

Nonpoint sources include all other categories not classified as point sources. In urban areas, nonpoint sources can include leaking or faulty septic systems, run-off from lawn fertilizer applications, pet waste and other sources. In rural areas, nonpoint sources can include run-off from cropland, pastures, and animal feeding operations and inputs from streambank erosion, leaking, failing or straight-piped septic systems, and wildlife.

2.1 Land Use

Land use patterns provide important clues to the potential sources of impairments in a watershed. Land use information for the Maria Creek watershed is available from the National Agricultural Statistics Service (NASS) cropland data layer. These data categorize the land use for each 30 meters by 30 meters parcel of land in the watershed based on satellite imagery from circa 2018. Figure 9 displays the spatial distribution of the land uses and the data are summarized in Table 10. Additionally, Table 11 displays the breakdown of land uses within each of the four subwatersheds.

Land use in the Maria Creek watershed is primarily agriculture, comprising 73 percent of the Maria Creek watershed. Corn and soybean crops are not typically associated with high *E. coli* loads, unless they have been fertilized with manure. Approximately 14 percent of the land is forest. Pasture/hay represents 5 percent of the watershed and could indicate the presence of animal feedlots which can be significant sources of *E. coli*, TSS, and/or nutrients. The remaining land categories represent less than 10 percent of the total land area.

The Maria Creek watershed has a diverse network of streams. Tributaries include Beaver Ditch, Cotton Branch, Tilley Ditch, and Marsh Creek among others. There are few urban areas within the watershed. The Town of Carlisle extends into the northern portion of the watershed, and the Town of Oaktown exists at the western extent of the watershed. In addition, Freelandville, an unincorporated community, is located at the eastern extent of the watershed. Forested areas are primarily limited to the southwestern portion of the watershed surrounding Maria Creek. Water generally flows in a southwesterly direction to Maria Creek where it eventually departs the Maria Creek watershed and discharges into the Wabash River.

Many threatened and endangered species call this watershed home. Various fish species, such as the Greater Redhorse (*Moxostoma valenciennesi*), Western Sand Darter (*Ammocrypta clara*), and Gilt Darter (*Percina evides*) can be found in Sullivan and Knox counties and are dependent upon the health of the aquatic system (IDNR, 2020). Additional information on state endangered, threatened and rare species can be found on the DNR website (<u>https://www.in.gov/dnr/nature-preserves/heritage-data-center/endangered-plant-and-species/county/</u>).

	Watershed				
Land Use	Ar				
	Acres	Square Miles	Percent		
Agricultural Land	45,097.67	70.47	72.9		
Developed Land	3,893.02	6.08	6.3		
Forested Land	8,883.56	13.88	14.4		
Hay/Pasture	3,248.30	5.08	5.2		
Open Water	645.17	1.01	1.0		
Shrub/Scrub	2.89	<1	<1		
Wetlands	64.49	0.10	0.1		
Total	61,835.11	96.62	100%		

Table 10: Land Use of the Maria Creek Watershed

Understanding Table 10: The predominant land use types in the Maria Creek watershed can indicate potential sources of E. coli and TSS loadings. Different types of land uses are characterized by different types of hydrology. For example, developed lands are characterized by impervious surfaces that increase the potential of stormwater events during high flow periods delivering E. coli and TSS to downstream streams and rivers. Forested land and wetlands allow water to infiltrate slowly, thus reducing the risks of polluted water to running off into waterbodies. In addition to differences in hydrology, land use types are associated with different types of activities that could contribute pollutants to the watershed. Understanding types of land uses will help identify the type of implementation approaches that watershed stakeholders can use to achieve E. coli and TSS load reductions.

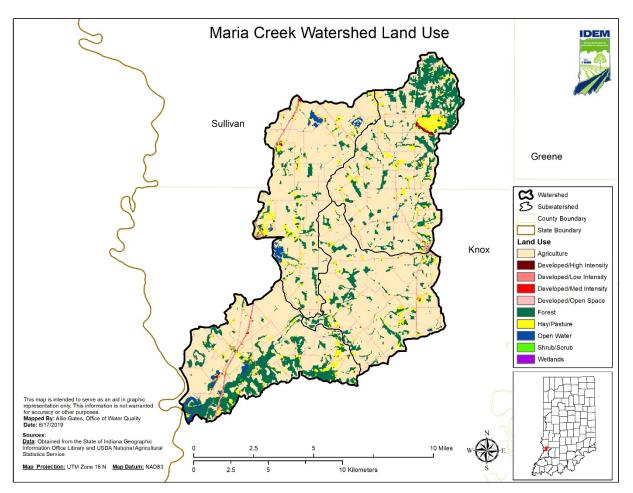


Figure 9: Land Use in the Maria Creek Watershed

	_	Land Use							
Subwatershed	Area	Agriculture	Developed	Forest	Hay/ Pasture	Open Water	Shrub/ Scrub	Wetlands	Total
	Acres	9,560	1,047	3,251	761	248	1	42	14,911
Cotton Branch (051201111804)	Sq. Mi.	14.94	1.64	5.08	1.19	0.39	0.00	0.07	23.30
(00120111001)	Percent	64%	7%	22%	5%	2%	0%	0%	100%
	Acres	11,473	800	1,365	540	14	0	2	14,194
Tilley Ditch (051201111802)	Sq. Mi.	17.93	1.25	2.13	0.84	0.02	0.00	0.00	22.18
(00.20	Percent	81%	6%	10%	4%	0%	0%	0%	100%
	Acres	12,113	942	944	897	352	1	9	15,258
Marsh Creek (051201111803)	Sq. Mi.	18.93	1.47	1.47	1.40	0.55	0.00	0.01	23.84
(00120111000)	Percent	79%	6%	6%	6%	2%	0%	0%	100%
Headwaters Maria Creek (051201111801)	Acres	11,999	1,097	3,327	1,053	32	0	10	17,519
	Sq. Mi.	18.75	1.71	5.20	1.64	0.05	0.00	0.02	27.37
	Percent	68%	6%	19%	6%	0%	0%	0%	100%

Table 11: Land Use in the Maria Creek Subwatersheds

2.1.1 Cropland

Croplands can be a source of *E. coli* and sediments. Accumulation of *E. coli* on cropland occurs from fertilization with manure fertilizers, wildlife excreta, irrigation water, and application of waste products from municipal and industrial wastewater treatment facilities. Data available from the National Agricultural Statistic Service (NASS) were downloaded to estimate crop acreage in the subwatersheds. The 2018 NASS statistics were used in the analysis as shown in Table 12 and displayed in Figure 10 (USDA, 2018).

Subwatershed	Сгор	Total Acreage	% of Subwatershed Cash Crop Acreage
Cotton Branch	Corn	3,364	35%
	Winter Wheat/Soybeans (Double Crop)	605	6%
(051201111804)	Soybeans	5,373	57%
	Watermelons	130	2%
	Total	9,472	100%
	Corn	5,663	49%
Tilley Ditch	Winter Wheat/Soybeans (Double Crop)	1	<1%
(051201111802)	Soybeans	5,790	51%
	Watermelons	17	<1%
	Total	11,471	100%
	Corn	5,723	48%
Marsh Creek	Winter Wheat/Soybeans (Double Crop)	125	1%
(051201111803)	Soybeans	6,162	51%
	Watermelons	50	<1%
	Total	12,060	100%
	Corn	5,398	45%
Headwaters Maria Creek	Winter Wheat/Soybeans (Double Crop)	29	<1%
(051201111801)	Soybeans	6,556	55%
	Watermelons	4	<1%
	Total	11,987	100%

Table 12: Major Cash Crop Acreage in the Maria Creek Watershed

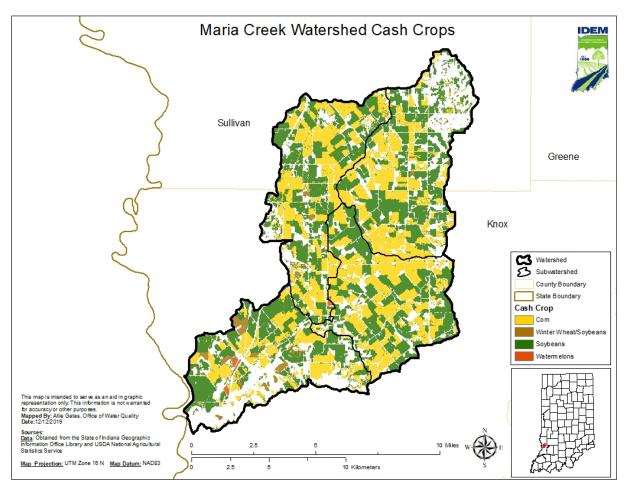


Figure 10: Cash Crop Acreage in the Maria Creek Watershed

2.1.2 Hay/Pastureland

Run-off from pastures and livestock operations can be potential agricultural sources of *E. coli* and sediments. For example, animals grazing in pasturelands deposit manure directly upon the land surface and, even though a pasture may be relatively large and animal densities low, the manure will often be concentrated near the feeding and watering areas in the field. These areas can quickly become barren of plant cover, increasing the possibility of erosion and contaminated run-off during a storm event.

Livestock are a potential source of *E. coli* and TSS to streams, particularly when direct access is not restricted and/or where feeding structures are located adjacent to riparian areas. Watershed specific data are not available for livestock populations. The amount of hay/pasture land across the landscape can be used to as an indicator for potential areas of higher densities from livestock. Information on permitted livestock facilities within the Maria Creek watershed are presented in Figure 11 and Table 13.

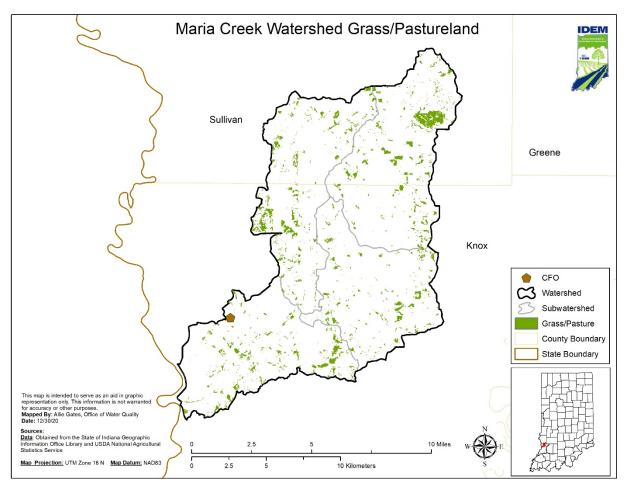


Figure 11: Grassland and Pastureland in the Maria Creek Watershed with CFO Locations

2.1.3 Confined Feeding Operations (CFOs) and Animal Feeding Operations (AFOs)

A CFO is an agricultural operation where animals are kept and raised in confined situations. It is a lot or facility (other than an aquatic animal production facility) where the following conditions are met:

- Animals have been, are, or will be stabled or confined and fed or maintained for a total of 45 days or more in any 12-month period.
- Crops, vegetation, forage growth, or post-harvest residues are not sustained in the normal growing season over 50 percent of the lot or facility.
- The number of animals present meets the requirements for the state permitting action.

Feeding operations that are not classified as concentrated animal feeding operations (CAFOs) are known as confined feeding operations (CFOs) in Indiana. There are currently no CAFOs in the Maria Creek watershed. Non-CAFO animal feeding operations identified as CFOs by IDEM are considered nonpoint sources by U.S. EPA. Indiana's CFOs have state issued permits and are therefore categorized as nonpoint sources for the purposes of this TMDL. CFO permits are "no discharge" permits. Therefore, it is prohibited for these facilities to discharge to any water of the State.

The CFO regulations (327 IAC 19, 327 IAC 15-16) require that operations "not cause or contribute to an impairment of surface waters of the state." IDEM regulates these confined feeding operations under IC 13-18-10, the Confined Feeding Control Law. The rules at 327 IAC 19, which implement the statute regulating confined feeding operations, were effective on July 1, 2012. The rule at 327 IAC 15-16, which regulates CAFOs and incorporates by reference the federal NPDES CAFO regulations, became effective on July 1, 2012. It should be noted that there are currently no facilities in Indiana that have an NPDES permit under 15-16.

The animals raised in CFOs produce manure that is stored in pits, lagoons, tanks, and other storage devices. The manure can then be applied to area fields as fertilizer. CFO owners can either apply manure to land they own or market and sell manure to other landowners per regulations outline in 327 IAC 19-14. When stored and applied properly, this beneficial re-use of manure provides a natural source for crop nutrition. It also lessens the need for fuel and other natural resources that are used in the production of fertilizer.

However, CFOs can also be a potential source of *E. coli* due to the following:

- Improper application of manure can contaminate surface or groundwater.
- Manure over application or improper application can adversely impact soil productivity.

There are several AFOs and one permitted CFO in the Maria Creek watershed, as shown below in Table 13 and in Figure 11. Manure used for land application in the Maria Creek watershed may also originate from AFOs and CFOs in adjacent watersheds.

Table 13: CFO	s in the Maria	Creek Watershed
---------------	----------------	-----------------

Subwatershed	Farm ID	Operation Name	County	Animal Type and Permitted Number
Cotton Branch	6164	Grant & Dawn Earley Farms	Knox	Turkeys: 36,000

2.2 Topography and Geology

Topographic and geologic features of a watershed play a role in defining a watershed's drainage pattern. Figure 12 below displays the topography of the watershed. Information concerning the topography and geology within the Maria Creek watershed is available from the Indiana Geologic and Water Survey (IGWS). The Maria Creek watershed originates in Sullivan County and travels southwest through Knox County, eventually discharging into the Wabash River. The Maria Creek watershed is located in the Southern Hills and Lowlands physiographic region which is characterized by knolls and ridges with gorges and ridges to the south. It is unique in Indiana by not having been covered by glacial till.

The entire bedrock surface of Indiana consists of sedimentary rocks. The major kinds of sedimentary rock in Indiana include limestone, dolomite, shale, sandstone, and siltstone. The northern two-thirds of Indiana are composed of glacial deposits containing groundwater. These glacial aquifers exist where sand and gravel bodies are present within clay-rich glacial till (sediment deposited by ice) or in alluvial, coastal,

and glacial outwash deposits. Groundwater availability is much different in the southern unglaciated part of Indiana. There are few unconsolidated deposits above the bedrock surface, and the voids in bedrock (other than karst dissolution features) are seldom sufficiently interconnected to yield useful amounts of groundwater. Reservoirs in the state, such as Monroe Lake and Patoka Lake, are used for water supply in lieu of water wells in southern Indiana. The IGWS website contains information about the geology of Indiana (<u>http://igws.indiana.edu/Groundwater/</u>).

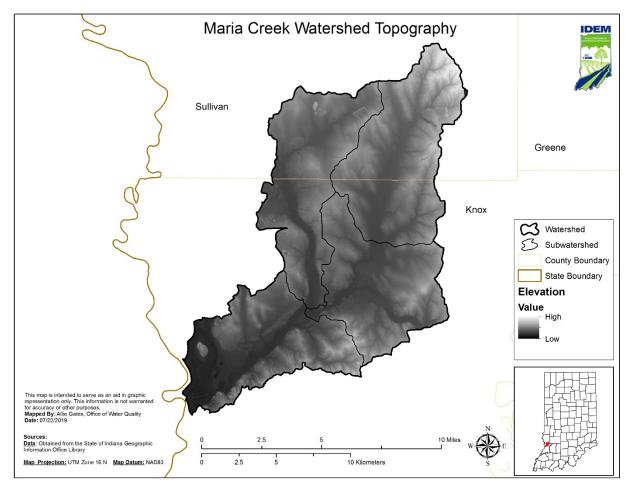


Figure 12: Topography of the Maria Creek Watershed. Digital Elevation Data (DEM) was taken from the State of Indiana's Geographic Information Office (GIO).

2.2.1 Karst Geology

Karst regions are characterized by the presence of limestone or other soluble rocks, where drainage has been largely diverted into subsurface routes. The topography of such areas is dominated by sinkholes, sinking streams, large springs, and caves. No karst features are currently mapped within the Maria Creek watershed. While the State of Indiana has performed dye-tracing studies in southern Indiana, none have been performed within the Maria Creek watershed (Flemming et al., 1995).

The Indiana Karst Conservancy is a 501(c)(3) non-profit organization dedicated to the preservation and conservation of Indiana's unique karst features. Unfortunately, many karst features are subject to

incompatible or damaging uses. Most are on private land, occasionally with owners unware of their significance or apathetic to their preservation. The IKC provides protection and awareness of karst features and the unique habitat they provide. For more information regarding the IKC, visit their website at <u>http://www.ikc.caves.org/</u>.

2.3 Soils

There are different soil characteristics that can affect the health of the watershed. Some of these characteristics include soil drainage, septic tank suitability, soil saturation, and soil erodibility.

2.3.1 Soil Drainage

The hydrologic soil group classification is a means for categorizing soils by similar infiltration and runoff characteristics during periods of prolonged wetting. The NRCS has defined four hydrologic groups for soils, described in Table 14 (USDA, 2009). Data for the Maria Creek watershed were obtained from the USDA Soil Survey Geographic (SSURGO) database. Downloaded data were summarized based on the major hydrologic group in the surface layers of the map unit and are displayed below in Figure 13 and Table 15.

The majority of the watershed is covered by category D soils (56%) followed by category B soils (18%), category A soils (17%), and category C soils (9%). Category D soils have a high run-off potential when thoroughly wet, which indicates that flooding in this watershed is likely and could transport pollutants across the landscape.

Of the soils identified as category D, 63% are specified as dual hydrologic group B/D, and 33% are specified as dual hydrologic group C/D. Dual hydrologic groups are identified for certain wet soils that can be adequately drained. The first letter applies to the drained condition, and the second letter applies to the undrained, natural condition. Due to the watershed scale of this report, soils with dual hydrologic groups are classified as category D. However, a site-specific study should consider whether the site has been drained when soils with a dual hydrologic group are present.

Hydrologic Soils Group	Description
A	Soils with high infiltrations rates. Usually deep, well drained sands or gravels. Little run-off.
В	Soils with moderate infiltration rates. Usually moderately deep, moderately well drained soils.
С	Soils with slow infiltration rates. Soils with finer textures and slow water movement.
D	Soils with very slow infiltration rates. Soils with high clay content and poor drainage. High amounts of run-off.

Understanding Table 14: Typically, clay soils that are poorly drained have lower infiltration rates, while well-drained sandy soils have the greatest infiltration rates. Soil infiltration rates can affect pollutant loading within a watershed. During high flows, areas with low soil infiltration capacity can flood and therefore discharge high pollutant loads to nearby waterways. In contrast, soils with high infiltration rates can slow the movement of pollutants to streams.

Subwatershed	Hydrologic Soil Group					
Subwatersneu	Α	В	С	D		
Cotton Branch	38.2%	23.8%	1.8%	36.3%		
Tilley Ditch	12.0%	21.4%	5.7%	60.9%		
Marsh Creek	21.0%	8.6%	7.1%	63.3%		
Headwaters Maria Creek	1.1%	16.0%	15.5%	67.5%		

Table 15: Hydrologic Soil Groups in the Maria Creek Subwatersheds

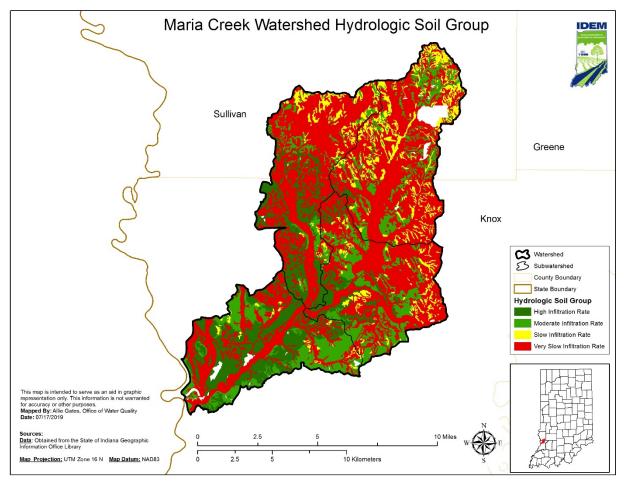


Figure 13: Hydrologic Soil Groups in the Maria Creek Watershed

2.3.2 Septic Tank Absorption Field Suitability

Septic systems require soil characteristics and geology that allow gradual seepage of wastewater into the surrounding soils. Seasonal high water tables, shallow compact till, and coarse soils present limitations

for septic systems. Heavy clay soils require larger (and therefore more expensive) absorption fields; while sandier, well-drained soils are often suitable for smaller, more affordable gravity-flow trench systems. Hydrologic soil group A and B soils have good infiltration rates and have less risk for failing septic systems due to this factor. Group C and D soils have slow infiltration rates with finer textures and slow water movement. Figure 13 illustrates the hydrologic soil groups for the Maria Creek subwatersheds.

While system design can often overcome these limitations (i.e., perimeter drains, mound systems or pressure distribution), sometimes the soil characteristics prove to be unsuitable for any type of traditional septic system. Common soil type limitations which contribute to septic system failure are seasonal water tables, compact glacial till, bedrock, coarse sand and gravel outwash, and fragipan. When these septic systems fail hydraulically (surface breakouts) or hydrogeological (inadequate soil filtration), there can be adverse effects to surface waters due to *E. coli* and nutrients (Horsley and Witten, 1996). Refer to Section 2.6.1 for additional information regarding septic systems within the Maria Creek watershed.

Figure 14 shows ratings that indicate the extent to which the soils are suitable for septic systems within the Maria Creek watershed. Only that part of the soil between depths of 24 and 60 inches is evaluated for septic system suitability. The ratings are based on the soil properties that affect absorption of the effluent, construction, maintenance of the system, and public health.

Soils labeled "very limited" indicate that the soil has at least one feature that is unfavorable for septic systems. Approximately 85 percent of the Maria Creek watershed is considered "very limited" in terms of soil suitability for septic systems. These limitations generally cannot be overcome without major soil reclamation or expensive installation designs. Less than one percent of the soils within the Maria Creek watershed are "not rated," meaning these soils have not been assigned a rating class because it is not industry standard to install a septic system in these geographic locations. Approximately 15 percent of the soils in the Maria Creek watershed are designated "somewhat limited," meaning that the soil type is suitable for septic systems.

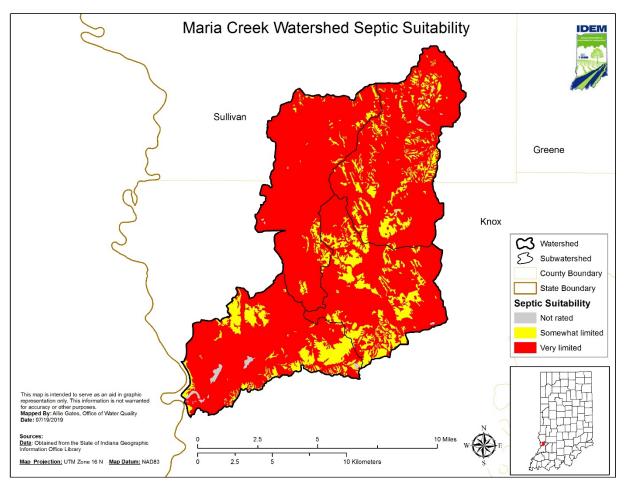


Figure 14: Suitability of Soils for Septic Systems in the Maria Creek Watershed

2.3.3 Soil Saturation and Wetlands

Soils that remain saturated or inundated with water for a sufficient length of time become hydric through a series of chemical, physical, and biological processes. Once a soil takes on hydric characteristics, it retains those characteristics even after the soil is drained. Hydric soils have been identified in the Maria Creek watershed and are important in consideration of wetland restoration activities. Approximately 48,286 acres or 78 percent of the Maria Creek watershed area contains soils that are hydric or have hydric inclusions. Table 16 includes a list of each map unit within the Maria Creek watershed with a hydric rating greater than 0. Hydric ratings indicate the percentage of the map unit that meets the criteria for hydric soils. For example, map units with a hydric rating of 6 or less likely have small areas of hydric soils, and map units with a hydric rating of 95 or more have more significant coverage of hydric soils. Figure 15 displays the hydric ratings for each map unit within the Maria Creek watershed. The Marsh Creek subwatershed appears to have the most significant hydric soil coverage in the watershed. However, a large majority of the soils in the watershed have been drained for either agricultural production or urban development and would no longer support a wetland. The location of remaining hydric soils can be used to consider possible locations of wetland creation or enhancement. There are many components in addition to soil type that must be considered before moving forward with wetland design and creation.

Subwatershed	Map Symbol	Map Unit Name	Hydric Rating	Map Unit Acreage
	AdB	Ade loamy fine sand, 2 to 6 percent slopes	3	28
	AnD	Alvin fine sandy loam, 12 to 18 percent slopes	3	549
	AnB	Alvin fine sandy loam, 12 to 18 percent slopes	3	2,016
	AnC	Alvin fine sandy loam, 6 to 12 percent slopes	3	837
	Ar	Armiesburg silty clay loam, rarely flooded	3	172
	Ay	Ayrshire fine sandy loam	3	768
	Bd	Birds silt loam, rarely flooded	100	117
	BID	Bloomfield loamy fine sand, 12 to 18 percent slopes	3	87
	BIB	Bloomfield loamy fine sand, 2 to 10 percent slopes	3	1,323
	ChC	Chelsea loamy fine sand, 4 to 10 percent slopes	3	75
	CIF	Chetwynd loam, 25 to 50 percent slopes	3	9
	EkA	Elkinsville silt loam, 0 to 2 percent slopes	3	10
	EIA	Elston sandy loam, 0 to 3 percent slopes	3	279
Cotton Branch	Hb	Haymond silt loam, rarely flooded	3	5
	Нс	Haymond variant loamy sand, frequently flooded	2	5
	HeA	Henshaw silt loam, 0 to 2 percent slopes	3	16
	IvA	Iva silt loam, 0 to 2 percent slopes	5	5
	Kn	Kings silty clay	100	233
	Lo	Lomax loam, rarely flooded	2	70
	Ly	Lyles fine sandy loam	100	611
	No	Nolin silty clay loam, rarely flooded	2	57
	Pb	Patton silt loam	100	191
	Po	Petrolia silty clay loam, frequently flooded	100	835
	Ra	Ragsdale silt loam	100	388
	ReA	Reesville silt loam, 0 to 2 percent slopes	5	50
	Sc	Selma clay loam	100	362
	Sa	Selma loam	100	390
	SdA	Stockland sandy loam, 0 to 2 percent slopes	3	194
	Vn	Vincennes loam	100	182
	Wa	Wakeland silt loam, 0 to 2 percent slopes, frequently flooded	5	1,070

Table 16: Hydric Ratings for Map Units with Hydric Soils in the Maria Creek Watershed

Subwatershed	Map Symbol	Map Unit Name	Hydric Rating	Map Unit Acreage
	Zp	Zipp silty clay, 0 to 2 percent slopes	95	134
	Zt	Zipp silty clay, frequently flooded	100	108
		·	Total Acreage:	11,175
	AnD	Alvin fine sandy loam, 12 to 18 percent slopes	3	101
	AnB	Alvin fine sandy loam, 2 to 6 percent slopes	3	1,272
	AnC	Alvin fine sandy loam, 6 to 12 percent slopes	3	391
	Ay	Ayrshire fine sandy loam	3	1,095
	Bd	Birds silt loam, rarely flooded	100	331
	BID	Bloomfield loamy fine sand, 12 to 18 percent slopes	3	34
	BIB	Bloomfield loamy fine sand, 2 to 10 percent slopes	3	334
	ChC	Chelsea loamy fine sand, 4 to 10 percent slopes	3	10
Tilley Ditch	EkA	Elkinsville silt loam, 0 to 2 percent slopes	3	193
	HeA	Henshaw silt loam, 0 to 2 percent slopes	3	104
	IvA	Iva silt loam, 0 to 2 percent slopes	5	331
	Kn	Kings silty clay	100	46
	Ly	Lyles fine sandy loam	100	560
	Pb	Patton silt loam	100	1,083
	Ra	Ragsdale silt loam	100	1,174
	ReA	Reesville silt loam, 0 to 2 percent slopes	5	1,687
	Vn	Vincennes loam	100	64
	Wa	Wakeland silt loam, 0 to 2 percent slopes, frequently flooded	5	2,464
	Zp	Zipp silty clay, 0 to 2 percent slopes	95	279
			Total Acreage:	11,552
	AnD	Alvin fine sandy loam, 12 to 18 percent slopes	3	249
	AnB	Alvin fine sandy loam, 2 to 6 percent slopes	3	1,693
	AnC	Alvin fine sandy loam, 6 to 12 percent slopes	3	430
Marsh Creek	Ay	Ayrshire fine sandy loam	3	1,996
	AsA	Ayrshire fine sandy loam, 0 to 2 percent slopes	3	852
	AsB	Ayrshire fine sandy loam, 2 to 4 percent slopes	3	137
	АуА	Ayrshire loam, 0 to 2 percent slopes	3	37
	BID	Bloomfield loamy fine sand, 12 to 18 percent slopes	3	22

Subwatershed	Map Symbol	Map Unit Name	Hydric Rating	Map Unit Acreage
	BIB	Bloomfield loamy fine sand, 2 to 10 percent slopes	3	775
	Kn	Kings silty clay	100	121
	Ly	Lyles fine sandy loam	100	1,498
	Ly	Lyles loam	100	657
	Pb	Patton silt loam	100	7
	Pc	Patton silty clay loam	100	508
	PrD2	Princeton fine sandy loam, 12 to 18 percent slopes, eroded	3	3
	PrB2	Princeton fine sandy loam, 2 to 6 percent slopes, eroded	3	445
	PrC2	Princeton fine sandy loam, 6 to 12 percent slopes, eroded	3	63
	Ra	Ragsdale silt loam	100	2,017
	ReA	Reesville silt loam, 0 to 2 percent slopes	5	2,157
	ReB2	Reesville silt loam, 2 to 5 percent slopes, eroded	5	283
	Rm	Rensselaer loam	100	314
	Sa	Selma loam	100	185
	Vo	Vincennes clay loam, gravelly substratum	100	3
	Vn	Vincennes loam	100	18
	Wa	Wakeland silt loam, 0 to 2 percent slopes, frequently flooded	5	621
	Zp	Zipp silty clay, 0 to 2 percent slopes	95	42
			Total Acreage:	15,134
	AnB	Alvin fine sandy loam, 2 to 6 percent slopes	3	132
	AnC	Alvin fine sandy loam, 6 to 12 percent slopes	3	63
	Ay	Ayrshire fine sandy loam	3	689
	AsA	Ayrshire fine sandy loam, 0 to 2 percent slopes	3	97
	AsB	Ayrshire fine sandy loam, 2 to 4 percent slopes	3	8
Headwaters Maria	Bd	Birds silt loam, rarely flooded	100	210
Headwaters Maria Creek	BID	Bloomfield loamy fine sand, 12 to 18 percent slopes	3	3
	BIB	Bloomfield loamy fine sand, 2 to 10 percent slopes	3	13
	EkA	Elkinsville silt loam, 0 to 2 percent slopes	3	2
	На	Haymond silt loam, frequently flooded	6	8
	IvA	Iva silt loam, 0 to 2 percent slopes	5	1,213
	IvB2	Iva silt loam, 2 to 4 percent slopes, eroded	3	315

Subwatershed	Map Symbol	Map Unit Name	Hydric Rating	Map Unit Acreage
	Ly	Lyles fine sandy loam	100	115
	Ly	Lyles loam	100	16
	Pb	Patton silt loam	100	645
	PrB2	Princeton fine sandy loam, 2 to 6 percent slopes, eroded	3	26
	PrC2	Princeton fine sandy loam, 6 to 12 percent slopes, eroded	3	16
	Ra	Ragsdale silt loam	100	823
	ReA	Reesville silt loam, 0 to 2 percent slopes	5	2,531
	ReB2	Reesville silt loam, 2 to 5 percent slopes, eroded	5	342
	Rm	Rensselaer loam	100	40
	Sn	Stendal silt loam	3	76
	VgA	Vigo silt loam, 0 to 2 percent slopes	3	120
	VgB2	Vigo silt loam, 2 to 4 percent slopes, eroded	3	14
	Wa	Wakeland silt loam, 0 to 2 percent slopes, frequently flooded	5	2,586
	Zp	Zipp silty clay, 0 to 2 percent slopes	95	322
			Total Acreage:	10,425

Understanding Table 16: Areas with the most acreage of hydric soils might contain opportunities for wetland restoration activities that could help address water quality impairments. The hydric rating indicates the percentage of the map unit with hydric soils. Map units with a hydric rating of 100 have 100% hydric soils.

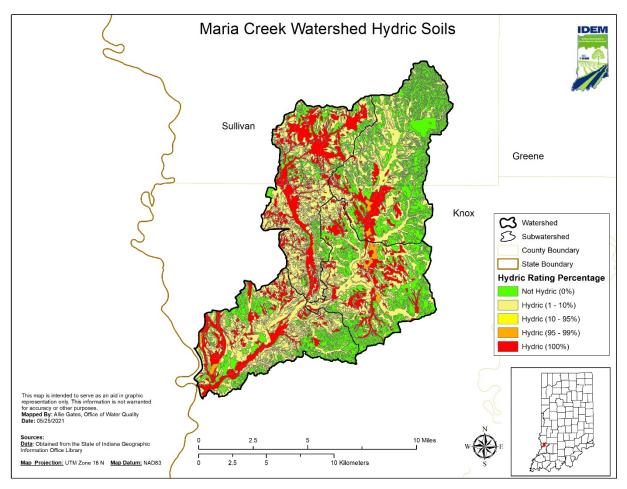


Figure 15: Hydric Ratings by Map Unit in the Maria Creek Watershed (Data on hydric soils by county available from NRCS at <u>https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/</u>)

Nationally, since the late 1600s roughly 50 percent of the wetlands in the lower 48 states have been lost. Indiana has lost a large number of its wetlands, approximating over 80 percent (USGS, 1999). In the 1800s and 1900s millions of acres of wetlands were drained or converted into farms, cities, and roads. In the early 1700s, wetlands covered 25 percent of the total area of Indiana. That number has been greatly reduced. By the late 1980s, over 4.7 million acres of wetlands had been lost. Before the conversion of wetlands, there were over 5.6 million acres of wetlands in the state, wetlands such as bogs, fens, wet prairies, dune and swales, cypress swamps, marshes, and swamps. Wetlands now cover less than 4 percent of Indiana. (http://www.in.gov/idem/wetlands/importance-of-wetlands/)

Wetlands are home to wildlife. More than one-third (1/3) of America's threatened and endangered species live only in wetlands, which means they need them to survive. Over 200 species of birds rely on wetlands for feeding, nesting, foraging, and roosting. Wetlands provide areas for recreation, education, and aesthetics. More than 98 million people hunt, fish, birdwatch, or photograph wildlife. Americans spend \$59.5 billion annually on these activities.

Wetland plants and soils naturally store and filter nutrients and sediments. Calm wetland waters, with their flat surface and flow characteristics, allow these materials to settle out of the water column, where plants in the wetland take up certain nutrients from the water. As a result, our lakes, rivers and streams are cleaner and our drinking water is safer. Constructed wetlands can even be used to clean wastewater, when properly designed. Wetlands also recharge our underground aquifers. Over 70 percent of Indiana residents rely on groundwater for part or all of their drinking water needs.

Wetlands protect our homes from floods. Like sponges, wetlands soak up and slowly release floodwaters. This lowers flood heights and slows the flow of water down rivers and streams. Wetlands also control erosion. Shorelines along rivers, lakes, and streams are protected by wetlands, which hold soil in place, absorb the energy of waves, and buffer strong currents.

Wetland areas act to buffer wide variations in flow conditions that result from storm events. They also allow water to infiltrate slowly thus reducing the risks of contaminated water run-off into waterbodies. Agencies such as the USGS and U.S. Fish and Wildlife Service (USFWS) estimate that Indiana has lost approximately 85 percent of the state's original wetlands. Currently, the Maria Creek watershed contains approximately 1,964 acres of wetlands or 3.18 percent of the total surface area. Additional information on wetlands can be found on the IDEM website <u>http://www.in.gov/idem/wetlands/</u>.

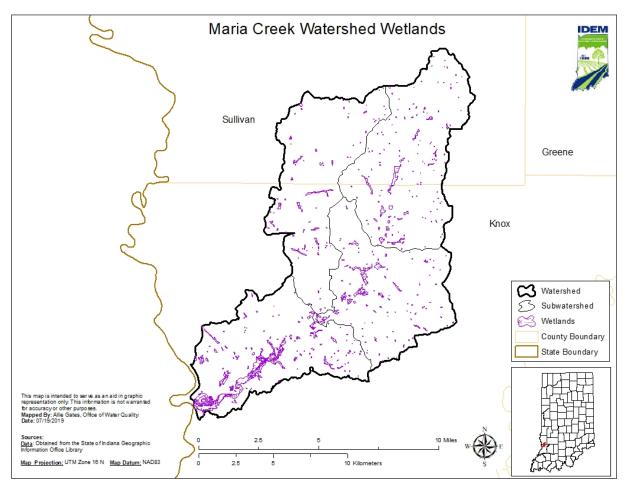


Figure 16: Location of Wetlands in the Maria Creek Watershed

The USFWS has the responsibility for mapping wetlands in the United States. Those map products are currently held in the Fish and Wildlife Service Wetland Database (sometimes referred to as the National Wetlands Inventory or NWI). Figure 16 shows estimated locations of wetlands as defined by the USFWS's NWI. Wetland data for Indiana is available from the U.S. Fish and Wildlife Service's NWI at https://www.fws.gov/wetlands/data/Mapper.html. The NWI was not intended to produce maps that show exact wetland boundaries comparable to boundaries derived from ground soil surveys, and boundaries are generalized in most cases. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis. Therefore, the estimate of the current extent of wetlands in the Maria Creek watershed from the NWI may not agree with those listed in Section 2.1, which are based upon the National Agricultural Statistic Service. For more information on the wetland classification codes visit http://www.fws.gov/wetlands/Data/Wetland-Codes.html. The USFWS uses data standards to increase the quality and compatibility of its data.

Changes to the natural drainage patterns of a watershed are referred to as hydromodifications. Historically, drain tiles have been used throughout Indiana to drain marsh or wetlands and make it either habitable or tillable for agricultural purposes. While tile drainage is understood to be pervasive – estimated at thousands of miles in Indiana – it is extremely challenging to quantify on a watershed basis because these tiles were established by varying authorities including County Courts, County Commissioners, or County Drainage Boards (See: <u>http://indianacountysurveyors.org/directory.html</u>)

In addition to tile drainage, regulated drains are another form of hydromodification. A regulated drain is a drain which was established through either a Circuit Court or Commissioners Court of the County prior to January 1, 1966 or by the County Drainage Board since that time. Regulated drains can be an open ditch, a tile drain, or a combination of both. The County Drainage Board can construct, maintain, reconstruct or vacate a regulated drain.

2.3.4 Soil Erodibility

Although erosion is a natural process within stream ecosystems, excessive erosion negatively impacts the health of watersheds. Erosion increases sedimentation of the streambeds, which impacts the quality of habitat for fish and other organisms. Erosion also impacts water quality as it increases nutrients and decreases water clarity. As water flows over land and enters the stream as run-off, it carries pollutants and other nutrients that are attached to the sediment. Sediment suspended in the water blocks light needed by plants for photosynthesis and clogs respiratory surfaces of aquatic organisms.

The NRCS maintains a list of highly erodible lands (HEL) units for each county based upon the potential of soil units to erode from the land (https://efotg.sc.egov.usda.gov/references/public/NE/HEL_Intro.pdf). HELs are especially susceptible to the erosional forces of wind and water. Wind erosion is common in flat areas where vegetation is sparse or where soil is loose, dry, and finely granulated. Wind erosion damages land and natural vegetation by removing productive top soil from one place and depositing it in another. The classification for HELs is based upon an erodibility index for a soil, which is determined by dividing the potential average annual rate of erosion by the soil unit's soil loss tolerance (T) value, which is the maximum annual rate of erosion that could occur without causing a decline in long-term productivity. The soil types and acreages in the Maria Creek watershed are listed in Table 17. HELs and potential HELs in the Maria Creek watershed are mapped in Figure 17.

A total of 43,505 acres or 71 percent of the Maria Creek watershed is considered highly erodible or potentially highly erodible. Rainfall surrounding the Maria Creek watershed is moderately heavy with an annual average of 49.2 inches. This rainfall and climate data specific to the watershed is available from the Midwestern Regional Climate Center (<u>http://mrcc.isws.illinois.edu/CLIMATE/</u>). Heavy rainfall increases flow rates within streams as the volume and velocity of water moving through the stream channels increases. Velocity of water also increases as streambank steepness increases.

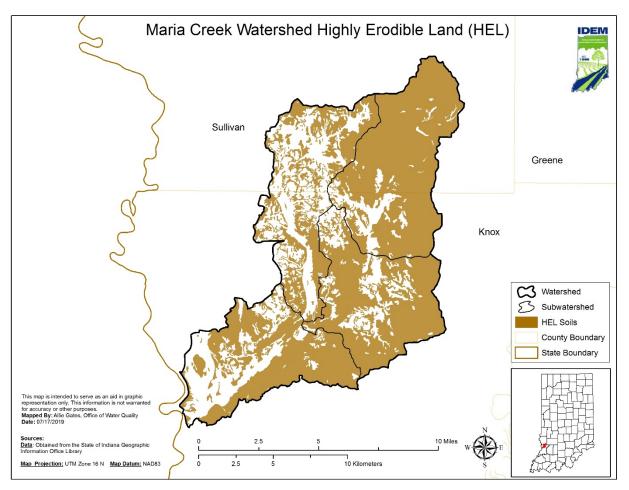


Figure 17: Location of Highly Erodible Lands (HEL) in the Maria Creek Watershed

Map Symbol	HEL/Potential HEL Soil Types				
AfB2	Alford silt loam, 2 to 5 percent slopes, eroded	600			
AfB3	Alford silt loam, 2 to 5 percent slopes, severely eroded	473			
AfC2	Alford silt loam, 5 to 10 percent slopes, eroded	93			
AfC3	Alford silt loam, 5 to 10 percent slopes, severely eroded	484			
AfD2	Alford silt loam, 10 to 18 percent slopes, eroded	35			
AfD3	Alford silt loam, 10 to 18 percent slopes, severely eroded	57			
AfE	Alford silt loam, 18 to 35 percent slopes	2			
AIA	Ava silt loam, 0 to 2 percent slopes	62			
AIB2	Ava silt loam, 2 to 6 percent slopes, eroded	2283			
AIB3	Ava silt loam, 2 to 6 percent slopes, severely eroded	102			
AIC2	Alford silt loam, 5 to 10 percent slopes, eroded	909			
AID3	Alford silt loam, 10 to 18 percent slopes, severely eroded	286			
AnB	Alvin fine sandy loam, 2 to 6 percent slopes	4144			
AnC	Alvin fine sandy loam, 6 to 12 percent slopes	1465			
AnD	Alvin fine sandy loam, 12 to 18 percent slopes	801			
Ar	Armiesburg silty clay loam, rarely flooded	172			
AsB	Ayrshire fine sandy loam, 2 to 4 percent slopes	142			
АуА	Ayrshire loam, 0 to 2 percent slopes	37			
Bd	Birds silt loam, rarely flooded	659			
BIB	Bloomfield loamy fine sand, 2 to 6 percent slopes	2468			
BIC	Bloomfield loamy fine sand, 6 to 12 percent slopes	239			
BID	Bloomfield loamy fine sand, 12 to 18 percent slopes	161			
BIF	Bloomfield loamy fine sand, 18 to 40 percent slopes	5			
ChC	Chelsea loamy fine sand, 4 to 10 percent slopes	75			
CIF	Chetwynd Ioam, 25 to 50 percent slopes	9			
CnB2	Cincinnati silt loam, Wabash Lowland, 2 to 6 percent slopes, eroded	169			
CnC2	Cincinnati silt loam, Wabash Lowland, 6 to 12 percent slopes, eroded	91			
CnC3	Cincinnati silt loam, Wabash Lowland, 6 to 12 percent slopes, severely eroded	453			
CnD2	Cincinnati silt loam, 12 to 18 percent slopes, eroded	258			
CnD3	Cincinnati silt loam, 12 to 18 percent slopes, severely eroded	221			
Cu	Cuba silt loam	175			
EkA	Elkinsville silt loam, 0 to 2 percent slopes	195			
FaB	Fairpoint parachannery silt loam, 0 to 8 percent slopes	39			
На	Haymond silt loam, frequently flooded	8			
Hb	Haymond silt loam, rarely flooded	5			
HeA	Henshaw silt loam, 0 to 2 percent slopes	119			
HkE	Hickory silt loam, 18 to 25 percent slopes	239			
HkF	Hickory silt loam, 25 to 35 percent slopes	402			
HkF3	Hickory silt loam, 18 to 35 percent slopes, severely eroded	76			
HoA	Hosmer silt loam, 0 to 2 percent slopes	420			
HoB2	Hosmer silt loam, 2 to 5 percent slopes, eroded	2062			
HoC3	Hosmer silt loam, 5 to 10 percent slopes, severely eroded	970			
HoD3	Hosmer silt loam, 10 to 18 percent slopes, severely eroded	301			

Table 17: HEL/Potential HEL	Total Acres in the Maria Creek Watershed
-----------------------------	--

Map Symbol	HEL/Potential HEL Soil Types	Acres
loA	Iona silt loam, 0 to 2 percent slopes	987
loB2	lona silt loam, 2 to 6 percent slopes, eroded	1673
loB3	lona silt loam, 2 to 6 percent slopes, severely eroded	155
IvA	Iva silt loam, 0 to 2 percent slopes	1539
lvB2	Iva silt loam, 2 to 4 percent slopes, eroded	315
Lo	Lomax loam, rarely flooded	70
MaD2	Markland silt loam, 12 to 18 percent slopes, eroded	3
MuB2	Muren silt loam, 2 to 6 percent slopes, eroded	1069
No	Nolin silty clay loam, rarely flooded	57
PaC3	Parke silt loam, 6 to 12 percent slopes, severely eroded	3
PaD3	Parke silt loam, 12 to 18 percent slopes, severely eroded	2
PrB2	Princeton fine sandy loam, 2 to 6 percent slopes, eroded	456
PrC2	Princeton fine sandy loam, 6 to 12 percent slopes, eroded	63
PrD2	Princeton fine sandy loam, 12 to 18 percent slopes, eroded	3
ReA	Reesville silt loam, 0 to 2 percent slopes	4866
ReB2	Reesville silt loam, 2 to 5 percent slopes, eroded	534
St	Strip mines	547
SyB2	Sylvan silt loam, 2 to 6 percent slopes, eroded	3195
SyC3	Sylvan silt loam, 6 to 12 percent slopes, severely eroded	729
SyD3	Sylvan silt loam, 12 to 18 percent slopes, severely eroded	114
SyF	Sylvan silt loam, 25 to 40 percent slopes	511
VgA	Vigo silt loam, 0 to 2 percent slopes	120
VgB2	Vigo silt loam, 2 to 4 percent slopes, eroded	14
Wa	Wakeland silt loam, 0 to 2 percent slopes, frequently flooded	4228
Ww	Wilbur silt loam	286
	Total	43,505

Understanding Table 17 and Figure 17: Areas with the most acreage of HEL might contribute to water quality impairments associated with excessive erosion, including IBC/TSS, and might contain opportunities for restoration to decrease erosion.

The Indiana State Department of Agriculture (ISDA) tracks trends in conservation and cropland through annual county tillage transects. Data collected through the county tillage transect (https://secure.in.gov/isda/divisions/soil-conservation/cover-crop-and-tillage-transect-data/) can help determine adoption of conservation practices and estimate the average annual soil loss from Indiana's agricultural lands. The latest figures for the counties in the Maria Creek watershed are shown in Table 18. Tillage practices captured in ISDA's tillage transect include living cover and no till practices. According to ISDA, living cover includes living cover crops and cereal grains planted into cash crops using direct seeding or broadcast methods, and no till is any direct seeding system including site preparation, with minimal soil disturbance (ISDA, 2019).

	Tillage Practice 2019					
County	Living Cover		No Till			
	Corn	Soybean	Corn	Soybean		
Sullivan	4,150 acres 7%	4,109 acres 5%	16,227 acres 28%	37,734 acres 44%		
Knox	21,896 acres 22%	38,599 acres 35%	49,825 acres 47%	46,347 acres 37%		

Table 18, Tillage 7	Francast Data	for 2010 by	County in the	Maria Croak	Watarahad
Table 18: Tillage	Tallseet Data	101 2019 Uy	County in the	Maria Creek	watersheu

Understanding Table 18: According to the table, in Knox County no till is predominant for corn, and living cover is predominant for soybeans. In Sullivan County, no till is predominant for soybeans, and living cover is predominant for corn. Overall, living cover is utilized at a greater percentage in Knox County, but the percentage of no till is similar for both Knox and Sullivan counties.

2.3.5 Streambank Erosion

Streambank erosion is potentially a significant source of pollutants in the Maria Creek watershed. Streambank erosion is a natural process but can be accelerated due to a variety of human activities. Vegetation located adjacent to streams flowing through crop or pasture fields is often removed to promote drainage or provide access to water for cattle. The loss of vegetation makes the streambanks more susceptible to erosion due to the loss of plant roots. Extensive areas of agricultural tiles promote much quicker delivery of rainfall into streams than would occur without subsurface drainage, which could potentially contribute to streambank erosion, due to high velocities and shear stress. The creation of impervious surfaces (e.g., streets, rooftops, driveways, parking lots) can also lead to rapid run-off of rainfall and higher stream velocities that might cause streambank erosion.

2.4 Wildlife and Classified Lands

2.4.1 Wildlife

The Indiana Department of Natural Resources (IDNR) is the primary entity responsible for monitoring wildlife populations and habitats throughout Indiana. Wildlife such as deer, waterfowl, raccoon, beaver, etc. can be sources of *E. coli*. The animal habitat and proximity to surface waters are important factors that determine if animal waste can be transported to surface waters. Waterfowl and riparian mammals deposit waste directly into streams while other riparian species deposit waste in the floodplain, which can be transported to surface waters by runoff from precipitation events. Animal waste deposited in upland areas can also be transported to streams and rivers; however, due to the distance from uplands to surface streams, only larger precipitation events can sustain sufficient amounts of runoff to transport upland animal waste to surface waters.

Little information exist surrounding feces depositional patterns of wildlife and a direct inventory of wildlife populations is generally not available. However, based on the *Bacteria Source Load Calculator* developed by the Center for TMDL and Watershed Studies, bacteria production by animal type is estimated as well as their preferred habitat. Higher concentrations of wildlife in the habitats described in Table 19 could contribute *E. coli* to the watershed, particularly during high flow conditions or flooding events.

Wildlife Type	<i>E. coli</i> Production Rate (cfu/day – animal)	Habitat
Deer	1.86 x 10 ⁸	Entire Watershed
Raccoon	2.65 x 10 ⁷	Low density on forests in rural areas; high density on forest near a permanent water source or near cropland
Muskrat	1.33 x 10 ⁷	Near ditch, medium sized stream, pond or lake edge
Goose	4.25 x 10 ⁸	Near main streams and impoundments
Duck	1.27 x 10 ⁹	Near main streams and impoundments
Beaver	2.00 x 10⁵	Near streams and impoundments in forest and pastures

Table 19: Bacteria Source Load by Species

2.4.2 Classified Lands

Managed lands shown in Table 20 include natural and recreation areas which are owned or managed by the IDNR, federal agencies, local agencies, non-profit organizations, and conservation easements. Classified lands are public or private lands containing areas supporting growth of native or planted trees, native or planted grasses, wetlands, or other acceptable types of cover that have been set aside for managed production of timber, wildlife habitat and watershed protection. Natural areas provide ideal habitat for wildlife. Some of the more common wildlife often found in natural areas include white-tailed deer, raccoon, muskrat, fowl and beaver. While wildlife is known to contribute *E.coli* to the surface waters, natural areas provide economic, ecological and social benefits and should be preserved and protected. Management practices such as reducing impervious surfaces, native vegetation plantings, wetland creation and riparian buffers will help in reducing stormwater run-off transporting pollutants to the streams. Table 20 and Figure 18 show the managed lands within the Maria Creek watershed. Table 21 and Figure 18 show the classified lands within Maria Creek watershed.

Table 20: Managed	Lands with	in the Maria	Creek Watershed
-------------------	------------	--------------	-----------------

Managed Lands	Manager	Area (acres)
Yocum Woods	DNR Fish and Wildlife	61

Classified Lands				
Subwatershed	Area (acres)			
Cotton Branch	787			
Tilley Ditch	30			
Marsh Creek	24			
Headwaters Maria Creek	187			
Total	1,028			

Table 21: Classified Lands within the Maria Creek Watershed

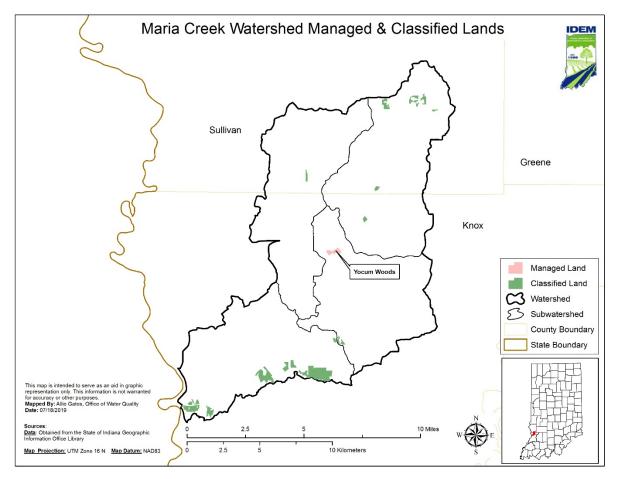


Figure 18: Managed and Classified Lands within the Maria Creek Watershed

2.5 Climate and Precipitation

Climate varies in Indiana depending on latitude, topography, soil types, and lakes. Information on Indiana's climate is available through sources including the Midwestern Regional Climate Center (<u>http://mrcc.illinois.edu/CLIMATE/</u>).

Climate data from Station USC00129113 located in Vincennes, IN were used for climate analysis of the Maria Creek watershed. Monthly data from 1982 - 2019 were available at the time of analysis. In general, the climate of the region is continental with hot, humid summers and cold winters. From 2009 to 2019, the average winter temperature in Vincennes was 35.7°F and the average summer temperature was 74.8°F. The average growing season (consecutive days with low temperatures greater than or equal to 32 degrees) is 202 days.

Examination of precipitation patterns is also a key component of watershed characterization because of the impact of run-off on water quality. From 2009 to 2019, the annual average precipitation in Vincennes at Station USC00129113 was approximately 49.2 inches, including approximately 11.1 inches on average of total annual snowfall.

Rainfall intensity and timing affect watershed response to precipitation. This information is important in evaluating the effects of stormwater on the Maria Creek watershed. Using data from USC00129113 during 2009 to 2019, 82 percent of the measurable precipitation events were low intensity (i.e., less than 0.2 inches), while 4 percent of the measurable precipitation events were greater than one inch.

According to the "Impacts of Climate Change for the State of Indiana" report developed by the Purdue Climate Change Research Center, Indiana will face a number of potential impacts if greenhouse gas concentrations continue to increase. The occurrence and duration of extreme hot events is likely to increase in Indiana while the occurrence of extreme cold events is likely to decrease (Diffenbaugh et al., 2005). Indiana could experience a significant reduction in extreme cold temperatures leading to warmer winters (Diffenbaugh et al., 2005). Total annual average precipitation is likely to increase, but there may be a shift in when the precipitation occurs. Winter and spring precipitation are projected to increase by 21 and 30 percent, respectively, by the end of the century, but summer precipitation may decline by 9 percent. Warmer and wetter winters may result in higher streamflow and increased flooding frequency. Total run-off is also projected to increase in total run-off occurring in the winter and spring (Purdue Climate Change Research Center, 2008).

Understanding when precipitation events occur helps in the linkage analysis in Section 4.0, which correlates flow conditions to pollutant concentrations and loads. Data indicates that the wet weather season in the Maria Creek watershed occurs between the months of April and June.

2.6 Human Population

Counties with land located in the Maria Creek watershed include Sullivan and Knox. Major government units with jurisdiction at least partially within the Maria Creek watershed include Carlisle and Oaktown. U.S. Census data for each county during the past three decades are provided in Table 22 (U.S. Census Bureau, 2012).

County	1990	2000	2010
Sullivan	18,993	21,751	21,475
Knox	39,884	39,256	38,440
Total	58,887	61,007	59,915

Table 22: Population Data for Counties in Maria Creek Watershed

Understanding Table 22: Water quality is linked to population growth because a growing population often leads to more development, translating into more houses, roads, and infrastructure to support more people. The table provides information that shows how population has changed in each of the counties located in the Maria Creek watershed over time. In addition, understanding population trends can help watershed stakeholders to anticipate where pressures might increase in the future and where actions within the watershed could help prevent further water quality degradation.

Estimates of population within Maria Creek watershed are based on 2010 US Census data and the percentage of census blocks in urban and rural areas (Table 23). Based on this analysis, the estimated population of the watershed is 2,083 with approximately 91 percent of the population classified as rural residents and 9 percent classified as urban residents. Figure 19 below indicates population density within the Maria Creek watershed.

County	2010 Population	Total Estimated Watershed Urban Population	Total Estimated Watershed Rural Population	Total Estimated Watershed Population	Percent of Total Watershed Population
Sullivan	21,475	29	1,747	1776	85.3%
Knox	38,440	152	155	307	14.7%
Total	59,915	181	1,902	2,083	100.0%

Table 23: Estimated Population in the Maria Creek Watershed

Understanding Table 23: Understanding where the greatest population is concentrated within the Maria Creek watershed will help watershed stakeholders understand where different types of water quality pressures might currently exist. In general, watersheds with large urban populations are more likely to have problems associated with lots of impervious surfaces, poor riparian habitat, flashy stormwater flows, and large wastewater inputs. Alternatively, watersheds with mostly a non-urban population are more likely to suffer problems from failing septic systems, agricultural run-off, and other types of poor riparian habitat (e.g., channelized streams). Comparing the information in Table 22 with the information in Table 23 can provide an understanding of how population might change in the Maria Creek watershed and which counties are experiencing the most growth and shifts in urban and non-urban population. Population change can serve as an indicator for changes in land uses. For example, growing populations might mean more development, resulting in increased impervious surfaces and more infrastructures (e.g., sanitary sewer and storm sewer). Declining population in areas of the Maria Creek watershed might signify communities with under-utilized infrastructure and indicate opportunities to "rightsize" existing infrastructure and promote changes to land use that would benefit water quality (e.g., green infrastructure).

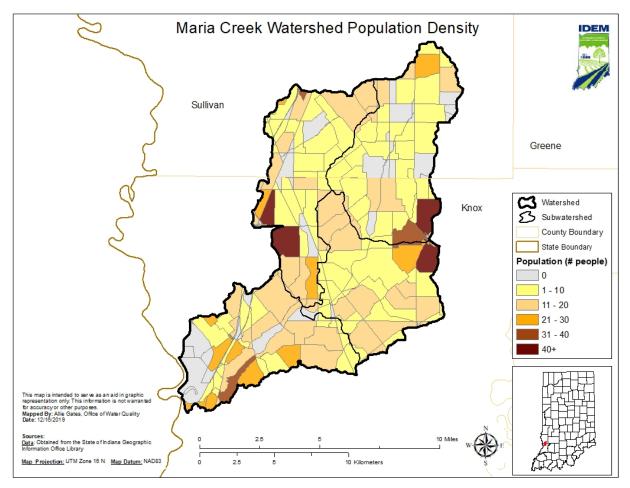


Figure 19: Population Density in the Maria Creek Watershed

2.6.1 Onsite Sewage Disposal Systems

Onsite sewage disposal systems (i.e., septic systems) are underground wastewater treatment structures most commonly used in rural areas without centralized sewer systems. According to the U.S. EPA's SepticSmart Homeowners program, one in five U.S. homes has a septic system (U.S EPA, 2018). Local health departments regulate onsite residential sewage disposal systems via designated authority from the Indiana Department of Health (IDOH) (410 IAC 6-8.3). More than 800,000 onsite sewage disposal systems are currently used in Indiana. Local health departments issue more than 15,000 permits per year for new systems and about 6,000 permits for repairs (IDOH, 2020).

Septic systems typically consist of a septic tank to settle out and digest sewage solids followed by a system of perforated piping to distribute the treated wastewater for absorption into the soil, also known as the drainfield. The septic tank holds the wastewater to allow for separation of solids, fats, oil, and grease. The septic tank also contains microorganisms that aid in breaking down sludge and removing some contaminants from the wastewater. The drainfield allows for further removal of remaining contaminants through soil filtration.

Regular maintenance of septic systems, such as frequent inspections and pumping of the septic tank, is important to ensure the system is functioning safely and effectively. Septic systems that are properly designed and maintained should not serve as a source of contamination to surface waters. However, a septic system may fail if it is not properly installed or maintained or if it is installed in an unsuitable soil type as discussed in Section 2.3.2. A septic system that is not functioning properly may inadvertently contaminate groundwater and surface water due to elevated levels of nutrients and bacteria that can be found in untreated or inadequately treated household wastewater. A septic system is considered failing when the system exhibits one or more of the following:

- 1. The system refuses to accept sewage at the rate of design application thereby interfering with the normal use of plumbing fixtures.
- 2. Effluent discharge exceeds the absorptive capacity of the soil, resulting in ponding, seepage, or other discharge of the effluent to the ground surface or to surface waters.
- 3. Effluent is discharged from the system causing contamination of a potable water supply, groundwater, or surface water.

The general sewage disposal requirements (410 IAC 6-8.3-52) in the residential onsite sewage systems rule state that:

- No person shall throw, run, drain, seep, or otherwise dispose into any of the surface waters or groundwaters of this state, or cause, permit, or suffer to be thrown, run, drained, allowed to seep, or otherwise disposed into such waters, any organic or inorganic matter from a dwelling or residential onsite sewage system that would cause or contribute to a health hazard or water pollution.
- The: (1) design; (2) construction; (3) installation; (4) location; (5) maintenance; and (6) operation; of residential onsite sewage systems shall comply with the provisions of this rule.

The violations and permit denial and revocation section (410 IAC 6-8.3-55) of the residential onsite sewage system rule states that:

- Should a residential onsite sewage system fail, the failure shall be corrected by the owner within the time limit set by the health officer.
- If any component of a residential onsite sewage system is found to be: (1) defective; (2) malfunctioning; or (3) in need of service; the health officer may require the repair, replacement, or service of that component. The repair, replacement, or service shall be conducted within the time limit set by the health officer.
- Any person found to be violating this rule may be served by the health officer with a written order stating the nature of the violation and providing a time limit for satisfactory correction thereof.

A comprehensive database of septic systems within the Maria Creek watershed is not available; therefore, the rural population of each subwatershed was calculated to obtain a general representation of the number of systems. The U.S. Census provides the total number of people within a county as well as the total urban and rural population of the county. Subwatershed population is estimated by using the census block

population found within each area. It is assumed that the numbers of septic systems in the subwatersheds are directly proportional to rural household density. An additional estimate of septic systems can be made using the 1990 US Census, as that is the last census that inventoried how household wastewater is disposed. The rural households in the Maria Creek subwatersheds are shown in Table 24, along with a calculated density (total rural households divided by total area). The rural household density can be used to compare the different subwatersheds within the Maria Creek watershed (U.S. Census Bureau, 2012).

Subwatershed	County	Area of County in Subwatershed (mi2)	County Households in Subwatershed	Urban Households	Rural Households	Urban Household Density (Houses/mi2)	Rural Household Density (Houses/mi2)
Cotton Branch	Knox	23.22	218	0	218	0.0	9.4
Collon Branch	Total	23.22	218	0	218	0.0	
Tilley Ditch	Knox	22.17	206	0	206	0.0	9.3
They Ditch	Total	22.17	206	0	206		
	Sullivan	12.75	76	29	47	7.6	3.7
Marsh Creek	Knox	11.07	192	152	40		
	Total	23.82	268	181	87		
	Sullivan	17.49	70	0	70		
Headwaters Maria Creek	Knox	9.85	155	0	155	0.0	8.2
	Total	27.34	225	0	225		

Table 24: Rural and Urban Household Density in the Maria Creek Subwatersheds

A report by the Indiana Advisory Commission on Intergovernmental Relations (ACIR) surveyed county health department officials statewide from 2016 to 2017. Of the 444 unsewered communities reported statewide, the study was able to identify 192 of those communities where at least 25 percent of the individual wastewater treatment systems were failing. Unsewered communities were defined as "contiguous geographical areas containing at least 25 homes and/or businesses that are not served by sewers" (Palmer et. al, 2019). Table 25 reports unsewered communities by counties relevant to the Maria Creek watershed.

Table 25: Unsewered R	Residences/Businesses I	Reported by C	ounty in 2016-2017

County	Unsewered Communities	Residences	Businesses	
Sullivan	8	530	14	
Knox	7	497	13	

2.6.2 Urban Stormwater

In areas not regulated under the NPDES construction stormwater, industrial stormwater, or MS4 programs, as discussed in Section 2.8.3, stormwater run-off from developed areas is not regulated under a permit and is therefore a nonpoint source. Run-off from urban areas can carry a variety of pollutants originating from a variety of sources. Potential sources of *E. coli* in urban stormwater include pet waste, urban wildlife waste, homeless encampments, leaking sanitary sewers exfiltrating to storm drains, combined and sanitary sewer overflows, failing septic systems and more (Clary et al., 2014). Depending on the amount of developed, impervious land in a watershed, urban nonpoint source inputs can result in

localized or widespread water quality degradation. The percent and distribution of developed land in the Maria Creek watershed is discussed in Section 2.1. However, inputs from urban sources are difficult to quantify. Estimates can be made of residential areas that may be a source of pollutants of concern. These estimates provide insight into the potential of urban nonpoint sources as important sources of TSS and *E. coli* in the Maria Creek watershed.

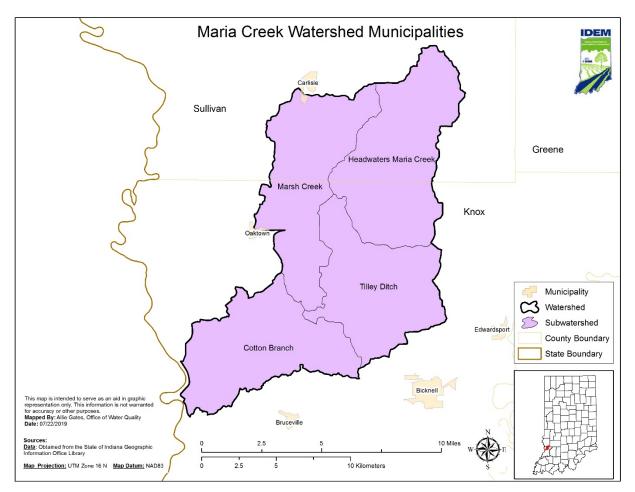


Figure 20: Municipalities in the Maria Creek Watershed

2.8 Point Sources

This section summarizes the potential point sources of *E. coli* and TSS in the Maria Creek watershed, as regulated through the National Pollutant Discharge Elimination System (NPDES) Program. As authorized by the CWA, the NPDES permit program controls water pollution by regulating facilities that discharge pollutants into waters of the United States. Point sources with NPDES permits within the Maria Creek watershed include municipal wastewater treatment plants (WWTPs), a public water supply, surface and underground coal mining operations, and construction sites. A summary of the potential point sources of *E. coli* and TSS in the Maria Creek watershed, including an overview of the facilities and wasteload allocations (WLAs), is provided in Appendix G.

2.8.1 Municipal Wastewater Treatment Plants (WWTPs)

Municipal Wastewater Treatment Plants (WWTPs) that discharge wastewater through a point source to a surface water of the state are required to obtain a municipal NPDES wastewater permit. Some of the functions of a WWTP include sewage treatment and industrial waste treatment. Municipal wastewater facilities are required to disinfect their effluent for *E. coli* during the recreational season (April 1 to October 31) in accordance with 327 IAC 5-10-6. WWTPs are critical for maintaining public sanitation and a healthy environment. However, WWTPs may discharge wastewater with elevated concentrations of pollutants into streams. Municipal wastewater permits include effluent limitations that are derived using water quality criteria developed to protect all designated and existing uses of the receiving water body and/or any more stringent technology-based limitations. There are three active WWTPs that discharge wastewater within the Maria Creek watershed (Table 26 and Figure 21).

The Freelandville Regional Sewer District operates a minor municipal WWTP (IN0064513). The WWTP is a Class I, 0.088 MGD bio-mechanical treatment facility consisting of Sequencing Batch Reactors with associated appurtenances including a mechanical cleaned bar screen, main lift station, blowers and diffusers for aeration and sludge digestion, decanters, ultraviolet light disinfection, influent and effluent flow metering aerobic sludge digestion, sludge dewatering equipment, and step aeration. The system is comprised of 100 percent separate sanitary sewers by design with no overflow or bypass points. The facility has one outfall (Outfall 001) that discharges to an unnamed tributary of Maria Creek. The receiving water has a seven day, ten year low flow (Q_{7,10}) of 0.0 cubic feet per second at the outfall location.

North Knox School Corporation operates a minor semi-public WWTP at North Knox High School (IN0041084). The WWTP is a Class I, 0.022 MGD extended aeration treatment facility consisting of an influent bar screen, a surge tank, an aeration tank, a secondary clarifier, rapid sand filters, chlorination and dechlorination facilities and an effluent flow meter. Final sludge is hauled off-site for disposal. The system is comprised of 100 percent separate sanitary sewers by design with no overflow or bypass points. The facility has one outfall (Outfall 001) that discharges into Tilley Ditch. The receiving water has a seven day, ten year low flow ($Q_{7,10}$) of 0.0 cubic feet per second at the outfall location.

North Knox School Corporation also operates a minor semi-public WWTP at North Knox Intermediate School (IN0041092). The WWTP is a Class I, 0.005 MGD extended aeration treatment facility consisting of an influent surge tank, an aeration tank, a settling tank, rapid sand filters, chlorination/dechlorination and an effluent flow meter. The system is comprised of 100 percent separate sanitary sewers by design

with no overflow or bypass points. The facility has one outfall (Outfall 001) that discharges into an unnamed tributary of Maria Creek. The receiving water has a seven day, ten year low flow ($Q_{7,10}$) of 0.0 cubic feet per second at the outfall location.

Effluent from these facilities are potential point sources of *E. coli* and TSS. As discussed in Section 1.2, the TMDL target value for TSS is 30.0 mg/L or interpreted from current permit limits. The TMDL target value for *E. coli* is the 235 counts/100 mL single sample maximum component of the water quality standard. These target values can be used to establish potential permit limits. Flows used to calculate pollutant loads from each treatment plant are estimated based on current flow data from data monitoring reports (DMR) or design flows from the facility permits when actual flow data is not available. Pollutant concentrations used to calculate wasteloads from each treatment plant are based on known technological limitations of the facilities.

The facilities' permit effluent limits for *E. coli* and TSS are used to determine wasteload allocations for each treatment plant. The effluent limit for TSS is set at the NPDES permit limit of 12 mg/L monthly average for the Freelandville Regional Sewer District. The effluent limit for TSS is set at the NPDES permit limit of 30 mg/L winter monthly average for the North Knox High School WWTP and North Knox Intermediate School WWTP. The effluent limit for *E. coli* is set at the 235 counts/100 mL single sample maximum component of the water quality standard for all three facilities. Average design flow was determined from information reported by the facility during the permitting process. Compliance with current NPDES permit limits for each facility is consistent with the assumptions used to determine WLAs in the TMDL for protection of applicable water quality standards.

Table 26: Municipal Wastewater Treatment Plant Facilities Discharging within the Maria Creek	Κ				
Watershed					

Subwatershed	Facility Name	Permit Number	AUID	Receiving Stream	Average Design Flow (MGD)
Tilley Ditch	Freelandville Regional Sewer District	IN0064513	INB11I2_T1001	Tributary of Maria Creek	0.088
Tilley Ditch	North Knox High School WWTP	IN0041084	INB11I2_T1004	Tilley Ditch	0.022
Cotton Branch	North Knox Intermediate School WWTP	IN0041092	INB11I4_02	Tributary of Maria Creek	0.005

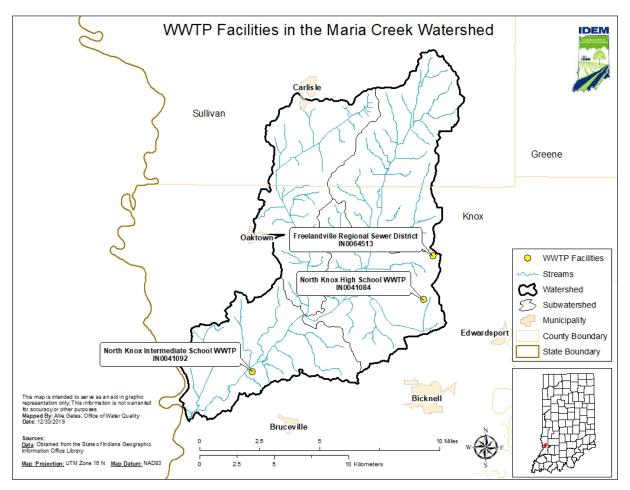


Figure 21: Municipal Wastewater Treatment Plant Facilities Discharging within the Maria Creek Watershed

Permit Compliance

Table 27: Summary of Municipal Wastewater Treatment Plant Permit Compliance in the Maria Creek Watershed for the Five-Year Period of 2016-2020.

	Facility	NPDES	01	Inspections for the		Water	Qualit	y Violations for	r the Last Five Y	ears
Subwatershed	Name	Permit Number	Stream	Last Five Years	Outfall	Month	Year	Parameter	Туре	Exceedance
	Freelandville Regional Sewer District WWTP	IN0064513	Tributary of Maria Creek	Inspected by IDEM: 11/7/2017: Violations Observed 1/29/2018: Violations Observed 11/1/2018 Violations Observed 2/24/2020: Violations Observed	001 001	Jan. April	2019 2019	DO E. coli	Daily Avg. Min. Mo. Geomean	-13% 50%
Tilley Ditch	North Knox High School WWTP	IN0041084	Tributary of Tilley Ditch	Inspected by IDEM: 1/13/2016: Violations Observed 11/3/2016: Violations Observed 10/31/2017: Violations Observed 11/8/2018: Violations Observed 3/11/2020: Violations Observed	001 001 001 001 001 001	April May April Aug. Aug. April	2016 2016 2017 2018 2018 2019	E. coli E. coli E. coli NH3-N (lbs/d) NH3-N (lbs/d) E. coli	Daily Max. Mo. Geomean Mo. Geomean Max. Wk. Avg. Mo. Avg. Mo. Geomean	930% 34% 3% 240% 35% 13%
Cotton Branch	North Knox Intermediate School WWTP	IN0041092	Tributary of Maria Creek	Inspected by IDEM: 1/13/2016: Violations Observed 11/3/2016: Violations Observed 10/31/2017: Potential Problems 11/8/2018: Potential Problems 3/11/2020: Violations Observed	001 001 001 001 001 001 001 001 001 001		2016 2016 2016 2016 2016 2016 2016	NH3-N (lbs/d) NH3-N (mg/L) NH3-N (mg/L)	Mo. Avg. Max. Wk. Avg. Mo. Avg. Max. Wk. Avg. Max. Wk. Avg. Max. Wk. Avg. Max. Wk. Avg. Max. Wk. Avg. Max. Wk. Avg. Mo. Geomean Daily Max. Daily Min. Mo. Geomean Mo. Geomean	3757% 7260% 1739% 2963% 200% 180% 7% 28% 2% 60% 26% -92% 8% 14%

2.8.2 Industrial Wastewater

Industrial facilities that discharge wastewater through a point source to a surface water of the state are required to obtain an industrial NPDES wastewater permit. Industrial facilities typically generate wastewater through the production of a product. Wastewater discharges from these industrial sources may contain pollutants at levels that could affect the quality of receiving waters. Industrial wastewater permits include effluent limitations that are derived using water quality criteria developed to protect all designated and existing uses of the receiving water body and/or any more stringent technology-based limitations.

An industrial facility may be required to obtain an individual or a general industrial wastewater permit, depending on the activities that occur at the facility. An individual permit includes effluent limitations and operating requirements that are tailored to the specific activities of the facility. A general permit is a "one size fits all" type of activity-specific permit. General permit requirements were originally contained in Indiana Administrative Code (IAC) and set by Indiana's Environmental Rules Board through its formal rulemaking process. Unlike individual permits, general permits apply universally to all entities required to operate in accordance with the rule. However, IDEM is currently in the process of changing its approach to general permits from permit-by-rule to administrative general permits. There are four industrial facilities with industrial wastewater permits within the Maria Creek watershed.

Public Water Supply

Wastewater discharges from Freelandville Water Association are regulated by an individual industrial wastewater permit (IN0059480) (Table 28 and Figure 22). Freelandville Water Association has two outfalls (Outfalls 001 and 002) which discharge into an unnamed tributary that flows north into Tilley Ditch. At the point of discharge, the unnamed tributary has a $Q_{7,10}$ low flow value of 0.0 cfs. Groundwater is the source of the permitted facility's drinking water supply. The wastewater discharge at Outfalls 001 and 002 consists of filter backwash. The backwash is treated in sedimentation basins prior to discharging. The facility has an average discharge of approximately 0.022 MGD.

Effluent from this facility is potentially a point source of TSS. As discussed in Section 1.2, the TMDL target value for TSS is 30.0 mg/l or interpreted from current permit limits. This target value can be used to establish potential permit limits. Flows used to calculate sediment loads from this facility are estimated based on current flow data from data monitoring reports (DMR) or design flow from the facility permit when actual flow data is not available. Sediment concentrations used to calculate sediment loads from the public water supply are based on known technological limitations of the facility.

The facility's permit effluent limit for TSS is set at the NPDES per limit of 40 mg/L daily maximum. Average design flow was determined from information reported by the facility during the permitting process. Discharges from this facility are not believed to be significant contributions of TSS in the watershed. Compliance with the current NPDES permit limit is consistent with the assumptions used to determine WLAs in the TMDL for protection of applicable water quality standards.

Subwatershed	Facility Name	Permit Number	AUID	Receiving Stream	Average Design Flow (MGD)
Tilley Ditch	Freelandville Water Association	IN0059480	INB11I2_T1004	Tributary of Tilley Ditch	0.022

Table 28: Public Water Supply Facilities Discharging within Maria Creek Watershed

Figure 22: Public Water Supply Facilities Discharging within the Maria Creek Watershed

Coal Mining

Discharges from facilities engaged in mining of coal, coal processing, and reclamation activities may be regulated through a NPDES General Permit under 327 IAC 15-7 or through an individual NPDES permit. The purpose of the coal mining general permit rule is to regulate wastewater discharges from surface mining, underground mining, and reclamation projects which utilize sedimentation basin treatment for pit dewatering and surface run-off and to require best management practices for stormwater run-off to protect the public health, existing water uses, and aquatic biota. The coal mining operations. An individual NPDES permit for discharges associated with coal mining operations may have similar conditions as the general permit rule but will also include more stringent or facility specific permit requirements as warranted.

There are two surface mining operations located within the Maria Creek watershed, Bear Run Mine (ING040239) and Freelandville Mine (ING040030) (Table 30 and Figure 23). Discharges from Bear Run Mine and Freelandville Mine are regulated by the coal mining general permit rule. Bear Run Mine currently has one active outfall (Outfall 068) that discharges within the Maria Creek watershed. Freelandville Mine currently has no permitted outfalls that discharge within the Maria Creek watershed. Therefore, Freelandville Mine will not receive a WLA for purposes of this TMDL report.

Bear Run Mine is operated by Peabody Midwest Mining LLC. The discharge at Outfall 068 consists of stormwater run-off that has potentially been contaminated by contact with overburden, coal product, coal byproduct, coal waste, or other mining operations and treated through detention within a sedimentation pond. Two stream segments located within the northeastern portion of the Headwaters of Maria Creek subwatershed have been impacted by the Bear Run Mine surface mining activity. The stream segments include Maria Creek (INB1111_T1001) and a tributary of Maria Creek (INB1111_T1002). These stream impacts are permitted through the U.S. Army Corps of Engineers (LRL-2022-1117-GJD) and IDEM (2011-487-77-DDC-A). Mitigation of these streams is required after mining activities are completed in the area. Available plans indicate these stream segments will likely be mitigated onsite in a similar location as the original stream channels. Maria Creek (INB1111_T1001) was previously identified as impaired for *E. coli*, biological communities, and DO. These impairments will remain on the 2022 303(d) List of Impaired Waters. *E. coli* and TSS WLAs developed for this TMDL will be applicable to this stream segment, and any stream segments impaired for *E. coli* or biological communities impacted in the future, after stream mitigation is complete.

There are two underground mining facilities located within the Maria Creek watershed, Carlisle Mine (ING040199, IN0062791) and Oaktown Mine (ING040222, IN0064629) (Table 29, Table 30, and Figure 23). Discharges from Carlisle Mine and Oaktown Mine are regulated by either the coal mining general permit rule or an individual NPDES permit. Carlisle Mine has three outfalls (Outfalls 003, 005, and 202) that discharge within the Maria Creek watershed. Oaktown Mine has four outfalls (Outfalls 001, 002, 005, and 006) that discharge within the Maria Creek watershed.

Carlisle Mine is operated by Sunrise Coal LLC. The discharge at Outfalls 003 and 202 are regulated by the coal mining general permit rule (ING040199). The discharge consists of stormwater run-off that has potentially been contaminated by contact with mine surface facilities, topsoil and subsoil stockpiles, and a

coal fine refuse disposal facility and treated through detention within a sedimentation pond. The discharge at Outfall 005 is regulated by an individual NPDES permit (IN0062791) and consists of comingled water from underground mining operations and stormwater run-off that is augmented with well water prior to entering the receiving water. Water from the underground mine is pumped to the surface and treated in a sedimentation pond along with the stormwater. Suspended solids settle in the pond and oil and grease are treated with adsorptive floating booms if necessary. Chemical addition for pH adjustment may also be used. Chemicals used to treat pH may include hydrated lime, calcium oxide, sodium hydroxide, soda ash, aluminum sulfate, or sodium permanganate. When there is a discharge from the sedimentation pond, water from a freshwater supply well is added to dilute the chloride and sulfate content prior to entering the receiving water. The receiving water has a seven day, ten year low flow ($Q_{7,10}$) of 0.0 cubic feet per second.

Oaktown Mine is also operated by Sunrise Coal LLC. The discharge at Outfalls 002, 005, and 006 are regulated by the coal mining general permit rule (ING040222). The discharge consists of stormwater runoff that has potentially been contaminated by contact with vegetated and gravel areas near ventilation fans, topsoil and subsoil stockpiles, the laydown yard, the rail loadout facility, and clean coal stockpiles and treated through detention within a sedimentation pond. The discharge at Outfall 001 was covered under general permit ING040222 until it was transferred to a new individual NPDES permit (IN0064629) effective July 1, 2018. Outfall 001 consists of comingled water from underground mining operations, coal processing wastewater, and stormwater run-off. Water from the underground mine is pumped to the surface into a sedimentation pond. Water is then pumped from the sediment pond into a slurry impoundment on-site. Sodium hydroxide is added to the water for treatment of iron and pH. This water is then allowed to settle out pollutants in the slurry impoundment. Impoundment seepage and surface runoff is directed back into the sediment pond, where additional treatment with sodium hydroxide is used. This closed loop system allows the sediment pond to be kept below discharge levels unless an extreme precipitation event occurs. Outfall 001 has three discharge scenarios: dry weather (001D), wet weather discharge caused by precipitation or snowmelt event that is less than or equal to the 10 year, 24-hour precipitation event (001A), and wet weather discharge caused by precipitation or snowmelt event that is greater than the 10 year, 24-hour precipitation event (001B). The receiving water has a seven day, ten year low flow $(Q_{7,10})$ of 0.0 cubic feet per second at the outfall location.

Discharges from the Bear Run Mine surface mine and Carlisle and Oaktown mine underground mine outfalls regulated through the general permit rule are believed to be primarily related to precipitation events. An estimated design flow is not available for these facilities. Therefore, the WLAs for the outfalls regulated through the general permit rule were calculated by using an estimate of the surface impacts associated with each surface mine operation or underground mine outfall to determine run-off flow volumes, and existing permit limits were used to calculate allowable loadings. Surface impacts were estimated by delineating the disturbed surface area associated with each surface mine operation or underground mine outfall in ArcGIS and calculating the acreage of each area. These permits have varying discharge limits based on dry and wet weather discharge flow rates. For wet weather discharges, dilution rates are assumed, and limits for TSS are suspended. WLAs for coal mining facilities regulated through the general permit rule are based on the NPDES permit limit of 70 mg/L daily maximum for TSS and are implemented through compliance with their NPDES permit.

Design flow estimates for discharges from underground mine outfalls regulated through individual NPDES permits were estimated based on the unique characteristics of each outfall and how each outfall is utilized by the facility. Carlisle Mine has one outfall (Outfall 005) regulated through an individual NPDES permit. An analysis of the past two years of flow data available from Discharge Monitoring Reports (DMRs) was completed to gain a better understanding of typical discharge from this outfall. Data over the past two years indicated flow was significantly influenced by precipitation events. The flow regime for each discharge event was determined, and the average discharge for each flow regime was calculated. The average discharge for each flow regime was used as the estimated design flow to calculate the WLA for each flow regime. DMRs were also reviewed to determine typical TSS concentrations for discharge events from the past two years. It was determined that TSS concentrations were typically less than 35 mg/L. Therefore, the WLA for the Carlisle Mine, Outfall 005 was calculated using the NPDES permit limit of 35 mg/L monthly average as it is more representative of existing load conditions.

Oaktown Mine has one outfall (Outfall 001) regulated through an individual NPDES permit. An analysis of the past two years of flow data available from DMRs was completed to gain an understanding of typical discharge from this outfall. Data over the past two years indicated that this outfall does not regularly discharge, and when the outfall does discharge it typically occurs during precipitation events. Due to the irregularity of the discharges from this outfall, the estimated design flow of 0.5 MGD as reported in the facility's permit was used as the estimated design flow to calculate the WLA. DMRs were also reviewed to determine typical TSS concentrations for discharge events from the past two years. It was determined that TSS concentrations were typically less than 35 mg/L. Therefore, the WLA for the Oaktown Mine, Outfall 001 was calculated using the NPDES permit limit of 35 mg/L monthly average as it is more representative of existing load conditions.

The WLA for each coal mining operation outfall will be achieved through compliance with the facility's NPDES general permit coverage or individual permit. The WLAs were estimated based upon consideration of TSS contributions from current operating conditions and current permit limits of each facility. IDEM's analyses of current operating conditions and flow and water quality discharge data from individual facilities indicate that WLAs in Table 36, Table 38, and Table 39 can be achieved through compliance with each facility's existing NPDES general permit coverage (under 327 IAC 15-7) or individual permit. Therefore, IDEM believes that existing general and individual permit limits are suitable to attain the WLAs described in Table 36, Table 38, and Table 39. This TMDL does not preclude new or modified mining activities that employ the 70 mg/L daily maximum and 35 mg/L monthly average for TSS under the general permit rule. New or modified discharges under individual permits will be addressed through the NPDES permit process and must follow the assumptions set forth in the TMDL.

Facility Name	Permit Number	Subwatershed	Outfall ID	AUID	Receiving Stream	Flow Regime	Estimated Design Flow (MGD)
				High	1.77		
	IN0062791	Marsh Creek	005	INB11I3_T1001	Tributary of Marsh Creek	Moist	0.88
Sunrise Coal Carlisle Mine						Mid	0.88
						Dry	0.66
						Low	0.47
Sunrise Coal Oaktown Mine	IN0064629	Marsh Creek	001	INB11I3_04	Marsh Creek	All	0.5

Table 29: Coal Mining Facilities with Individual Permits Discharging within the Maria Creek Watershed

Table 30: Coal Mining Facilities with General Permits Discharging within the Maria Creek Watershed

Facility Name	Permit Number	Subwatershed	Outfall ID	AUID	Receiving Stream	Estimated Surface Impacts in Subwatershed (Acres)
Sunrise Coal Carlisle Mine	ING040199	Marsh Creek	003, 202	INB11I3_02	Marsh Creek	283
Sunrise Coal	ING040222	Marsh Creek	002, 005	INB11I3_04	Marsh Creek	122
Oaktown Mine		Cotton Branch	006	INB11I4_T1001	Tributary of Maria Creek	20
Peabody Midwest Bear Run Mine	ING040239	Headwaters Maria Creek	068	INB11I1_T1002	Tributary of Maria Creek	2,123

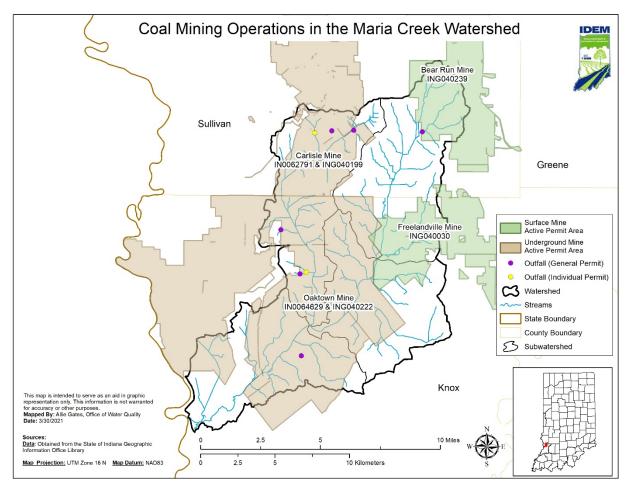


Figure 23: Coal Mining Facilities located within the Maria Creek Watershed

Permit Compliance

Table 31: Summary of Industrial Wastewater Permit Compliance in the Maria Creek Watershed for the Five-Year Period of 2016-2020.

	Facility	NPDES	e .	Inspections for the		Water	Quality	Violations for	r the Last Five `	r ears
Subwatershed	Name	Permit Number	Stream	Last Five Years	Outfall	Month	Year	Parameter	Туре	Exceedance
Tilley Ditch	Freelandville Water Association	IN0059480	Tributary of Tilley Ditch	Inspected by IDEM: 11/17/2016: Violations Observed 7/6/2017: Violations Observed 11/1/2018: Potential Problems 6/22/2020: Potential Problems	002 002 002 002 002 002 002 002 002 002	Jan. Jan. Jan. Feb. Feb. May June July July July July July July July July		TR Iron TSS TSS TSS TSS TR Iron TR Iron	Mo. Avg. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Mo. Avg. Mo. Avg. Mo. Avg. Daily Max. Mo. Avg. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg.	23% 133% 16% 248% 74% 42% 38% 214% 264% 729% 29% 158% 46% 233% 122% 56% 28% 53% 21% 4%
	Sunrise Coal LLC – Carlisle Mine	ING040199	Tributary of Marsh Creek	Inspected monthly by IDNR	003 003 003 003 003	Feb. March April April March	2017 2017 2019 2019 2020	Total Mn Total Mn Total Iron Total Iron Total Iron	Daily Avg. Daily Avg. Daily Avg. Daily Max. Daily Avg.	9% 10% 36% 12% 7%
Marsh Creek	Sunrise Coal LLC – Carlisle Mine	IN0062791	Tributary of Marsh Creek	Inspected by IDEM: 3/28/2017: Violations Observed 9/19/2017: Violations Observed 11/29/2018: Satisfactory 7/14/20: Satisfactory Inspected monthly by IDNR	005 005 005 005 005	Aug. Aug. Aug. Aug. May	2016 2016 2016 2016 2017	Sulfate pH TR Iron TR Iron Sulfate	Mo. Avg. Daily Min. Daily Max. Mo Avg. Mo. Avg.	9% -21% 7% 114% 37%

	Facility	NPDES	•	Inspections for the		Water	Quality	y Violations for	the Last Five `	Years
Subwatershed	Name	Permit Number	Stream	Last Five Years	Outfall	Month	Year	Parameter	Туре	Exceedance
	Sunrise Coal LLC – Oaktown Mine	ING040222	Tributary of Marsh Creek	Inspected monthly by IDNR	001	Aug.	2016	рН	Daily Min.	-49%
	Sunrise Coal LLC – Oaktown Mine	IN0064629	Tributary of Marsh Creek	Inspected by IDEM: 12/12/2018: Violations Observed 9/10/2019: Violations Observed Inspected monthly by IDNR	001B 001B 001B 001B 001B 001B 001B 001B	Sep. Sep. Sep. Sep. Sep. Sep. Feb. Feb. Feb. Feb. Feb. Feb. Feb. Feb	2018 2018 2018 2018 2018 2018 2018 2018	pH TR Iron TR Nickel TR Nickel TR Zinc TR Zinc TR Copper TR Iron TR Iron TR Zinc TR Zinc TR Nickel TR Iron TR Nickel TSS TR Zinc Total Sulfate TR Iron TR Iron	Daily Min. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Daily Max. Mo. Avg. Mo. Avg. Mo. Avg. Mo. Avg. Mo. Avg. Mo. Avg. Mo. Avg. Mo. Avg. Mo. Avg. Daily Max. Mo. Avg. Mo. Avg.	-35% 5233% 3022% 402% 109% 718% 382% 522% 265% 2025% 1215% 167% 64% 92% 1558% 871% 7% 13% 27% 8% 667% 349% 18% 9%
Headwaters Maria Creek	Peabody Midwest Mining LLC – Bear Run Mine	ING040239	Tributary of Maria Creek	Inspected monthly by IDNR	068 068 068 068 068 068 068	May May May April April April	2017 2017 2017 2017 2018 2018 2020	Total Iron Total Iron TSS TSS TSS TSS TSS TSS	Daily Avg. Daily Max. Daily Avg. Daily Max. Daily Avg. Daily Max. Daily Avg.	12% 38% 166% 266% 80% 14% 6%

2.8.3 Regulated Stormwater

Activities that discharge stormwater are typically regulated through NPDES stormwater general permits. The stormwater general permit requirements were originally contained in IAC and set by Indiana's Environmental Rules Board through its formal rulemaking process. General permits apply universally to all entities required to operate in accordance with the rule. However, IDEM is currently in the process of changing its approach to general permits from permit-by-rule to administrative general permits. The construction stormwater, municipal separate storm sewer system (MS4), and industrial stormwater administrative general permits are currently being developed.

Construction Stormwater

Stormwater run-off associated with construction activity is currently regulated under 327 IAC 15-5, which is commonly referred to as "Rule 5" or the construction stormwater general permit. The construction stormwater general permit is a performance-based regulation designed to reduce pollutants that are associated with construction and/or land disturbing activities. In Indiana, most construction projects are administered through the general permit. The requirements of the permit apply to all persons who are involved in construction activity (which includes clearing, grading, excavation and other land disturbing activities) that results in the disturbance of one (1) acre or more of total land area. If the land disturbing activity results in the disturbance of less than one (1) acre of total land area but is part of a larger common plan of development or sale, the project is still subject to stormwater permitting.

The construction stormwater general permit requires the development and implementation of a construction plan that includes a stormwater pollution prevention plan (SWPPP). The SWPPP outlines how erosion and sedimentation will be controlled on the project site to minimize the discharge of sediment off-site or to a water of the state. The SWPPP addresses other pollutants that may be associated with construction activity. This can include disposal of building materials, management of fueling operations, etc. The SWPPP should also address pollutants that will be associated with the post-construction land use. It is the responsibility of the project site owner to implement the SWPPP. In addition, it is critical that the site is monitored during the construction process and in-field modifications are made to address the discharge of sediment and other pollutants from the project site. This may require modification of the SWPPP and field changes on the project site, as necessary, to prevent pollutants, including sediment, from leaving the project site.

If an adverse environmental impact from a project site is evident, IDEM may require the site to obtain an individual construction stormwater permit. An individual construction stormwater permit is typically required only if IDEM determines the discharge will significantly lower water quality. If an individual construction stormwater permit is required, notice will be given to the project site owner. An individual construction stormwater permit is a written document developed specifically for the project site.

The average annual land disturbance associated with construction sites permitted under 327 IAC 15-5 are reported in Table 32. The estimated land disturbance was calculated for each subwatershed using data from permitted construction sites for the past five years.

Subwatershed	Estimated Annual Land Disturbance (Acres)
Cotton Branch	3.33
Tilley Ditch	1.55
Marsh Creek	2.35
Headwaters Maria Creek	7.88

Table 32: Average Annual Land Disturbance from Permitted Construction Activity in the Maria CreekSubwatersheds from 2016-2020

Industrial Stormwater

Stormwater run-off associated with industrial activity is currently regulated under 327 IAC 15-6, which is commonly referred to as "Rule 6" or the industrial stormwater general permit. Compliance with the industrial stormwater general permit is required for facilities where activities of the industrial operation are exposed to stormwater and run-off is discharged though a point source to a waters of the state. The general permit applies to specific categories of industrial activities that must obtain permit coverage. Determination of applicable industrial activities is based on a facility's Standard Industrial Classification (SIC) Code(s) or facility activities included in the listed narrative descriptions within 327 IAC 15-6. There are currently no facilities with industrial stormwater general permit coverage located in the Maria Creek watershed.

Municipal Separate Storm Sewer Systems

Stormwater run-off from certain types of urbanized areas are currently regulated under 327 IAC 15-13, which is commonly referred to as "Rule 13" or the municipal separate storm sewer system (MS4) general permit. MS4s are defined as a conveyance or system of conveyances owned by a state, city, town, or other public entity that discharges to waters of the state and is designed or used for collecting or conveying stormwater. Regulated conveyance systems include roads with drains, municipal streets, catch basins, curbs, gutters, storm drains, piping, channels, ditches, tunnels, and conduits. It does not include combined sewer overflows and publicly owned treatment works. Municipalities with a population served by a MS4 of 100,000 or more are regulated as a Phase I MS4 entity. There are currently no MS4 entities in the Maria Creek watershed.

2.9 Summary

The information presented in Section 2.0 helps to provide a better comprehensive understanding of the conditions and characteristics in the Maria Creek watershed that, when coupled with the potential sources of pollution, affect both water quality and water quantity. In summary, the predominant land uses in the Maria Creek watershed of agriculture and forestry serve as indicators as to the type of sources that are likely to contribute to water quality impairments in the Maria Creek watershed. Human population in the Maria Creek watershed indicates where more infrastructure related pressures on water quality might exist. The sections on topography and geology, as well as soils, provide information on the natural features that affect hydrology in the Maria Creek watershed. These features interact with land use activities and human

population to create pressures on both water quality and quantity in the Maria Creek watershed. Lastly, the section on climate and precipitation provides information on water quantity and the factors that influence flow, which ultimately affects the influence of stormwater on the watershed. Collectively, this information plays an important role in understanding the sources that contribute to water quality impairment during TMDL development and crafting the linkage analysis that connects the observed water quality impairment to what has caused that impairment.

3.0 TECHNICAL APPROACH

Previous sections of the report have provided a description of the Maria Creek watershed and summarized the applicable water quality standards, water quality data, and identified the potential sources of *E. coli* and TSS for assessment units in each subwatershed. This section presents IDEM's technical approach for using water quality sampling data and flow data for each subwatershed to estimate the current allowable loads of *E. coli* and TSS in each subwatershed. This section focuses on describing the methodology and is helpful in understanding subsequent sections of the TMDL report.

3.1 Load Duration Curves

To determine allowable loads for the TMDL, IDEM uses a load duration curve approach. This approach helps to characterize water quality problems across flow conditions and provide a visual display that assists in determining whether loadings originate from point or nonpoint sources. Load duration curves present the frequency and magnitude of water quality violations in relation to the allowable loads, communicating the magnitude of the needed load reductions.

Developing a load duration curve is a multi-step process. To calculate the allowable loadings of a pollutant at different flow regimes, the load duration curve approach involves multiplying each flow by the TMDL target value or water quality standard and an appropriate conversion factor. The steps are as follows:

- A flow duration curve for the stream is developed by generating a flow frequency table and plotting the observed flows in order from highest (left portion of curve) to lowest (right portion of curve).
- The flow curve is translated into a load duration (or TMDL) curve. To accomplish this, each flow value is multiplied by the TMDL target value or water quality standard with the appropriate conversion factor, and the resulting points are graphed. Conversion factors are used to convert the units of the target (e.g., #/100 mL for *E. coli*) to loads (e.g., MPN/day for *E. coli*) with the following factors used for this TMDL:
- *E. coli*: Flow (cfs) x TMDL Concentration Target (#/100mL) x Conversion Factor (24,465,758.4) = Load (MPN/day)
- TSS: Flow (cfs) x TMDL Concentration Target (mg/L) x Conversion Factor (5.39) = Load (lb/day)
- To estimate existing loads, each water quality sample is converted to a load by multiplying the water quality sample concentration by the average daily flow on the day the sample was collected and the appropriate conversion factor. Then, the existing individual loads are plotted on the TMDL graph with the curve.
- Points plotting above the curve represent violations of the applicable water quality standard or exceedances of the applicable target and the daily allowable load. Those points plotting below the curve represent compliance with standards and the daily allowable load.

• The area beneath the load duration curve is interpreted as the loading capacity of the stream. The difference between this area and the area representing the current loading conditions above the curve is the load that must be reduced to meet water quality standards.

The load duration curve approach can consider seasonal variation in TMDL development as required by the CWA and U.S. EPA's implementing regulations. Because the load duration curve approach establishes loads based on a representative flow regime, it inherently considers seasonal variations and critical conditions attributed to flow conditions.

The stream flows displayed on water quality or load duration curves may be grouped into various flow regimes to aid with interpretation of the load duration curves. The flow regimes are typically divided into the following five "hydrologic zones" (U.S. EPA, 2007):

- High Flows: Flows in this represent flooding or near flooding stages of a stream. These flows are exceeded 0 10 percent of the time.
- Moist Zone: Flows in this range are related to wet weather conditions. These flows are exceeded 10 40 percent of the time.
- Mid-Range Zone: Flows in this range represent median stream flow conditions. These flows are exceeded 40 60 percent of the time.
- Dry Zone: Flows in this range are related to dry weather flows. These flows are exceeded 60 -90 percent of the time.
- Low Flows: Flows in this range are seen in drought-like conditions. These flows are exceeded 90 -100 percent of the time.

The load duration curve approach helps to identify the sources contributing to the impairment and to roughly differentiate between sources. Exceedances of the load duration curve at higher flows (0-40 percent ranges) are indicative of wet weather sources (e.g., nonpoint sources, regulated stormwater discharges). Exceedances of the load duration curve at lower flows (60 to 100 percent range) are indicative of point sources (e.g., wastewater treatment facilities, livestock in the stream). Table 33 summarizes the general relationship between the five hydrologic zones and potentially contributing source areas (the table is not specific to any individual pollutant). For example, the table indicates that impacts from wastewater treatment plants are usually most pronounced during dry and low flow zones because there is less water in the stream to dilute their loads. In contrast, impacts from channel bank erosion is most pronounced during high flow zones because these are the periods during which stream velocities are high enough to cause erosion to occur.

Contributing Source Area	Duration Curve Zone						
Contributing Source Area	High	Moist	Mid-Range	Dry	Low		
Livestock direct access to streams				М	Н		
Wildlife direct access to streams				М	Н		
Pasture Management	Н	Н	М				
On-site wastewater systems/Unsewered Areas	М	M-H	Н	Н	Н		
Riparian Buffer areas		Н	Н	М			
Abandoned mines	Н	Н	Н	Н	Н		
Stormwater: Impervious		Н	Н	Н			
Stormwater: Upland	Н	Н	М				
Field drainage: Natural condition	Н	М					
Field drainage: Tile system	Н	Н	M-H	L-M			
Bank erosion	Н	М					

Table 33: Relationship between Load Duration Curve Zones and Contributing Sources

Note: Potential relative importance of source area to contribute loads under given hydrologic condition (*H: High; M: Medium; L: Low*)

3.2 Stream Flow Estimates

Daily stream flows are necessary to implement the load duration curve approach. Load duration assessment locations in the Maria Creek watershed were chosen based on the location of the impaired stream segments and the availability of water quality samples to estimate existing loads.

The USGS does not operate any stream flow gaging stations in the Maria Creek watershed. Since there are no continuous flow data for the Maria Creek watershed, flow data were estimated for the Maria Creek watershed using flow data from a neighboring "surrogate" watershed. This is a standard practice when developing TMDLs for ungaged watersheds and is appropriate when the two watersheds are located close to one another and have similar land use and soil characteristics.

The USGS gage for Busseron Creek near Carlisle, IN (03342500) is located in Sullivan County approximately seven miles upstream of the confluence of Busseron Creek and the Wabash River. This gage was used for the development of the *E. coli* and TSS load duration curve analysis for the Maria Creek watershed TMDL. Gage 03342500 drains approximately 228 square miles in the Busseron Creek (HUC 10: 0512011115) watershed as shown in Figure 24.

Table 34: USGS Site Assignment for Development of Load Duration Curve

Gage Location	Gage ID	Period of Record Used in Analysis
Busseron Creek near Carlisle, IN	03342500	2011 - 2020

Since the load duration approach requires a stream flow time series for each site included in the analysis, stream flows were extrapolated from USGS gage 03342500 for each assessment location by using a multiplier based upon the ratio of the upstream drainage area for a given location to the drainage area of the Maria Creek watershed.

Flows were estimated using the following equation:

$$Q_{ungaged} = \frac{A_{ungaged}}{A_{gaged}} \times Q_{gaged}$$

Where,

Qungaged:	Flow at the ungaged location
Q _{gaged} :	Flow at surrogate USGS gage station
A _{ungaged} :	Drainage area of the ungaged location
Agaged:	Drainage area of the gaged location

In this procedure, the drainage area of each of the load duration stations was divided by the drainage area of the surrogate USGS gage. The flows for each of the stations were then calculated by multiplying the flows at the surrogate gage by the drainage area ratios. Additional flows were added to certain locations to account for municipal wastewater treatment plants that discharge upstream and are not directly reflected in the load duration curve method.

	Drainage	Flow Duration Exceedance Interval Flows (cfs)						
Subwatershed	Area (sq. miles)	High (5%)	Moist (25%)	Mid-Range (50%)	Dry (75%)	Low (95%)		
Cotton Branch	96.56	563	124	48	16	6		
Tilley Ditch	49.51	287	63	24	8	2		
Marsh Creek	23.83	141	32	13	5	3		
Headwaters Maria Creek	27.34	158	35	13	4	1		

Table 35: Load Duration Curve Key Flow Percentile Estimates

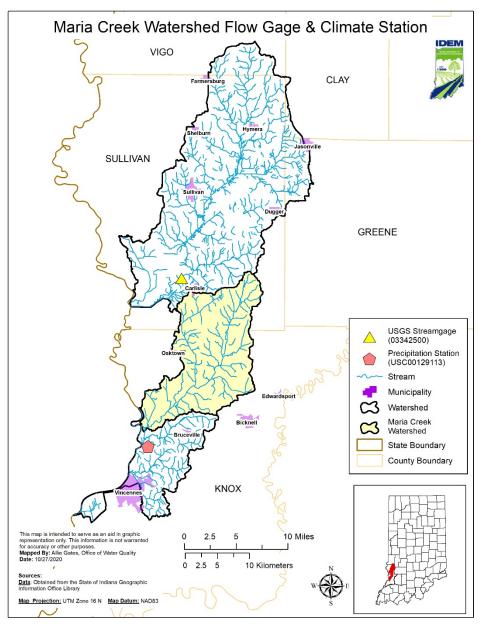


Figure 24: Location of Surrogate Flow Gage in Carlisle, Indiana

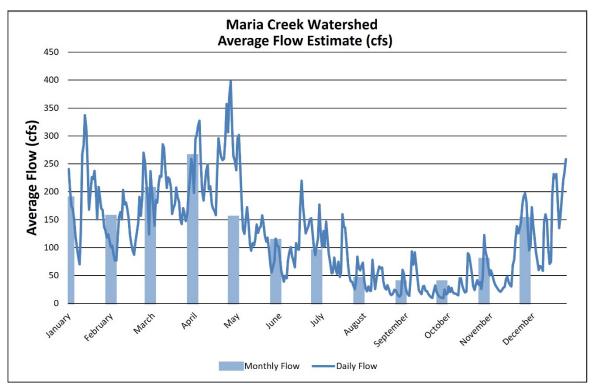


Figure 25: Average Daily Flow Estimate for the Maria Creek Watershed for data from 2011-2020

3.3 Margin of Safety (MOS)

Section 303(d) of the Clean Water Act and U.S. EPA regulations at 40 CFR 130.7 require that "TMDLs shall be established at levels necessary to attain and maintain the applicable narrative and numeric water quality standards with seasonal variations and a MOS which takes into account any lack of knowledge concerning the relationship between limitations and water quality." U.S. EPA guidance explains that the MOS may be implicit (i.e., incorporated into the TMDL through conservative assumptions in the analysis) or explicit (i.e., expressed in the TMDL as loadings set aside for the MOS). This TMDL uses both an implicit and explicit MOS. An implicit MOS was used by applying a couple of conservative assumptions. A moderate explicit MOS has been applied by reserving ten percent of the allowable load. Ten percent was considered an appropriate MOS based on the following considerations:

- The use of the load duration curve approach minimizes a great deal of uncertainty associated with the development of TMDLs because the calculation of the loading capacity is simply a function of flow multiplied by the target value. Most of the uncertainty is therefore associated with the estimated flows in each assessed segment which were based on extrapolating flows from the nearest USGS gage.
- An additional implicit MOS for *E. coli* is included because the load duration analysis does not address die-off of pathogens.
- An additional implicit MOS for pollutants is realized in that when in compliance NPDES permitted sources are seldom discharging at their allowable limits.

3.4 Future Growth Calculations

Population trends indicate that this watershed has seen a slight increase in population but has generally been stagnant over the past two decades (Table 22). Uncertainty regarding future populations and land use changes in the Maria Creek watershed have led IDEM to allocate 5% of the loading capacity to address increased bacteria loads from future contributors. Mining activity continues to play an important role in land use activities and disturbance in the Maria Creek watershed. Mining operations are not static in the landscape and may move outfall locations as activities are conducted. Additionally, new sources of mining activities can change based on new technology for extracting coal and/or economic feasibility. As such, IDEM has chosen to allocate 10% of the loading capacity to address increased sediment loads from future contributors.

4.0 LINKAGE ANALYSIS

A linkage analysis connects the observed water quality impairment to what has caused that impairment. An essential component of developing a TMDL is establishing a relationship between the source loadings and the resulting water quality. Potential point and nonpoint sources are inventoried in Section 2.0, and water quality data within the Maria Creek watershed are discussed in Section 1.4. The purpose of this section is to evaluate which of the various potential sources is most likely to be contributing to the observed water quality impairments.

Load duration curves were created for each subwatershed in the Maria Creek watershed that were sampled by IDEM in 2019 and 2020. The load duration curve method considers how stream flow conditions relate to a variety of pollutant loadings and their sources (point and nonpoint). Load duration curves illustrate water quality standard and target value violations during all flow ranges that occurred during the sampling events. Section 3.0 summarizes the load duration curve approach.

To further investigate sources, water quality precipitation graphs have been created. Elevated levels of pollutants during rain events indicate contributions of pollutants due to run-off. The precipitation data was taken from a weather station in Carlisle, IN and managed by the Midwestern Regional Climate Center. Additionally, sediment loading by sources in the watershed were estimated using the Generalized Watershed Loading Function Enhanced (GWLF-E) watershed model. Results of the model indicate which land uses are contributing the greatest annual loading across the watershed and are discussed in Section 4.3

A linkage analysis for each subwatershed is included in this section. The analysis includes a summary of the subwatershed, including information regarding sampling sites, land use, NPDES facilities, CFOs, and soil characteristics. A summary table of each subwatershed is also provided that includes the load allocations (LAs), wasteload allocations (WLAs), and margin of safety (MOS) values for pollutants of concern. Evaluating the load duration curves and precipitation graphs with consideration of these watershed characteristics allows for identification of potential point and nonpoint sources that are contributing to elevated concentrations of pollutants. Pollutants of concern for the Maria Creek watershed identified by sampling data include *E. coli* and TSS.

4.1 Pollutants of Concern

<u>4.1.1 *E.* coli</u>

Establishing a linkage analysis for *E. coli* is challenging because there are so many potential sources, and *E. coli* counts have a high degree of variability. While it is difficult to perform a site-specific assessment of the causes of high *E. coli* for each location in a watershed, it is reasonable to expect that general patterns and trends can be used to provide some perspective on the most significant sources. Additional information is outlined in Section 1.1.

E. coli sources typically associated with high flow and moist conditions include failing onsite wastewater systems, urban stormwater/CSOs, run-off from agricultural areas, and bacterial re-suspension from the streambed. *E. coli* sources typically associated with low flow conditions include a large number of homes on failing or illicitly connected septic systems that would provide a constant source. Elevated *E. coli*

levels at low flow could also result from inadequate disinfection at wastewater treatment plants or animals with direct access to streams.

4.1.2 Total Suspended Solids (TSS)

Developing a linkage analysis to address the connection between siltation and its effect on aquatic life use often involves an evaluation of multiple factors. The interaction between erosion processes and hydrology is an important part of the assessment, with land use, riparian areas, and channel conditions being key considerations. Each can play a potential role in both creating and solving sediment problems. The sediment issues can occur when external inputs (e.g., sediment, run-off volume) to the stream become excessive, or when stream characteristics are altered so that it can no longer assimilate the loads, or a combination of both occur. Additional information is outlined in Section 1.1.

Sheet erosion is the detachment of soil particles by raindrop impact and their removal by water flowing overland as a sheet instead of in channels or rills. Rill erosion refers to the development of small, ephemeral concentrated flow paths, which function as both sediment source and sediment delivery systems for erosion on hillslopes. Sheet and rill erosion occurs more frequently in areas that lack or have sparse vegetation.

Bank and channel erosion refers to the wearing away of the banks of a stream or river. High rates of bank and channel erosion can often be associated with water flow and sediment dynamics being out of balance. This may result from land use activities that either alter flow regimes, adversely affect the floodplain and streamside riparian areas, or a combination of both. Hydrology is a major driver for both sheet/rill and stream channel erosion. Bank and channel erosion are made worse when streams are straightened or channelized because channelization shortens overall stream lengths and results in increased velocities, bed and bank erosion, and sedimentation. Modified stream channels often have little habitat structure and variability necessary for diverse and abundant aquatic species. Channelization also disconnects streams from floodplain and riparian areas that are often converted to developed or agricultural lands.

Since monitoring began, TSS in the Maria Creek watershed has sporadically exceeded the target. TSS primarily exceeded the target value in the winter months, although data is lacking for the spring months. High loads in the winter may be related to a lack of vegetative cover on agricultural fields adjacent to streams, leading to increased likelihood of soil erosion during precipitation events. Agricultural fields that have been tilled for the winter have an even greater potential for soil erosion. Further analysis pairing the TSS concentrations with flow conditions reveals elevated TSS concentrations during high flows and generally lower concentrations during mid-range and lower flow conditions. Elevated TSS concentrations during high flows are consistent with significant loads coming from stream bank and gully erosion.

In addition to TSS, siltation within a stream may be analyzed by taking a closer look into the Qualitative Habitat Evaluation Index (QHEI) scores assigned to each sampling location. Habitat assessments were completed at each sampling site after both fish community and macroinvertebrate community sample collections using a slightly modified version of the Ohio Environmental Protection Agency (OHEPA) QHEI (OHEPA, 2006). The QHEI allows for a quantitative assessment of physical characteristics of the sampled stream. Each sampling site was assigned a QHEI score in relation to the habitat quality for both

fish and macroinvertebrate communities. Completed QHEI forms for the Maria Creek watershed are available in Appendix C.

The overall QHEI score is composed of a total of six metric scores. The six individual metrics include substrate, instream cover, channel morphology, bank erosion/riparian zone, pool/glide and riffle/run quality, and gradient. Of these metrics, the substrate metric is the most indicative of excessive siltation within a stream, while the bank erosion/riparian zone metric provides an explanation for excessive amounts of observed siltation. The substrate and bank erosion/riparian zone metric scores were analyzed for each sampling location throughout the watershed to determine if excessive siltation is linked to poor fish community IBI scores and macroinvertebrate community mIBI scores. Additional information regarding IBI and mIBI scores is available in Section 1.1.2.

Substrate and bank erosion/riparian zone metric scores were totaled and plotted against both fish community IBI scores and macroinvertebrate community mIBI scores (Figure 26 and Figure 27). Lower values for the substrate and bank erosion/riparian zone metrics indicate greater observed siltation within the stream and/or lower riparian and flood plain quality. Lower IBI and mIBI scores indicate fewer individuals and/or low species diversity was observed within a stream. The R² value for the fish community analysis was approximately 0.85, and the R² value for the macroinvertebrate community was approximately 0.88. These values indicate a strong positive correlation between excessive siltation and low IBI and mIBI scores. This analysis provides additional evidence that excessive siltation within a stream is linked to impaired biotic communities throughout the Maria Creek watershed in addition to elevated TSS monitoring data.

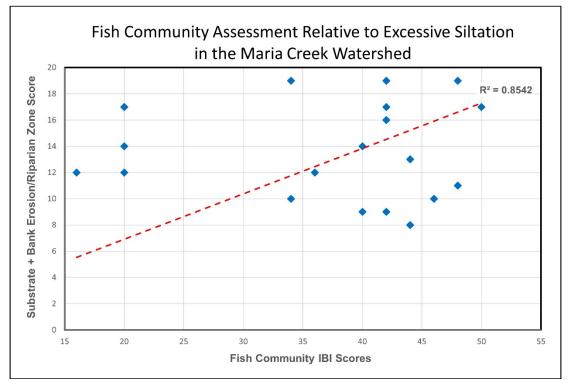


Figure 26: Substrate + Bank Erosion/Riparian Zone Score in Relation to Fish Community IBI Scores in the Maria Creek Watershed

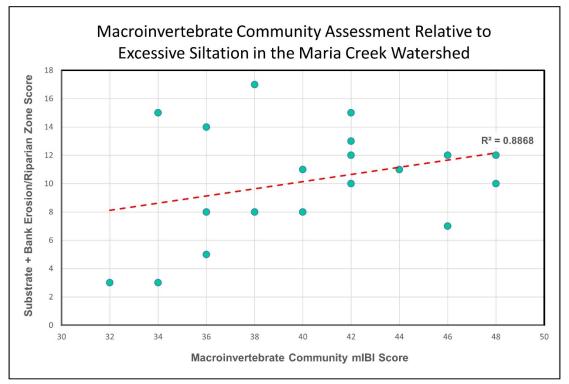


Figure 27: Substrate + Bank Erosion/Riparian Zone Score in Relation to Macroinvertebrate Community mIBI Scores in the Maria Creek Watershed

4.2 Linkage Analysis by Subwatershed

The following sections discuss the load duration curves, precipitation graphs, water quality duration graphs, and linkage of sources to the water quality exceedances for each subwatershed. Load duration curves, precipitation graphs, and water quality duration graphs were created for each subwatershed.

4.2.1 Cotton Branch

The Cotton Branch subwatershed drains approximately 96.56 square miles. This subwatershed is the southern extent of the Maria Creek watershed. Surface water generally flows southwest and drains out of the subwatershed and into the Wabash River north of Vincennes, IN. The land use is primarily agriculture (64 percent) followed by forested land (22 percent) and developed land (7 percent). There are two NPDES permitted dischargers located within the subwatershed. North Knox Intermediate School WWTP (IN0041092) discharges at Outfall 001 into a tributary of Maria Creek. Sunrise Coal Oaktown Mine (ING040222) is an underground mining operation that discharges into a tributary of Maria Creek at Outfall 006. The majority of the subwatershed is rural indicating homes pump to on-site septic systems. Based on the septic suitability of the soil, this subwatershed is rated as somewhat limited or very limited. Maintenance and inspections of septic systems in the area are important to ensure proper function and capacity. The landscape in the area is relatively flat leading to its intense conversion to agricultural production and use. In many areas of the subwatershed there are little to no remaining riparian buffers left along its banks due to agricultural practices. Despite its flat nature, the subwatershed does contain significant amounts of highly erodible soil types. These soil types can be susceptible to sheet, rill, and isolated gully erosion and can contribute to sediment loss from agricultural lands, as well as lands from the high gradient slopes.

Many of the waterways in this subwatershed are identified as having hydric soil types in their riparian zones. These areas could be potential areas for wetland restoration or high functioning two stage ditch implementation. With a land use of 5 percent pasture land a heavy presence of pasture animals is not expected. There is one permitted CFO in the subwatershed.

There are three monitoring sites located in this subwatershed. Sites T01 and T04 are located on the main stem of Maria Creek, and site T03 is located on Cotton Branch (Figure 28). In 2019 and 2020, this subwatershed was sampled a total of 41 times between the three sites. All three sites failed the *E. coli* geometric mean (geomean) water quality standard of 125 MPN/100 mL. The *E. coli* geomean for site T01 was 482.71 MPN with 4/8 samples in exceedance of the single sample max. Site T03 had a geomean of 887.3 MPN with 7/8 samples in exceedance of the single sample max. Site T04 had a geomean of 306.63 MPN with 1/8 samples in exceedance of the single sample max. The *E. coli* water quality samples from sites T01, T03, and T04 used to calculate the geomean were taken on the same day approximately one hour apart for five consecutive weeks.

The fish community IBI score for site T01 was 48 (good) and the QHEI was 66 (good). The macroinvertebrate community mIBI score was 38 (fair) and the QHEI was 55 (good). The fish community IBI score for site T03 was 42 (fair) and the QHEI was 65 (good). The macroinvertebrate community mIBI score was 34 (poor) and the QHEI was 63 (good). The fish community IBI score for site T04 was 16 (very poor) and the QHEI was 30 (poor). The macroinvertebrate community mIBI score was 48 (good)

and the QHEI was 28 (poor). Based on assessments of this data, two stream segments within the subwatershed were determined to be impaired for biological communities.

Evaluation of TSS monitoring data and QHEI substrate and bank erosion/riparian zone metric scores indicate a linkage between siltation and biological communities impairments in the Cotton Branch subwatershed. TSS concentrations ranged from 2.7 mg/L to 690 mg/L across 21 sampling events within the subwatershed and exceeded the target value of 30 mg/L four times. Heavy siltation was observed at one sampling site with silt as a predominant substrate and a very narrow riparian width. Heavy/severe erosion was noted at an additional sampling site. The floodplain quality was documented as open pasture/row crop at 66% of sampling sites. Given that the target value for TSS was sporadically violated and excessive siltation or indicators of siltation were documented throughout the subwatershed, high TSS is believed to be a primary linkage to the biological communities impairments. Therefore, a TMDL for TSS was developed for this subwatershed to address the biological communities impairments.

There are approximately 36 miles of streams in the subwatershed. Based on IDEM data collected in 2019 and 2020, there will be 22 stream miles impaired for *E. coli* and seven miles impaired for biological communities. These stream reaches will be listed on the 2022 303(d) List of Impaired Waters. Therefore, *E. coli* TMDLs were developed to address all *E. coli* impairments, and TSS TMDLs were developed to address all *e. coli* impairments, and TSS TMDLs were developed to address all impaired biotic communities. The load duration curves for the Cotton Branch subwatershed are shown in Figure 29 and Figure 31. Table 36 provides a summary of the Cotton Branch subwatershed, including listed stream reaches by AUID, drainage area, sampling sites, land use, NPDES facilities, CFOs, as well as LA, WLAs, and MOS values for *E. coli* and TSS.

Precipitation graphs (Figure 30 and Figure 32) and water quality duration graphs (Appendix F) were created to further analyze potential sources. Elevated levels of pollutants during rain events indicate streams are susceptible to high loads of *E. coli* and TSS from run-off. However, precipitation graphs illustrate that streams are also occasionally in violation of water quality standards/targets even during drier conditions. This indicates point sources may also be contributing pollutants in addition to nonpoint sources. The water quality duration graphs indicate the majority of sources of *E. coli* and TSS in this watershed are nonpoint sources. Nonpoint sources may include small animal operations, wildlife, pasture animals with direct access to streams, land application of animal waste, straight pipes, streambank erosion, agricultural practices, and leaking and failing septic systems. See Section 6.1 and Table 44 for information pertaining to potentially suitable BMP selection for the Maria Creek watershed.

	(Cotton Branch (08	51201111804)						
Drainage Area			96.56 square mi	iles					
Surface Area	23.22 square miles								
Site # [IDEM Station ID]	т	01 [WBU-18-0004]	, T03 [WBU-18-00	006], T04 [WBU-18-0	0007]				
Listed Segments	INB11I4_	_03; INB11I4_T100	04; INB11I4_T100	5; INB11I4_02; INB	11I4_T1001				
Listed Impairments [TMDL(s)]		E. coli [E. coli]	, Impaired Biotic (Communities [TSS]					
Land Use	Agricultural L			veloped Land: 7% ⊢ 1% Wetlands: <1%					
NPDES Facilities				WWTP (IN0041092); 040222) – Outfall 006					
CAFOs			NA						
CFOs		Grant & Da	wn Earley Farms	(Farm ID: 6164)					
	ТМ	DL E. Coli Allocat	tions (MPN/day)						
Allocation Category Duration Interval (%)	High Flows 5%	Moist Conditions 25%	Mid-Range Flows 50%	Dry Conditions 75%	Low Flows 95%				
LA	6.57E+11	1.43E+11	5.38E+10	1.68E+10	5.15E+09				
WLA (Total)	4.45E+07	4.45E+07	4.45E+07	4.45E+07	4.45E+07				
MOS (10%)	7.73E+10	1.69E+10	6.33E+09	1.98E+09	6.11E+08				
Future Growth (5%)	3.87E+10	8.43E+09	3.16E+09	9.89E+08	3.06E+08				
Upstream Drainage Input (Tilley Ditch, Marsh Creek)	2.46E+12	5.46E+11	2.13E+11	7.38E+10	2.90E+10				
TMDL = LA+WLA+MOS	3.24E+12	7.15E+11	2.76E+11	9.36E+10	3.51E+10				
WLA (Individual)									
North Knox Intermediate School WWTP (IN0041092)	4.45E+07	4.45E+07	4.45E+07	4.45E+07	4.45E+07				
	TMDL Tota	I Suspended Soli		bs/day)	1				
Allocation Category Duration Interval (%)	High Flows 5%	Moist Conditions 25%	Mid-Range Flows 50%	Dry Conditions 75%	Low Flows 95%				
LA	17,327.61 3,780.37 1,417.80 442.23 135.77								
WLA (Total)	74.40	74.40 17.21 6.92 3.02 1.80							
MOS (10%)	2,175.25	2,175.25 474.70 178.09 55.66 17.20							
Future Growth (10%)	2,175.25	474.70	178.09	55.66	17.20				

Table 36: Summary of Cotton Branch Subwatershed Characteristics

Upstream Drainage Input (Tilley Ditch, Marsh Creek)	69,302.22	15,367.77	5,999.45	2,077.35	815.04
TMDL = LA+WLA+MOS	91,054.73	20,114.75	7,780.35	2,633.92	987.00
WLA (Individual)					
North Knox Intermediate School WWTP (IN0041092)	1.25	1.25	1.25	1.25	1.25
Oaktown Mine (ING040222)	69.26	15.11	5.67	1.77	0.55
Construction Stormwater	3.88	0.85	0.00	0.00	0.00

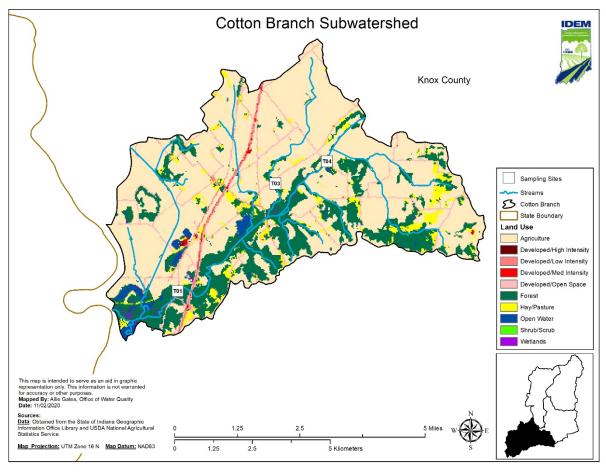


Figure 28: Sampling Sites in the Cotton Branch Subwatershed

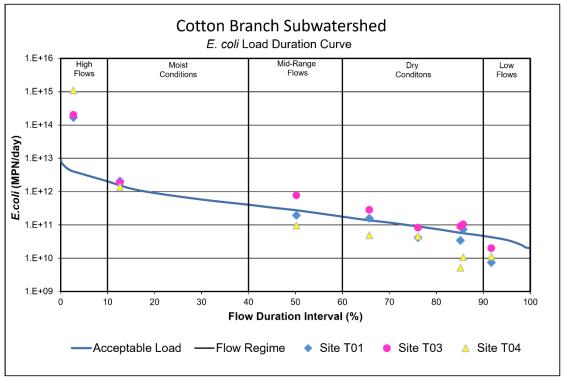


Figure 29: E. coli Load Duration Curve for Cotton Branch Subwatershed

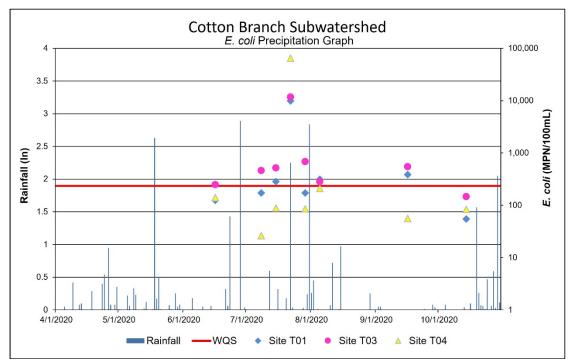


Figure 30: Graph of Precipitation and E. coli Data for Cotton Branch Subwatershed

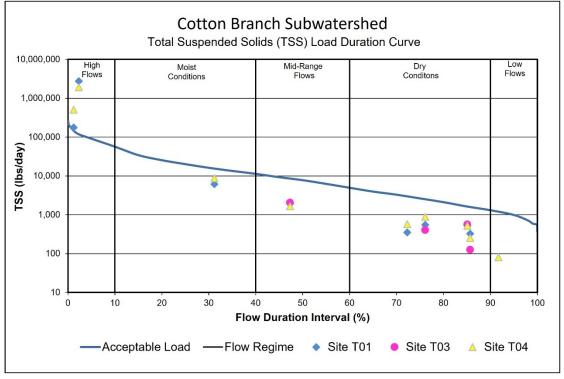


Figure 31: Total Suspended Solids (TSS) Load Duration Curve for Cotton Branch Subwatershed

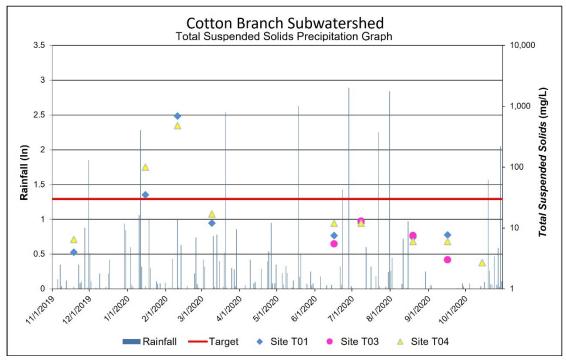


Figure 32: Graph of Precipitation and Total Suspended Solids (TSS) Data for Cotton Branch Subwatershed

4.2.2 Tilley Ditch

The Tilley Ditch subwatershed drains approximately 49.51 square miles with an actual land area of approximately 22.17 square miles. Surface water generally flows southwest and drains into the main stem of Maria Creek and into the Cotton Branch subwatershed. The land use is primarily agriculture (81 percent) followed by forested land (10 percent) and developed land (6 percent). There are three NPDES permitted facilities in the subwatershed. Freelandville Regional Sewer District WWTP (IN0064513) discharges at Outfall 001 into a tributary of Maria Creek. North Knox High School WWTP (IN0041084) discharges at Outfall 001 into Tilley Ditch. Freelandville Water Association (IN0059480) discharges at Outfalls 001 and 002 into Tilley Ditch. The majority of the subwatershed is rural indicating homes pump to on-site septic systems. Based on the septic suitability of the soil, this subwatershed is primarily rated as somewhat limited or very limited. Maintenance and inspections of septic systems in the area is important to ensure proper function and capacity. The landscape in the area is relatively flat leading to its intense conversion to agricultural production and use. In many areas of the subwatershed, there are little to no remaining riparian buffers left along its banks due to agricultural practices. Despite its flat nature the subwatershed does contain significant amounts of highly erodible soil types. These soil types can be susceptible to sheet, rill, and isolated gully erosion and can contribute to sediment loss from agricultural lands, as well as lands from the high gradient slopes.

Many of the waterways in this subwatershed are identified as having hydric soil types in their riparian zones. These areas could be potential areas for wetland restoration or high functioning two stage ditch implementation. With a land use of 4 percent pasture land a heavy presence of pasture animals is not expected. There are no permitted CFOs in the watershed.

There are five monitoring sites located in this subwatershed. Sites T05 and T09 are located on the main stem of Maria Creek. Site T06 is located on Tilley Ditch. Sites T07 and T08 are located on tributaries of Maria Creek (Figure 33). In 2019 and 2020 this subwatershed was sampled a total of 61 times between the five sites. Four sites failed the *E. coli* geometric mean (geomean) water quality standard of 125 MPN/100 mL. The *E. coli* geomean for site T05 was 734.99 MPN with 5/8 samples in exceedance of the single sample max. Site T06 had a geomean of 98.57 MPN with 2/8 samples in exceedance of the single sample max. Site T07 had a geomean of 1,710.68 MPN with 6/6 samples in exceedance of the single sample max. Site T08 had a geomean of 1,237.53 MPN with 7/8 samples in exceedance of the single sample max. Site T09 had a geomean of 166.32 MPN with 3/8 samples in exceedance of the single sample max. The *E. coli* water quality samples from sites T05, T06, T07, T08, and T09 used to calculate the geomean were taken on the same day approximately one hour apart for five consecutive weeks.

Dissolved oxygen (DO) was found to be below the water quality standard of 4.0 mg/L on two occasions at site T08. Given the characteristics of the stream segment and minimal precipitation throughout the summer sampling season, it is believed that low physical flows in the system are likely contributing to the low DO levels found in the stream.

The fish community IBI score for site T05 was 42 (fair) and the QHEI was 32 (poor). The macroinvertebrate community mIBI score was 42 (fair) and the QHEI was 30 (poor). The fish community IBI score for site T06 was 42 (fair) and the QHEI was 38 (poor). The macroinvertebrate community mIBI score was 36 (fair) and the QHEI was 42 (poor). The fish community IBI score for site T07 was 40 (fair)

and the QHEI was 46 (poor). The macroinvertebrate community mIBI score was 36 (fair) and the QHEI was 29 (poor). The fish community IBI score for site T08 was 44 (fair) and the QHEI was 33 (poor). The macroinvertebrate community mIBI score was 38 (fair) and the QHEI was 34 (poor). The fish community IBI score for site T09 was 46 (good) and the QHEI was 43 (poor). The macroinvertebrate community mIBI score was 33 (poor). The macroinvertebrate community mIBI score was 36 (fair) and the QHEI was 43 (poor). The fish community mIBI score was 36 (fair) and the QHEI was 33 (poor). The macroinvertebrate community mIBI score was 36 (fair) and the QHEI was 43 (poor). The macroinvertebrate community mIBI score was 36 (fair) and the QHEI was 33 (poor). Based on assessments of this data, no stream segments within the subwatershed were determined to be impaired for biological communities.

There are approximately 33 miles of streams in the subwatershed. Based on IDEM data collected in 2019 and 2020, there will be 20 stream miles impaired for *E. coli* and five miles impaired for dissolved oxygen. These stream reaches will be listed on the 2022 303(d) List of Impaired Waters. Therefore, *E. coli* TMDLs were developed to address all *E. coli* impairments. Since there was no apparent pollutant linkage for the DO impairment, a TMDL was not developed to address this issue. It is likely linked to the low flow conditions in the stream. The load duration curve for the Tilley Ditch subwatershed is shown in Figure 34. Table 37 provides a summary of the Tilley Ditch subwatershed, including listed stream reaches by AUID, drainage area, sampling sites, land use, NPDES facilities, as well as LA, WLAs, and MOS values for *E. coli*.

A precipitation graph (Figure 35) and water quality duration graph (Appendix F) were created to further analyze potential sources. Elevated levels of *E. coli* during rain events indicate streams are susceptible to high loads of *E. coli* from run-off. However, the precipitation graph illustrates that streams are also consistently in violation of the water quality standard even during drier conditions. This indicates point sources may also be contributing pollutants in addition to nonpoint sources. There are two WWTPs that discharge within the subwatershed. These facilities have had occasional permit violations due to *E. coli* (Table 27). The water quality duration graph indicates the most significant *E. coli* exceedances occurred during high flows, but exceedances occurred across all flow regimes. Contributors of *E. coli* in this subwatershed may be both point and nonpoint sources. Nonpoint sources may include small animal operations, wildlife, pasture animals with direct access to streams, land application of animal waste, straight pipes, and leaking and failing septic systems. See Section 6.1 and Table 44 for information pertaining to potentially suitable BMP selection for the Maria Creek watershed.

	1	Tilley Ditch (051	201111802)					
Drainage Area	49.51 square miles							
Surface Area	22.17 square miles							
Site # [IDEM Station ID]	T05 [WBU-18-0008], T06 [WBU-18-0009], T07 [WBU-18-0010], T08 [WBU-18-0011], T09 [WBU-18-0013]							
Listed Segments	INB11I2_01; INB11I2_T1001; INB11I2_T1002							
Listed Impairments [TMDL(s)]	E. coli [E. coli], Dissolved Oxygen [N/A]							
Land Use	Agricultural Land: 81% Forested Land: 10% Developed Land: 6% Hay/Pasture: 4% Open Water: <1% Shrub/Scrub: <1% Wetlands: <1%							
NPDES Facilities	Freelandville Regional Sewer District (IN0064513); North Knox High School WWTP (IN0041084); Freelandville Water Association (IN0059480)							
CAFOs	NA							
CFOs	NA							
TMDL E. Coli Allocations (MPN/day)								
Allocation Category Duration Interval (%)	High Flows 5%	Moist Conditions 25%	Mid-Range Flows 50%	Dry Conditions 75%	Low Flows 95%			
LA	6.27E+11	1.37E+11	5.13E+10	1.60E+10	4.94E+09			
WLA (Total)	9.78E+08	9.78E+08	9.78E+08	9.78E+08	9.78E+08			
MOS (10%)	7.39E+10	1.62E+10	6.16E+09	2.00E+09	6.97E+08			
Future Growth (5%)	3.70E+10	8.11E+09	3.08E+09	1.00E+09	3.48E+08			
Upstream Drainage Input (Headwaters Maria Creek)	9.10E+11	1.99E+11	7.45E+10	2.32E+10	7.14E+09			
TMDL = LA+WLA+MOS	1.65E+12	3.61E+11	1.36E+11	4.32E+10	1.41E+10			
WLA (Individual)								
Freelandville Regional Sewer District (IN0064513)	7.83E+08	7.83E+08	7.83E+08	7.83E+08	7.83E+08			
North Knox High School WWTP (IN0041084)	1.96E+08	1.96E+08	1.96E+08	1.96E+08	1.96E+08			

Table 37: Summary of Tilley Ditch Subwatershed Characteristics

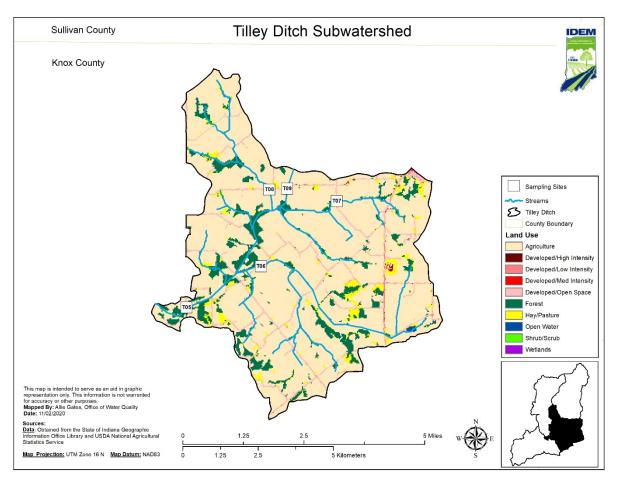


Figure 33: Sampling Sites in the Tilley Ditch Subwatershed



Figure 34: E. coli Load Duration Curve for Tilley Ditch Subwatershed

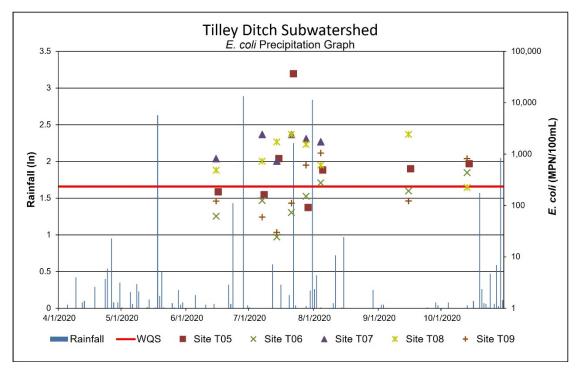


Figure 35: Graph of Precipitation and E. coli Data in Tilley Ditch Subwatershed

4.2.3 Marsh Creek

The Marsh Creek subwatershed drains approximately 23.83 square miles. Surface water generally flows south and drains into the main stem of Maria Creek and into the Cotton Branch subwatershed. The land use is primarily agriculture (79 percent) followed by forested (6 percent), developed (6 percent), and hay and pasture land (6 percent). There are two NPDES permitted facilities located within the subwatershed. Sunrise Coal Oaktown Mine discharges into Marsh Creek at three outfalls. Discharges at Outfall 001 are regulated by an individual NPDES permit (IN0064629), and discharges at Outfalls 005 and 002 are regulated by the coal mining general permit (ING040222). Sunrise Coal Carlisle Mine also discharges into Marsh Creek at three outfalls. Discharges at Outfall 005 are regulated by an individual NPDES permit (IN0062791), and discharges at Outfalls 002 and 003 are regulated by the coal mining general permit (ING040199). The majority of the subwatershed is rural indicating homes pump to on-site septic systems. Based on the septic suitability of the soil, this subwatershed is primarily rated as very limited. Maintenance and inspections of septic systems in the area is important to ensure proper function and capacity. The landscape in the area is relatively flat leading to its intense conversion to agricultural production and use. In many areas of the subwatershed there are little to no remaining riparian buffers left along its banks due to agricultural practices. Despite its flat nature the subwatershed does contain some highly erodible soil types. These soil types can be susceptible to sheet, rill, and isolated gully erosion, and can contribute to sediment loss from agricultural lands, as well as lands from the high gradient slopes.

Many of the waterways in this subwatershed are identified as having hydric soil types in their riparian zones. These areas could be potential areas for wetland restoration or high functioning two stage ditch implementation. With a land use of 6 percent pasture land, a heavy presence of pasture animals is not expected. There are no permitted CFOs in the watershed.

There are five monitoring sites located in this subwatershed. The sites include T10, T11, T12, T13, and T14. The sites are all located on the main stem of Marsh Creek (Figure 36). In 2019 and 2020 this subwatershed was sampled a total of 56 times between the five sites. All five sites failed the *E. coli* geometric mean (geomean) water quality standard of 125 MPN/100 mL. The *E. coli* geomean for site T10 was 425.09 MPN with 4/8 samples in exceedance of the single sample max. Site T11 had a geomean of 499.26 MPN with 6/8 samples in exceedance of the single sample max. Site T12 had a geomean of 2,200.89 MPN with 6/8 samples in exceedance of the single sample max. Site T13 had a geomean of 439.81 MPN with 4/8 samples in exceedance of the single sample max. Site T14 had a geomean of 1,209.73 MPN with 4/6 samples in exceedance of the single sample max. The *E. coli* water quality samples from sites T10, T11, T12, T13, and T14 used to calculate the geomean were taken on the same day approximately one hour apart for five consecutive weeks.

Dissolved oxygen (DO) was found to be below the water quality standard of 4.0 mg/L on two occasions at site T14. Given the characteristics of the stream segment and minimal precipitation throughout the summer sampling season, it is believed that low physical flows in the system are likely contributing to the low DO levels found in the stream.

The fish community IBI score for site T10 was 20 (very poor) and the QHEI was 38 (poor). The macroinvertebrate community mIBI score was 44 (fair) and the QHEI was 35 (poor). The fish community IBI score for site T11 was 20 (very poor) and the QHEI was 45 (poor). The macroinvertebrate community

mIBI score was 42 (fair) and the QHEI was 43 (poor). The fish community IBI score for site T12 was 44 (fair) and the QHEI was 37 (poor). The macroinvertebrate community mIBI score was 46 (good) and the QHEI was 25 (poor). The fish community IBI score for site T13 was 42 (fair) and the QHEI was 50 (poor). The macroinvertebrate community mIBI score was 40 (fair) and the QHEI was 37 (poor). The fish community IBI score was 40 (fair) and the QHEI was 37 (poor). The fish community mIBI score was 40 (fair) and the QHEI was 37 (poor). The fish community IBI score for site T14 was 20 (very poor) and the QHEI was 33 (poor). Macroinvertebrate communities were not sampled at site T14 because the stream was dry. Based on assessments of this data, three stream segments within the subwatershed were determined to be impaired for biological communities.

Evaluation of TSS monitoring data and QHEI substrate and bank erosion/riparian zone metric scores indicate a linkage between siltation and biological communities impairments in the Marsh Creek subwatershed. TSS concentrations ranged from 1.7 mg/L to 370 mg/L across 27 sampling events within the subwatershed and exceeded the target value of 30 mg/L once. Heavy siltation and excessive embeddedness were observed at one sampling site. Three sampling sites had silt as a predominant substrate, and three sampling sites had a very narrow riparian width. Heavy/severe erosion was noted at an additional sampling site. The floodplain quality was documented as open pasture/row crop at 100% of sampling sites. Given that the target value for TSS was sporadically violated and excessive siltation or indicators of siltation were documented throughout the subwatershed, high TSS is believed to be a primary linkage to the biological communities impairments. Therefore, a TMDL for TSS was developed for this subwatershed to address the biological communities impairments.

There are approximately 39 miles of streams in the subwatershed. Based on IDEM data collected in 2019 and 2020, there will be 32 stream miles impaired for *E. coli*, 21 miles impaired for biological communities, and nine miles impaired for dissolved oxygen. These stream reaches will be listed on the 2022 303(d) List of Impaired Waters. Therefore, *E. coli* TMDLs were developed to address all *E. coli* impairments, and TSS TMDLs were developed to address all impaired biotic communities. Since there was no apparent pollutant linkage for the DO impairment, a TMDL was not developed to address this issue. It is likely linked to the low flow conditions in the stream. The load duration curves for the Marsh Creek subwatershed are shown in Figure 37 and Figure 39. Table 38 provides a summary of the Marsh Creek subwatershed, including listed stream reaches by AUID, drainage area, sampling sites, land use, NPDES facilities, as well as LA, WLAs, and MOS values for *E. coli* and TSS.

Precipitation graphs (Figure 38 and Figure 40) and water quality duration graphs (Appendix F) were created to further analyze potential sources. Elevated levels of pollutants during rain events indicate streams are susceptible to high loads of *E. coli* and TSS from run-off. However, the precipitation and water quality duration graphs illustrate that streams are also consistently in violation of the *E. coli* water quality standard even during drier conditions. However, no permitted facilities that discharge *E. coli* are located within the subwatershed. Therefore, the majority of sources of *E. coli* and TSS in this subwatershed are likely nonpoint sources. Nonpoint sources may include small animal operations, wildlife, pasture animals with direct access to streams, land application of animal waste, straight pipes, streambank erosion, agricultural practices, and leaking and failing septic systems. See Section 6.1 and Table 44 for information pertaining to potentially suitable BMP selection for the Maria Creek watershed.

	N	Aarsh Creek (051)	201111803)										
Drainage Area			23.83 square mi	les									
Surface Area			23.83 square mi	les									
Site # [IDEM Station ID]	T10 [WBU190		-18-0012], T12 [\ T14 [WBU-18-00	VBU-18-0015], T13 017]	[WBU-18-0016],								
Listed Segments	INB11	I3_05; INB11I3_0	4; INB11I3_03; II	NB11I3_T1002; INB ²	1113_02								
Listed Impairments [TMDL(s)]	E. coli [E.	E. coli [E. coli], Impaired Biotic Communities [TSS], Dissolved Oxygen [N/A]											
Land Use	Agricultural L	Agricultural Land: 79% Forested Land: 6% Developed Land: 6% Hay/Pasture: 6% Open Water: 2% Shrub/Scrub: <1% Wetlands: <1%											
NPDES Facilities	Mine (IN0064629	Sunrise Coal Oaktown Mine (ING040222) – Outfalls 002 & 005; Sunrise Coal Oaktown line (IN0064629) – Outfall 001; Sunrise Coal Carlisle Mine (ING040199) – Outfalls 202 & 003; Sunrise Coal Carlisle Mine (IN0062791) – Outfall 005											
CAFOs	NA												
CFOs		NA											
TMDL <i>E. Coli</i> Allocations (MPN/day)													
Allocation Category Duration Interval (%)	High Flows 5%	Moist Conditions 25%	Mid-Range Flows 50%	Dry Conditions 75%	Low Flows 95%								
LA	6.91E+11	1.58E+11	6.56E+10	2.60E+10	1.26E+10								
WLA (Total)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00								
MOS (10%)	8.13E+10	1.85E+10	7.72E+09	1.49E+09									
Future Growth (5%)	4.07E+10	9.27E+09	3.86E+09	1.53E+09	7.43E+08								
TMDL = LA+WLA+MOS	8.13E+11	1.85E+11	7.72E+10	3.06E+10	1.49E+10								
	TMDL Total	Suspended Solid	s Allocations (It	os/day)									
Allocation Category Duration Interval (%)	High Flows 5%	Moist Conditions 25%	Mid-Range Flows 50%	Dry Conditions 75%	Low Flows 95%								
LA	16,226.75	3,445.45	1,199.69	296.07	25.19								
WLA (Total)	2,085.94	727.21	537.77	392.13	309.20								
MOS (10%)	2,289.09	521.58	217.18	86.03	41.80								
Future Growth (10%)	2,289.09	521.58	217.18	86.03	41.80								
TMDL = LA+WLA+MOS	22,890.87	5,215.82	2,171.82	860.26	418.00								
WLA (Individual)													
Oaktown Mine (IN0064629)	146.01	146.01	146.01	146.01	146.01								
Oaktown Mine (ING040222)	428.57	97.65	40.66	16.11	7.83								

Table 38: Summary of Marsh Creek Subwatershed Characteristics

Carlisle Mine (IN0062791)	516.88	256.98	256.98	192.74	137.25
Carlisle Mine (ING040199)	991.98	226.03	94.12	37.28	18.11
Construction Stormwater	2.50	0.53	0.00	0.00	0.00

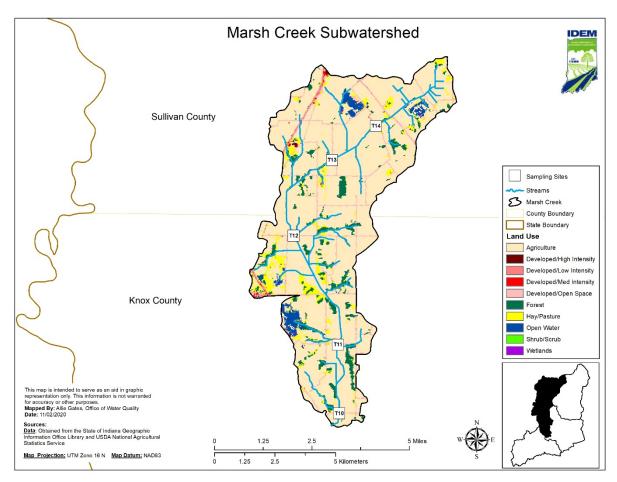


Figure 36: Sampling Sites in the Marsh Creek Subwatershed

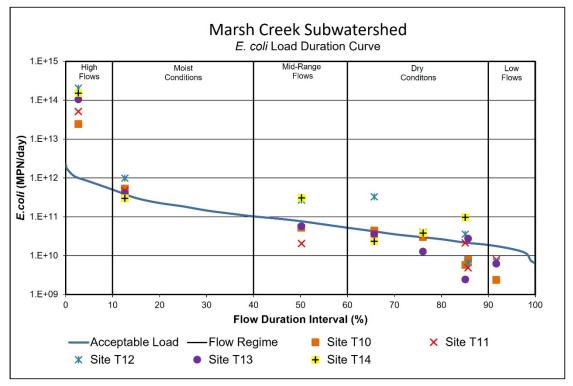


Figure 37: E. coli Load Duration Curve for Marsh Creek Subwatershed

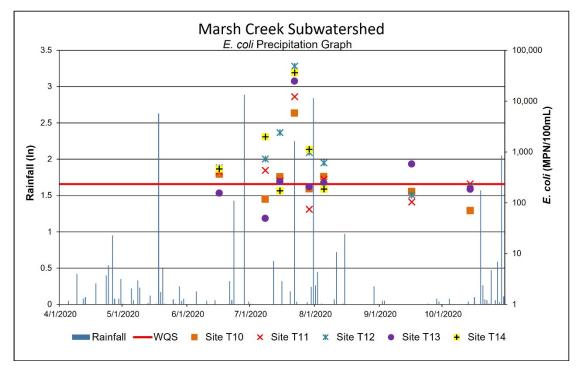


Figure 38: Graph of Precipitation and E.coli Data at Marsh Creek Subwatershed

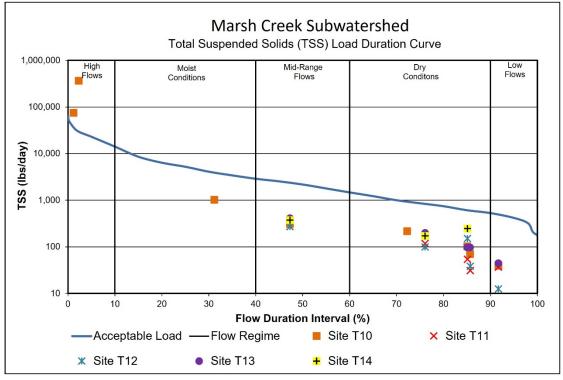


Figure 39: Total Suspended Solids (TSS) Load Duration Curve for Marsh Creek Subwatershed

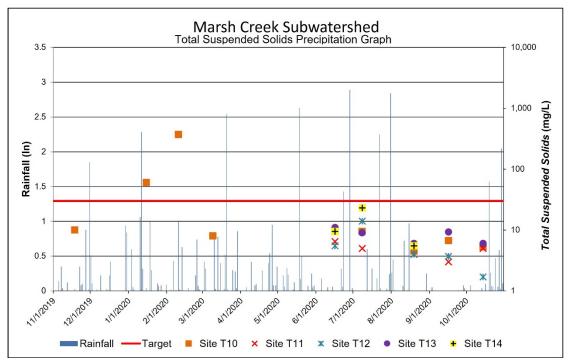


Figure 40: Graph of Precipitation and Total Suspended Solids (TSS) Data at Marsh Creek Subwatershed

4.2.4 Headwaters Maria Creek

The Headwaters Maria Creek subwatershed drains approximately 27.34 square miles. This subwatershed is the northern extent of the Maria Creek watershed and contains the headwaters of Maria Creek. Surface water generally flows southwest and drains into the main stem of Maria Creek and into the Tilley Ditch subwatershed. The land use is primarily agriculture (68 percent) followed by forested land (19 percent) and hay and pasture (6 percent) and developed land (6 percent). There is one NPDES permitted facility located within the subwatershed. Peabody Midwest Bear Run Mine (ING040239) is a surface mining operation that discharges into tributaries of Maria Creek at Outfall 068. Discharges from Bear Run Mine are regulated by the coal mining general permit. The majority of the subwatershed is rural indicating homes pump to on-site septic systems. Based on the septic suitability of the soil, this subwatershed is primarily rated as very limited. Maintenance and inspections of septic systems in the area is important to ensure proper function and capacity. The landscape in the area is relatively flat leading to its intense conversion to agricultural production and use. In many areas of the subwatershed there are little to no remaining riparian buffers left along its banks due to agricultural practices. Despite its flat nature the subwatershed does contain significant amounts of highly erodible soil types. These soil types can be susceptible to sheet, rill, and isolated gully erosion, and can contribute to sediment loss from agricultural lands, as well as lands from the high gradient slopes.

Many of the waterways in this subwatershed are identified as having hydric soil types in their riparian zones. These areas could be potential areas for wetland restoration or high functioning two stage ditch implementation. With a land use of 6 percent pasture land, a heavy presence of pasture animals is not expected. There are no permitted CFOs in the watershed.

There are five monitoring sites located in this subwatershed. Sites T16, T18, and T9 are located on the main stem of Maria Creek. Sites T15 and T17 are located on tributaries of Maria Creek (Figure 41). In 2019 and 2020 this subwatershed was sampled a total of 49 times between the five sites. Four sites failed the *E. coli* geometric mean (geomean) water quality standard of 125 MPN/100 mL. The *E. coli* geomean for site T15 was 165.58 MPN with 3/6 samples in exceedance of the single sample max. Site T16 had a geomean of 283.88 MPN with 2/8 samples in exceedance of the single sample max. Site T17 had a geomean of 727.95 MPN with 8/8 samples in exceedance of the single sample max. Site T18 had a geomean of 359.17 MPN with 6/8 samples in exceedance of the single sample max. The *E. coli* water quality samples from sites T15, T16, T17, and T18 used to calculate the geomean were taken on the same day approximately one hour apart for five consecutive weeks.

Dissolved oxygen (DO) was found to be below the water quality standard of 4.0 mg/L on three occasions at site T15 and on three occasions at site T17. Given the characteristics of the stream segments and minimal precipitation throughout the summer sampling season, it is believed that low physical flows in the system are likely contributing to the low DO levels found in the streams.

The fish community IBI score for site T15 was 20 (very poor) and the QHEI was 37 (poor). The macroinvertebrate community mIBI score was 32 (poor) and the QHEI was 24 (poor). The fish community IBI score for site T16 was 34 (poor) and the QHEI was 52 (good). The macroinvertebrate community mIBI score was 48 (good) and the QHEI was 38 (poor). The fish community IBI score for site T17 was 34 (poor) and the QHEI was 41 (poor). The macroinvertebrate community mIBI score was 42

(fair) and the QHEI was 44 (poor). The fish community IBI score for site T18 was 40 (fair) and the QHEI was 45 (poor). The macroinvertebrate community mIBI score was 40 (fair) and the QHEI was 45 (poor). The fish community IBI score for site T19 was 48 (good) and the QHEI was 58 (good). The macroinvertebrate community mIBI score was 42 (fair) and the QHEI was 64 (good). Based on assessments of this data, three stream segments within the subwatershed were determined to be impaired for biological communities.

Evaluation of TSS monitoring data and QHEI substrate and bank erosion/riparian zone metric scores indicate a linkage between siltation and biological communities impairments in the Headwaters Maria Creek subwatershed. TSS concentrations ranged from 2 mg/L to 400 mg/L across 23 sampling events within the subwatershed and exceeded the target value of 30 mg/L three times. Heavy siltation and excessive embeddedness were observed at two sampling sites. Three sampling sites had silt as a predominant substrate, and three sampling sites had a very narrow riparian width. Heavy/severe erosion was noted at two sampling sites. The floodplain quality was documented as open pasture/row crop at 100% of sampling sites. Given that the target value for TSS was sporadically violated and excessive siltation or indicators of siltation were documented throughout the subwatershed, high TSS is believed to be a primary linkage to the biological communities impairments. Therefore, a TMDL for TSS was developed for this subwatershed to address the biological communities impairments.

There are approximately 47 miles of streams in the subwatershed. Based on IDEM data collected in 2019 and 2020, there will be 47 stream miles impaired for *E. coli*, 20 miles impaired for biological communities, and 20 miles impaired for dissolved oxygen. These stream reaches will be listed on the 2022 303(d) List of Impaired Waters. Therefore, *E. coli* TMDLs were developed to address all *E. coli* impairments, and TSS TMDLs were developed to address all impaired biotic communities. Since there was no apparent pollutant linkage for the DO impairments, a TMDL was not developed to address these issues. They are likely linked to the low flow conditions in the streams. The load duration curves for the Headwaters Maria Creek subwatershed are shown in Figure 42 and Figure 44. Table 39 provides a summary of the Headwaters Maria Creek subwatershed, including listed stream reaches by AUID, drainage area, sampling sites, land use, NPDES facilities, as well as LA, WLAs, and MOS values for *E. coli* and TSS.

Two stream segments located within the northeastern portion of the Headwaters of Maria Creek subwatershed have been impacted by the Bear Run Mine surface mining activity. The stream segments include Maria Creek (INB1111_T1001) and a tributary of Maria Creek (INB1111_T1002). These stream impacts are permitted through the U.S. Army Corps of Engineers (LRL-2022-1117-GJD) and IDEM (2011-487-77-DDC-A). Mitigation of these streams is required after mining activities are completed in the area. Available plans indicate these stream segments will likely be mitigated onsite in a similar location as the original stream channels. Maria Creek (INB1111_T1001) was previously identified as impaired for *E. coli*, biological communities, and DO. These impairments will remain on the 2022 303(d) List of Impaired Waters. *E. coli* and TSS WLAs developed for this TMDL will be applicable to this stream segment, and any stream segments impaired for *E. coli* or biological communities impacted in the future, after stream mitigation is complete.

Precipitation graphs (Figure 43 and Figure 45) and water quality duration graphs (Appendix F) were created to further analyze potential sources. Elevated levels of pollutants during rain events indicate

streams are susceptible to high loads of *E. coli* and TSS from run-off. However, the precipitation and water quality duration graphs illustrate that streams are also consistently in violation of the *E. coli* water quality standard even during drier conditions. However, no permitted facilities that discharge *E. coli* are located within the subwatershed. Therefore, the majority of sources of *E. coli* and TSS in this subwatershed are likely nonpoint sources. Nonpoint sources may include small animal operations, wildlife, pasture animals with direct access to streams, land application of animal waste, straight pipes, streambank erosion, agricultural practices, and leaking and failing septic systems. See Section 6.1 and Table 44 for information pertaining to potentially suitable BMP selection for the Maria Creek watershed.

	Heady	waters Maria Cree	ek (05120111180 [,]	1)								
Drainage Area			27.34 square m	iles								
Surface Area			27.34 square m	iles								
Site # [IDEM Station ID]	T15 [WBU-18-0	5 [WBU-18-0014], T16 [WBU190-0002], T17 [WBU-18-0018], T18 [WBU-18-0019], T19 [WBU-18-0020]										
Listed Segments	INB11I1_	T1004; INB11I1_0 INB1	1; INB11I1_T1005 1I1_T1003; INB11	5; INB11I1_T1001; IN II1_T1002	NB11I1_01A;							
Listed Impairments [TMDL(s)]	E. coli [E	E. coli [E. coli], Impaired Biotic Communities [TSS], Dissolved Oxygen [N/A]										
Land Use	Agricultural L	Agricultural Land: 68% Forested Land: 19% Developed Land: 6% Hay/Pasture: 6% Open Water: <1% Shrub/Scrub: <1% Wetlands: <1%										
NPDES Facilities	Peabody Midv	vest Bear Run Min	e (ING040239) –	Outfalls 056, 057, 05	58, 059, 060, 068							
CAFOs			NA									
CFOs			NA									
	ТМ	DL <i>E. Coli</i> Allocat	tions (MPN/day)									
Allocation Category Duration Interval (%)	High Flows 5%	Moist Conditions 25%	Mid-Range Flows 50%	Dry Conditions 75%	Low Flows 95%							
LA	7.74E+11	1.69E+11	6.33E+10	1.98E+10	6.07E+09							
WLA (Total)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00							
MOS (10%)	9.10E+10	1.99E+10	7.45E+09	2.32E+09	7.14E+08							
Future Growth (5%)	4.55E+10	9.93E+09	3.72E+09	1.16E+09	3.57E+08							
TMDL = LA+WLA+MOS	9.10E+11	1.99E+11	7.45E+10	2.32E+10	7.14E+09							
	TMDL Tota	Suspended Soli	ds Allocations (II	os/day)								
Allocation Category Duration Interval (%)	High Flows 5%	Moist Conditions 25%	Mid-Range Flows 50%	Dry Conditions 75%	Low Flows 95%							
LA	13,232.81	2,887.16	1,083.17	337.99	103.90							
WLA (Total)	7,255.71	1,583.06	593.16	185.09	56.90							

Table 39: Summary of Headwaters Maria Creek Subwatershed Characteristics

MOS (10%)	2,561.06	558.78	209.54	65.38	20.10
Future Growth (10%)	2,561.06	558.78	209.54	65.38	20.10
TMDL = LA+WLA+MOS	25,610.65	5,587.78	2,095.42	653.85	201.00
WLA (Individual)					
Bear Run Mine (ING040239)	7,249.75	1,581.76	593.16	185.09	56.90
Construction Stormwater	5.96	1.30	0.00	0.00	0.00

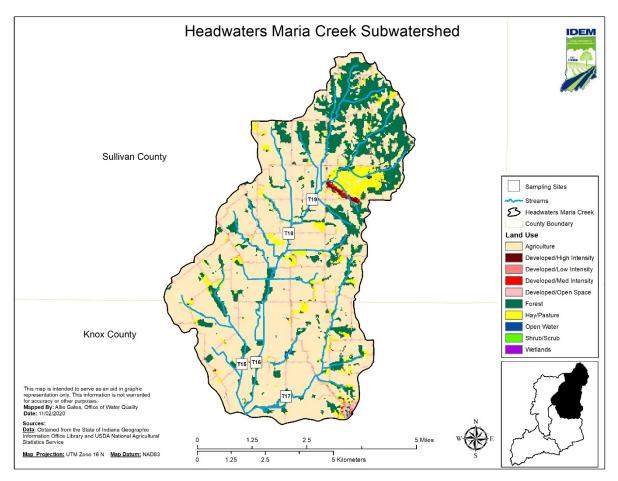


Figure 41: Sampling Sites in the Headwaters Maria Creek Subwatershed

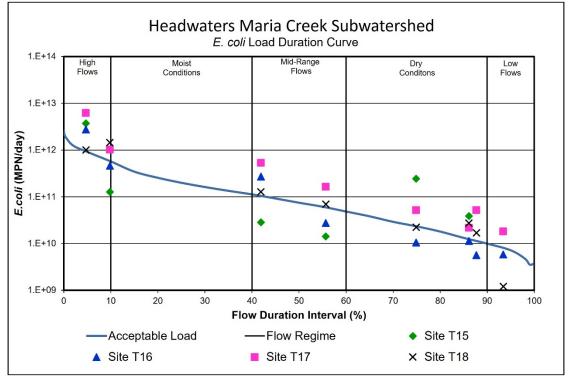


Figure 42: E. coli Load Duration Curve for Headwaters Maria Creek Subwatershed

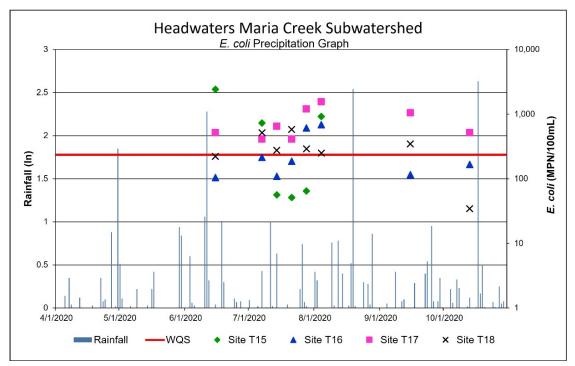


Figure 43: Graph of Precipitation and E. coli Data at Headwaters Maria Creek Subwatershed

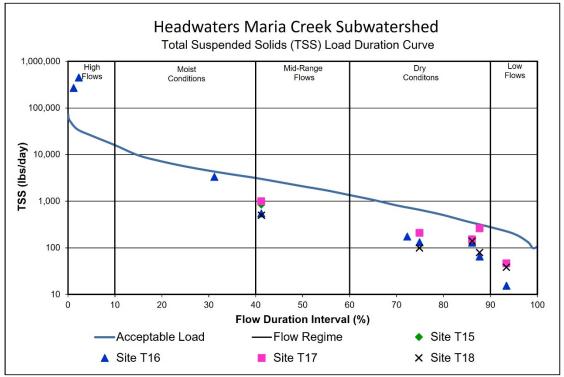


Figure 44: Total Suspended Solids (TSS) Load Duration Curve for Headwaters Maria Creek Subwatershed

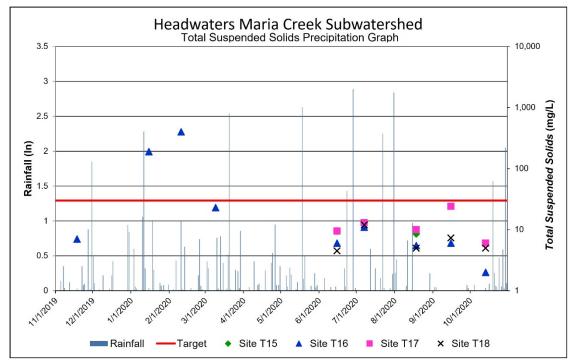


Figure 45: Graph of Precipitation and Total Suspended Solids (TSS) Data at Headwaters Maria Creek Subwatershed

4.3 Sediment Source Modeling Analysis for the Maria Creek Watershed

The Generalized Watershed Loading Function Enhanced (GWLF-E) model was utilized to further identify primary sources of sediment for each subwatershed in the Maria Creek watershed. The GWLF-E (MapShed) model utilizes the GWLF model which is an aggregate distributed/lumped parameter watershed model that provides the ability to simulate runoff, sediment, and nutrient (nitrogen (N) and phosphorus (P)) loads from a watershed given variable-size source areas (e.g., agricultural, forested, and developed land). The model requires input data related to land use, rainfall, runoff, evapotranspiration, soil water capacity, erosion, crop management, and point sources in order to provide estimated loadings of pollutants. Input data were collected from Model My Watershed, MapShed, the Midwestern Regional Climate Center, the Indiana Geographic Information Office, the USDA Web Soil Survey, and the USDA National Agricultural Statistics Service Center. Additional overview information regarding the GWLF-E model can be found in Appendix H.

The GWLF-E model analysis results indicate that cropland and stream banks contribute the greatest sediment loadings throughout the Maria Creek watershed (Table 40 and Figure 46). Cropland contributes the overwhelming majority of annual sediment comprising approximately 90% of the overall loading. Overall, the Headwaters of Maria Creek subwatershed is contributing the greatest annual load on average to the Maria Creek watershed while Marsh Creek is contributing the least amount of loading. Although similar in land uses, Headwaters of Maria Creek contributes nearly twice the annual loading to the Maria Creek watershed as Marsh Creek. This may be due to the unique soil characteristics between the two subwatersheds. Soil erodibility and length-slope factors are both on average lower in Marsh Creek for cropland land uses compared to Headwaters of Maria Creek. Additionally, Marsh Creek has a greater unsaturated soil water holding capacity compared to Headwaters of Maria Creek. Sediment loads from mining operations are captured in "disturbed" land uses. However, additional contributions from mining activities may be captured within other land uses due to the nature of activities and classifications from the original land use layer. Source contributions of sediment should be considered when selecting best management practices (BMPs), which will result in the greatest load reductions overall. Results from the GWLF-E model analysis were calculated for informational purposes on sediment sources only and do not take place of the total maximum daily loads or reductions established within this document for the Maria Creek watershed. Additional information regarding the GWLF-E model analysis for the Maria Creek watershed can be found in Appendix H.

	Source	Marsh Creek	Tilley Ditch	Headwaters Maria Creek	Cotton Branch	Maria Creek Watershed
	Cropland	11,230.4	18,093.2	21,107.0	15,308.0	65,738.4
	Stream Bank	657.2	1,255.0	858.5	2,370.4	5,141.1
Rural	Hay/Pasture	238.4	269.2	480.6	332.0	1,320.1
R	Forest	22.0	58.6	152.5	127.1	360.2
	Wetland	1.3	0.5 1.8 0.8		0.8	4.4
	Turfgrass	0.0	0.0	0.0	0.7	
	Disturbed	25.0	4.3	127.1	1.2	157.6
	Low Density Mixed Urban	16.5	14.6	16.0	17.3	64.4
Urban	Medium Density Mixed Urban	2.9	1.0	1.0	3.7	8.6
	High Density Mixed Urban	1.4	0.5	1.6	1.0 3.7 8. 1.6 0.5 4.	
	Total (tons)	12,195	19,697	22,746	18,162	72,799

Table 40: Average Annual Sediment Loads (in tons) by Source for the Maria Creek Subwatersheds

Understanding Table 40: The GWLF-E model analysis indicates that cropland contributes the greatest amount of sediment to the Maria Creek watershed. Results from the GWLF-E model analysis were calculated for informational purposes on sediment sources only and do not take place of the total maximum daily loads or reductions established within this document for the Maria Creek watershed.

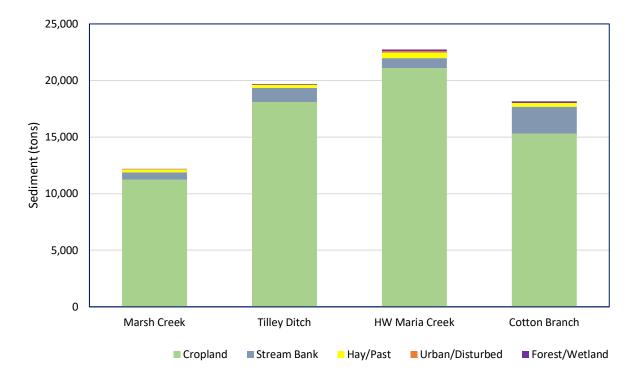


Figure 46: Average Annual Sediment Loading from Sources in the Maria Creek Subwatersheds

5.0 ALLOCATIONS

A TMDL is the total amount of a pollutant that can be assimilated by the receiving water while still achieving water quality standards. TMDLs are composed of the sum of individual WLAs for regulated sources and LAs for sources not directly regulated by a permit. In addition, the TMDL must include a MOS, either implicitly or explicitly, that accounts for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. Conceptually, this is defined by the equation:

 $TMDL = \sum WLAs + \sum LAs + MOS$

5.1 Individual Wasteload Allocations

This section presents the allowable pollutant loads and associated allocations for each of the subwatersheds and associated assessment units in the Maria Creek watershed. Allocations were calculated for each 12-digit HUC (subwatershed). WLAs are typically calculated based on the design flow or estimated flow of the facility and the TMDL target or applicable permit limit. Three municipal WWTPs and one public water supply were calculated following this method. However, coal mining operations with individual NPDES permits located within the Maria Creek watershed required additional consideration for WLA calculations.

There are two underground mining facilities located within the watershed with individual NPDES permits, Carlisle Mine (IN0062791) and Oaktown Mine (IN0064629). Design flow estimates for discharges from underground mine outfalls regulated through individual NPDES permits were estimated based on the unique characteristics of each outfall and how each outfall is utilized by the facility. Carlisle Mine has one outfall (Outfall 005) regulated through an individual NPDES permit. An analysis of the past two years of flow data available from Discharge Monitoring Reports (DMRs) was completed to gain a better understanding of typical discharge from this outfall. Data over the past two years indicated flow was significantly influenced by precipitation events. The flow regime for each discharge event was determined, and the average discharge for each flow regime was calculated. The average discharge for each flow regime. DMRs were also reviewed to determine typical TSS concentrations for discharge events from the past two years. It was determined that TSS concentrations were typically less than 35 mg/L. Therefore, the WLA for the Carlisle Mine, Outfall 005 was calculated using the NPDES permit limit of 35 mg/L monthly average as it is more representative of existing load conditions.

Oaktown Mine has one outfall (Outfall 001) regulated through an individual NPDES permit. An analysis of the past two years of flow data available from DMRs was completed to gain an understanding of typical discharge from this outfall. Data over the past two years indicated that this outfall does not regularly discharge, and when the outfall does discharge it typically occurs during precipitation events. Due to the irregularity of the discharges from this outfall, the estimated design flow of 0.5 MGD as reported in the facility's permit was used as the estimated design flow to calculate the WLA. DMRs were also reviewed to determine typical TSS concentrations for discharge events from the past two years. It was determined that TSS concentrations were typically less than 35 mg/L. Therefore, the WLA for the Oaktown Mine, Outfall 001 was calculated using the NPDES permit limit of 35 mg/L monthly average as it is more representative of existing load conditions.

Subwatershed	Facility Name	Permit Number	AUID	Receiving Stream	Flow Regime	Estimated Design Flow (MGD)	<i>E. coli</i> WLA (MPN/day)	NPDES Permit <i>E. coli</i> Limit	TSS WLA (Ibs/day)	NPDES Permit TSS Limit
Tilley Ditch	Freelandville Regional Sewer District	IN0064513	INB11I2_T1001	Tributary of Maria Creek	All	0.088	7.83E+08	235 MPN/100 mL Daily Max.	8.8*	12 mg/L* Monthly Avg.
Tilley Ditch	North Knox High School WWTP	IN0041084	INB11I2_T1004	Tilley Ditch	All	0.022	1.96E+08	235 MPN/100 mL Daily Max.	5.5*	30 mg/L* Monthly Avg.
Cotton Branch	North Knox Intermediate School WWTP	IN0041092	INB11I4_02	Tributary of Maria Creek	All	0.005	4.45E+07	235 MPN/100 mL Daily Max.	1.25	30 mg/L Monthly Avg.
Tilley Ditch	Freelandville Water Association	IN0059480	INB11I2_T1004	Tributary of Tilley Ditch			NA	NA	NA	40 mg/L* Daily Max.
					High	1.77			516.88	
				Tributary of	Moist	0.88			256.98	
Marsh Creek	Sunrise Coal Carlisle Mine	IN0062791	INB11I3_T1001	Marsh	Mid	0.88	NA	NA	256.98	35 mg/L Monthly Avg.
				Creek	Dry	0.66			192.74	
	Low	0.47			137.25					
Marsh Creek	Sunrise Coal Oaktown Mine	IN0064629	INB11I3_04	Marsh Creek	All	0.5	NA	NA	146.01	35 mg/L Monthly Avg.

Table 41: Individual WLAs for NPDES Individual Permit Municipal and Industrial Facilities in the Maria Creek Watershed

Understanding Table 41: The WLA for each NPDES permitted facility will be achieved through compliance with the facility's NPDES individual permit.

*A TSS TMDL was not developed for the Tilley Ditch subwatershed. The WLAs and TSS limits are referenced from current permit limits for reporting purposes only.

5.1.1 Approach for Calculating General Permit Wasteload Allocations

A number of permittees in the Maria Creek watershed are regulated through general rather than individual permits. An individual permit is site-specific and is developed to address discharges from a specific facility. A general permit is used to cover a category of similar discharges, rather than a specific site. IDEM may issue a general permit when there are several sources or activities involved in similar operations that may be adequately regulated with a standard set of conditions. Calculating WLAs for facilities with individual permits is straightforward; all of the necessary information regarding allowable flows and effluent limits is contained within the permit. Calculating WLAs for facilities with general permits is more difficult because only limited information is available on historical flow and pollutant concentrations.

For example, several outfalls associated with surface and underground mining operations in the watershed are regulated through general permits for treating run-off; discharge is believed to be primarily related to precipitation events rather than a "design" flow as is available for WWTPs. WLAs were therefore calculated by using an estimate of the surface impacts associated with each surface mine operation or underground mine outfall to determine run-off flow volumes, and existing permit limits were used to calculate allowable loadings. Surface impacts were estimated by delineating the disturbed surface area associated with each surface mine operation or underground mine outfall in ArcGIS and calculating the acreage of each area. To determine the WLA, the estimated surface impact acreage was divided by the total subwatershed acreage and multiplied by the corresponding flow values for the subwatershed to determine flow from the facility. Flow based WLAs were then calculated by multiplying the flow values by the target concentration of 70 mg/L daily maximum.

			wate	ersned				
Subwatershed	Facility Name	Permit Number	AUID	Receiving Stream	Estimated Surface Impacts (Acres)	High Flow Regime TSS WLA (Ibs/day)	Low Flow Regime TSS WLA (Ibs/day)	NPDES Permit TSS Limit
Marsh Creek	Sunrise Coal Carlisle Mine	ING040199	INB11I3_02	Marsh Creek	283	991.98	18.11	70 mg/L daily max
Marsh Creek	Sunrise Coal		INB11I3_04	Marsh Creek	122	428.57	7.83	70 mg/L daily max
Cotton Branch	Oaktown Mine			Tributary of Maria Creek	20	69.26	0.55	70 mg/L daily max
Headwaters Maria Creek	Peabody Midwest Bear	ING040239	INB11I1_T1002	Tributary of Maria Creek	2,123	7,249.75	56.90	70 mg/L daily max

Table 42: Individual WLAs for NPDES General Permit Coal Mining Facilities in the Maria Creek Watershed

Understanding Table 42: The WLA for each NPDES permitted facility will be achieved through compliance with the facility's NPDES general permit coverage.

Run Mine

Stormwater run-off associated with construction activity is currently regulated under 327 IAC 15-5, which is commonly referred to as "Rule 5" or the construction stormwater general permit. The WLA for sites regulated under the construction stormwater general permit was determined based on the average annual land disturbance associated with total overall acreage for all sites in the subwatershed. The average annual land disturbance was calculated for each subwatershed using data from permitted constructions sites for the past five years.

5.2 Critical Conditions

The CWA requires that TMDLs take into account critical conditions for stream flow, loading, and water quality parameters as part of the analysis of loading capacity. The load duration curve approach helps to identify the sources contributing to the impairment and to roughly differentiate between sources.

Exceedances of the load duration curve at higher flows (0-40 percent ranges) are indicative of wet weather sources (e.g., nonpoint sources, regulated stormwater discharges). Exceedances of the load duration curve at lower flows (60 to 100 percent range) are indicative of point sources (e.g., wastewater treatment facilities, livestock in the stream). Table 43 summarizes the general relationship between the five hydrologic zones and potentially contributing source areas (the table is not specific to any individual pollutant). Existing loading is calculated as the 90th percentile of measured pollutant concentrations under each hydrologic condition class multiplied by the flow at the middle of the flow exceedance percentile.

For example, in calculating the existing loading under dry conditions (flow exceedance percentile = 60-90 percent), the 75th percentile exceedance flow is multiplied by the 90th percentile of pollutant concentrations measured under 60-90th percentile flows. Through the load duration curve approach, it has been determined that load reductions for *E. coli* and TSS are needed for specific flow conditions. The critical conditions (the periods when the greatest reductions are required) vary by location and are summarized in Table 44. After existing loading and percent reductions are calculated under each hydrologic condition class, the critical condition for each TMDL is identified as the flow condition requiring the largest percent reduction. For example, impacts from point sources are usually most pronounced during dry and low flow zones because there is less water in the stream to dilute their loads. In contrast, impacts from channel bank erosion is most pronounced during high flow zones because these are the periods during which stream velocities are high enough to cause erosion to occur. The table indicates that critical conditions for pollutants for most locations occur during the dry to high regimes, and therefore implementation of controls should be targeted for these conditions.

		Dura	ation Curve Z	one	
Contributing Source Area	High (0%-10%)	Moist (10%-40%)	Mid-Range (40%-60%)	Dry (60%-90%)	Low (90%-100%)
Wastewater treatment plants (point source)			L	М	Н
Livestock direct access to streams			L	М	Н
Wildlife direct access to streams			L	М	Н
Pasture management	Н	Н	М		
On-site wastewater systems/Unsewered areas	L	М	н	Н	Н
Riparian buffer areas	н	Н	М	М	
Stormwater: Impervious	н	Н	н		
Stormwater: Upland	н	Н	М		
Field drainage: Natural condition	Н	М			
Field drainage: Tile system	Н	Н	М	L	
Bank erosion	Н	М	L		

Table 43: Relationship b	between Load Duration	Curve Zones and	Contributing Sources
--------------------------	-----------------------	-----------------	----------------------

Note: Potential relative importance of source area to contribute loads under given hydrologic condition (H: High; M: Medium; L: Low) (Modified from An Approach for Using Load Duration Curves in the Development of TMDLs (U.S. EPA, 2007)

Devenueter	Subwatarabad (UUC)	Critical Condition									
Parameter	Subwatershed (HUC)	High	Moist	Mid-Range	Dry	Low					
	Cotton Branch (051201111804)	99%	59%	79%	76%	7%					
<i>E. coli</i> (counts/mL)	Tilley Ditch (051201111802)	99%	74%	93%	93%	84%					
)	Marsh Creek (051201111803)	99% 75%	88%	87%	45%						
	Headwaters Maria Creek (051201111801)	89%		85%	88%	72%					
	Cotton Branch (051201111804)	95%	0%	0%	0%	0%					
Total Suspended Solids (mg/L)	Marsh Creek (051201111803)	91%	0%	0%	0%	0%					
	Headwaters Maria Creek (051201111801)	92%	0%	0%	0%	0%					

Table 44: Critical Conditions for TMDL Parameters

Note: -- represents no data collected in the flow regime

Table 43 and Table 44 provide the foundation necessary to identify subwatersheds that are in need of the most significant pollutant reductions to achieve water quality standards in the Maria Creek watershed. Using these two tables, along with the linkage analysis in Section 4.0, watershed organizations will gain a better understanding of which subwatersheds require the most pollutant load reductions. This can assist in future efforts to identify critical areas in the Maria Creek watershed for implementation. The tables above focus on the information and data collected and analyzed through the TMDL development process for percent reduction purposes, whereas critical areas take into account other factors for consideration (e.g.,

political, social, economic) to help determine implementation feasibility that will affect progress toward pollutant load reductions and, ultimately, attainment of water quality standards. This information can be key to watershed organizations in the process of identifying and selecting critical areas and implementation activities for the purposes of watershed management plan development. IDEM recommends that watershed organizations take the percent reductions into consideration when selecting critical areas for purposes of watershed management planning. By also taking into account different flow regimes, watershed groups will be able to prioritize practices that give them the most efficient load reductions for each critical area that is chosen.

6.0 REASONABLE ASSURANCES/IMPLEMENTATION

This section of the Maria Creek watershed TMDL focuses on implementation activities that have the potential to achieve the WLAs and LAs presented in previous sections. The focus of this section is to identify and select the most appropriate structural and non-structural best management practices (BMPs) and control technologies to reduce *E. coli* and TSS loads from sources throughout the Maria Creek watershed, particularly in the critical areas identified in Section 5.2. This section also addresses the programs that are available to facilitate implementation of structural and non-structural BMPs to achieve the allocations, as well as current ongoing activities in the Maria Creek watershed at the local level that will play a key role in successful TMDL implementation.

To select appropriate BMPs and control technologies, it is important to review the relevant sources in the Maria Creek watershed.

Point Sources:

- Municipal Wastewater Treatment Plants
- Public Water Supply
- Surface and underground coal mining facilities
- Illicitly connected straight pipe systems

Nonpoint Sources:

- Cropland
- Stream bank erosion
- CFOs and AFOs
- Pastures and livestock operations
- Onsite wastewater treatment systems
- Wildlife
- Urban nonpoint source run-off

6.1 Implementation Activity Options for Sources in the Maria Creek Watershed

Keeping the list of significant sources in the Maria Creek watershed in mind, it is possible to review the types of BMPs that are most appropriate for the pollutants and the source type. Table 45 provides a list of implementation activities that are potentially suitable for the Maria Creek watershed based on the pollutants and the types of sources. The implementation activities are a combination of structural and non-structural BMPs to achieve the assigned WLAs and LAs. IDEM recognizes that actions taken in any individual subwatershed may depend on a number of factors (including socioeconomic, political, and ecological factors). The recommendations in Table 45 are not intended to be prescriptive. Any number or combination of implementation activities might contribute to water quality improvement, whether applied

at sites where the actual impairment was noted or other locations where sources contribute indirectly to the water quality impairment.

	Ро	lluta	ant	Poir	nt So	ources		No	onpo	oint \$	Source	s	
Implementation Activities	Bacteria	Nutrients	Sediment	WWTPs and Industrial Facilities	CAFOS	Illicitly Connected " Straight Pipe" Svstems	Cropland	Pastures and Livestock Operations	CFOs	Streambank Erosion	Onsite Wastewater Treatment Systems	Wildlife/Domestic Pets	Urban NPS Run-off
Inspection and maintenance	Х	Х	Х	Х	Х						Х		
Outreach and education and training	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
System replacement	Х	Х				Х					Х		
Conservation tillage/residue management	Х	Х	Х				Х						
Cover crops	Х	Х	Х				Х			Х			
Filter strips	Х	Х	Х		Х		Х	Х	Х	Х			
Grassed waterways	Х		Х		Х		Х		Х	Х			
Riparian forested/herbaceous buffers	Х	Х	Х		Х		Х	Х	Х	Х		Х	
Manure handling, storage, treatment, and disposal	х	х			х				х				
Alternative watering systems	Х		Х		Х			Х	Х	Х			
Stream fencing (animal exclusion)	Х	Х	Х		Х			Х		Х			
Prescribed grazing	Х	Х	Х					Х		Х			
Conservation easements	Х	Х	Х										
Two-stage ditches		Х	Х										
Rain barrel		Х	Х										
Rain garden		Х	Х										
Porous pavement		Х	Х										
Stormwater planning and management	Х	Х	Х	Х						Х	Х	Х	
Comprehensive Nutrient Management Plan	х	х					х		х				
Constructed Wetland	Х	Х	Х	Х		Х	Х					Х	
Critical Area Planting			Х					Х		Х			
Drainage Water Management		Х					Х						
Nutrient Management Plan		Х					Х			Х			
Land Reconstruction of Mined Land			Х							Х			
Sediment Basin		Х	Х										
Pasture and Hay Planting	Х	Х	Х				Х	Х	Х	Х		Х	
Streambank and Shoreline Protection			Х				Х	Х	Х	Х		Х	
Conservation Crop Rotation		Х	Х				Х	Х	Х				
Field Border	Х	Х					Х	Х	Х			Х	

Table 45: List of Potentially Suitable BMPs for the Maria Creek Watershed

	Pollutant			Point Sources			Nonpoint Sources						
Implementation Activities	Bacteria	Nutrients	Sediment	WWTPs and Industrial Facilities	CAFOS	Illicitly Connected " Straight Pipe" Svstems	Cropland	Pastures and Livestock Operations	CFOS	Streambank Erosion	Onsite Wastewater Treatment Systems	Wildlife/Domestic Pets	Urban NPS Run-off
Conservation Crop Rotation	Х	Х	Х				Х			Х			

The information provided in Section 5.2 assisted in the development of Table 45, which provides a more refined suite of recommended implementation activities targeted to the critical flow conditions. Watershed stakeholders can use the implementation activities identified in Table 45 for each critical flow condition and select activities that are most feasible in the Maria Creek watershed. This table can also help watershed stakeholders to identify implementation activities for critical areas that they select through the watershed management planning process.

6.2 Implementation Goals and Indicators

For each pollutant in the Maria Creek watershed, IDEM has identified broad goal statements and indicators. This information is to help watershed stakeholders determine how to track implementation progress over time and also provides the information necessary to complete a watershed management plan.

E. coli Goal Statement: The waterbodies (or streams) in the Maria Creek watershed should meet the 235 colonies/100 mL daily max TMDL target value.

E. coli Indicator: Water quality monitoring by IDEM will serve as the environmental indicator to determine progress toward the *E. coli* target value.

Total Suspended Solids Goal Statement: The waterbodies (or streams) in the Maria Creek watershed should meet the 30 mg/L TMDL total suspended solids target value.

Total Suspended Solids Indicator: Water quality monitoring by IDEM will serve as the environmental indicator to determine progress toward the total suspended solids target value.

6.3 Summary of Programs

There are a number of federal, state, and local programs that either require or can assist with the implementation activities recommended for the Maria Creek watershed. A description of these programs is provided in this section. The following section discusses how some of these programs relate to the various sources in the Maria Creek watershed.

6.3.1 Federal Programs

Clean Water Act Section 319(h) Grants

Section 319 of the federal Clean Water Act contains provisions for the control of nonpoint source pollution. The Section 319 program provides for various voluntary projects throughout the state to prevent water pollution and also provides for assessment and management plans related to waterbodies in Indiana impacted by NPS pollution. The Watershed Planning and Restoration Section within the Watershed Assessment and Planning Branch of the IDEM Office of Water Quality administers the Section 319 program for the NPS-related projects.

U.S. EPA offers Clean Water Act Section 319(h) grant monies to the state on an annual basis. These grants must be used to fund projects that address nonpoint source pollution issues. Some projects which the Office of Water Quality has funded with this money in the past include developing and implementing Watershed Management Plans (WMPs), BMP demonstrations, data management, educational programs, modeling, stream restoration, and riparian buffer establishment. Projects are usually two to three years in length. Section 319(h) grants are intended to be used for project start-up, not as a continuous funding source. Units of government, nonprofit groups, and universities in the state that have expertise in nonpoint source pollution problems are invited to submit Section 319(h) proposals to the Office of Water Quality.

Clean Water Action Section 205(j) Grants

Section 205(j) provides for planning activities relating to the improvement of water quality from nonpoint and point sources by making funding available to municipal and county governments, regional planning commissions, and other public organizations. For-profit entities, non-profit organizations, private associations, universities, and individuals are not eligible for funding through Section 205(j). The CWA states that the grants are to be used for water quality management and planning, including, but not limited to:

- Identifying most cost effective and locally acceptable facility and nonpoint source measures to meet and maintain water quality standards;
- Developing an implementation plan to obtain state and local financial and regulatory commitments to implement measures developed under those plans;
- Determining the nature, extent, and cause of water quality problems in various areas of the state.

The Section 205(j) program provides for projects that gather and map information on nonpoint and point source water pollution, develop recommendations for increasing the involvement of environmental and civic organizations in watershed planning and implementation activities, and develop watershed management plans.

HUD Community Development Block Grant Program (CDBG)

The Community Development Block Grant Program (CDBG) is authorized under Title I of the Housing and Community Development (HCD) Act of 1974, as amended. The main objective of the CDBG program is to develop viable communities by helping to provide decent housing and suitable living

environments and expanding economic opportunities principally for persons of low- and moderateincome. The U.S. Department of Housing and Urban Development (HUD) provides federal CDBG funds directly to Indiana annually, through the Office of Community and Rural Affairs (OCRA), which then provides funding to small, incorporated cities and towns with populations less than 50,000 and to nonurban counties.

CDBG regulations define eligible activities and the National Objectives that each activity must meet. OCRA is responsible for ensuring projects that receive funding in Indiana are in accordance with the National Objectives and eligible activities.

OCRA is required to develop a Consolidated Plan that describes needs, resources, priorities, and proposed activities to be undertaken. Indiana's Consolidated Plan includes four goals for prioritizing fund allocations. These goals include: expand and preserve affordable housing opportunities throughout the housing continuum, reduce homelessness and increase housing stability for special needs populations, promote livable communities and community revitalization through addressing unmet community development needs, and promote activities that enhance local economic development efforts. OCRA has funded a variety of projects, including sanitary sewer and water systems.

USDA Conservation Stewardship Program (CSP)

The Conservation Stewardship Program (CSP) helps landowners build on their existing conservation efforts while strengthening their operation. Whether they are looking to improve grazing conditions, increase crop yields, or develop wildlife habitat, NRCS can custom design a CSP plan to help them meet those goals. NRCS can help landowners schedule timely planting of cover crops, develop a grazing plan that will improve the forage base, implement no-till to reduce erosion or manage forested areas in a way that benefits wildlife habitat. If landowners are already taking steps to improve the condition of the land, chances are CSP can help them find new ways to meet their goals.

USDA Conservation Reserve Program (CRP)

NRCS provides technical assistance to landowners interested in participating in the Conservation Reserve Program (CRP) administered by the USDA Farm Service Agency. The Conservation Reserve Program reduces soil erosion, protects the nation's ability to produce food and fiber, reduces sedimentation in streams and lakes, improves water quality, establishes wildlife habitat, and enhances forest and wetland resources. It encourages farmers to convert highly erodible cropland or other environmentally sensitive acreage to vegetative cover, such as tame or native grasses, wildlife plantings, trees, filter strips, or riparian buffers. Farmers receive an annual rental payment for the term of the multi-year contract. Costshare funding is provided to establish the vegetative cover practices.

USDA Conservation Reserve Enhancement Program (CREP)

NRCS provides technical assistance to landowners interested in participating in the Conservation Reserve Program administered by the USDA Farm Service Agency. The Conservation Reserve Enhancement Program (CREP), an offshoot of CRP, targets high-priority conservation concerns identified by a state and federal funds are supplemented with non-federal funds to address those concerns. In exchange for removing environmentally sensitive land from production and establishing permanent resource conserving plant species, farmers and ranchers are paid an annual rental rate along with other federal and state incentives as applicable per each CREP agreement. Participation is voluntary, and the contract period is typically 10–15 years.

USDA Environmental Quality Incentives Program (EQIP)

The Environmental Quality Incentives Program provides technical, educational, and financial assistance to eligible farmers and ranchers to address soil, water, and related natural resource concerns on their lands in an environmentally beneficial and cost effective manner. The program provides assistance to farmers and ranchers in complying with federal, state, and tribal environmental laws, and encourages environmental enhancement. The program is funded through the Commodity Credit Corporation. The purposes of the program are achieved through the implementation of a conservation plan, which includes structural, vegetative, and land management practices on eligible land. Five to ten year contracts are made with eligible producers. Cost-share payments may be made to implement one or more eligible structural or vegetative practices, such as animal waste management facilities, terraces, filter strips, tree planting, and permanent wildlife habitat. Incentive payments can be made to implement one or more land management. Fifty percent of the funding available for the program is targeted at natural resource concerns relating to livestock production. The program is carried out primarily in priority areas that may be watersheds, regions, or multi-state areas, and for significant statewide natural resource concerns that are outside of geographic priority areas.

USDA Farmable Wetlands Program

NRCS provides technical assistance to landowners interested in participating in the Conservation Reserve Program administered by the USDA Farm Service Agency. The Farmable Wetlands Program (FWP) is designed to restore previously farmed wetlands and wetland buffer to improve both vegetation and water flow. FWP is a voluntary program to restore up to one million acres of farmable wetlands and associated buffers. Participants must agree to restore the wetlands, establish plant cover, and to not use enrolled land for commercial purposes. Plant cover may include plants that are partially submerged or specific types of trees. By restoring farmable wetlands, FWP improves groundwater quality, helps trap and break down pollutants, prevents soil erosion, reduces downstream flood damage, and provides habitat for water birds and other wildlife. Wetlands can also be used to treat sewage and are found to be as effective as "high tech" methods. The Farm Service Agency runs the program through the Conservation Reserve Program (CRP) with assistance from other government agencies and local conservation groups.

USDA Conservation Technical Assistance (CTA)

The purpose of the CTA program is to assist land users, communities, units of state and local government, and other Federal agencies in planning and implementing conservation systems. The purpose of the conservation systems is to reduce erosion, improve soil and water quality, improve and conserve wetlands, enhance fish and wildlife habitat, improve air quality, improve pasture and range condition, reduce upstream flooding, and improve woodlands.

One objective of the program is to assist individual land users, communities, conservation districts, and other units of state and local government and federal agencies to meet their goals for resource stewardship and assist individuals in complying with state and local requirements. NRCS assistance to individuals is

provided through conservation districts in accordance with the Memorandum of Understanding signed by the Secretary of Agriculture, the Governor of the State, and the conservation district. Assistance is provided to land users voluntarily applying conservation practices and to those who must comply with local or state laws and regulations.

Another objective is to provide assistance to agricultural producers to comply with the highly erodible land (HEL) and wetland (Swampbuster) provisions of the 1985 Food Security Act, as amended by the Food, Agriculture, Conservation and Trade Act of 1990 (16 U.S.C. 3801 et. seq.), the Federal Agriculture Improvement and Reform Act of 1996, and wetlands requirements of Section 404 of the Clean Water Act. NRCS makes HEL and wetland determinations and helps land users develop and implement conservation plans to comply with the law. The program also provides technical assistance to participants in USDA cost-share and conservation incentive programs.

NRCS collects, analyzes, interprets, displays, and disseminates information about the condition and trends of the Nation's soil and other natural resources so that people can make good decisions about resource use and about public policies for resource conservation. They also develop effective science based technologies for natural resource assessment, management, and conservation.

USDA Section 504 Home Repair Program

USDA Rural Development administers the Section 504 Home Repair Program, or Single Family Housing Repair Loans and Grants. The Section 504 Home Repair Program provides loans to very low-income homeowners to repair, improve, or modernize their home and provides grants to elderly very low-income homeowners to remove health and safety hazards. The purpose of this program is to help families stay in their own home and keep their home in good repair. Applicants must live in a rural area below 50 percent of the area median income. Grant applicants must be age 62 or older and unable to repay a repair loan. Loans may be used to repair, improve, or modernize homes or to remove health and safety hazards. Grants must be used to remove health and safety hazards. For example, repairing a failed septic system may be an applicable health and safety hazard. The maximum loan amount is \$20,000, and the maximum grant amount is \$7,500.

USDA Watershed Surveys and Planning

The Watershed and Flood Prevention Act, P.L. 83-566, August 4, 1954, (16 U.S.C. 1001-1008) authorized this program. Prior to fiscal year 1996, small watershed planning activities and the cooperative river basin surveys and investigations authorized by Section 6 of the Act were operated as separate programs. The 1996 appropriations act combined the activities into a single program entitled the Watershed Surveys and Planning program. Activities under both programs are continuing under this authority.

The purpose of the program is to assist federal, state, and local agencies and tribal governments to protect watersheds from damage caused by erosion, floodwater, and sediment and to conserve and develop water and land resources. Resource concerns addressed by the program include water quality, opportunities for water conservation, wetland and water storage capacity, agricultural drought problems, rural development, municipal and industrial water needs, upstream flood damages, and water needs for fish, wildlife, and forest-based industries.

Types of surveys and plans include watershed plans, river basin surveys and studies, flood hazard analyses, and floodplain management assistance. The focus of these plans is to identify solutions that use land treatment and non-structural measures to solve resource problems.

USDA Agricultural Conservation Easement Program (ACEP)

The Agricultural Conservation Easement Program (ACEP) provides financial and technical assistance to help conserve agricultural lands and wetlands and their related benefits. Under the Agricultural Land Easements component, NRCS helps American Indian tribes, state and local governments and nongovernmental organizations protect working agricultural lands and limit non-agricultural uses of the land. Under the Wetlands Reserve Easements component, NRCS helps to restore, protect, and enhance enrolled wetlands.

Agricultural Land Easements protect the long-term viability of the nation's food supply by preventing conversion of productive working lands to non-agricultural uses. Land protected by agricultural land easements provides additional public benefits, including environmental quality, historic preservation, wildlife habitat, and protection of open space.

Wetland Reserve Easements provide habitat for fish and wildlife, including threatened and endangered species, improve water quality by filtering sediments and chemicals, reduce flooding, recharge groundwater, protect biological diversity, and provide opportunities for educational, scientific, and limited recreational activities.

NRCS provides financial assistance to eligible partners for purchasing Agricultural Land Easements that protect the agricultural use and conservation values of eligible land. In the case of working farms, the program helps farmers and ranchers keep their land in agriculture. The program also protects grazing uses and related conservation values by conserving grassland, including rangeland, pastureland and shrubland. Eligible partners include American Indian tribes, state and local governments and non-governmental organizations that have farmland, rangeland, or grassland protection programs.

Under the Agricultural Land component, NRCS may contribute up to 50 percent of the fair market value of the agricultural land easement. Where NRCS determines that grasslands of special environmental significance will be protected, NRCS may contribute up to 75 percent of the fair market value of the agricultural land easement.

USDA Regional Conservation Partnership Program (RCPP)

The Regional Conservation Partnership Program (RCPP) encourages partners to join in efforts with producers to increase the restoration and sustainable use of soil, water, wildlife, and related natural resources on regional or watershed scales. Through the program, NRCS and its partners help producers install and maintain conservation activities in selected project areas. Partners leverage RCPP funding in project areas and report on the benefits achieved.

USDA Healthy Forests Reserve Program (HFRP)

The Healthy Forests Reserve Program (HFRP) helps landowners restore, enhance, and protect forestland resources on private lands through easements and financial assistance. HRFP aids the recovery of

endangered and threatened species under the Endangered Species Act, improves plant and animal biodiversity, and enhances carbon sequestration.

HFRP provides landowners with 10-year restoration agreements and 30-year or permanent easements for specific conservation actions. For acreage owned by an Indian tribe, there is an additional enrollment option of a 30-year contract. Some landowners may avoid regulatory restrictions under the Endangered Species Act by restoring or improving habitat on their land for a specified period of time.

USDA Voluntary Public Access and Habitat Incentive Program (VPA-HIP)

The Voluntary Public Access and Habitat Incentive Program (VPA-HIP) is a competitive grants program that helps state and tribal governments increase public access to private lands for wildlife-dependent recreation, such as hunting, fishing, nature watching, or hiking.

State and tribal governments may submit proposals for VPA-HIP block grants from NRCS. These governments provide the funds to participating private landowners to initiate new or expand existing public access programs that enhance public access to areas previously unavailable for wildlife-dependent recreation. Nothing in VPA-HIP preempts liability laws that may apply to activities on any property related to grants made in this program.

U.S. Army Corps of Engineers

Section 404 of the Clean Water Act establishes a program to regulate the discharge of dredged or fill material into Waters of the United States, including wetlands. Dredge and fill activities are controlled by a permit process administered by the U.S. Army Corps of Engineers and overseen by the U.S. Environmental Protection Agency. In addition, when a project is planned in Indiana that will impact a wetland, stream, river, lake, or other Water of the U.S., the Indiana Department of Environmental Management (IDEM) must also issue a Section 401 Water Quality Certification. A Section 401 WQC is a required component of a federal permit and must be issued before a federal permit or license can be granted. Depending on the extent of impact, mitigation may be required to offset the impacts. Stream and wetland mitigation is usually conducted onsite or offsite within the same 8-digit HUC watershed.

Coal mining often results in wetland and stream impacts that require permits from the U.S. Army Corps of Engineers and IDEM due to the significant land disturbing activities associated with operations. There are three coal mining operations that discharge within the Maria Creek watershed, as discussed in Section 2.8.2. Two stream segments located within the northeastern portion of the Headwaters of Maria Creek subwatershed have been impacted by the Bear Run Mine surface mining activity. The stream segments include Maria Creek (INB1111_T1001) and a tributary of Maria Creek (INB1111_T1002). These stream impacts are permitted through the U.S. Army Corps of Engineers (LRL-2022-1117-GJD) and IDEM (2011-487-77-DDC-A). Available plans indicate these stream segments will likely be mitigated onsite in a similar location as the original stream channels. Mining operations take several years to complete, so mitigation is often phased over the course of several years. Additional stream and wetland impacts within the watershed are likely as coal mining operations move and expand. As stream and wetland mitigation is planned and constructed, there is a potential for partnerships between the local community, coal mining facilities, and regulatory agencies for mitigation of streams and wetlands to improve water quality and address impairments in the Maria Creek watershed.

6.3.2 State Programs

IDEM Point Source Control Program

Point source pollution is regulated by several IDEM Office of Water Quality branches, including the Wastewater Compliance Branch, the Wastewater Permitting Branch, and the Surface Water, Operations, and Enforcement Branch. The Wastewater Permitting Branch issues NPDES and construction permits to sources that discharge wastewater to streams, lakes, and other waterbodies, including municipal wastewater treatment plants and industrial wastewater dischargers. The Stormwater Program, which is managed under the Surface Water, Operations, and Enforcement Branch, issues NPDES permits for stormwater discharges associated with industrial activities, active construction that results in a land disturbance of an acre or more, and municipal separate storm sewer systems (MS4). NPDES permits are issued in accordance with the Clean Water Act, federal laws, and state laws and regulations. The purpose of the NPDES permit is to control the point source discharge of pollutants into the waters of the state such that the quality of the water of the state is maintained in accordance with applicable water quality standards. The Wastewater Compliance Branch and Stormwater Program conduct inspections of facilities and projects with NPDES permits and review and evaluate compliance data to ensure permittees abide by the requirements of their permit. Control of discharges from point sources consistent with WLAs are implemented through the respective NPDES program.

IDEM Nonpoint Source Control Program

The state's Nonpoint Source Program, administered by the IDEM Office of Water Quality's Watershed Planning and Restoration Section, focuses on the assessment and prevention of nonpoint source water pollution. The program also provides for education and outreach to improve the way land is managed. Through the use of federal funding for the installation of BMPs, the development of watershed management plans, and the implementation of watershed restoration pollution prevention activities, the program reaches out to citizens so that land is managed in such a way that less pollution is generated.

Nonpoint source projects funded through the Office of Water Quality are a combination of local, regional, and statewide efforts sponsored by various public and not-for-profit organizations. The emphasis of these projects has been on the local, voluntary implementation of nonpoint source water pollution controls. The Watershed Planning and Restoration Section administers the Section 319 funding for nonpoint source-related projects, as well as Section 205(j) grants.

To award 319 grants, Watershed Planning and Restoration Section staff review proposals for minimum 319(h) eligibility criteria and rank each proposal. In their review, members consider such factors as: technical soundness; likelihood of achieving water quality results; strength of local partnerships; and competence/reliability of contracting agency. They then convene to discuss individual project merits and pool all rankings to arrive at final rankings for the projects. All proposals that rank above the funding target are included in the annual grant application to U.S. EPA, with U.S. EPA reserving the right to make final changes to the list. Actual funding depends on approval from U.S. EPA and yearly congressional appropriations.

Section 205(j) projects are administered through grant agreements that define the tasks, schedule, and budget for the project. IDEM project managers work closely with the project sponsors to help ensure that

the project runs smoothly and the tasks of the grant agreement are fulfilled. Site visits are conducted at least quarterly to touch base on the project, provide guidance and technical assistance as needed, and to work with the grantee on any issues that arise to ensure a successful project closeout.

IDEM Hoosier Riverwatch Program

Hoosier Riverwatch (HRW) is a statewide volunteer stream water quality monitoring program administered by the IDEM Office of Water Quality, Watershed Assessment and Planning Branch. The mission of HRW is to involve the citizens of Indiana in becoming active stewards of Indiana's water resources and to increase public awareness of water quality issues and concerns. HRW accomplishes this through watershed education, hands-on training of volunteers, water monitoring, and clean-up activities. HRW collaborates with agencies and volunteers to educate local communities about the relationship between land use and water quality and to provide water quality information to citizens and governmental agencies working to protect Indiana's rivers and streams.

ISDA Division of Soil Conservation

The Indiana State Department of Agriculture (ISDA) Division of Soil Conservation's mission is to ensure the protection, wise use, and enhancement of Indiana's soil and water resources. The Division's employees are part of Indiana's Conservation Partnership, which includes the 92 soil and water conservation districts (SWCDs), the USDA Natural Resources Conservation Service, and the Purdue University Cooperative Extension Service. Working together, the partnership provides technical, educational, and financial assistance to citizens to solve erosion and sediment-related problems occurring on the land or impacting public waters.

ISDA Clean Water Indiana (CWI) Program

The ISDA Division of Soil Conservation administers the Clean Water Indiana (CWI) program under the direction of the State Soil Conservation Board. The CWI program provides financial assistance to landowners and conservation groups to support the implementation of conservation practices which will reduce nonpoint sources of water pollution through education, technical assistance, training, and cost sharing programs. The program is responsible for providing local matching funds, as well as competitive grants for sediment and nutrient reduction projects through Indiana's SWCDs.

ISDA INfield Advantage (INFA) Program

The ISDA Division of Soil Conservation administers Infield Advantage (INFA). INFA is a collaborative opportunity for farmers to collect and understand personalized, on-farm data to optimize their management practices. Participating farmers use precision agricultural tools and technologies, such as aerial imagery and the corn stalk nitrate test, to conduct research on their own farms to determine nitrogen use efficiency in each field that they enroll. Peer to peer group discussions, local aggregated results, and collected data allow participants to make more informed decisions and implement personalized best management practices. INFA is available to farmers as a resource and a conduit to diverse on-farm research, innovative ideas, and technologies. INFA collaborates with local, regional, and national partners to help Indiana farmers improve their bottom line, adopt new management practices, protect natural resources, and benefit their surrounding communities.

IDNR Lake and River Enhancement (LARE) Program

The Lake and River Enhancement program is part of the Aquatic Habitat Unit of the Fisheries Section in the Indiana Department of Natural Resources (IDNR), Division of Fish and Wildlife. The goal of the LARE program is to protect and enhance aquatic habitat for fish and wildlife and to ensure the continued viability of Indiana's publicly accessible lakes and streams for multiple uses, including recreational opportunities. This is accomplished through measures that reduce nonpoint source sediment and nutrient pollution of surface waters to a level that meets or surpasses state water quality standards. The LARE program provides technical and financial assistance to local entities for qualifying projects that improve and maintain water quality in public access lakes, rivers, and streams.

IFA State Revolving Fund (SRF) Loan Program

The SRF is a fixed rate, 20-year loan administered by the Indiana Finance Authority (IFA). The SRF provides low-interest loans to Indiana communities for projects that improve wastewater and drinking water infrastructure. The program's mission is to provide eligible entities with the lowest interest rates possible on the financing of such projects while protecting public health and the environment. SRF also funds nonpoint source projects that are tied to a wastewater loan. Any project where there is an existing pollution abatement need is eligible for SRF funding.

6.3.3 Local Programs

Programs taking place at the local level are key to successful TMDL implementation. Partners such as Sullivan and Knox SWCDs are instrumental to bringing grant funding into the Maria Creek watershed to support local protection and restoration projects. This section provides a brief summary of the local programs taking place in the Maria Creek watershed that will help to reduce pollutant loads, as well as provide ancillary benefits to the Maria Creek watershed.

Sullivan County has begun outreach events to garner interest for watershed management planning and implementation in the Maria Creek and adjacent No Business Creek watersheds. The Maria – No Business Creek (MNBC) Watershed Project kick-off meetings were held on April 7th, 2021 in Vincennes, Indiana and on April 14th, 2021 in Sullivan, Indiana. An email list with over 120 contacts has already been collected for the MNBC Watershed Project, and local cross-program coordination with partner agencies has been initiated.

Additional monitoring will likely take place in the Maria Creek watershed as a result of the MNBC Watershed Project. Local groups frequently conduct monitoring in watersheds with watershed management plans to engage the public through Hoosier Riverwatch volunteer monitoring events and through more formal monitoring efforts to determine if implementation activities have been successful in reducing nonpoint source pollutant loads. After best management practices are implemented by local groups, IDEM may also conduct performance monitoring at specific sites in the watershed through the Targeted Monitoring Program. Data collected through performance monitoring is compared to water quality standards and targets, as discussed in Section 1.0, to determine if previously impaired waterbodies can be delisted from the Section 303(d) List of Impaired Waters.

Sullivan and Knox counties are both active in obtaining funding and implementing projects in their respective watersheds to improve water quality. Both counties conduct an annual tillage/cover crop

transect and have been involved in voluntary nutrient analysis programs, such as INField Advantage (INFA). Knox County led a multi-county Reclaimed Mined Lands Regional Conservation Partnership Program (RCPP) through NRCS. Knox County also conducts county-wide water quality assessments. Both counties have had many contribution agreements with NRCS to provide technical and administration assistance for Farm Bill conservation programs. In addition, there are also active and upcoming 319 grants in nearby watersheds located in both counties that will be beneficial for cross-promotion and public awareness with the MNBC Watershed Project.

Sullivan County

Sullivan County has received the following funding to improve water quality and conservation in 2018:

- Local: \$36,577
- Clean Water Indiana: \$10,000
- Lake and River Enhancement Program: \$67,000
- Wildlife Habitat Cost-Share Program: \$1,520
- Conservation Reserve Program & Conservation Reserve Enhancement Program: \$499,511
- Conservation Stewardship Program: \$13,226
- Environmental Quality Incentives Program: \$445,271
- Wetland Reserve Program: \$3,498

Total: \$1,076,603

Knox County

Knox County has received the following funding to improve water quality and conservation in 2018:

- Local: \$324,589
- Clean Water Indiana: \$62,500
- Conservation Reserve Program & Conservation Reserve Enhancement Program: \$1,077,758
- Agricultural Conservation Easement Program: \$901,865
- Conservation Stewardship Program: \$82,581
- Environmental Quality Incentives Program: \$591,303
- Wetland Reserve Program: \$65,197

Total: \$3,105,793

6.4 Implementation Programs by Source

Section 6.3 Summary of Programs identified a number of federal, state, and local programs that can support implementation of the recommended management or restoration activities for the Maria Creek watershed. Table 46 and the following sections identify which programs are relevant to the various sources in the Maria Creek watershed.

Table 46: Summarv	of Programs Relevant	to Sources in the	Maria Creek Watershed

Source	IDEM NPDES program	Local agencies/programs	CWA 319(h) Grants	CWA 205(j) Grants	ISDA Division of Soil Conservation (INFA & CWI)	IDNR Division of Fish and Wildlife (LARE)	IFA State Revolving Fund (SRF) Loan Program)	HUD Community Development Block Grant Program (CDBG)	USDA Conservation Stewardship Program (CSP)	USDA Conservation Reserve Program (CRP)	USDA Conservation Reserve Enhancement Program (CREP)	USDA Conservation Technical Assistance (CTA)	USDA Environmental Quality Incentives Program (EQUIP)	USDA Farmable Wetlands Program	USDA Agricultural Conservation Easement Program (ACEP)	USDA Regional Conservation Partnership Program (RCPP)	USDA Healthy Forests Reserve Program (HFRP)	USDA Voluntary Public Access and Habitat Incentive Program (VPA-HIP)	USDA Watershed Surveys and Planning	USDA Section 504 Program
Municipal & Industrial Wastewater	х			х			Х													
Regulated Stormwater	х			х			х													
Illicitly Connected "Straight Pipe" Systems	х	х		х				х												
Cropland		Х	х	х	х	х			х	х	х	х	х	х	Х	х	х	Х	Х	
Pastures and Livestock Operations		х	х	х	х	х			х	х	х	х	х	х	х	х	х	х	х	
CFOs	х			Х		Х														
Streambank Erosion		Х	х	х	Х	Х						Х	Х	Х	Х	Х		Х	Х	
Onsite Wastewater Treatment Systems		х		x			х	х												х
In-stream Habitat	Х	Х	х																	

6.4.1 Point Source Programs

Municipal Wastewater Treatment Plants (WWTPs)

Municipal Wastewater Treatment Plants (WWTPs) that discharge wastewater through a point source to a surface water of the state are required to obtain a municipal NPDES wastewater permit. Municipal wastewater permits include effluent limitations that are derived using water quality criteria developed to protect all designated and existing uses of the receiving waterbody and/or any more stringent technology-based limitations. The NPDES program provides IDEM the authority to ensure that recommended effluent limits are applied to the appropriate permit holders within the watershed.

Industrial Wastewater

Industrial facilities that discharge wastewater through a point source to a surface water of the state are required to obtain an industrial NPDES wastewater permit. Industrial wastewater permits include effluent limitations that are derived using water quality criteria developed to protect all designated and existing uses of the receiving waterbody and/or any more stringent technology-based limitations. The NPDES program provides IDEM the authority to ensure that recommended effluent limits are applied to the appropriate permit holders within the watershed.

Construction Stormwater

Stormwater run-off associated with construction activity is currently regulated under 327 IAC 15-5, which is commonly referred to as "Rule 5" or the construction stormwater general permit. The construction stormwater general permit requires the development and implementation of a construction plan that includes a stormwater pollution prevention plan (SWPPP). The SWPPP outlines how erosion and sedimentation will be controlled on the project site to minimize the discharge of sediment off-site or to a water of the state. The primary pollutant of concern from active construction sites is sediment, or TSS. TSS TMDLs were developed to address impaired biotic communities in the Cotton Branch, Marsh Creek, and Headwaters Maria Creek subwatersheds. Identification of impaired waters with TMDLs, specifically those with TSS TMDLs, in the SWPPP is recommended to ensure adequate stormwater control measures are implemented to minimize discharges of sediment to impaired waters. It is assumed that permitted construction sites that are in compliance with the construction stormwater general permit meet the requirements of the TMDL. However, in order to ensure sediment-laden stormwater discharges from construction sites to impaired waters with TMDLs are minimized, implementation of additional measures may be considered, such as:

- Identify any waterbodies within the project site that have a U.S. EPA approved or established TMDL, including the name of the TMDL and pollutant(s) for which there is a TMDL.
- Increase self-monitoring in locations on the project site that discharge to impaired waters with TSS TMDLs.
- Improve construction sequencing to limit the amount of exposed soil at any given time as much as possible throughout the project.

- Increase frequency of stabilization of areas that are void of vegetative cover. When an area is left idle for seven days initiate stabilization. Stabilization includes permanent stabilization with structured armor, permanent seed mixes, or temporary seed mixes.
- Place signage or easily identifiable barriers, such as orange safety fencing, near impaired waters to alert construction crews of the sensitive resource.
- Increase the maintenance schedule of measures installed adjacent to impaired waters with TSS TMDLs to promote effective sediment removal.

Industrial Stormwater

Stormwater run-off associated with industrial activity is currently regulated under 327 IAC 15-6, which is commonly referred to as "Rule 6" or the industrial stormwater general permit. Facilities may also be required to obtain an individual stormwater permit as discussed in Section 2.8.3. There are currently no facilities in the Maria Creek watershed that have coverage under the industrial stormwater general permit or an individual stormwater permit.

Municipal Separate Storm Sewer Systems (MS4)

Stormwater run-off from certain types of urbanized areas are currently regulated under 327 IAC 15-13, which is commonly referred to as "Rule 13" or the municipal separate storm sewer system (MS4) general permit. There are currently no MS4s in the Maria Creek watershed that have coverage under IDEM's MS4 general permit.

<u>CAFOs</u>

CAFOs are point sources regulated through the NPDES Program. Indiana regulations for CAFOs can be found in 327 IAC 15-15 and federal regulations for all CAFOs can be found in 40 CFR Parts 9, 122, and 412. The Effluent Limitations Guidelines and New Source Performance Standards for CAFOs require, in general, zero discharge from these areas and require proper design, construction, operation, and maintenance of the structures to contain all manure, litter, and process wastewater including the run-off and direct precipitation from a 25-year, 24-hour rainfall event. The NPDES general permit also requires that water quality standards shall not be exceeded in the event of an overflow from production areas. There are currently no CAFOs in the Maria Creek watershed.

Illegal straight pipes

Local health departments are responsible for locating and eliminating illicit discharges and illegal connections to the sewer system.

6.4.2 Nonpoint Sources Programs

Cropland

Nonpoint source pollution from cropland areas is typically reduced through the voluntary implementation of BMPs by private landowners. Programs available to support implementation of cropland BMPs, whether through cost-share or technical assistance and education, include:

- Clean Water Act Section 319(h) Grants
- Clean Water Act Section 205(j) Grants
- Indiana State Department of Agriculture Division of Soil Conservation/SWCDs (CWI & INFA)
- Indiana Department of Natural Resources Division of Fish and Wildlife (LARE)
- USDA Conservation Stewardship Program (CSP)
- USDA Conservation Reserve Program (CRP)
- USDA Conservation Reserve Enhancement Program (CREP)
- USDA Conservation Technical Assistance (CTA)
- USDA Environmental Quality Incentives Program (EQIP)
- USDA Farmable Wetlands Program
- USDA Agricultural Conservation Easement Program (ACEP)
- USDA Regional Conservation Partnership Program (RCPP)
- USDA Healthy Forests Reserve Program (HFRP)
- USDA Voluntary Public Access and Habitat Incentive Program (VPA-HIP)
- USDA Watershed Surveys and Planning

Pastures and livestock operations

Nonpoint source pollution from pasture and livestock areas is typically reduced through the voluntary implementation of BMPs by private landowners. Programs available to support implementation of pasture and grazing BMPs, whether through cost-share or technical assistance and education, include:

- Clean Water Act Section 319(h) Grants
- Clean Water Act Section 205(j) Grants
- Indiana State Department of Agriculture Division of Soil Conservation/SWCDs (CWI & INFA)
- Indiana Department of Natural Resources Division of Fish and Wildlife (LARE)
- USDA Conservation Stewardship Program (CSP)
- USDA Conservation Reserve Program (CRP)
- USDA Conservation Reserve Enhancement Program (CREP)
- USDA Conservation Technical Assistance (CTA)
- USDA Environmental Quality Incentives Program (EQIP)
- USDA Farmable Wetlands Program
- USDA Agricultural Conservation Easement Program (ACEP)

- USDA Regional Conservation Partnership Program (RCPP)
- USDA Healthy Forests Reserve Program (HFRP)
- USDA Voluntary Public Access and Habitat Incentive Program (VPA-HIP)
- USDA Watershed Surveys and Planning

<u>CFOs</u>

While CAFOs are regulated by federal law, CFOs are not. However, Indiana has CFO regulations 327 IAC 16, 327 IAC 15 that require that operations manage manure, litter, and process wastewater in a manner that "does not cause or contribute to an impairment of surface waters of the state." IDEM regulates CFOs under IC 13-18-10, the Confined Feeding Control Law. The rules at 327 IAC 16, which implement the statute regulating CFOs, were effective on March 10, 2002. IDEM's Office of Land Quality administers the regulatory program, which includes permitting, compliance monitoring, and enforcement activities.

Streambank erosion

Streambank erosion can be the result of changes in the physical structure of the immediate bank from activities such as removal of riparian vegetation or frequent use by livestock, or it can be the result of increased flow volumes and velocities resulting from increased surface run-off throughout the upstream watershed. Therefore, streambank erosion might be addressed through BMPs and restoration targeted to the specific stream reach, and further degradation could be addressed through the use of BMPs implemented to address stormwater issues throughout the watershed. Programs available to support implementation of BMPs to address streambank erosion, whether through cost-share or technical assistance and education, include:

- Clean Water Act Section 319(h) Grants
- Clean Water Act Section 205(j) Grants
- Indiana State Department of Agriculture Division of Soil Conservation/SWCDs (CWI & INFA)
- Indiana Department of Natural Resources Division of Fish and Wildlife (LARE)
- USDA Conservation Technical Assistance (CTA)
- USDA Environmental Quality Incentives Program (EQIP)
- USDA Farmable Wetlands Program
- USDA Agricultural Conservation Easement Program (ACEP)
- USDA Regional Conservation Partnership Program (RCPP)
- USDA Voluntary Public Access and Habitat Incentive Program (VPA-HIP)
- USDA Watershed Surveys and Planning
- Mitigation Funds

Onsite Wastewater Treatment Systems

Local health departments and the Indiana Department of Health (IDOH) regulate septic systems through local ordinances and the Onsite Sewage Disposal Program (410 IAC 6-8.3). Regulations include constraints on the location and design of current septic systems in an effort to prevent system failures. The onsite sewage system rule also prohibits failing systems, requiring that no system will contaminate groundwater, and no system will discharge untreated effluent to the surface. Programs available to address issues related to failing onsite wastewater treatment systems within a community include:

- Clean Water Act Section 205(j) Grants
- IFA State Revolving Fund Loan Program
- HUD Community Development Block Grant Program (CDBG)
- USDA Section 504 Program

Wildlife/Domestic Pets

Addressing pollutant contributions from wildlife and domestic pets is typically done at the local level through education and outreach efforts. For wildlife, educational programs focus on proper maintenance of riparian areas and discouraging the public from feeding wildlife. For domestic pets, education programs focus on responsible pet waste maintenance (e.g., scoop the poop campaigns) coupled with local ordinances.

6.5 Potential Implementation Partners and Technical Assistance Resources

Agencies and organizations at the federal, state, and local levels will play a critical role in implementation to achieve the WLAs and LAs assigned under this TMDL. Table 47 identifies key potential implementation partners and the type of technical assistance they can provide to watershed stakeholders. IDEM has also compiled a matrix of public and private grants and other funding resources available to fund watershed implementation activities. The matrix is available on IDEM's website at https://www.in.gov/idem/nps/funding/non-idem-funding/funding/matrix/.

Potential Implementation Partner	Funding Source
	Federal
USDA	Conservation Stewardship Program
USDA	Conservation Reserve Program
USDA	Conservation Reserve Enhancement Program
USDA	Conservation Technical Assistance (technical assistance only)
USDA	Environmental Quality Incentives Program
USDA	Farmable Wetlands Program
USDA	Agricultural Conservation Easement Program

Table 47: Potential Implementation Partners in the Maria Creek Watershed

Potential Implementation Partner	Funding Source
USDA	Regional Conservation Partnership Program
USDA	Healthy Forests Reserve Program
USDA	Voluntary Public Access and Habitat Incentive Program
USDA	Watershed Surveys and Planning
USDA	Section 504 Home Repair Program
HUD	Community Development Block Grant Program
	State
ISDA	Division of Soil Conservation – Clean Water Indiana Program
ISDA	Division of Soil Conservation – INfield Advantage Program
IDNR	Division of Fish and Wildlife - Lake and River Enhancement program
IDEM	Clean Water Act Section 319(h) Grants
IDEM	Clean Water Act Section 205(j) Grants
	Local
Soil and Water Conservation Districts	Local funds
County Health Departments	

In addition, several tools are available to assist local watershed stakeholders with the estimation of pollutant load reductions from the implementation of various BMPs within the Maria Creek watershed in order to optimize BMP selection. These tools include L-THIA LID, STEPL, the Region 5 Model, and the Indiana *E. coli* Calculator.

The Long-Term Hydrologic Impact Assessment (L-THIA) model is an online tool developed by Purdue University that estimates run-off, recharge, and pollutant loads for land use configurations based on precipitation data, soils, and land use data for an area. The L-THIA LID model is an enhancement to the original model, which can be used to simulate run-off and pollutant loads associated with low impact development (LID) practices at lot to watershed scales. The model can be used as a screening tool to evaluate the benefits of implementation of LID practices. LID practices included in the model include, but are not limited to, grass swales, rain barrel/cisterns, rain gardens, and porous pavement. The L-THIA LID tool is available online at https://engineering.purdue.edu/mapserve/LTHIA7/lthianew/lidIntro.php.

The Spreadsheet Tool for Estimating Pollutant Loads (STEPL) employs simple algorithms to calculate nutrient and sediment loads from different land uses and the load reductions that would result from the implementation of various BMPs. STEPL provides a user-friendly Visual Basic (VB) interface to create a customized spreadsheet-based model in Microsoft Excel. It computes watershed surface run-off, nutrient loads, and sediment delivery based on land use distribution and management practices. The sediment and pollutant load reductions that result from the implementation of BMPs are computed using known BMP efficiencies. The STEPL package can be downloaded at https://www.epa.gov/nps/spreadsheet-tool-

<u>estimating-pollutant-loads-stepl</u>. Purdue University has also developed a web-based version of STEPL available at <u>https://engineering.purdue.edu/mapserve/ldc/STEPL/?</u>.

The Region 5 Model is a Microsoft Excel workbook that provides a gross estimate of sediment and nutrient load reductions from the implementation of agricultural and urban BMPs. The model was developed by the U.S. EPA Region 5 and the Michigan Department of Environmental Quality. It does not estimate pollutant load reductions for dissolved constituents. The algorithms for non-urban BMPs are based on the Michigan Department of Environmental Quality's "Pollutants controlled: Calculation and documentation for Section 319 watersheds training manual". The algorithms for urban BMPs are based on the data and calculations developed by Illinois EPA. The Region 5 Model download and training materials can be found at https://www.epa.gov/nps/region-5-model-estimating-pollutant-load-reductions.

The Indiana *E. coli* Calculator (IEC) is a spreadsheet tool that estimates the *E. coli* contribution from multiple sources and calculates load reductions of BMP installations. The portions of the spreadsheet that calculate *E. coli* contributions are heavily based upon the U.S. EPA's Bacteria Indicator Tool (BIT). The BIT estimates the monthly accumulation rate of fecal coliform bacteria on four land uses (cropland, forest, built-up, and pastureland). The tool also estimates the direct input of fecal coliform bacteria to streams from grazing agricultural animals and failing septic systems. The IEC converts the fecal coliform values of the BIT to *E. coli* through a conversion equation based on Ohio water quality sampling results. The IEC is available in a condensed version as well as an expanded version. The IEC spreadsheets and user guide can be found at https://www.in.gov/idem/nps/watershed-toolkit/planning/.

7.0 PUBLIC PARTICIPATION

Public participation is an important and required component of the TMDL development process. The following public meetings were held in the watershed to discuss this project:

- A kickoff public meeting was held in Sullivan, IN on December 10, 2019 to introduce the project and solicit public input. IDEM explained the TMDL process and presented initial information regarding the Maria Creek watershed. Questions were answered from the public, and information was solicited from stakeholders in the area.
- On October 14, 2020, IDEM worked with the Sullivan County Soil and Water Conservation District (SWCD) to host a water monitoring demonstration. The event was at the Emison Mill County Park adjacent to Maria Creek in Bruceville, IN. IDEM staff were on site to explain and/or give demonstrations on their process for collecting water chemistry, fish (through electrofishing techniques), and macroinvertebrates. Results were discussed for the 2019 and 2020 IDEM sampling of the watershed. The details of the partnership between the Sullivan County SWCD and IDEM were presented as well.
- On February 24, 2021, a notice was posted to the Indiana Register to inform stakeholders of new impairments discovered during the 2019 and 2020 watershed characterization study in the Maria Creek watershed. The notice outlined the findings of the study and listed proposed additions/deletions to the 2022 303(d) List of Impaired Waters. Public comments were solicited through May 25, 2021. IDEM received no comments regarding the notice.
- A virtual draft TMDL public meeting was held for the Maria Creek TMDL project on July 8, 2021. The findings of the TMDL were presented at the meeting, and the public had the opportunity to ask questions and provide information to be included in the final TMDL report. A public comment period was from July 12, 2021 to August 12, 2021. IDEM received no comments regarding the notice.

References

- Bauers, C., Gosnell, M., Ooten, R., Bowman, J., et al. 2006. Acid Mine Drainage Abatement and Treatment (AMDAT) Plan for the Leading Creek Watershed. Columbus, Ohio: Ohio Environmental Protection Agency. Retrieved from: https://www.epa.state.oh.us/portals/35/tmdl/Leading%20Creek%20AMDAT_final_5-12-06.pdf
- Diffenbaugh, N.S., Pal, J.S., Trapp, R.J., Giorgi, F. 2005. *Fine-Scale Processes Regulate the Response of Extreme Events to Global Climate Change*. Proceedings of the National Academy of Sciences of the United States of America, 102: 15774-15778.
- Flemming, A.H., Bonneau, P., Brown, S.E., et al. 1995. Open-File Report 95-7: Atlas of Hydrogeologic Terrains and Settings of Indiana, Final Report to the Office of the Indiana State Chemist, Contract No. E005349-95-0. Bloomington, Indiana: Indiana Geological Survey.
- Horsley and Witten, Inc. 1996. *Identification and Evaluation of Nutrient and Bacterial Loadings to Maquoit Bay, New Brunswick and Freeport, Maine*. Prepared by Horsley and Witten, Inc., Barnstable, MA for Casco Bay Estuary Project, Portland, ME.
- Indiana Department of Environmental Management (IDEM). 2010. Hydrologic Unit Codes: What Are They? Indianapolis, Indiana: Indiana Department of Environmental Management. Retrieved from: <u>https://www.in.gov/idem/nps/2422.htm</u>
- Indiana Department of Environmental Management (IDEM). 2019. Procedures for Completing the Qualitative Habitat Evaluation Index. B-003-OWQ-WAP-XX-19-T-R0. Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, IN.
- Indiana Department of Natural Resources (IDNR). 2020. List of Endangered, Threatened, and Rare Species by County. Indianapolis, Indiana: Indiana Department of Natural Resources. Retrieved from: <u>https://www.in.gov/dnr/naturepreserve/4666.htm</u>
- Indiana State Department of Agriculture (ISDA). 2019. Cover Crop and Tillage Transect Data. Indianapolis, Indiana: Indiana State Department of Agriculture. Retrieved from: <u>https://secure.in.gov/isda/2383.htm</u>
- Indiana Department of Health (IDOH). 2020. Onsite Sewage Systems Program. Indianapolis, Indiana: Indiana State Department of Health. Retrieved from: <u>https://www.in.gov/isdh/23283.htm</u>
- Ohio Environmental Protection Agency (OHEPA). 2006. Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). OHIO EPA Technical Bulletin EAS/2006-06-1. Revised by the Midwest Biodiversity Institute for State of Ohio Environmental Protection Agency, Division of Surface Water, Ecological Assessment Section, Groveport, Ohio. Retrieved from: <u>https://www.epa.state.oh.us/portals/35/documents/qheimanualjune2006.pdf</u>

- Palmer, J., Ridge, N., Caudill, G.D., Bryan, S. 2019. More Than 11,000 Wastewater Failures Reported in Indiana's Unsewered Communities, Issue 19-C08. Indianapolis, Indiana: Indiana Advisory Commission on Intergovernmental Relations. Retrieved from: <u>http://www.iacir.spea.iupui.edu/documents/RCAPbrief_Web.pdf</u>
- Patwardhan, A.S., Donlglan Jr, A.S. 1997. Assessment of Nitrogen Loads to Aquatic Systems. EPA-600-SR-95/173. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA.
- Purdue Climate Change Research Center. 2008. *Impacts of Climate Change for the State of Indiana*. West Lafayette, Indiana. Retrieved from: <u>https://ag.purdue.edu/indianaclimate/wp-content/uploads/2018/12/ClimateImpactsIndiana_2008-Report.pdf</u>
- U.S. Census Bureau. 2012. Indiana 2010: Summary Population and Housing Characteristics. Washington, DC: U.S. Department of Commerce. Retrieved from: <u>ftp://ftp2.census.gov/library/publications/2012/dec/cph-1-16.pdf</u>
- U.S. Department of Agriculture (USDA). 2009. *Hydrologic Soil Groups*. National Engineering Handbook. Washington, DC: U.S. Department of Agriculture, Natural Resources Conservation Service. Retrieved from: <u>https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=22526.wba</u>
- U.S. Department of Agriculture (USDA). 2018. National Agricultural Statistics Service Cropland Data Layer. Washington, DC: U.S. Department of Agriculture, National Agricultural Statistics Service. Retrieved from: <u>https://nassgeodata.gmu.edu/CropScape/</u>
- U.S. Environmental Protection Agency (U.S. EPA). 2018. SepticSmart Homeowners. Washington, DC: U.S. Environmental Protection Agency. Retrieved from: <u>https://www.epa.gov/septic/septicsmart-homeowners</u>
- U.S. Environmental Protection Agency (U.S. EPA). 2007. An Approach for Using Load Duration Curves in the Development of TMDLs. EPA-841-B-07-006. Washington, DC: U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Retrieved from: <u>https://www.epa.gov/tmdl/approach-using-load-duration-curves-development-tmdls</u>
- United States Geological Survey (USGS). 1999. National Water Summary on Wetland Resources. Washington, DC: United State Geological Survey. Retrieved from: <u>https://water.usgs.gov/nwsum/WSP2425/state_highlights_summary.html</u>

APPENDIX A. WATER QUALITY DATA FOR THE MARIA CREEK WATERSHED TMDL

Intrasterited	AUD	Bream	IDEM Matters ID	Ster	Location.	Date N Scheration Alkalority (mg/4) C	Calcium (mg/L)	Chloride (mg/L) California (Tatial)	DD (eg/l) E. cell	Handress (mg/L) Magnesium (gf2) Ammunia Nirogen (ng/L	Nilougen, Niloute-Nilolie (mg%) pH (1	El Tatal Phosphorus (mg%)	Total Suspended Solids (mg/L) Total Solids (mg/L)	Total Dissolved Safety (mg/l) Specific Co	niatana (mg%) Saltain (mg%) Temperature (%) TOS (mg%) TOC (mg%)	Tardinitry (NPU) 2000 200(al Linking	Druft 2022 103(4) Citizing Decision	PublicIons
						11/18/2019 #5.7 580 1/15/2020 #5.4 150	N N	Objection Collocation Openant 83 32 32 43 >2218.8 32 24 >2218.8 32 25 >2218.8 32 26 >2218.8 32 32 >2218.8 32 32 >2218.8 32 32 >228.8 32 32 >228.5 32	11.11 10.38	300 25 210 18	-6.2 6.17	2.8 7.9 5.7 7.7	5 5073 7 6.16	4 000 11 120	410 380	11 13 14 27 40 34 7 333 37 41 7 333 37 33	1.41 51.0		Losh Späreen sorie
						1/10/000 013 00 1/10/000 018 180 8/18/000 018 120	40 40 70	27 42 >2429.6	10.00 8.17 126.6	270 Hi 270 Hi 260 21	42	41 2.7	2001	12 75 7.5 540	200 130 80	28 21 11 12 12 12 12 12 12 12 12 12 12 12	20.5		
						203000 88.3 56 202000 88.4 180 6/A2000 88.4 200 6/A2000 86.4 200 70/2000 87.3 180 71/2000 87.3 180 71/2000 88.4 71/2000 88.5 71/2000 88.4		28 >2128.8	13.44 6.76 172.3	200 20		12 7.8	E E 6077	13 435		787 26.4 430 77 28.1 5.44 1	1.48		
	946334_08	Maria Creek	W82-18-0004	785	N DM 41	7/14/2020 74.5 7/14/2020 73.5		50194	6.15 6.45 285.1			7.3	1			80 244 72 257	11.8	E. 148	
						T(23)/020 0.9.4 T(24)/020 94.4 A/L/200 84.4 A/L/200 84.4 A/L/200 84.4 A/L/200 84.7 A/L/200 84.7 A/L/200 85.7 A/L/2000 87.7 A/L/2000 97.8		241960 >2419.6	2.26 172.5			2.2				20 211 18 243	23		
						8/18/0200 818 180 8/18/0200 818 180 8/18/0200 89.7 210	48 190	32 30 >2439.4	214 111 214 117 214 1173 215 114	170 H 450 25	6.35 6.16	13 73 13 73 13 73 73 73	E 2099	7 68 77 776	100 680	000 000 000 000 000 000 000 000 000 00	13		
	1081110_13004					30/14/2020 27.3		1011	2.95 54.4	370 21		2.8			1	547 143	4.10	1	
	INSTINCTION		1	1	1		- T	1 1	1 1 1		1	1 1	1			14 11 129 425 12	1	E sub	Lucli Confined animal freeing operations (Kon Point Source)
							2 6		8.47 248.1 7.87	280 24	6.28	4.7 7.9 8.0 5.1 7.6 2.0 2.7 7.8	1 E 018	1.3 46	430	54K 31 13.0 0.71 1.2 51K 20.8	1.07		L call: Confined animal freeing operations (Kon Food Touria) BC Touriar unknown
						TAU200 88 260 T/14/200 88 26	6	11 2019.4	737 4411 82	250 22		53 7.8 7.9	1 107	11 25		568 31 178 371 32 108 20.8 1	7.06		
Californ Branch	INST114_T1004	Cottan Branch	WBJ-18-0038	705	Elpringlawn Road	7(22)0520 75.4 7(29)0520 #9.4		>343800 >34380	6.54 11780 2.75 686.7			23				207 23.5 542 23.1	136	E-sol, IRC	
						8/3/3000 #9.1 8/18/0020 #8 380	74	>2418.8	8.56 285.3 8.37	NR 2	611	7.3 5 7.9	5 E (2011	75 60 1 36	80	100 100 100 100 207 20.3 20.3 20.4 100 20.1 20.1 20.4 100 20.1 20.4 1.4 100 20.3 0.4 1.4 100 20 0.4 0.47 1.4 100 20 0.4 0.47 1.4	4.66		
						10/10/2020 80.3 240 20/10/2020 72.5 11/10/2020 96.7 210	74	0	7.45 347 11.96	270 22 300 24 300 25 100 20 41 20 42 20 43 8.2 240 23 340 23	41	15 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2	6.041		80	10 24 149 141 14 113 129 129 129	2.75		Loli Galmen sava
						1/10/2020 #9.8 140 2/20/2020 80.1 64	22	10 7	1049	10 N 8 12	63	42 28 12 7.6	618 617	6.5 540 2020 350 432 350 17 350 12 350	230 230	Bit Liv Bit Liv 441 22 Bit 40 7.4 641 21 Bit 40 7.4 643 21 Bit 40 7.4 644 21 Bit 80 7.4 1.4 1.1 5.5 Bit 9.4 1.4 1.1 5.5 5.5 Bit 9.4 5.1 6.41 2.2 7.6	113		BC toxic untreas
						2/14/020 901 44 1/8/220 56.3 180 6/14/220 111.1 200	74	30 48 >2439.8	1118 138.6	240 23 280 22	46.3 6.17	41 73 27 81	£08 £055	17 BE	340 950	607 34 84 311 2 78 320 211 842 32	133 6.77		
	N8524,62	Maria Creek	WED 18-0007	704	N Perry Read	10/2000 1347 200 7/10/2000 2344	41	12 20104	11.16 26.2	200 22		11 12 11 12	1003	10 ES		423 21.9 50 \$7 21.1 24.5 56 \$7 21.0 24.5 57 24.0 24.5 27.7 290 23.3 23.4 23.4	10	E. sol, IEC	
						7/14/2030 142.8 7/32/2030 72.4		>2429.8 >341860	11.79 X8.9 6.26 64580			14 82 14 84 14 84 14 84 14 15 15 15 15 15 15 15 15 15 15 15 15 15	8			757 24.8 289 22.8	7.11		
						6/37/2020 374.8 170/2020 374.7 170/2020 224.8 170/2020 224.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 24.8 170/2020 54.8 170/2020 54.8 170/2020 54.8 170/2020 54.8 170/2020 54.8 170/2020 54.8 170/2020 54.8 170/2020 54.8 170/2020 54.8		10 30000 10 30000 30000 30000 10 30000	14.84 83.3 8.05 308.8	100. 11	0	41 73	1			68 111 507 148 60 111 414 11	745		
						8/38/2030 130.4 180 30/38/2030 139.5 210	42	26 >2629.8 18 >2629.8	11.15 14.3 12.16 81.1	250 21 260 21	483	23 7.8	E E08 E067	6 86 27 80	390 330	486 113 18.2 0.35 J 336 43 18.7 0.5 1.8	2.18		
	MR116_T3305 MR116_T3305																		
	NR114_T100				1			23 18	16.75 16.85			2.4 7.8 45 7.3		- I I I I I I I I I I I I I I I I I I I		463 74 5.1 3.47 2.9 468 34 7.7 0.37 2.5 721 11 5.2 1.6 1.8		E. coli	L salt Greetiach (gradeg ar bealing operations) and Uniform sizes a
						11/18/2019 #3.5 280 1/31/2019 #0.4 140	72 50	23 18	10.75 10.84	290 28 330 19	0.11 0.14			83 60 200 80	430 240	448 34 5.1 0.47 2.8 448 34 7.7 0.77 2.8	29.3 108		5 und Overland (geater ar feeling operations) 5 und Opatieran statute
						1/10/2020 80.7 55 1/9/2020 81.5 180	16 59 61	28	1138	77 7.3	483 683	1 73 41 73	6 6.12 1 2.088	431 96 11 86 23 13	230 340	MA JJ SJ JJ AL ZJJ II 5.3 1.4 5.8 MA JJ MA JJ 1.4 5.8 MA JJ MA JJ JJ 1.4 5.8 MA JJ MA JJ JJ JJ JJ MJ MA JJ JJ JJ JJ JJ JJ MJ MA JJ J	568 24.3		
						4/12/3330 104.5 120	6	21 5000	100 MILE	20 2	1	31 73 74 14 19	108	л 60 10 80	802	556 527 527 527 527 527 527 527 527 527 527	112		
			WEP 18-0008	125	N Roley Road	1/16/0220 M-08 1/16/0220 H1.8	-	>20284	6.11 6.41 #36.4			2.5				358 27.7 27.8 802 82 23.1 0.33 2.4 820 21 2 2 2 2 829 26 2 2 2 2 2 827 23.8 2 <t< td=""><td>n.4 34.3</td><td></td><td></td></t<>	n.4 34.3		
		1	1			147(2020) 80.4 140 147(2020) 80.7 16 147(2020) 81.3 145 147(2020) 81.3 145 147(2020) 81.4 145 147(2020) 81.4 145 147(2020) 81.4 145 117(2020) 148 117(2020) 81.7 145 117(2020) 142.8 117(2020) 142.8 11	— T	>241940 >2419.4	6.42 SE142 8.05 95.1			7.8				224 224 217 234 248	1000 12.8	1	
	1	1	1	1		8/1/200 M.4 8/18/000 79:3 140 9/14/000 81.8 240	57 63	2019 4 11 2019 4 18 2029 4 19 2029 4 20	6.62 688.4 8.65 117.3	110 20 140 21	6.19 6.14	24 13 7.8 15 7.8	0 0 1 E 0 %	17 680 24 670	380 60	20 21 580 87 22.5 -6.4 2.7 877 133 18.2 0.41 2	175 177 355	1	
	98532_65	Maria Creek				M/N (2020) 79.8 140 M/N (2020) 79.8 140 M/N (2020) 28.8 210 M/N (2020) 28.4 210 M/N (2020) 28.4 210 M/N (2020) 90.1 200 M/N (2020) 90.1 150 M/N (2020) 91.1 160 M/N (2020) 91.1 160 M/N (2020) 163.9 160 M/N (2020) 123.8 160 M/N (2020) 123.8 160	20 12	15 22184 25	7.94 448.8 31.47	278 21 210 22	618 (63	1.1 7.8 1.3 7.8 1.3 7.8 1.4 7.8 1.5 7.8 1.5 7.8 1.5 7.8 1.5 7.8 1.5 7.8 1.5 7.8 1.5 7.8 1.5 7.8 1.5	6.14 6.089	I7 66 34 66 34 66 14 66 19 66 14 66 13 86 34 86 31 66	130 450	10 13 141 1 57 13 143 13 13 50 14 41 14 13 50 14 41 14 14 50 14 41 14 14 50 14 41 14 14 50 14 41 14 14 50 14 14 14 14 50 14 14 14 14 50 14 14 14 14 50 17 15 14 14 50 17 15 04 1 50 12 24 1 1	273 K. seb 112	E sub	
		1	1	1		1/19/2020 85.3 220 2/19/2020 85.1 55 10/19/2020 85.1 55	12	44	114 117	150 15 71 31	411 411	14 73 441 74	6.19 6.17	141 80 171 80	200	23 38 45 4.73 2.7 211 41 45 14 51 212 11 41 14 51	173	1	
	1	1	1	1		4/19/2030 140.8 140 4/19/2030 140.8 140 4/19/2030 118.8	2	22 >2429.6	12.44 125.1 5.94	200 18	0.10 0.14	12		a 10 11 60	an	74 78 042 24 477 132 21.1 044 1 734 24.5	12.2 20.4	1	
	1	1	WBJ-18-0018	129	CR 900 N (K Lower Presfandul) Road)	1/1/2020 80.1 180 1/11/2020 169.7	2	25 22426.4	7.20 18.8 18.20	170 18	4.15	41 11 11 14	6.05	80 760	980	201 20 20 20 4 20 4 20 4 20 4 20 4 20 4	117	1	
		1	1			N12020 H0.1 L85 Y111/2030 168.7 1 Y14/2030 166.7 1 Y14/2030 166.8 1 Y14/2030 166.8 1 Y14/2030 56.7 1 Y14/2030 56.7 1 Y14/2030 56.7 1 Y14/2030 56.7 1 Y14/2030 56.3 1	— T		8.85 30 8.84 1125.6 7.6 8 ¹¹			451 45 14 75 15 15				2342 25.8 2917 26.9 375 25.8	114 215 117	1	
						8/4/2000 #9.3 8/18/2020 #1.5 112	54	9.7	7.84 2006.2 7.34	140 15	0.11	4.1 7.8	E E060 E E060	21 680	130	411 2.7 432 180 24.8 4.4 3.2	80.1 34.7		
		1	1				14 13 43 44	28 22034 28 22034	5.7 122.3 7.46 #16.4	140 17 180 25	0.18 (6.3	4.1 7.8 4.1 8.0	1 6.09 1 0.11	21 480 21 810 27 900 31 460	730 800	1135 340 28.5 0.32 1.2 3235 400 34.1 0.17 4.7	21.2 31.3		
Tilley Dish						9/12/2020 47.3 147 9/11/2020 72.8 128 9/11/2020 13.4 200 2/10/2020 13.4.8 200 2/10/2020 13.4.8 200 2/10/2020 13.4.8 200 2/10/2020 84.4 201 2/10/2020 84.2 201 2/10/2020 132.3 201	45 46	20 >2034 15 >2034	5.94 41.4 10.92 125	310 22 380 28	6.33 6.37	1 74	4 0.068 0.065	11 440 11 11 110	430	407 79 274 67 24 509 511 28.8 6.37 2.4	20.4 8.17		
						7/1//2020 85.2 7/1//2020 85.2 7/24/2020 120.3		20244	8.08 30.2 34.5			23				204 22.1 702 23.139 647 23.1	149		
	08110_1300	1 Tiley Olish	W80-18-0009	106	2 Pepsier Real	7/04/2020 120.3 7/02/2020 125.4 7/08/2020 88.5 84/2020 20.4		>20244 >20244	8.87 72.8 8.35 335.5			24				554 28.3 555 28.8	£47 12.4		
						8/1/2020 20.4 8/13/2020 126.6 212 8/11/2020 86.1 302	40	12	6.18 275.5 16.18	260 22	6.12	23 74	5.066	11 440	200	619 21.7 521 29 25.9 6.31 2.3 120 29 21.9 6.31 2.3	214		
	-					12/11/2020 80.9 240 4/21/2020 120.8 240	68 68 74 57	12 >2029.6 14 >2029.6	8.44 435.2 14.45 816.4	270 22 280 21	48.2 0.18	23 74 61 83	6 0.082	17 16 7 400	290 430	517 20 12.3 0.1 1.3 658 61 22.8 1 1	414		E suit: Cambred heeding operations (Non-Paint Source)
						4000000 1945 753 4000000 1945 753 4000000 1945 284 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286 4000000 1934 286		n 3894	1442 13377 3418.4	193 22	6.59	82 623 85	0.068	1 15	200	418 213 948 Ø 857 344 43	5.45		
	08110_1300	Tribulary of Maria Ceve	way 18-0020	107	CR 700 6 (Lane Road)	3/14/3230 146.1 3/34/3230 84.3		NOTE NOT	33.40 3.8 327			2.0				748 24.37 717 24.5 100 11.1	214 2.35	E out	
						X104/2020 817 X/L/2020 89.5		>203.4	2.77 2006.1 7.80 1732.0			7.8				20 271 10 713	1.0		
	-					8/16/020 162.8 140 4/15/020 125.8 220	42 65	11 25 >2139.8	831 1031 4884	175 14 280 25	6.15 6.36	0.11 X.0 5 7.0	5 50N 5 505	14 190 9 190	240 290	4% 12 25 68 46 158 23 21 68 46	1.60 7.43		5 octo Apricalizet
						4/22/0530 106.3	23	18 >2429.6	8.05 8.88 727 20.8	800 28	618	14 8.0	1 6067	30 38		22.7 279 28 27.4 3.54 3.8 26 27.69	203		F call fair Parts Insure 20-lew flow
	N#110_1300	Tribulary of Maria Cree	WED 18-0011	TER	CK 100 N (Lower Precimited) Real	7/14/0020 80.1 7/31/0020 44.2		>2138.4 >2138.8	4.86 1753.9 3.6 \dd156.6			7.4	L.			934 22.0 488 23.7	17.2 25.3	E. coll, DD	
						1/26/020 521 8/6/200 1628 8/16/200 1618		2004	437 11531 613 6153	100	611	23 23 23	1	17 48	10	947 21.4 486 B B	5.07 21.3		
						8/11/2020 75.1 250 20/18/2020 87 250	4 4 7 8 8 7 7 8	18 >0418.6 17 >0418.6	6.9 X3418.6 1.92 236.7	260 28 320 29	618 403	451 7.3 451 7.9	6.093 6.14	44 62 34 96	280 330	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	61.6 21.2		
						11/18/2028 85.1 580 1/15/2020 81.3 180	94 70	n 11	11.75 16.78	340 25 340 22	483 8.11	14 7.8 3.9 7.8	6 603 1 614	20 480 80 820	490 330	92 280 4.1 0.38 1.8 541 33 7.8 0.41 2.1	5.08 25.8		L soli Confered arimol feeding operations (Non Point Source) RC-Source unknown
						1/12/2020 88.4 40 1/4/2020 102.4 190 6/36/2020 1127.5 190	2	43 82 >2629.6	11.08 11.88 10.28 365.4	56 £1 300 24 120 21	6.0 62 0.0	10 70 40 73 28 44	£42 £00		190 680 780	207 34 54 17 57 207 34 54 17 57 209 129 47 41 17	244 7.11 5.22		
		Marsh Cerri		130		3/3/2020 129 180	N	44 >20244	1005 595 1162	260 22	6.3	10	6 63	8.5 580		205 27.6 854 233 28.9 0.36 2.7	4.33	E. sol, IEC	
	100.23.00	Autor Cent	WHENTYMAN	140	Ci su la ji sprogram kao	1/14/2030 148.5 1/14/2030 168.1 1/22/2030 85.2		3000 31 32 33 34 34 35 36 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 39 30 30 31 32 33 34 35 36 36 37 38 39 39 39 30 30 30	5.1 325.5 6.91 5832			28				213 B.1 213 213 214 215	4.54	1. con, on.	
						1(24)2220 128.1 8/0/2220 503 8/19/2020 106.2 140		20094 20194	6.65 1830 8.72 188.7 8.44 198.7 8.42 10.55 268.4 11.54 70.3 8.84 422.6 11.5			81 23 23 7.8	1			726 13.2 40 188 199 248 71.2 0.21 2.1	2.56		
						8/38/0220 106.2 160 8/38/0220 108.8 170	20 20 20 20 20 20 20 20 20 20 20 20 20 2	17 48 >2438.4	6.42 10.55 366.4	140 25 290 21	62	23 7.8 24 8.0	E 665	43 490 67 530	190 490	889 343 212 028 2.8 779 240 174 041 2.3	2.95		
						(14/0620 100.8 170 20/14/0620 120.3 170 4/14/0620 121.3 170 4/12/0620 121.7	5	90 >2439.6	5.84 433.6 31.5	120 21	617	2.7 8.0	6.071	43 22	290	205 243 272 0.47 2.1 130 26.3	5.25		5. call: Confined axinut Rendrig operations (Non-Paint Source) BC Source untercome
						100200 1044 180 7/34/0800 1111	8	14 >2438.4 >2438.4	1148 485.3 8.28 270	340 22		14 11	611	1 46		86 180 248 149 27 81 242 242	10		
	94538,06	Manh Cerek	W80-18-0012	733	E Harity Read	1/11/0220 244.8 1/22/0220 76 1/27/0220 23/3 8/0/0220 88.3		>341960 >2419.4	8.45 13390 13.11 76.3			23 82 74 83 74 83 74				141 141 141 218 141 144	311 4 29	Losi, IK	
						8/3/2020 88.3 8/18/2020 121.4 140	330	2018-4	8.14 290.8 16.77	13 3	-6.2	23 81	6.045	4 725	600	430 181 958 275 211 424 3.3	114		
	-					4(14)/000 1003 100 4(14)/000 1003 100	130 80 48 200	23 19811 23 2919.4	10.11 000.1 10.32 311.4 10.0 488.4	10 20 10 20	611 634	22 82 018 10 28 7.8	6005 6005	4 10 4 10 13 930	10 10 10	100 100 100 0.00 2.1 111 113 117 1338 2.4 1170 1333 20.7 0.41 1.9	13		E sale Confined animal freeing operations (Non Point Source)
						4/15/020 1137 10/320 1054 170	25	85 >2428.6	8.45 8.61 727	120 21	6.3	2.6 7.8	6 01	14 440	530	111 112 3.13 2.4 1379 131 26.7 4.41 1.8 1301 26.7 4.41 1.8 1302 24 24 1.8 1303 24 24 1.8 1304 24 24 1.8 1304 24 24 24	6.09 11.9		
Marsh Creek		1	W80-18-0025	12	E bilanoly Road	7(19/2020 89.4 1119/2020 145 7(12/2020 72.4		>2438.4 >31384	2.28 24154 22.29 6.25 dillore		_	7.8				84 211 81 8 87 219	11.4 12.1 258	1	
						7/26/2020 131.4 8/1/2020 81.4		>2139.4 >2139.4	1144 983.4 2.77 615.1			#1 74				80 250 01 187	111		
		1	1			A18/2030 106.3 180 618/2030 163 170 1018/2030 61.2 144	130 81 73 130	20184 20184 20184 2019 2019 2019 2019 2019 2019 2019 2019	144 1013 1421	400 26 800 23 270 20 410 28	4.7 5.13 4.11	17 14 14 19	6.077 0.11 7.78		80 900 900	100 110 20.1 -0.4 2.1 2010 2011 10.6 2.1 1.1<	10	1	
	14623,0	Marsh Ceerk			1	4/16/2030 117.4 150 4/15/0520 105.5	130	10 70044 180 75138.8	1631 235.3 8.07	410 20 21	518	13 7.8 35 3 7.8	2013	11 1300	1300	135 440 244 459 14 1481 228 439 14	5.00 4.34	E sub	
		1	1			10(200 76 160 7(1)(000 70.2 7(1)(000 70.2	10	200 - 2020 4 - 2020 4	1.0 17.0 10.1 11.0 10.1 11.0 4.1 10.0 4.1 10.0 4.1 10.0 4.1 10.0 4.1 10.0 4.1 10.0 4.1 10.0 10.1	dit 27		41 7.4 7.8	1003	9 1330	80	1820 186 25 3.46 3.3 1888 215 215	1.0	1	
	1	1	W82-18-0024	738	CX 104	7(2)(2000 2023 7(2)(2000 2023		>343800 >3438.0	6.45 26010 6.33 26010 6.32 206.4			7.3 7.8 73				21424 213 21 2143 21 2143 21	259 6.05	1	
		1	1			1122/0450 80.3 1124/0450 88.3 8/1/300 88.7 8/2/3000 88.3 14/2 14/2 8/14/2000 88.3 14/2 14/2 14/2	340	>2018.4	2.84 248.8 2.41	440 30	0.14	4 7.3 6	6.699	4 100	735	2% 29 183 443 26.9 0.26 1.9	118	1	
	DELLE TOPO	1	1	I	I	10/10/2020 594 200	ũ.	201980 201983 201984 98 48 201984 44 201988	111 1114	80 N 10 0	61 63	84 7.8 13 88	E007	4 78 4 78	807 830		14	I	
	A8118_1301						- T					1	1					Look	5 call Conford around finding operations (Non Food Source)
		1	1			4/14/2020 48-1 170 4/19/2020 72.3	53 67	4 3094	6.3 441.1 6.48	220 21	632	1.1 7.4 7.3 0.081 7.4 7.4	614	51 52	20	136 11 14.8 0.38 24 1813 264 00 11 264	128 8.96		E cali dejinduse E cali Nor Notal Isano A Calanza dela sena
	N633,0	Marsh Creek	W80-18-0017	134	01138	111/2000 211 1122/2020 812			2.1 (101.1 2.1 172.1 7.05 (101.0)		- I	* 7.4 7.4 7.4		23 30	L.	60 81 51 51 51 51 51 51 51 51 51 51 51 51 51	217	E. sel, IBC, DD	20 Salari sanas
		1	1	1		1(28)200 80.1 8/1/2020 73.8 1/1/2020 73.8	_	>2094 >2094	2.84 1115.0 6.85 285			24			100	211 214 214 214 214 214 214 214 214 214	45.2 8.43	1	
		1	1			K/3 (233) 54.2 140 4/13/2030 81.4 200 4/12/2030 148.4 200 1/17/3020 30.8 180	ũ.	25 22014	144 001044 1130	340 34	4.0	48 78	2014	11 MW 81 MW	360	D3. D4 P GD M M M M M B1 M M M M M M B1 D1 M<	10	1	Luch Canfred animal feeding associants Nan Patel Tauriet AC Insult substance
				725		7/13220 20.8 180 7/14/0200 48.8	52	30 83080 >3238.4	149 727 42 56.3	100 24	613	45.1 7.8 7.8	614	11 10	_	400 28 29.8 4.87 4.5 400 23.7	147 148 148 E.mb	L oil, 85, 50	20 ion fine
	08110_13004	n mentary of Maria Cee	WBD 18-0014	725	Nevlandville Koad	7(38,0000 26.4 7(38,0000 83 7(38,0000 20		5008.4 2008.4	41 81) 43 80 41 801 41 801 41 801 41 801 41 801 41 801 41 801 41 801 41 801 42 801 43 801 44 801 44 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 45 801 46 801 47 801 <		_	7.7 7.8 7.9				442 237 4872 23.056 489 264 489 264 107 251 109 26.1	144 E. sol E.42 E.4	E. sid, IEC, DD	
		<u> </u>	<u> </u>			8/8/2020 80.3 8/18/5020 81.3 200	6	22/39.4	#14 922.# 1.09	250 24	6.29	461 7.4	E 6663	83 322	340		28.8 20.8	L	
		1	1				2	8 8 71	11.04	200 Zi 110 Ii 76 ···	42 42	4.17 7.8 2.1 7.0 4.71 7.4	208 221	7 435	80 80 80	97 27 14 347 1 18 13 41 631 1 1 24 61 42 641 1 1 24 61 42 641 1 1 24 61 42 641 1 2 18 19 64 641 2 6 187 21 8 34 47 15 38 212 8 34 43 37 37	13 273 617		s call-Confined around fireding operations (Non-Paint Source)
		1	1			1/11/08/05 818 73 2/12/08/05 80.8 87 2/12/08/05 80.8 87 2/12/08/05 81.8 110 4/12/08/05 81.9 110 7/12/08/05 818 200 7/12/08/05 77.2 20	2 2 3 3 3 3 3 3	15 17 >508.4	1144 104 2014	140 14 140 15	611 613	18 7.4 12 7.8	6.12 6.054	21 220 4 520	100	138 132 74 0.71 28 737 220 29 0.87 11	28.4	1	
		1	W80590-0002	738		4/12/2020 229-4 7/1/2020 66 200	*	28 22438.4	1314 5.85 214.2	140 18	6.2	631 7.8	6.053	11 840	360	NI 28.1 1123 28.1 0.37 1.7	113 23.1	1	
		1	W80190-0002	126	un 200 N (Neelandolle Koal)	1140 4040 77.2 7(10/2020 111.7 7(21/2020 81.8		2008.6	6.71 208.3 5.55 20°.7			78				21.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8	171 171	1	
		1	1			1/38/2030 84.7 8/4/2020 88.3		\$1720 >2024	6.94 6111 7.81 688.7			7.8				92 231 48 214	34.5 64.3	1	
	98131_0	Maria Creek	1	1		4/16/2020 87.2 110 8/16/2020 83.1 180 9/1/2020 83.1 190	8 8 0 17	9.4 25	8.18 7.42 115.3	140 14 170 17 195 17	-6.2 6.14	0.11 7.8 0.025 8.0 45.1 7.8	E 014 E 057	5.5 300 8 850 2 1200 4.5 370	430 340	International (Construction) 2434 2437 0.427 3.1 1177 190 151 -6.4 3.3 5.1 <td< td=""><td>5.35 5.42 5.13 5.00, IK</td><td>E est</td><td></td></td<>	5.35 5.42 5.13 5.00, IK	E est	
		1				4/19/2020 55 240 4/19/2020 56-2 152 4/12/2020 106-3	10 10	14	8.88 222.4 8.88 222.4	110 15	0.17	481 7.8 4.81 7.8 8.2	E 609	43 50	400	81 210 10.1 0.71 1.8 958 24.1 24.1 1.0	7.88	1	
Headwaters Maria Creek		1	1			4(2)(2020 100.5 7)(1)(200 46.5 200 7)(1)(200 42.8 7)(1)(200 162.8 7)(1)(200 162.8 7)(1)(200 88.8 7)(2)(200 88.8 7)(2)(200 88.8	v	28 >2438.4 >2438.4	7.44 \$17.3 7.85 275.5	140 17	618	0.71 8.1 8.0	6.08	12 80	360	1179 INI 25.8 0.54 5.1 1895 22.6	117	1	
		1	W82-18-0028	128	CK 1010 S	10440-4000 109.6 1001/0020 88.8 1002-0020 88.5	T	3008.8	8-05 7-07 \$79.4			11 10				26275 100 264 269 269	7.52 13.3	1	
		1	1	1		7/18(000 88.7 8/03200 88.7 8/18(000 88.3 110	н	10014	2.81 248.8 2.81	140 14	43	4.31 7.4 4.31 7.6	6.05	1 502	440	2028 2041 337 21.6 738 23.3 23.4 0.3.6 2.8 1248 600 1.8.4 0.42 2.8	117 14	1	
		1	1		l		61 41	22 >2418.6 24 1986.5	26 2444 285 874 3448 444 344 712 844 844 944 845	140 18 210 22	6.14 6.12	442 8.1 -61 7.6	638	7.3 860 <3 1200	760 190	1148 400 18.4 0.42 2.8 1125 483 11.4 0.34 12 187 12.5	1.0	1	
		+	WBJ-18-0030	128	089753	1010(000) 104.4		18 >218.4	8.41 16.15 117.2	180 17	6.15	11 7.6	1.078	63 300	10	303 483 114 0.34 12 887 24.6 <td>5.76 22.8</td> <td>1</td> <td>E call Cardined arout fielding oproxilans.</td>	5.76 22.8	1	E call Cardined arout fielding oproxilans.
	1	1	1	1		4/15/2030 117 140 4/12/2030 186 17/1/2020 80.7 180 17/16/2020 61.7	54	12 >2438.4	34.4 7.34 433.4	210 21	617	8.6 0.64 7.8	L 6001	11 80		1111 1111 111 111 111 121 124 111 <td>5.48 7.86</td> <td>1</td> <td>5 cali Unrich (patrig or Reding operations) 5 cali Virt weather disharges (Non Paint Jacor)</td>	5.48 7.86	1	5 cali Unrich (patrig or Reding operations) 5 cali Virt weather disharges (Non Paint Jacor)
		1	1	127	CK 7008 (Lane Road)	1)14/2030 41.7 7)14/2030 46.8 7,112/2030 46.8	— T	2014	1.12 1.42 646.5 1.67 (***			24 23				101 2744 406 2733 107 274 105 274	8.45 177 8.76 8. ort	E. sol, IBC, DD	NC Involvement SC the flow
	INKING TOWN	Tribulary of Maria Com-							7.21 1221.5			73				420 25.9	1.62		
	00110_1200	 Tribulary of Maria Cree 	ek WEU-18-0028			8/4/2020 #8.5	1	>2628.8	2.66 2353.1							345 20.5	28		
	08110,7100	5 Tribulary of Maria Cere	en WEU-LE-COLE	-		1042000 88.5 Art40000 78.9 474,0000 78.9 110 011/2020 35.4 120 2011/2020 13.7 200	ม ม	2019.4 16 2019.4 16 2019.4	2.56 2333.1 6.53 6.52 2066.2 1.58 5 ^{14 5}	310 18 310 28 280 91	616 616 402	441 38 431 7.7 401 99	613 6061 631	20 420 21 520 6 500	280 200 200	36 20.5 542 41 21.1 3.49 1.4 711 130 13 0.31 1.3 728 120 13 0.31 1.3	28 82 223		
	NELLO_TION NELLO_TION NELLO_TION	h Tribulary of Maria Cree	web 18-023			1122200 87.5 AV42000 87.5 XF140005 37.8 120 30.1 120/19/2020 31.7 20/19/2020 31.7 20/19/2020 31.8	53 57 65 53	18 20194 14 20194 15 20194 14 20194	8.45 26.85 \$17.23 24.4 \$17.3 24.4 \$13.2 1.42 \$42.4 3.13 \$44.4 7.24 \$43.4 7.25 \$202.1 7.86 \$203.1 8.49 \$203.1 8.49 \$203.1 8.43 \$206.2 1.28 \$27.2 4.38 \$37.4	110 18 250 28 260 11 180 11	618 614 62 618	041 73 031 7.7 -01 7.8 032 73	613 6063 613 612	20 4.8 24 5.0 6 5.0 11 820	200 450 450 150	88 20.5 544 81 24 8.4 712 222 13 0.31 8.4 789 233 13.4 0.44 13 468 20 18.8 12 8	28 82 223	L sal, BC 00 L sal	
	NETIC_TION NETIC_TION NETIC_TION NETIC_TION NETIC_TION	Tribulary of Maria Cere	WED IS COLU			Sylfoxic 84.8 Sylfoxic 8.8	13 17 45 13	14 >2238.4 14 >2238.4 15 >2238.4 16 >2238.4 16 >2238.4	2.86 2153.1 6.33 5008.2 1.38 517.3 4.88 579.4	210 14 250 26 290 21 160 13	6.16 0.13 45.2 6.14	011 77 011 77 011 78 012 31	613 6061 613 612	00 439 24 535 4 542 11 449	20 60 60 50 50 50	101 21 4.04 1.1 70 1.30 1.1 6.48 1.1 70 1.30 1.1 6.11 1.3 70 1.30 1.3 6.41 1.3 70 1.30 1.3 6.43 1.3 70 1.30 1.3 6.43 1.3 64 20 1.8.3 1.3 8	23 83 22.1 8.81 14 E. ool, 8C, DO E. ool E. ool E. ool	E.out, BC, 50 E.out E.out E.out	

APPENDIX B. FISH AND MACROINVERTEBRATE COMMUNITY ASSESSMENT REPORTS

SubBasin:	Middle Wabash-Busseron		14 digit HUC:	05120111190040	LSite:	WBU-18-0004	
Site: Maria	Creek	Location: N Old 4	1			C	ounty: Knox
Latitude: 3	8.773466 Longitu	de: -87.472764	IA	SNat Region: 8	Торо:	H-49	Segment: 52
Ecoregion:	Interior River Lowland		Drainage Ar	ea (sq.miles): 90.629		Gradient (f	t/mile): 3.217
Sample Inform	mation						
SampleNumber:	AB42669	EventID: 20T001		Sample MediumCo	llected:	Fish Communit	y + Water
SampleDate:	07/07/2020	SurveyCrewChief:	RAC	SampleTime: 12:31:00 Pl	М		HydroLabNumber: P5
WaterFlowType:	Run	WaterAppearance:	Murky	SkyConditions: 2 - Scatt	ered	1	AirTemperature: 6 - > 86
WindDirection:	27 - West (270 degrees)			WindStrength: 1 - Light			
DissolvedO2 (m	g/l): 6.39 pH	: 7.84 WaterT	emp(°C): 27.8	SpecificConductiv	vity (µS/c	:m): 630	Turbidity (NTU): 8.08
SpecialNotes:							

ElectrofishingEquipr	ment:	Canoe	Voltage:	200	Avg.StreamWidth(m):	13	DistanceFished (m): 195
SecondsFished:	1448	v	VaterDepthAvg (m):	.4	WaterDepthMax (m):	2	TimeAtSite: 03:00
BridgeInReach:		ReachRepres	entative: 🗹	WhyReachN	otRepresentative:		
SpecialComments:		w/MLES					

Habitat Information

TotalScore (max100):	66	Substrate (max20):	Sco	ore	10		nCover nax20):	13	Chai (max		rphology	/Score 15	
RiparianZoneBa Score(max10):	ankEr	osion	ę)	Pool/GI	ideQua	lityScore(m	ax12):	10	Riffle/	RunQua	lityScore(max8):	3
GradientScore (max10):	6	%Poo	I:	35	%Riffle:	15	%Run:	50	% G I	ide:	0	CanopyCover PctOpen:	30%-<55%
SubjectiveRatin	g:		Ae	sth	eticRating:		NOTES:	"NEV	V REC	ORD"			

Fish Community Index of Biotic Integrity (I	BI) Inform	Calibration Used:			
	Actual	Metric		Actual	<u>Metric</u>
Obs	ervation	<u>Score</u>	Obs	servation	<u>Score</u>
SpeciesCount:	24	5	%TolerantIndividuals:	12.93	5
SunfishSpeciesCount:	5	5	%OmnivoreIndividuals:	18.37	3
MinnowSpeciesCount:	8	5	%InsectivoreIndividuals:	74.15	5
SuckerSpeciesCount:	0	1	%CarnivoreIndividuals:	6.8	1
SensitiveSpeciesCount:	5	5	Total # of Individuals (CPUE):	147	3
			%SimpleLithophilicInd.:	29.25	5
			%Ind.withDELT:	0	5
Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending	S (m	tal IBI Score nin 0,	48		

on calibration.

SampleNumber: AB42669	EventID: 20T001		LSite: WBL	J-18-0004	Cou	nty: Knox			
StreamName: Maria Creek	LocationDescription: N Old 41								
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies			
Bluegill	2								
Bluntnose Minnow	9								
Bullhead Minnow	1								
Channel Catfish	5								
Creek Chub	1								
Dusky Darter	15								
Emerald Shiner	7								
Gizzard Shad	3								
Green Sunfish	1								
Johnny Darter	3								
Longear Sunfish	11								
Mississippi Silvery Minnow	15								
Mud Darter	10								
Orangespotted Sunfish	1								
Pirate Perch	2								
Redear Sunfish	1								
Sand Shiner	13								
Slough Darter	11								
Smallmouth Bass	1								
Spotfin Shiner	24		l I						
Spotted Bass	3		l I						
Spotted Gar	1								
Suckermouth Minnow	6		l I						
Western Mosquitofish	1		1						

SubBasin: Middle Wabash-Busseron Site: Cotton Branch Loc Latitude: 38.804843 Longitude: -8 Ecoregion: Interior River Lowland -8		at Region: 7A Topo: H-49	0006 County: Knox Segment: 52 ient (ft/mile): 9.645
Sample Information			
SampleDate: 07/08/2020 Sur	ID: 20T003 veyCrewChief: RAC erAppearance: Clear WaterTemp(°C): 20.8	Sample MediumCollected: Fish Com SampleTime: 11:40:00 AM SkyConditions: 2 - Scattered WindStrength: 2 - Mod./Light SpecificConductivity (µS/cm): 558	munity + Water HydroLabNumber: P5 AirTemperature: 6 - > 86 Turbidity (NTU): 5.27
ElectrofishingEquipment: Backpack SecondsFished: 199 W BridgeInReach: Image: Comments: ReachReprese	Voltage: 200 /aterDepthAvg (m): .3 entative: 🗹 WhyReachNo	Avg.StreamWidth(m): 3 WaterDepthMax (m): 1.1 tRepresentative:	DistanceFished (m): 50 TimeAtSite: 01:00
(max100): ^{C5} (max20): ¹⁰ Scor RiparianZoneBankErosion 9 Pool/Glider Score(max10): 9 Pool/Glider	e (max20): 15 (max20):	ArunQualityScore 14 /RunQualityScore(max8): 2 CanopyCover 10%-<30% PctOpen:	
Observ SpeciesCount: SunfishSpeciesCount: MinnowSpeciesCount: SuckerSpeciesCount: SensitiveSpeciesCount: Metrics are dependent on Ecoregion and Drainage Area.	ctual vationMetric Score11523651125Total IBI Score	on Used: Interior River Lowland <u>Actual</u> <u>Observation</u> %TolerantIndividuals: 45.95 %OmnivoreIndividuals: 10.81 %InsectivoreIndividuals: 54.05 %PioneerIndividuals: 54.05 Total # of Individuals (CPUE): 37 %SimpleLithophilicInd.: 5.41 %Ind.withDELT: 0	Metric Score 3 5 5 3 1 1 5
Metrics can score a 0, 1, 3, or 5 depending on calibration.	(min 0, max 60)		

SampleNumber: AB42670	EventID: 20T003		LSite: WBL	-18-0006	Cou	nty: Knox			
StreamName: Cotton Branch	LocationDescription: E Springtown Road								
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies			
Bluntnose Minnow	2								
Creek Chub	13								
Green Sunfish	1								
Johnny Darter	2								
Longear Sunfish	5								
Mississippi Silvery Minnow	1								
Sand Shiner	1								
Silverjaw Minnow	2								
Slough Darter	4								
Spotfin Shiner	5								
White Sucker	1								

SubBasin: Middle	Wabash-Busseron	14	digit HUC: 051201111900	40 LSite :	WBU-18-0007	
Site: Maria Creek		Location: N Perry Roa	ıd		County:	Knox
Latitude: 38.81132	0 Longitude	e: -87.417867	IASNat Region:	7A Topo :	H-49 Segmen	t: 52
Ecoregion: Interior	River Lowland		Drainage Area (sq.miles):	78.969	Gradient (ft/mile):	1.971
Sample Information	<u>n</u>					
SampleNumber:	AB42671	EventID: 20T004	s	ample MediumCollected:	Fish Community + Water	
SampleDate: 06/22	2/2020	SurveyCrewChief: KJ	IC SampleT	ime: 01:36:00 PM	HydroLa	bNumber: P8
WaterFlowType:	Glide	WaterAppearance: Cle	ear SkyCond	ditions: 2 - Scattered	AirTempe	erature: 6 - > 86
WindDirection: 2	7 - West (270 degrees)		WindStr	ength: 0 - Calm		
DissolvedO2 (mg/l):	13.44 pH:	8.24 WaterTemp	o(°C): 26.4	SpecificConductivity (µS/c	: m): 797 Turb i	dity (NTU): 5.49
SpecialNotes:						
ElectrofishingEquipmer	nt: Canoe	Voltage:	185	Avg.StreamWidth(m):	11 Distancel	Fished (m): 165
SecondsFished:	538	WaterDepthAvg (m):	.3	WaterDepthMax (m):	.6 Time	AtSite: 02:00
BridgeInReach:		epresentative: 🗹	WhyReachNotRepresent	ative:		
SpecialComments:	MLES in canoe					
Habitat Information	<u>1</u>					
TotalScore S	ubstrateScore	InstreamCover	ChannelMornhologySc	ore		

(max100): ³⁰ (n	ubstrateScore nax20):	- G		nCover nax20):	4	ChannelMorj (max20):	ohologyS	core 6	
RiparianZoneBankErosi Score(max10):	on 3	Pool/G	lideQua	alityScore(ma	ax12):	4 Riffle/R	unQuality	/Score(max8):	0
GradientScore ₄ (max10):	%Pool: 0	%Riffle:	0	%Run:	0	%Glide:	100	CanopyCover PctOpen:	55%-<85%
SubjectiveRating:	Aesthe	eticRating	:	NOTES:	"NEV	/ RECORD"		-	

Fish Community Index of Biotic Integrity (IBI)	ation	Calib	pration Used: Interior River Lowland			
<u>Actual</u> <u>Metric</u> <u>Observation</u> <u>Score</u> SpeciesCount: 12 3				<u>Obs</u> %TolerantIndividuals:	Actual ervation 19.05	<u>Metric</u> <u>Score</u> 1
SunfishSpeciesCount:	2	3		%OmnivoreIndividuals:	4.76	1
MinnowSpeciesCount:	3	1		%InsectivoreIndividuals:	78.57	1
SuckerSpeciesCount:	0	1		%CarnivoreIndividuals:	16.67	1
SensitiveSpeciesCount:	2	1		Total # of Individuals (CPUE):	42	1
				%SimpleLithophilicInd.:	0	1
				%Ind.withDELT:	0	1
Metrics are dependent on Ecoregion and	Tot	al IBI	16			

Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.

Total IBI	16
Score	
(min 0,	
max 60)	

SampleNumber: AB42671	EventID: 20T004		LSite: WBL	J-18-0007	Cou	nty: Knox			
StreamName: Maria Creek	LocationDescription: N Perry Road								
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies			
Blackstripe Topminnow	2								
Bluegill	2								
Bluntnose Minnow	2								
Channel Catfish	5								
Longear Sunfish	20								
Mud Darter	1								
Sand Shiner	1								
Spotfin Shiner	3								
Spotted Bass	1								
Spotted Gar	1								
Western Mosquitofish	3								
Yellow Bullhead	1								

SubBasin	: Middle V	/abash-Busseron		14 digit HUC: 051201111900	20	LSite:	WBU-18-000	08
Site:	Maria Creek		Location:	N Risley Road				County: Knox
Latitude:	38.822774	Longitude:	-87.39165	6 IASNat Region:	7A	Торо:	H-49	Segment: 52
Ecoregion	n: Interior R	iver Lowland		Drainage Area (sq.miles):	49.206		Gradien	t (ft/mile): 1.971

Sample Information

SampleNumber:	AB42672	EventID: 20T005		Sample MediumCollected: Fis	h Community + Water
SampleDate:	08/18/2020	SurveyCrewChief: KRW	Sa	mpleTime: 10:30:00 AM	HydroLabNumber: P5
WaterFlowType:	Run	WaterAppearance: Murky	Sk	yConditions: 3 - Partly	AirTemperature: 5 - 76-85
WindDirection:	27 - West (270 degrees)		Wi	ndStrength: 1 - Light	
DissolvedO2 (mg/): 5.86 pH:	7.72 WaterTemp(°C):	23.6	SpecificConductivity (µS/cm):	548 Turbidity (NTU): 43.9
SpecialNotes:	Site always very turbid.				

ElectrofishingEquipr	nent:	Canoe	Voltage:	265	Avg.StreamWidth(m):	11	DistanceFished (m): 165
SecondsFished:	950		WaterDepthAvg (m):	.7	WaterDepthMax (m):	1	TimeAtSite: 02:00
BridgeInReach:		ReachRep	resentative: 🗹	WhyReac	NotRepresentative:		
SpecialComments:		w/MLES					

Habitat Information

(max100): ³² (n	ubstrateScore nax20):	h	reamCover re (max20):	6	ChannelMor (max20):	phology	vScore 7	
RiparianZoneBankErosi Score(max10):	on 3	Pool/Glide	QualityScore(ma	ax12):	6 Riffle/R	unQua	lityScore(max8):	0
GradientScore 4 (max10):	% Pool: 40 %	Riffle:	0 %Run:	60	%Glide:	0	CanopyCover PctOpen:	55%-<85%
SubjectiveRating:	Aesthetic	cRating:	NOTES:	"NEV	/ RECORD"			

Fish Community Index of Biotic Integrity (IBI)	Inform	Calibration Used: Interior River Lowland			
<u>Actual Metric</u> <u>Observation Score</u> SpeciesCount: 21 5			<u>Obsa</u> %Tolerantindividuals:	Actual ervation 21.62	<u>Metric</u> Score 5
SpeciesCount: SunfishSpeciesCount:	21	5 3	%OmnivoreIndividuals:	15.14	3
MinnowSpeciesCount:	5	3	%InsectivoreIndividuals:	80.54	5
SuckerSpeciesCount:	4	5	%CarnivoreIndividuals:	4.32	1
SensitiveSpeciesCount:	6	5	Total # of Individuals (CPUE):	185	3
			%SimpleLithophilicInd.:	1.62	1
			%Ind.withDELT:	1.08	3

Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.

Total IBI	42
Score	
(min 0,	
max 60)	

SampleNumber: AB42672	EventID: 20T005		LSite: WBL	J-18-0008	Cou	nty: Knox
StreamName: Maria Creek	Location	Description:	N Risley Road			
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	2					
Bluegill	22					
Bluntnose Minnow	19					
Brook Silverside	4					
Common Carp	2					
Emerald Shiner	28					
Gizzard Shad	5					
Golden Redhorse	1		1			
Green Sunfish	8					
Greenside Darter	1					
Johnny Darter	1					
Longear Sunfish	49					
Longnose Gar	1					
Quillback	1	1				
River Carpsucker	1					
Sand Shiner	2					
Shortnose Gar	3					
Silver Redhorse	2					
Spotfin Shiner	28					
Spotted Bass	4					
Western Mosquitofish	1					

SubBasin: M	liddle Wabash-B	usseron	14 digit HUC: 0	5120111190020	LSite: WBU-18-00	009
Site: Tilley Dite	ch	Location:	E Pepmeir Road			County: Knox
Latitude: 38.8	35159	Longitude: -87.36320	0 IAS	Nat Region: 7B	Topo: H-50	Segment: 52
Ecoregion: Int	terior River Lowl	and	Drainage Area	a (sq.miles): 9.299	Gradie	nt (ft/mile): 4.379
Sample Informa	<u>ation</u>					
SampleNumber:	AB42673	EventID: 20	T006	Sample Mediur	mCollected: Fish Comm	nunity + Water
SampleDate:	07/08/2020	SurveyCrev	wChief: RAC	SampleTime: 09:50:0	00 AM	HydroLabNumber: P5
WaterFlowType:	Pool	WaterAppe	arance: Clear	SkyConditions: 1 - C	Clear	AirTemperature: 6 - > 86
WindDirection:	27 - West (27	70 degrees)		WindStrength: 0 - Ca	alm	
DissolvedO2 (mg/l)	: 8.22	pH: 7.75	WaterTemp(°C): 22.1	SpecificCondu	uctivity (µS/cm): 558	Turbidity (NTU): 6.43
SpecialNotes:						
ElectrofishingEquip	pment:	Backpack	Voltage: 200	•	mWidth(m): 3	DistanceFished (m): 50
SecondsFished:	397	WaterDe	othAvg (m): .4	WaterDe	pthMax (m): .7	TimeAtSite: 01:30
BridgeInReach:		ReachRepresentative	: 🗹 WhyReachN	lotRepresentative:		
SpecialComments:						

Habitat Information

(max100): ³⁸ (i	SubstrateScore 12 max20):	InstreamCover Score (max20):	8	ChannelMorphologyS (max20):	core 8	
RiparianZoneBankEros Score(max10):	ion 5 Poo	/GlideQualityScore(n	nax12):	5 Riffle/RunQualit	yScore(max8):	0
GradientScore 0 (max10):	%Pool: 40 %Riffl	: %Run:	60	%Glide:	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	AestheticRati	ng: NOTES:	"NEV	/ RECORD"		

Fish Community Index of Biotic Integrity (IBI) Information				pration Used: Interior River Lowland		
Actual Me					Actual	Metric
Observ	<u>ation</u>	<u>Score</u>		<u>Obs</u>	<u>ervation</u>	<u>Score</u>
SpeciesCount:	14	5		%TolerantIndividuals:	36.21	3
SunfishSpeciesCount:	2	3		%OmnivoreIndividuals:	39.66	1
MinnowSpeciesCount:	5	5		%InsectivoreIndividuals:	55.17	5
SuckerSpeciesCount:	1	1		%PioneerIndividuals:	39.66	3
SensitiveSpeciesCount:	2	5		Total # of Individuals (CPUE):		1
				%SimpleLithophilicInd.:	20.69	5
				%Ind.withDELT:	0	5
Metrics are dependent on Ecoregion and Drainage Area.		al IBI core	42			

Metrics can score a 0, 1, 3, or 5 depending on calibration.

TOLATION	
Score	
(min 0,	
max 60)	

SampleNumber: AB42673 EventID: 20T006			LSite: WBL	J-18-0009	County: Knox		
StreamName: Tilley Ditch	Location	Description:	E Pepmeir Road				
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies	
Blackstripe Topminnow	2						
Bluntnose Minnow	11						
Central Stoneroller	3						
Emerald Shiner	1						
Green Sunfish	2						
Greenside Darter	2						
Johnny Darter	7						
Longear Sunfish	11						
Mississippi Silvery Minnow	7						
Pirate Perch	2						
Spotfin Shiner	1						
Tadpole Madtom	1						
White Sucker	5						
Yellow Bullhead	3						

SubBasin: Middle Wabash-Busseron Site: Tributary of Maria Creek Loo Latitude: 38.854910 Longitude: -8 Ecoregion: Interior River Lowland Sample Information			WBU-18-0010 County: Knox H-50 Segment: 52 Gradient (ft/mile): 9.923
SampleNumber: AB42674 Even	tID: 20T007	Sample MediumCollected:	Fish Community + Water
SampleDate: 06/22/2020 Su	rveyCrewChief: KJC	SampleTime: 10:54:00 AM	HydroLabNumber: P8
WaterFlowType: Glide Wa	terAppearance: Clear	SkyConditions: 2 - Scattered	AirTemperature: 6 - > 86
WindDirection: 27 - West (270 degrees)		WindStrength: 2 - Mod./Light	
DissolvedO2 (mg/l): 14.62 pH: 8.25	WaterTemp(°C): 23.9	SpecificConductivity (µS/cn	n): 638 Turbidity (NTU): 5.41
SpecialNotes:			
ElectrofishingEquipment: Backpack	Voltage: 150	Avg.StreamWidth(m):	3 DistanceFished (m): 50
SecondsFished: 298	VaterDepthAvg (m): .2	WaterDepthMax (m):	.5 TimeAtSite: 01:00
BridgelnReach: ReachRepres	entative: 🗹 WhyReachNot	Representative:	
SpecialComments:			
(max100): 40 (max20): 11 Sco RiparianZoneBankErosion 3 Pool/Glide Score(max10): 3 Pool/Glide GradientScore 6 %Pool: 10 %Riffle: (max10): 6 %Pool: 10 %Riffle: SubjectiveRating: AestheticRating:	re (max20): ^o (max20): QualityScore(max12): 6 Riffle/F 10 %Run: 10 %Glide: NOTES: "NEW RECORD"	phologyScore ₁₀ RunQualityScore(max8): 2 70 CanopyCover 55%- PctOpen:	<85%
Fish Community Index of Biotic Integrity (IBI)		Used: Interior River Lowland	A stored Billion
_	Actual <u>Metric</u> vation Score	Obse	<u>Actual Metric</u> ervation Score
SpeciesCount:	13 5	%TolerantIndividuals:	43.4 3
SunfishSpeciesCount:	3 3	%OmnivoreIndividuals:	28.77 3
MinnowSpeciesCount:	7 5	%InsectivoreIndividuals:	27.83 3
SuckerSpeciesCount:	0 1	%PioneerIndividuals:	78.3 1
SensitiveSpeciesCount:	1 5	Total # of Individuals (CPUE):	212 5
		%SimpleLithophilicInd.:	3.77 1
		%Ind.withDELT:	0 5
Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.	Total IBI40Score(min 0,max 60)		

SampleNumber: AB42674	EventID: 20T007		LSite: WBL	J-18-0010	Cou	nty: Knox
StreamName: Tributary of Ma	ria Creek Location	nDescription:	County Road 700	E, Lane Roa	d	
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	16					
Bluegill	1					
Bluntnose Minnow	59					
Central Stoneroller	66					
Creek Chub	26					
Green Sunfish	2					
Johnny Darter	5					
Longear Sunfish	13					
Mississippi Silvery Minnow	2					
Redfin Shiner	3					
Silverjaw Minnow	8					
Suckermouth Minnow	6					
Yellow Bullhead	5					

SubBasin: Middle Wabash-Busseron	14 digit HUC: 05120111190	020 LSite:	WBU-18-0011
Site: Tributary of Maria Creek Locati	on: County Road 900 N, E Lower Freeland	ille Road	County: Knox
Latitude: 38.858259 Longitude: -87.3	60084 IASNat Region	7B Topo:	H-50 Segment: 52
Ecoregion: Interior River Lowland	Drainage Area (sq.miles)	3.055	Gradient (ft/mile): 12.542
Sample Information			
SampleNumber: AB42675 EventID	: 20T008	Sample MediumCollected:	Fish Community + Water
SampleDate: 06/22/2020 Surve	yCrewChief: KJC Sample	Time: 12:01:00 PM	HydroLabNumber: P8
WaterFlowType: Pool Water	Appearance: Clear SkyCo	nditions: 2 - Scattered	AirTemperature: 6 - > 86
WindDirection: 27 - West (270 degrees)	WindS	rength: 2 - Mod./Light	
DissolvedO2 (mg/l): 9.01 pH: 7.94	WaterTemp(°C): 22.7	SpecificConductivity (µS/c	m): 556 Turbidity (NTU): 7.72
SpecialNotes:			
ElectrofishingEquipment: Backpack	Voltage: 150	Avg.StreamWidth(m):	3 DistanceFished (m): 50
SecondsFished: 318 Wat	erDepthAvg (m): .25	WaterDepthMax (m):	.5 TimeAtSite: 01:00
BridgelnReach: ReachRepresent	ative: 🗹 WhyReachNotReprese	tative:	
SpecialComments:			

Habitat Information

(max100): ³³ (n	ubstrateScore ₆ nax20):	Instream Score (m		5	ChannelMorj (max20):	phologyS	core 8	
RiparianZoneBankErosi Score(max10):	ion 2 Poo	l/GlideQua	lityScore(ma	1x12):	4 Riffle/R	unQuality	/Score(max8):	0
GradientScore 8 (max10):	%Pool: 0 %Riffl	e: 0	%Run:	0	%Glide:	100	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	AestheticRat	ng:	NOTES:	"NEV	/ RECORD"			

Fish Community Index of Biotic Integrity (IBI) Information				ration Used: Interior River Lowland		
		<u>Metric</u>			<u>Actual</u>	Metric
<u>Observa</u>	ation	<u>Score</u>		Obs	<u>ervation</u>	<u>Score</u>
SpeciesCount:	10	5		%TolerantIndividuals:	21.51	5
SunfishSpeciesCount:	2	3		%OmnivoreIndividuals:	45.16	1
MinnowSpeciesCount:	5	5		%InsectivoreIndividuals:	39.78	3
SuckerSpeciesCount:	1	1		%PioneerIndividuals:	20.43	5
SensitiveSpeciesCount:	1	5		Total # of Individuals (CPUE):		1
				%SimpleLithophilicInd.:	39.78	5
				%Ind.withDELT:	0	5
Metrics are dependent on Ecoregion and Drainage Area.		al IBI core	44			

Metrics can score a 0, 1, 3, or 5 depending on calibration.

I otal IBI	
Score	
(min 0,	
max 60)	

SampleNumber: AB42675	EventID: 20T008		LSite: WBL	J-18-0011	Cou	nty: Knox
StreamName: Tributary of Ma	ria Creek Location	nDescription:	County Road 900	N, E Lower F	reelandville F	Road
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Bluegill	1					
Bluntnose Minnow	5					
Central Stoneroller	13					
Creek Chub	1					
Longear Sunfish	29					
Mississippi Silvery Minnow	28					
Pirate Perch	1					
Spotfin Shiner	1					
White Sucker	9					
Yellow Bullhead	5					

SubBasin: Middle Wabash-Busseron	14 digit HUC: 0512011119002	0 LSite: WBU-	18-0013
Site: Maria Creek Location: County	Road 900 N		County: Knox
Latitude: 38.858568 Longitude: -87.353384	IASNat Region:	7B Topo: H-50	Segment: 52
Ecoregion: Interior River Lowland	Drainage Area (sq.miles):	30.791 Gr	adient (ft/mile): 3.885
Sample Information SampleNumber: AB42676 EventID: 20T009	Sa	mple MediumCollected: Fish C	community + Water
SampleDate: 06/23/2020 SurveyCrewChief:	KRW SampleTi	me: 11:34:00 AM	HydroLabNumber: P5
WaterFlowType: Pool WaterAppearance:	Clear SkyCond	itions: 3 - Partly	AirTemperature: 5 - 76-85
WindDirection: 27 - West (270 degrees)	WindStre	ngth: 1 - Light	
DissolvedO2 (mg/l): 9.98 pH: 8.23 WaterT	'emp(°C): 23.9 S	pecificConductivity (µS/cm): 7	14 Turbidity (NTU): 10.4
SpecialNotes:			
ElectrofishingEquipment: Canoe Volta	ge: 230	Avg.StreamWidth(m): 5	DistanceFished (m): 75
SecondsFished: 1000 WaterDepthAvg	(m): .5	WaterDepthMax (m): 1.2	TimeAtSite: 03:00
BridgeInReach: ReachRepresentative: 🗹	WhyReachNotRepresenta	tive:	
SpecialComments: w/MLES			

Habitat Information

(max100): ⁴³ (m	ubstrateScore nax20):	7 Instream Score (r		10	ChannelMorj (max20):	phologySco	ore 9	
RiparianZoneBankErosi Score(max10):	on 3	Pool/GlideQua	alityScore(ma	x12):	8 Riffle/R	unQuality	Score(max8):	0
GradientScore 6 (max10):	% Pool: 20 %	Riffle: 0	%Run:	80	%Glide:	0	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	Aesthetic	Rating:	NOTES:	"NEW	RECORD"			

Fish Community Index of Biotic Integrity (IBI) Information			Calib	ration Used:			
<u>Actual</u> Observation		<u>Metric</u> Score			Obs	Actual servation	<u>Metric</u> <u>Score</u>
SpeciesCount:	23	5			%TolerantIndividuals:	28.17	3
SunfishSpeciesCount:	4	5			%OmnivoreIndividuals:	18.78	3
MinnowSpeciesCount:	4	3			%InsectivoreIndividuals:	77	5
SuckerSpeciesCount:	5	5			%CarnivoreIndividuals:	2.82	1
SensitiveSpeciesCount:	4	5			Total # of Individuals (CPUE):	213	5
					%SimpleLithophilicInd.:	7.04	1
					%Ind.withDELT:	0	5
Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.	S (m	al IBI core iin 0, ax 60)	46	6			

12/22/2020 13:51:54 PM Fish Community Assessments, Page 1 of 2

SampleNumber: AB42676	LSite: WBU-18-0013 County: Knox					
StreamName: Maria Creek	Description:	County Road 900 N				
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Bigmouth Buffalo	1					
Blackstripe Topminnow	6					
Bluegill	23					
Bluntnose Minnow	32					
Central Stoneroller	3					
Channel Catfish	2					
Emerald Shiner	2					
Freshwater Drum	1					
Gizzard Shad	1					
Green Sunfish	15					
Greenside Darter	1					
Johnny Darter	9					
Logperch	1					
Longear Sunfish	64					
Shorthead Redhorse	1					
Smallmouth Buffalo	1					
Spotfin Shiner	31					
Spotted Bass	3					
Spotted Sucker	6					
Tadpole Madtom	1					
Warmouth	1					
Western Mosquitofish	1					
White Sucker	7					

SubBasin:	Middle Wabash-Bus	seron	14 c	ligit HUC: 05	1201111900	30 L S i	te: WBU190-0	0001
Site: Marsl	h Creek	Locat	ion: E Springtown	Road				County: Knox
Latitude: 3	38.828463	Longitude: -87.	399871	IAS	at Region:	7A To	bo: H-49	Segment: 52
Ecoregion:	Interior River Lowlan	d	[Drainage Area	(sq.miles):	23.57	Gradie	ent (ft/mile): 2.96
Sample Infor	mation							
SampleNumber	: AB42677	EventI): 20T010		S	ample MediumCollecte	ed: Fish Comr	munity + Water
SampleDate:	06/22/2020	Surve	eyCrewChief: KAG	G	SampleT	ime: 11:00:00 AM		HydroLabNumber: P6
WaterFlowType	: Glide	Water	Appearance: Clea	ar	SkyCond	litions: 2 - Scattered		AirTemperature: 5 - 76-85
WindDirection:	9 - East (90 deg	rees)			WindStre	ength: 1 - Light		
DissolvedO2 (m	ig/l): 10.01	pH: 8.06	WaterTemp(° C): 22.6	5	SpecificConductivity (IS/cm): 1055	Turbidity (NTU): 4.33
SpecialNotes:								
ElectrofishingE	quipment: Ba	ackpack	Voltage:	210		Avg.StreamWidth(n): 5	DistanceFished (m): 75
SecondsFished	: 510	Wa	terDepthAvg (m):	.2		WaterDepthMax (I	n): .5	TimeAtSite: 00:45
BridgeInReach:		ReachRepreser	ntative: 🗹	WhyReachN	otRepresent	ative:		
Secolal Common	High	Conductivity						

Habitat Information

SpecialComments:

(max100): ³⁸	SubstrateScore ₁₄ (max20):	InstreamCover Score (max20):	7	ChannelMorp (max20):	hologySo	core 5	
RiparianZoneBankEro Score(max10):	sion 3 Po	ol/GlideQualityScore(max12):	5 Riffle/R	unQuality	Score(max8):	0
GradientScore 4 (max10):	%Pool: 20 %Riff	e: 0 %Run:	0	%Glide:	80	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	AestheticRa	ing: NOTES:	"NEV	V RECORD"			

Fish Community Index of Biotic Integrity (IBI) Information				ration Used: Interior River Lowland		
	tual	<u>Metric</u>			Actual	Metric
<u>Observa</u>	ation	<u>Score</u>		<u>Obs</u>	<u>ervation</u>	<u>Score</u>
SpeciesCount:	10	3		%TolerantIndividuals:	29.03	1
SunfishSpeciesCount:	2	3		%OmnivoreIndividuals:	29.03	1
MinnowSpeciesCount:	5	3		%InsectivoreIndividuals:	61.29	1
SuckerSpeciesCount:	0	1		%CarnivoreIndividuals:	0	1
SensitiveSpeciesCount:	3	3		Total # of Individuals (CPUE):	31	1
				%SimpleLithophilicInd.:	9.68	1
				%Ind.withDELT:	0	1
Metrics are dependent on Ecoregion and Drainage Area.		al IBI core	20			

Metrics can score a 0, 1, 3, or 5 depending on calibration.

I OTAL IBI	20
Score	
(min 0,	
max 60)	
	-

SampleNumber: AB42677	EventID: 20T010		LSite: WBL	190-0001	Cou	nty: Knox		
StreamName: Marsh Creek LocationDescription: E Springtown Road								
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies		
Blackstripe Topminnow	1							
Bluntnose Minnow	7							
Central Stoneroller	3							
Dusky Darter	1							
Green Sunfish	1							
Longear Sunfish	5							
Mississippi Silvery Minnow	2							
Sand Shiner	1							
Spotfin Shiner	9							
Yellow Bullhead	1							

SubBasin:	Middle Wabash-B	usseron	14 digit HUC:	05120111190030	LSite:	WBU-18-0012	
Site: Mar	sh Creek	Location	: E Hunley Road			c	county: Knox
Latitude:	38.854119	Longitude: -87.400)627 I	ASNat Region: 7A	Торо:	H-49	Segment: 52
Ecoregion:	Interior River Lowl	and	Drainage A	rea (sq.miles): 20.805		Gradient (f	t/mile): 3.392
Sample Info	rmation						
SampleNumbe	r: AB42678	EventID:	20T011	Sample Medi	iumCollected:	Fish Communit	y + Water
SampleDate:	06/22/2020	Survey	CrewChief: KAG	SampleTime: 12:20):00 PM		HydroLabNumber: P6
WaterFlowTyp	e: Glide	WaterAp	pearance: Clear	SkyConditions: 2	- Scattered		AirTemperature: 5 - 76-85
WindDirection	9 - East (90 d	legrees)		WindStrength: 3 -	Moderate		
DissolvedO2 (I	ng/l): 11.1	pH: 8.15	WaterTemp(°C): 26.3	SpecificCon	ductivity (µS/c	m): 1148	Turbidity (NTU): 4.26
SpecialNotes:							
Electrofishing	Equipment:	Backpack	Voltage: 200	Avg.Stre	eamWidth(m):	4	DistanceFished (m): 60
SecondsFishe	d: 448	Water	DepthAvg (m): .2	WaterD	epthMax (m):	.25	TimeAtSite: 01:00
BridgeInReach	. 🗌	ReachRepresentat	ive: 🗹 🛛 WhyRead	hNotRepresentative:			
SpecialComme	ents:	gh Conductivity					

Habitat Information

(max100): ⁴⁵ (r	ubstrateScore ₁₄ nax20):	InstreamCover Score (max20):	10	ChannelMor (max20):	phologyS	core 9	
RiparianZoneBankEros Score(max10):	ion 3 Poo	I/GlideQualityScore(I	max12):	3 Riffle/	RunQuality	/Score(max8):	0
GradientScore 6 (max10):	%Pool: 20 %Riffl	e: 0 %Run:	0	%Glide:	80	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	AestheticRat	ng: NOTES:	"NEV	V RECORD"			

Fish Community Index of Biotic Integrity (IBI)	Calibration Used: Interior River Lowland				
<u>Actual</u> <u>Metric</u> Observation Score			Obse	<u>Actual</u> ervation	<u>Metric</u> Score
SpeciesCount:	10	3	%TolerantIndividuals:	26.19	1
SunfishSpeciesCount:	2	3	%OmnivoreIndividuals:	19.05	1
MinnowSpeciesCount:	3	3	%InsectivoreIndividuals:	78.57	1
SuckerSpeciesCount:	0	1	%CarnivoreIndividuals:	2.38	1
SensitiveSpeciesCount:	2	3	Total # of Individuals (CPUE):	42	1
			%SimpleLithophilicInd.:	0	1
			%Ind.withDELT:	2.38	1
Metrics are dependent on Ecoregion and Drainage Area.	S	al IBI core	20		

Metrics can score a 0, 1, 3, or 5 depending on calibration.

	20
Score	
(min 0,	
max 60)	
	•

SampleNumber: AB42678	EventID: 20T011		LSite: WBL	Site: WBU-18-0012 County: Knox		
StreamName: Marsh Creek	Location	Description:	E Hunley Road			
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	6					
Bluegill	3					
Bluntnose Minnow	8					
Channel Catfish	1					
Greenside Darter	2					
Johnny Darter	2					
Longear Sunfish	15					
Silverjaw Minnow	1					
Spotfin Shiner	2					
Yellow Bullhead	2			1		

SubBasin:	Middle Wabash-	Busseron	14 digit HUC:	05120111190030	LSite: WBU-18-00	015
Site: Mars	h Creek	Location: E Moo	dy Road			County: Knox
Latitude: 3	38.894577	Longitude: -87.422060	IA	SNat Region: 7A	Topo: H-26	Segment: 52
Ecoregion:	Interior River Low	vland	Drainage Ar	ea (sq.miles): 12.234	Gradie	nt (ft/mile): 2.932
Sample Infor	<u>mation</u>					
SampleNumber	: AB42679	EventID: 20T012		Sample Medi	umCollected: Fish Comm	nunity + Water
SampleDate:	06/23/2020	SurveyCrewChief	: KAG	SampleTime: 12:10	:00 PM	HydroLabNumber: P6
WaterFlowType	: Glide	WaterAppearance	: Clear	SkyConditions: 3 -	Partly	AirTemperature: 4 - 61-75
WindDirection:	0 - North (0	degrees)		WindStrength: 3 -	Moderate	
DissolvedO2 (m	ig/l): 9.45	pH: 7.98 Water	Temp(°C): 24	SpecificCon	ductivity (µS/cm): 1240	Turbidity (NTU): 6.09
SpecialNotes:						
ElectrofishingE	quipment:	Backpack Volt	age: 200	Avg.Stre	eamWidth(m): 6	DistanceFished (m): 90
SecondsFished	: 478	WaterDepthAvg	(m): .1	WaterD	epthMax (m): .5	TimeAtSite: 01:00
BridgeInReach:		ReachRepresentative: 🗹	WhyReach	NotRepresentative:		
SpecialComme	nts:					

Habitat Information

(max100): ³⁷ (m	ubstrateScore nax20):	9 Instream Score (r		8	ChannelMorı (max20):	ohologySco	ore 8	
RiparianZoneBankErosi Score(max10):	on 4	Pool/GlideQua	alityScore(ma	1x12):	4 Riffle/R	unQuality	Score(max8):	0
GradientScore 4 (max10):	% Pool: 20 %	Riffle: 0	%Run:	0	%Glide:	80	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	Aesthetic	Rating:	NOTES:	"NEV	/ RECORD"			

Fish Community Index of Biotic Integrity (IBI) Information			Calibration Used: Interior River Lowland	
Act	tual	<u>Metric</u>	Actual	Metric
Observation S		<u>Score</u>	Observation	<u>i Score</u>
SpeciesCount:	11	5	%TolerantIndividuals: 20.69	5
SunfishSpeciesCount:	4	5	%OmnivoreIndividuals: 8.62	5
MinnowSpeciesCount:	3	3	%InsectivoreIndividuals: 86.21	5
SuckerSpeciesCount:	0	1	%PioneerIndividuals: 13.79	5
SensitiveSpeciesCount:	2	3	Total # of Individuals (CPUE): 58	1
			%SimpleLithophilicInd.: 1.72	1
			%Ind.withDELT: 0	5
Metrics are dependent on Ecoregion and Drainage Area.		al IBI core	44	

Metrics can score a 0, 1, 3, or 5 depending on calibration.

I otal IBI	
Score	
(min 0,	
max 60)	

SampleNumber: AB42679	npleNumber: AB42679 EventID: 20T012		LSite: WBL	J-18-0015	County: Knox		
StreamName: Marsh Creek	Location	Description:	E Moody Road				
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies	
Blackstripe Topminnow	2						
Bluegill	11						
Bluntnose Minnow	4						
Green Sunfish	4						
Longear Sunfish	29						
Mississippi Silvery Minnow	1						
Orangespotted Sunfish	1						
Sand Shiner	1						
Shortnose Gar	3						
Western Mosquitofish	1						
Yellow Bullhead	1						

SubBasin: Middle Wabash-Busseron Site: Marsh Creek Loca Latitude: 38.922848 Longitude: -87	14 digit HUC: 051 ation: S County Road 50 E 7.403759 IASN	20111190030 LSite: WBU-18-0 at Region: 7A Topo: H-26	016 County: Sullivan Segment: 52
Ecoregion: Interior River Lowland	Drainage Area (sq.miles): 8.376 Gradio	ent (ft/mile): 5.502
SampleDate: 06/23/2020 Sur	ID: 20T013 veyCrewChief: KAG erAppearance: Clear	Sample MediumCollected: Fish Com SampleTime: 11:00:00 AM SkyConditions: 3 - Partly	nunity + Water HydroLabNumber: P6 AirTemperature: 4 - 61-75
WindDirection:0 - North (0 degrees)DissolvedO2 (mg/l):9.07pH:7.87SpecialNotes:7.877.87	WaterTemp(°C): 22.8	WindStrength: 3 - Moderate SpecificConductivity (µS/cm): 1686	Turbidity (NTU): 4.34
ElectrofishingEquipment: Backpack SecondsFished: 528 W	Voltage: 200 aterDepthAvg (m): .2	Avg.StreamWidth(m): 4 WaterDepthMax (m): .5	DistanceFished (m): 60 TimeAtSite: 00:45
BridgelnReach: ReachReprese SpecialComments:	ntative: ⊻I WhyReachNo	tRepresentative:	
(max100): ⁵⁰ (max20): ¹¹ Score	e (max20): ¹³ (max20): QualityScore(max12): 5 Riffle/	rphologyScore ₁₀ RunQualityScore(max8): 0 90 CanopyCover 55%-<85% PctOpen:	
Fish Community Index of Biotic Integrity (IBI) <u>A</u> <u>Observ</u> SpeciesCount:	ctual <u>Metric</u>	n Used: Interior River Lowland <u>Actual</u> <u>Observation</u> %TolerantIndividuals: 43.75	<u>Metric</u> <u>Score</u> 3
SunfishSpeciesCount:	3 3	%OmnivoreIndividuals: 14.06	5
MinnowSpeciesCount:	5 5	%InsectivoreIndividuals: 82.81	5
SuckerSpeciesCount:	0 1	%PioneerIndividuals: 37.5	3
SensitiveSpeciesCount:	2 5	Total # of Individuals (CPUE): 64 %SimpleLithophilicInd.: 7.81 %Ind.withDELT: 0	1 1 5
Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.	Total IBI42Score(min 0,max 60)1		

SampleNumber: AB42680	EventID: 20T013		LSite: WBU-18-0016		County: Sullivan	
StreamName: Marsh Creek	LocationDescription: S County Road 50 E					
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	2					
Bluegill	1					
Bluntnose Minnow	4					
Creek Chub	1					
Green Sunfish	19					
Longear Sunfish	25					
Mississippi Silvery Minnow	5					
Redfin Pickerel	1					
Sand Shiner	1					
Spotfin Shiner	1					
Yellow Bullhead	4					

SubBasin:	Middle Wabash-	Busseron	14 digit HUC	: 05120111190030	LSite: WBU-18-0	0017
Site: Marsh	Creek	Locatio	on: S County Road 5 SE			County: Sullivan
Latitude: 38	3.935544	Longitude: -87.3	82966	IASNat Region: 7A	Topo: H-26	Segment: 52
Ecoregion:	Interior River Low	land	Drainage	Area (sq.miles): 3.624	Gradi	ent (ft/mile): 7.445
Sample Inforn	nation					
SampleNumber:	AB42681	EventID	20T014	Sample Me	ediumCollected: Fish Com	munity + Water
SampleDate:	06/23/2020	Surve	yCrewChief: KAG	SampleTime: 10	:05:00 AM	HydroLabNumber: P6
WaterFlowType:	Glide	Water	Appearance: Brown	SkyConditions:	4 - Cloudy	AirTemperature: 4 - 61-75
WindDirection:	0 - North (0 d	degrees)		WindStrength: 3	3 - Moderate	
DissolvedO2 (mg	g/l): 6.48	pH: 7.38	WaterTemp(°C): 20.	6 SpecificC	onductivity (µS/cm): 478.5	5 Turbidity (NTU): 8.34
SpecialNotes:						
ElectrofishingEq	uipment:	Backpack	Voltage: 220	Avg.S	treamWidth(m): 2	DistanceFished (m): 50
SecondsFished:	326	Wat	erDepthAvg (m): .1	Wate	rDepthMax (m): .15	TimeAtSite: 00:45
BridgeInReach:		ReachRepresent	ative: 🗹 WhyRea	chNotRepresentative:		
SpecialComment	ts:					

Habitat Information

TotalScore 33 (max100):	SubstrateScore (max20):		nstream Score (m		7	ChannelMor (max20):	phologySo	core 8	
RiparianZoneBankEr Score(max10):	osion 5	Pool/GI	lideQua	lityScore(ma	ax12):	0 Riffle/I	RunQuality	/Score(max8):	0
GradientScore 6 (max10):	%Pool: 20	%Riffle:	0	%Run:	0	%Glide:	80	CanopyCover PctOpen:	<10%- Closed
SubjectiveRating:	Aesthe	eticRating:		NOTES:	"NEV	/ RECORD"			

Fish Community Index of Biotic Integrity (IBI) Information			Calibration Used: Interior River Lowland		
		<u>Metric</u> Score	Obs	Actual ervation	<u>Metric</u> Score
SpeciesCount:	7	5	%TolerantIndividuals:	55.56	1
SunfishSpeciesCount:	1	1	%OmnivoreIndividuals:	16.67	1
MinnowSpeciesCount:	4	5	%InsectivoreIndividuals:	50	1
SuckerSpeciesCount:	0	1	%PioneerIndividuals:	72.22	1
SensitiveSpeciesCount:	0	1	Total # of Individuals (CPUE):	18	1
			%SimpleLithophilicInd.:	0	1
			%Ind.withDELT:	0	1
Metrics are dependent on Ecoregion and Drainage Area.	S	al IBI core	20		

Metrics can score a 0, 1, 3, or 5 depending on calibration.

I otal IBI	20
Score	
(min 0,	
max 60)	

SampleNumber: AB42681	EventID: 20T014		LSite: WBU	-18-0017	Cou	nty: Sullivan
StreamName: Marsh Creek	Location	Description:	S County Road 5	SE		
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	2					
Bluntnose Minnow	3					
Creek Chub	6					
Green Sunfish	1					
Johnny Darter	2					
Silverjaw Minnow	1					
Spotfin Shiner	3					

SubBasin:	Middle Wabash-Bu	Jsseron	14 digit HUC: 05120111	190010 LSite :	WBU-18-0014	
Site: Tribut	tary of Maria Creek	Location: Freela	andville Road		County: Knox	
Latitude: 3	8.881029	Longitude: -87.352830	IASNat Reg	on: 7B Topo :	H-27 Segment: 52	
Ecoregion:	Interior River Lowla	and	Drainage Area (sq.mil	es): 2.96	Gradient (ft/mile): 7.362	
Sample Infor SampleNumber: SampleDate:		EventID: 20T015 SurveyCrewChie	f: KAG San	Sample MediumCollected: pleTime: 01:35:00 PM	Fish Community + Water HydroLabNumber	
WaterFlowType		WaterAppearance		Conditions: 3 - Partly	AirTemperature:	
WindDirection:	9 - East (90 de	••		dStrength: 2 - Mod./Light		
DissolvedO2 (m	ig/l): 11.82	pH: 8.2 Wate	rTemp(°C): 25	SpecificConductivity (µS/c	m): 481.1 Turbidity (NTU): 5.67
SpecialNotes:						
ElectrofishingE	quipment:	Backpack Vol	tage: 225	Avg.StreamWidth(m):	2 DistanceFished (m): 50
SecondsFished	: 495	WaterDepthAv	g (m): .2	WaterDepthMax (m):	.3 TimeAtSite:	01:00
BridgeInReach:		ReachRepresentative: 🗹	WhyReachNotRepre	sentative:		
SpecialCommer	nts:					

Habitat Information

(max100): ³⁷ (r	ubstrateScore 10 nax20):	InstreamCover Score (max20):	5	ChannelMorphole (max20):	ogyScore 8	
RiparianZoneBankErosi Score(max10):	ion 4 Poo	I/GlideQualityScore(max12):	4 Riffle/RunQ	ualityScore(max8):	0
GradientScore 6 (max10):	%Pool: 10 %Riffl	e: 0 %Run:	0	% Glide: 90	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	AestheticRati	ng: NOTES:	"NEV	/ RECORD"		

Fish Community Index of Biotic Integrity (IBI) Information			Calib	ration Used: Interior River Lowland		
<u>Actual</u> <u>Met</u>		<u>Metric</u>			Actual	Metric
<u>Observat</u>	<u>tion</u>	<u>Score</u>		<u>Obs</u>	ervation	<u>Score</u>
SpeciesCount:	8	5		%TolerantIndividuals:	63.16	1
SunfishSpeciesCount:	1	1		%OmnivoreIndividuals:	31.58	1
MinnowSpeciesCount:	4	5		%InsectivoreIndividuals:	21.05	1
SuckerSpeciesCount:	1	1		%PioneerIndividuals:	57.89	1
SensitiveSpeciesCount:	0	1		Total # of Individuals (CPUE):	19	1
				%SimpleLithophilicInd.:	21.05	1
				%Ind.withDELT:	0	1
Metrics are dependent on Ecoregion and Drainage Area.		al IBI core	20			

Metrics can score a 0, 1, 3, or 5 depending on calibration.

TOTAL IDI	20
Score	
(min 0,	
max 60)	
	•

SampleNumber: AB42682 Ever	ntID: 20T015	LSite:	WBU-18-0014
----------------------------	--------------	--------	-------------

County: Knox

Tributary of Maria Creek StreamName:

LocationDescription: Freelandville Road

Individual Fish Count **Multiple Anomalies Common Name** Deformities **Eroded Fins** Lesions Tumors Blackstripe Topminnow 1 Bluegill 1 2 Bluntnose Minnow **Central Stoneroller** 2 7 Creek Chub Mississippi Silvery Minnow 1 Pirate Perch 2 White Sucker 3

SubBasin: Middle Wabash-Buss	seron 14	digit HUC: 05120111190010	LSite: WBU190-0002	
Site: Maria Creek	Location: CR 1050 N/F	Freelandville Road	County: Knox	
Latitude: 38.881727	Longitude: -87.346680	IASNat Region: 7B	Topo: H-27 Segment: 52	
Ecoregion: Interior River Lowland	I	Drainage Area (sq.miles): 17.468	Gradient (ft/mile): 5.282	
Sample Information				
SampleNumber: AB42683	EventID: 20T016	Sample MediumCo	bllected: Fish Community + Water	
SampleDate: 06/22/2020	SurveyCrewChief: KA	G SampleTime: 02:50:00 PM	M HydroLabNumber: P6	
WaterFlowType: Glide	WaterAppearance: Cle	ear SkyConditions: 1 - Clear	r AirTemperature: 6 - > 86	i
WindDirection: 9 - East (90 degree	ees)	WindStrength: 2 - Mod./L	Light	
DissolvedO2 (mg/l): 17.14	pH: 8.69 WaterTemp	(°C): 28.1 SpecificConductiv	vity (µS/cm): 761 Turbidity (NTU): 8.12	2
SpecialNotes:				
ElectrofishingEquipment: Bac	ckpack Voltage:	210 Avg.StreamWi	Vidth(m): 4 DistanceFished (m): 60	
SecondsFished: 495	WaterDepthAvg (m):	.2 WaterDepthM	Max (m): .25 TimeAtSite: 00:45	
BridgeInReach:	ReachRepresentative: 🗹	WhyReachNotRepresentative:		
SpecialComments:				

Habitat Information

(max100): ⁵² (r	ubstrateScore ₁₄ nax20):	InstreamCover Score (max20):	14	ChannelMo (max20):	rphologySo	core 9	
RiparianZoneBankEros Score(max10):	ion 5 Poo	I/GlideQualityScore	e(max12):	4 Riffle/	RunQuality	/Score(max8):	0
GradientScore 6 (max10):	%Pool: 10 %Riffl	e: 0 %Ru	n: 90	%Glide:	0	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	AestheticRati	ng: NOTES	6: "NEV	V RECORD"			

Fish Community Index of Biotic Integrity (IBI) Inform	Calibration Used: Interior River Lowland		
Actual	<u>Metric</u>	Actual	<u>Metric</u>
Observation	<u>Score</u>	<u>Observation</u>	<u>Score</u>
SpeciesCount: 8	3	%TolerantIndividuals: 38.46	3
SunfishSpeciesCount: 3	3	%OmnivoreIndividuals: 2.56	5
MinnowSpeciesCount: 3	3	%InsectivoreIndividuals: 97.44	5
SuckerSpeciesCount: 0		%PioneerIndividuals: 15.38	5
SensitiveSpeciesCount: 2	3	Total # of Individuals (CPUE): 39	1
		%SimpleLithophilicInd.: 0	1
		%Ind.withDELT: 5.13	1
Drainage Area.	otal IBI Score nin 0.	34	

Metrics can score a 0, 1, 3, or 5 depending on calibration.

Total IBI	34
Score	
(min 0,	
max 60)	
	•

SampleNumber: AB42683	EventID: 20T016		LSite: WBL	J190-0002	Cou	nty: Knox
StreamName: Maria Creek	Location	Description:	CR 1050 N/Freela	andville Road		
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	4					
Bluegill	5					
Bluntnose Minnow	1					
Green Sunfish	5					
Longear Sunfish	12					
Sand Shiner	1					
Spotfin Shiner	2					
Yellow Bullhead	9	1	1			

SubBasin: Middle Wabash-Busse Site: Tributary of Maria Creek Latitude: 38.870452 L Ecoregion: Interior River Lowland	Location: County Road 7 .ongitude: -87.334043	git HUC: 05120111190010 00 E, Lane Road IASNat Region: 7B rainage Area (sq.miles): 4.37	LSite: WBU-18-00 Topo: H-50 Gradien	18 County: Knox Segment: 52 ht (ft/mile): 6.761
Sample Information				
SampleNumber: AB42684	EventID: 20T017	Sample	MediumCollected: Fish Commu	unity + Water
SampleDate: 06/22/2020	SurveyCrewChief: KRW	· · ·		HydroLabNumber: P5
WaterFlowType: Run	WaterAppearance: Clear	•	: 2 - Scattered	AirTemperature: 6 - > 86
WindDirection: 27 - West (270 de		WindStrength:	-	
DissolvedO2 (mg/l): 14.6	pH: 8.54 WaterTemp(°C	C): 27.9 Specifi	cConductivity (µS/cm): 506	Turbidity (NTU): 5.46
SpecialNotes: ElectrofishingEquipment: Bac	kpack Voltage: 2	00 Av i	g.StreamWidth(m): 5	DistanceFished (m): 75
SecondsFished: 373	WaterDepthAvg (m):	3 W	aterDepthMax (m): .5	TimeAtSite: 01:00
BridgeInReach:	ReachRepresentative: 🗹	WhyReachNotRepresentative:		
SpecialComments:				
Habitat Information TotalScore ₄₁ SubstrateScore (max100): (max20): RiparianZoneBankErosion 4	6 InstreamCover 8 Score (max20): Pool/GlideQualityScore(max12):	ChannelMorphologyScore (max20): 4 Riffle/RunQualityScore	11 (max8): 2	
Score(max10): GradientScore 6 %Pool: 10	%Riffle: 20 %Run: 70	-	10%-<30%	
(max10):		Pct	Open: 1076-0076	
SubjectiveRating: Aesth	eticRating: NOTES: "NEV	N RECORD"		
Fish Community Index of Biotic I	ntegrity (IBI) Information <u>Actual Metric</u> <u>Observation Score</u> sCount: 14 5	Calibration Used: Interior %Tole	r River Lowland <u>Actual</u> <u>Observation</u> rantIndividuals: 52.54	<u>Metric</u> <u>Score</u> 1

%OmnivoreIndividuals:

%InsectivoreIndividuals:

%SimpleLithophilicInd.:

%Ind.withDELT:

Total # of Individuals (CPUE):

%PioneerIndividuals:

40.11

25.99

81.36

177

3.95

0

1

3

1

3

1

5

Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.	Total IBI Score (min 0, max 60)	34

2

8

0

2

3

5

1

5

SunfishSpeciesCount:

MinnowSpeciesCount:

SuckerSpeciesCount:

SensitiveSpeciesCount:

SampleNumber: AB42684	EventID: 20T017		LSite: WBL	J-18-0018	Cou	nty: Knox
StreamName: Tributary of Ma	ria Creek Location	Description:	County Road 700	E, Lane Roa	d	
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	5					
Bluntnose Minnow	64					
Central Stoneroller	39					
Creek Chub	21					
Green Sunfish	4					
Johnny Darter	1					
Longear Sunfish	7					
Mississippi Silvery Minnow	7					
Pirate Perch	1					
Redfin Shiner	1					
Sand Shiner	7					
Silverjaw Minnow	15					
Spotfin Shiner	1					
Yellow Bullhead	4					

SubBasin:	Middle Wabash-	-Busseron	14 digit HUC	05120111190010	LSite: WBU-18-00	019
Site: Maria	Creek	Locatio	n: E County Road 1050 S			County: Sullivan
Latitude: 3	88.924364	Longitude: -87.33	3119	IASNat Region: 7B	Торо: Н-27	Segment: 52
Ecoregion:	Interior River Lov	wland	Drainage	Area (sq.miles): 10.192	Gradie	nt (ft/mile): 8.775
Sample Infor	mation					
SampleNumber	: AB42685	EventID:	20T018	Sample Me	diumCollected: Fish Comm	unity + Water
SampleDate:	06/22/2020	Survey	CrewChief: KRW	SampleTime: 12:	11:00 PM	HydroLabNumber: P5
WaterFlowType	: Run	WaterA	opearance: Clear	SkyConditions:	1 - Clear	AirTemperature: 5 - 76-85
WindDirection:	27 - West (270 degrees)		WindStrength: 1	- Light	
DissolvedO2 (m	ig/l): 8.89	pH: 8.22	WaterTemp(°C): 24.	3 SpecificCo	onductivity (µS/cm): 968	Turbidity (NTU): 10.1
SpecialNotes:						
ElectrofishingE	quipment:	Backpack	Voltage: 200	Avg.St	treamWidth(m): 5	DistanceFished (m): 75
SecondsFished	: 460	Wate	DepthAvg (m): .3	Wate	rDepthMax (m): 7	TimeAtSite: 01:15
BridgeInReach: SpecialCommer		ReachRepresenta 250 volts for sunfish/pool	tive: 🗹 WhyRea	chNotRepresentative:		

Habitat Information

(max100):	45	SubstrateSo (max20):	core		nstrean Score (n	nCover nax20):	10	ChannelMorphologySo (max20):	core 11	
RiparianZoneBan Score(max10):	kEro	osion	3	Pool/G	lideQua	alityScore(ma	ax12):	3 Riffle/RunQuality	/Score(max8):	2
GradientScore (max10):	10	%Pool:	15	%Riffle:	25	%Run:	60	%Glide:	CanopyCover PctOpen:	<10%- Closed
SubjectiveRating	:	Α	esth	eticRating:		NOTES:	"NEV	/ RECORD"		

Fish Community Index of Biotic Integrity (IBI)	Inform	Calib	pration Used: Interior River Lowland			
<u>Actual</u> <u>Metr</u> Observation Sco				Obs	<u>Actual</u> ervation	<u>Metric</u> Score
SpeciesCount:	15	5		%TolerantIndividuals:	31.71	3
SunfishSpeciesCount:	3	3		%OmnivoreIndividuals:	21.95	3
MinnowSpeciesCount:	8	5		%InsectivoreIndividuals:	42.28	3
SuckerSpeciesCount:	0	1		%PioneerIndividuals:	61.79	3
SensitiveSpeciesCount:	2	3		Total # of Individuals (CPUE):	123	3
				%SimpleLithophilicInd.:	17.89	3
				%Ind.withDELT:	0	5
Metrics are dependent on Ecoregion and Drainage Area.		al IBI core	40			

Metrics can score a 0, 1, 3, or 5 depending on calibration.

	70
Score	
(min 0,	
max 60)	
	•

SampleNumber: AB42685	EventID: 20T018		LSite: WBU	-18-0019	Cou	nty: Sullivan
StreamName: Maria Creek	LocationDescription: E County Road 1050 S					
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	2					
Bluegill	1					
Bluntnose Minnow	8					
Central Stoneroller	19					
Creek Chub	25					
Green Sunfish	4					
Johnny Darter	13					
Longear Sunfish	16					
Mississippi Silvery Minnow	19					
Sand Shiner	1					
Silverjaw Minnow	7					
Slough Darter	2					
Spotfin Shiner	1					
Suckermouth Minnow	3					
Yellow Bullhead	2					

SubBasin:	Middle Wabash	n-Busseron	14	digit HUC: 051201	11190010	LSite:	WBU-18-0020	
Site: Maria	Creek		Location: E County R	oad 975 S				County: Sullivan
Latitude: 3	8.935575	Longitude	-87.323211	IASNat R	egion: 7B	Торо:	H-27	Segment: 52
Ecoregion:	Interior River Lo	owland		Drainage Area (sq.	miles): 7.331		Gradient ((ft/mile): 7.687
Sample Infor	<u>mation</u>							
SampleNumber:	AB42686	; E	EventID: 20T019		Sample Medi	iumCollected:	Fish Communi	ity + Water
SampleDate:	06/22/2020		SurveyCrewChief: K	rw s	ampleTime: 10:42	2:00 AM		HydroLabNumber: P5
WaterFlowType	: Run		WaterAppearance: C	lear s	SkyConditions: 1	- Clear		AirTemperature: 5 - 76-85
WindDirection:	27 - West	(270 degrees)		V	VindStrength: 1 -	Light		
DissolvedO2 (m	g/l): 7.12	pH:	8.02 WaterTem	p(°C): 24.6	SpecificCon	nductivity (µS/c	m): 997	Turbidity (NTU): 11.5
SpecialNotes:								
ElectrofishingE	quipment:	Backpack	Voltage:	200	Avg.Stre	eamWidth(m):	4	DistanceFished (m): 60
SecondsFished	: 493		WaterDepthAvg (m)	.4	WaterD	DepthMax (m):	1	TimeAtSite: 01:00
BridgeInReach:			presentative: 🗹	WhyReachNotRe	presentative:			
SpecialCommer	nts:	250 volts for deep	per pools					

Habitat Information

TotalScore 58 (max100):	SubstrateScore (max20):	6	treamCover ore (max20):	15	ChannelMor (max20):	rphology	Score 17	
RiparianZoneBankEr Score(max10):	osion 5	Pool/Glide	eQualityScore(ma	ax12):	7 Riffle/	RunQuali	ityScore(max8):	2
GradientScore 6 (max10):	%Pool: 70	%Riffle:	10 %Run:	20	%Glide:	0	CanopyCover PctOpen:	10%-<30%
SubjectiveRating:	Aesthe	eticRating:	NOTES:	"NEV	V RECORD"			

Fish Community Index of Biotic Integrity (IBI) I	nform	<u>ation</u>	Calibration Used: Interior River Lowland		
<u>Ac</u> Observ	<u>ctual</u>	Metric	Ohor	<u>Actual</u> ervation	Metric
<u>Observ.</u> SpeciesCount:	<u>ation</u> 15	<u>Score</u> 5	%TolerantIndividuals:	26.42	<u>Score</u> 3
SunfishSpeciesCount:	3	3	%OmnivoreIndividuals:	14.15	5
MinnowSpeciesCount:	7	5	%InsectivoreIndividuals:	68.87	5
SuckerSpeciesCount:	1	1	%PioneerIndividuals:	29.25	5
SensitiveSpeciesCount:	2	5	Total # of Individuals (CPUE):	106	3
			%SimpleLithophilicInd.:	11.32	3
			%Ind.withDELT:	0.94	5
	r		10		

Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.

Total IBI	48
Score	
(min 0,	
max 60)	

SampleNumber: AB42686	EventID: 20T019		LSite: WBU	-18-0020	Cou	nty: Sullivan
StreamName: Maria Creek	Description:	E County Road 97				
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	4					
Bluegill	9					
Bluntnose Minnow	5					
Central Stoneroller	6					
Creek Chub	8					
Green Sunfish	2					
Johnny Darter	6					
Largemouth Bass	4	1				
Longear Sunfish	39					
Sand Shiner	1					
Silverjaw Minnow	4					
Spotfin Shiner	3					
Suckermouth Minnow	2					
White Sucker	10					
Yellow Bullhead	3					

	14 digit HUC: 0512 tion: E County Road 1050 S		County: Sullivan
Latitude: 38.924364 Longitude: -87 Ecoregion: Interior River Lowland		t Region: 7B Topo: H-27 sq.miles): 10.192 Gradi	Segment: 52 ent (ft/mile): 8.775
Sample Information			
•	D: 20T018.5	Sample MediumCollected: Fish Com	munity + Water
-	eyCrewChief: KRW	SampleTime: 01:14:00 PM	HydroLabNumber: P5
	rAppearance: Clear	SkyConditions: 4 - Cloudy	AirTemperature: 5 - 76-85
WindDirection: 27 - West (270 degrees)		WindStrength: 1 - Light	
DissolvedO2 (mg/l): 8.45 pH: 8.09	WaterTemp(°C): 23.6	SpecificConductivity (µS/cm): 735	Turbidity (NTU): 12.9
SpecialNotes:			
ElectrofishingEquipment: Backpack	Voltage: 200	Avg.StreamWidth(m): 5	DistanceFished (m): 75
SecondsFished: 561 Wa	aterDepthAvg (m): .3	WaterDepthMax (m): .5	TimeAtSite: 01:00
BridgelnReach: ReachReprese	ntative: 🗹 WhyReachNot	Representative:	
SpecialComments:			
(max100): ⁴⁰ (max20): ¹⁰ Score RiparianZoneBankErosion 2 Pool/GlideO	(max20): ^o (max20):	phologyScore ₉ RunQualityScore(max8): 1	
Score(max10): Condition Score GradientScore 10 %Pool: 50 %Riffle: 10) %Run: 30 %Glide:	10 CanopyCover 55%-<85%	
(max10):		PctOpen: 0070-0070	
SubjectiveRating: AestheticRating:	NOTES: "NEW RECORD"		
Fish Community Index of Biotic Integrity (IBI) I Ac Observ SpeciesCount:	tual <u>Metric</u>	n Used: Interior River Lowland <u>Actual</u> <u>Observation</u> %TolerantIndividuals: 34.85	<u>Metric</u> <u>Score</u> 3
SunfishSpeciesCount:	3 3	%OmnivoreIndividuals: 6.06	5
MinnowSpeciesCount:	7 5	%InsectivoreIndividuals: 46.97	3
SuckerSpeciesCount:	0 1	%PioneerIndividuals: 77.27	1
SensitiveSpeciesCount:	1 1	Total # of Individuals (CPUE): 132	3
		%SimpleLithophilicInd.: 4.55	1
		%Ind.withDELT: 0	5
Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 0, 1, 3, or 5 depending on calibration.	Total IBI36Score(min 0,max 60)		

SampleNumber: AB43431	EventID: 20T018.5	LSite: WBL	J-18-0019	County: Sullivan		
StreamName: Maria Creek	Location	E County Road 1	050 S			
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies
Blackstripe Topminnow	3					
Bluegill	4					
Bluntnose Minnow	4					
Central Stoneroller	26					
Creek Chub	36					
Green Sunfish	2					
Johnny Darter	25					
Longear Sunfish	8					
Mississippi Silvery Minnow	4					
Silverjaw Minnow	9					
Slough Darter	3					
Spotfin Shiner	2					
Suckermouth Minnow	2					
Yellow Bullhead	4					

SubBasin:	Middle Wabash-	Busseron	14	digit HUC:	051201111900	20	LSite:	WBU-18-0009	9	
Site: Tilley	Ditch	Loca	tion: E Pepmeir R	oad					County: Knox	
Latitude: 38	8.835159	Longitude: -87	.363200	1/	ASNat Region:	7B	Торо:	H-50	Segment: 52	
Ecoregion:	Interior River Lov	wland		Drainage A	rea (sq.miles):	9.299		Gradient	(ft/mile): 4.379	
Sample Inforr	<u>nation</u>									
SampleNumber:	AB43849	Eventl	D: 20T006.5		s	ample MediumCol	ected:	Fish Commun	nity + Water	
SampleDate:	08/20/2020	Surv	veyCrewChief: KR	W	SampleT	ime: 09:55:00 AM			HydroLabNumber:	P5
WaterFlowType:	Run	Wate	erAppearance: Cle	ear	SkyCond	litions: 1 - Clear			AirTemperature: 4	- 61-75
WindDirection:	27 - West (270 degrees)			WindStro	ength: 1 - Light				
DissolvedO2 (mg	g/l): 7.39	pH: 7.6	WaterTemp	(°C): 16.7	5	SpecificConductivi	ty (µS/c	: m): 531	Turbidity (NTU):	7.64
SpecialNotes:										
								_		
ElectrofishingEq	uipment:	Backpack	Voltage:	200		Avg.StreamWid	ith(m):	3	DistanceFished (m):	50
SecondsFished:	336	w	aterDepthAvg (m):	.4		WaterDepthMa	ax (m):	.6	TimeAtSite: 0	1:00
BridgeInReach:		ReachReprese	ntative: 🗹	WhyReac	hNotRepresent	ative:				
SpecialCommen	ts:	MLES backpack								

Habitat Information

(max100): ⁵¹ (SubstrateScore 12 max20):	InstreamCover Score (max20):	10	ChannelMorphology (max20):	yScore 10	
RiparianZoneBankEros Score(max10):	ion 5 Poo	I/GlideQualityScore	(max12):	5 Riffle/RunQua	lityScore(max8):	3
GradientScore 6 (max10):	%Pool: 10 %Riffle	e: 5 %Run	: 85	%Glide:	CanopyCover PctOpen:	>85%- Open
SubjectiveRating:	AestheticRati	ng: NOTES	: "NEV	/ RECORD"		

Fish Community Index of Biotic Integrity (IBI) In	nform	<u>ation</u>	Calib	pration Used: Interior River Lowland		
<u>Act</u> Observa	tual tion	<u>Metric</u> Score		Obs	<u>Actual</u> ervation	<u>Metric</u> Score
SpeciesCount:	17	5		%TolerantIndividuals:	10.04	5
SunfishSpeciesCount:	1	1		%OmnivoreIndividuals:	28.03	3
MinnowSpeciesCount:	9	5		%InsectivoreIndividuals:	66.53	5
SuckerSpeciesCount:	0	1		%PioneerIndividuals:	19.67	5
SensitiveSpeciesCount:	3	5		Total # of Individuals (CPUE):	239	5
				%SimpleLithophilicInd.:	24.69	5
				%Ind.withDELT:	0	5
Metrics are dependent on Ecoregion and Drainage Area.		al IBI core	50			

Metrics can score a 0, 1, 3, or 5 depending on calibration.

	50
Score	
(min 0,	
max 60)	

SampleNumber: AB43849	EventID: 20T006.5		LSite: WBU	J-18-0009	Cou	nty: Knox		
StreamName: Tilley Ditch	LocationDescription: E Pepmeir Road							
Common Name	Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple Anomalies		
Blackstripe Topminnow	4							
Bluntnose Minnow	14							
Brook Silverside	13							
Central Stoneroller	9							
Creek Chub	4							
Emerald Shiner	16							
Johnny Darter	13							
Longear Sunfish	75							
Mississippi Silvery Minnow	53							
Pirate Perch	2							
Sand Shiner	8							
Silverjaw Minnow	7							
Slough Darter	3							
Spotfin Shiner	4							
Suckermouth Minnow	6							
Western Mosquitofish	2							
Yellow Bullhead	6							

Site Name	EPA ID	Macro Sample	e Type	Type Sample # Macro Ev		Macro Event #	sample Date	County
WBU190-0001	20T-010	MHAB		AB42967	7	200714704	7/14/20	Knox
Stream Name Location					HUC 12	HUCTO14		
N	larsh Creek			E Springtown Road			051201111803	05120111190030
Northing	Eas	ting	Ecol	region		Gradient	Drainage Area	QHEI Score
4297817.29	4652	90.89	7	72		2.96	23.57	35

TAXON	COUNT	NOTES	HBI	Туре	<u>Value</u>	<u>Metric</u> <u>Score</u>
			Tolerance	Total Taxa:	71	5
1220 (PLATYHELMINTHES)	2			Total No. Individuals:	326	5
1233 (ERPOBDELLIDAE)	1			EPT Taxa:	14	5
1090 (Physa)	10		8		14	5
1210 (BIVALVIA)	8	1 crushed while moving to vial		% Orthocladiinae + Tanytarsini of Chironomidae:	50	1
2156 (Corbicula fluminea)	10		6	% Non-insects	10.12	5
1083 (ACARI)	1		4	excluding Astacidae:		-
9031 (Lirceus)	1		8	Diptera Taxa:	29	5
1251 (ISOTOMIDAE)	1			% Intolerant (0-3):	3.99	1
1253 (SMINTHURIDAE)	1			. ,		F
3048 (Stenacron)	1		3	% Tolerant (8-10):	6.13	5
1012 (BAETIDAE)	6	damaged	4	% Predators FFG 1:	19.33	3
7010 (Acerpenna	1	S20-029.4	1	% Shredders +	6.13	1
macdunnoughi)		_		Scrapers FFG 1:	0.13	I
3079 (Paracloeodes minutus)	8	S20-029.3		% Collector-Filterers FFG 1:	11.66	3
9347 (Procloeon viridoculare)	1	S20-29.2			6 1 2	5
9361 (Caenis dimunata grp.)	19			% Sprawlers:	6.13	Э
3109 (Isonychia)	1		2	mIBI Metric	Score	44
3175 (Tricorythodes)	1		3			
3245 (Boyeria vinosa)	1		4			
3116 (Progomphus obscurus)	3	immature (<6 mm)				
3052 (Erpetogomphus designatus)	1	!		<u>S</u>	upplement	al Metrics
3397 (Macromia)	3		2		HBI	4.97
7027 (Hetaerina americana)	13					
3542 (Ischnura posita)	1			Shannon-We	aver Index	3.67
3546 (Enallagma)	6	no gills	9			
3549 (Enallagma divagans)	9	Ŭ		Shannon B	Equitability	0.86
3568 (Argia)	3	no gills; early instar	5		nt 3 Taxon	23.62
7201 (Trichocorixa calva)	2	adults (1M adn 1F)	4		ronomidae	46.01
7122 (Microvelia)	2	1 nymph w/ wingpads and 1 adult w/ wings		70 CNI	ononnuae	40.01
3600 (Peltodytes duodecimpunctatus)	1	adult				
3604 (Peltodytes sexmaculatus)	1	adult				
3846 (Berosus)	1	larva	7			
3851 (Berosus peregrinus)	4	adults	6			
3872 (Tropisternus)	3	larvae				
0.077 (Table 1 at a set of the set)	<u> </u>	1.14				

adults

1/27/2021 16:34:15 PM OWQ Biological Studies: MHAB Report, Page 1 of 3

2

3877 (Tropisternus glaber)

TAXON	COUNT	NOTES	HBI
7307 (Stenelmis)	3	larvae	Tolerance 5
9266 (Stenelmis grossa)	18	adults (19M and	5
9200 (Sterieiriis grossa)	10	9F); Slide S20-	
		029.1	
1160 (TRICHOPTERA)	2	early instar	
3432 (Cheumatopsyche)	3	earry instai	3
3473 (Hydropsyche alvata)	2		5
3000 (Hydroptila)	1	largest ind. had	3
		-	3
8922 (Nectopsyche candida)	10	case small vial had	
	10	ind. broken in half	
8923 (Nectopsyche diarina)	1		3
7843 (Dasyhelea)	1		3
9370 (Ceratopogon grp.)	2		8
7984 (Procladius)	 11		0 7
	2		1
7926 (Tanypodinae (Subfamily))	7		
8083 (Chironomini (Tribe))			
8227 (Tanytarsini (Tribe))	3		
9248 (Ablabesmyia	1		
(Ablabesmyia) mallochi grp.)	2		
9261 (Thienemannimyia grp.)	3		
8006 (Orthocladiinae (Subfamily)	1		
8067 (Rheocricotopus robacki)	2		4
8086 (Chironomus)	1		8
8099 (Cryptochironomus)	2		5
8104 (Cryptotendipes)	3		4
8112 (Dicrotendipes)	14		6
9165 (Saetheria tylus)	17		4
8228 (Cladotanytarsus)	38		4
8235 (Paratanytarsus)	1		4
9093 (Stempellinella)	1		3
8241 (Tanytarsus)	20		4
9260 (Cricotopus (Cricotopus)	3		
/Orthocladius (Orthocladius)			
9235 (Polypedilum (Tripodura))	1		
9277 (Polypedilum (Tripodura)	2		
scalaenum grp)			
9278 (Polypedilum (Tripodura)	5		
halterale-simulans grp)			
9241 (Polypedilum	6		
(Polypedilum) illinoense grp.)			
9344 (Cricotopus (Cricotopus)	4		
bicinctus)			
9346 (Cricotopus (Cricotopus)	2		
1192 (STRATIOMYIDAE)	1	immature;	
		stratiomys?	
8274 (Stratiomys)	1		
8397 (Hemerodromia)	2		

Identifier	Date	Count	%PSE
JMB	9/9/2020	8	97.55

Site Name	EPA ID	Macro Sample	Туре	Sample #	Macro Event	# Sample Date	County
WBU-18-0012	20T-011	MHAB		AB42976	200715702	2 7/15/20	Knox
Stream Name				Location		HUC 12	HUCTO14
N	Marsh Creek			E Hunley Ro	ad	051201111803	05120111190030
Northing	Eas	ting	Ecore	gion	Gradient	Drainage Area	QHEI Score
4300664.61	4652	37.78	72	2	3.392	20.805	43

TAXON	COUNT	NOTES	HBI	Туре	Value	<u>Metric</u> Score
TAXON	000111	NOTED	Tolerance	Total Taxa:	66	5
1084 (TURBELLARIA)	1		4	Total No. Individuals:	210	3
1517 (Pristina leidyi)	1		8	EPT Taxa:	14	5
1565 (Aeolosoma)	1		8		14	Э
1234 (GLOSSIPHONIIDAE)	1	Placobdella?		% Orthocladiinae + Tanytarsini of	42.55	3
1233 (ERPOBDELLIDAE)	3			Chironomidae:	42.00	0
1091 (Lymnaea)	1		6	% Non-insects	11.9	5
1090 (Physa)	15		8	excluding Astacidae:		
2156 (Corbicula fluminea)	1		6	Diptera Taxa:	11	3
2181 (Sphaerium)	1		6	% Intolerant (0-3):	8.57	1
8997 (Orconectes propinquus)	1	Form II male	4			
1254 (ENTOMOBRYIDAE)	2	small/beat up		% Tolerant (8-10):	14.76	3
1012 (BAETIDAE)	1	no palps? or abdomen	4	% Predators FFG 1:	36.19	5
7011 (Acerpenna pygmaea)	1		2	% Shredders + Scrapers FFG 1:	11.9	3
9366 (Baetis intercalaris	2	one without	3	% Collector-Filterers	13.81	3
complex)		abdomen except		FFG 1:		
		first 3 segments,		% Sprawlers:	3.33	3
		pattern intact			•	40
3079 (Paracloeodes minutus)	8			mIBI Metric	Score:	42
3081 (Callibaetis)	1	gills in microvial	6			
9347 (Procloeon viridoculare)	1	J20-001.3				
9361 (Caenis dimunata grp.)	14					
9362 (Caenis hilaris grp.)	1			<u>S</u>	upplement	al Metrics
3228 (Anax junius)	1					
3282 (Plathemis lydia)	3		8		HBI	5.63
7025 (ZYGOPTERA)	2	very small				
7027 (Hetaerina americana)	18	some w/out gills		Shannon-We	eaver Index	3.69
		but still lacking				
		lateral spine on		Shannon I	Equitability	0.88
		8th seg.				
3540 (Ischnura)	1	imm.	9	% Domina	int 3 Taxon	23.33
7031 (Ischnura verticalis)	1					
3542 (Ischnura posita)	2			% Chi	ronomidae	22.38
3546 (Enallagma)	9	no gills / undeveloped,	9			
3549 (Enallagma divagans)	8					
3551 (Enallagma exsulans)	3					
3568 (Argia)	5	small banded femur	5			
9095 (Argia fumipennis)	3					
7207 (Belostoma)	3	imm.				
7122 (Microvelia)	1	imm.				
7120 (Marragata brunnaa)	4			1		

1

7139 (Merragata brunnea)

TAXON	COUNT	NOTES	HBI
			Tolerance
3599 (Peltodytes dunavani)	1		
3601 (Peltodytes lengi)	1		
3970 (Hydrocanthus iricolor)	1		
3846 (Berosus)	3	3L	7
3863 (Paracymus)	1	based on Florida	
		Coleoptera	
		character (claws)	
3872 (Tropisternus)	3	3L	
3877 (Tropisternus glaber)	1		
9217 (Enochrus pygmaeus)	3	3A	
3910 (Helochares maculicollis)	1		
1096 (SCIRTIDAE)	3	3L	5
7309 (Stenelmis crenata)	2	1m 1f? J20-001.2	5
9266 (Stenelmis grossa)	2	1m 1f? J20-001.1	
7295 (Ancyronyx variegatus)	1		4
7321 (Macronychus glabratus)	1	1A	3
3793 (Chauliodes rastricornis)	1		
3432 (Cheumatopsyche)	10		3
3473 (Hydropsyche alvata)	1		
1054 (HYDROPTILIDAE)	3	1 pupa, 2 imm.	4
1060 (LEPTOCERIDAE)	1	pupa	4
8926 (Oecetis)	1	tiny	3
8924 (Nectopsyche exquisita)	3	?	3
9370 (Ceratopogon grp.)	1		8
7984 (Procladius)	7		7
7926 (Tanypodinae (Subfamily))	1	pupa, no thoracic	
		horn	
9261 (Thienemannimyia grp.)	1		
8112 (Dicrotendipes)	6	modestus? some	6
		neomodestus?	
8221 (Pseudochironomus)	1		5
8228 (Cladotanytarsus)	4	2 pupae	4
8241 (Tanytarsus)	16		4
9277 (Polypedilum (Tripodura)	1		
scalaenum grp)			
9238 (Polypedilum	4		
(Uresipedilum) flavum)			
9241 (Polypedilum	6	1 pupa w/ last	
(Polypedilum) illinoense grp.)		larval skin	

Identifier	Date	Count	%PSE
MSG	8/31/2020	1	99.53

Site Name	EPA ID	Macro Sample Type	Sample #	Macro Event	# Sample Date	County
WBU-18-0013	20T-009	MHAB	AB42968	200713803	3 7/13/20	Knox
	Stream Name		Location		HUC 12	HUCTO14
Ν	Maria Creek			900 N	051201111802	05120111190020
Northing	Eas	ting Ec	oregion	Gradient	Drainage Area	QHEI Score
4301141.36	4693	38.96	72	3.885	30.791	33

TAXON	COUNT	NOTES	HBI	Туре	Value	<u>Metric</u> <u>Score</u>
in a contract of the contract	000111		Tolerance	Total Taxa:	43	5
1084 (TURBELLARIA)	1		4	Total No. Individuals:	141	3
1233 (ERPOBDELLIDAE)	6			EPT Taxa:	2	1
1090 (Physa)	1		8		2	-
1210 (BIVALVIA)	2	>1 mm		% Orthocladiinae + Tanytarsini of	25	3
2156 (Corbicula fluminea)	2		6	Chironomidae:	20	0
1083 (ACARI)	4		4	% Non-insects	12.06	5
9031 (Lirceus)	1		8	excluding Astacidae:		
3081 (Callibaetis)	2	gills double G20- 017.2	6	Diptera Taxa:	12 0	3
9361 (Caenis dimunata grp.)	4	one specimen		% Intolerant (0-3):	0	1
		with triad of dots		% Tolerant (8-10):	19.86	3
		less conspicuous		% Predators FFG 1:	56.74	5
1026 (COENAGRIONIDAE)	7		9			
3540 (Ischnura)	3		9	% Shredders + Scrapers FFG 1:	1.42	1
7031 (Ischnura verticalis)	3			% Collector-Filterers	3.55	5
3542 (Ischnura posita)	3			FFG 1:	3.55	5
3546 (Enallagma)	16	no gills or poorly	9	% Sprawlers:	2.13	1
ι ο γ		developed				•••
		pigment		mIBI Metric	Score:	36
3549 (Enallagma divagans)	37					
3557 (Enallagma civile)	1					
3560 (Enallagma basidens)	1					
1041 (CORIXIDAE)	3	nymph	5	<u>S</u>	upplement	al Metrics
7202 (Trichocorixa kanza)	1	1 adult female	4			
1039 (BELOSTOMATIDAE)	1	nymph imm.			HBI	6.83
7117 (Trepobates)	1	imm.				
7105 (Gerris marginatus)	1	adult male		Shannon-We	aver Index	3.07
3600 (Peltodytes	1	1 adult				
duodecimpunctatus)				Shannon I	Equitability	0.82
3606 (Peltodytes litoralis)	1	1 adult, hind legs yellow		% Domina	int 3 Taxon	42.55
3789 (Liodessus flavicollis)	1	1 adult	6	78 DOMINA		42.00
3854 (Berosus aculeatus)	1	1 adult female	_	0/ Ch		19.86
3959 (Helichus lithophilus)	1	1A		% Chi	ronomidae	19.00
9266 (Stenelmis grossa)	4	4 adults				
7296 (Dubiraphia)	1	1 larva	5			
7300 (Dubiraphia vittata)	1	1 adult male,				
())		penis ~ 250 um,				
		G20-017.4				
3899 (Helophorus)	1	1 adult G20- 017.1	5			
1073 (CHIRONOMIDAE(all other))	1	<u>o init</u>	6			

TAXON	COUNT	NOTES	HBI Tolerance
7943 (Ablabesmyia)	1		5
7984 (Procladius)	2		7
8083 (Chironomini (Tribe))	2		
9248 (Ablabesmyia	1		
(Ablabesmyia) mallochi grp.)			
8104 (Cryptotendipes)	1		4
8112 (Dicrotendipes)	4		6
8228 (Cladotanytarsus)	3		4
8235 (Paratanytarsus)	2		4
8241 (Tanytarsus)	2		4
9278 (Polypedilum (Tripodura)	6		
halterale-simulans grp)			
9241 (Polypedilum	3		
(Polypedilum) illinoense grp.)			

Identifier	Date	Count	%PSE
SEZ	8/11/2020	1	99.29

Site Name	EPA ID	Macro Samp	ole Type	Sample #		Macro Event #	Sample Date	County
WBU-18-0007	20T-004	MHAB		AB42961		200714703	7/14/20	Knox
Stream Name				Location			HUC 12	HUCTO14
M	Maria Creek			N Perry Road			051201111804	05120111190040
Northing	Eas	ting	Ecol	region	G	adient	Drainage Area	QHEI Score
4295921.95	4637	20.13	7	72		1.971	78.969	28

TAXON	COUNT	NOTES	ЦВІ
TAXON	COUNT	NOTES	HBI Tolerance
1260 (NEMATODA)	2		6
1515 (Pristina aequiseta)	2		8
1517 (Pristina leidyi)	3		8
1561 (Nais communis/variabilis	24	or pardalis?	
complex)			
1553 (Tubificidae with pectinate	1	? or Pristinella	
chetae and hair chetae)		sima?	
1555 (Tubificidae with bifid	1		
chetae and hair)			
1556 (NAIDIDAE w/bifid chetae	3		
+ hair chetae)			
1565 (Aeolosoma)	1	?	8
1090 (Physa)	5		8
3048 (Stenacron)	2	interpunctatum	3
		colors	
1012 (BAETIDAE)	1	callibaetis based	4
		on	
		patterns/mouthpa	
		rts	
9129 (Acerpenna)	1	beat up, ID based	4
		on no villopore,	
		labial palps	
9366 (Baetis intercalaris	4	J20-010.3	3
complex)			
3079 (Paracloeodes minutus)	3		
3083 (Callibaetis floridanus)	4		
9347 (Procloeon viridoculare)	2	based on sternal	
		patterns J20-	
		010.2	
9361 (Caenis dimunata grp.)	11		
3175 (Tricorythodes)	7	one mangled	3
1020 (LIBELLULIDAE)	1	imm.	9
3397 (Macromia)	1	pacifica?	2
3542 (Ischnura posita)	1		
3549 (Enallagma divagans)	1		
3568 (Argia)	1	imm. no gills	5
1041 (CORIXIDAE)	64	imm.	5
7201 (Trichocorixa calva)	24	12f , 12m, some	4
		kanza?	
7202 (Trichocorixa kanza)	4	all male	4
7203 (Trichocorixa sexcincta)	1	? female	4
7183 (Palmacorixa)	1	1 female	5
3600 (Peltodytes	1		

Туре	<u>Value</u>	<u>Metric</u> <u>Score</u>
Total Taxa:	71	5
Total No. Individuals:	455	5
EPT Taxa:	13	5
% Orthocladiinae + Tanytarsini of Chironomidae:	14.17	5
% Non-insects excluding Astacidae:	9.23	5
Diptera Taxa:	30	5
% Intolerant (0-3):	4.84	1
% Tolerant (8-10):	7.91	5
% Predators FFG 1:	32.09	3
% Shredders + Scrapers FFG 1:	5.93	1
% Collector-Filterers FFG 1:	10.11	3
% Sprawlers:	10.55	5
mIBI Metric	48	

Supplemental Metrics

НВІ	5.49
Shannon-Weaver Index	3.3
Shannon Equitability	0.77
% Dominant 3 Taxon	37.58
% Chironomidae	52.75

TAXON	COUNT	NOTES	HBI
			Tolerance
duodecimpunctatus)			
3828 (Dineutus)	1	larva	4
3851 (Berosus peregrinus)	8		6
3872 (Tropisternus)	1	larva	
3879 (Enochrus)	2	larvae	
3884 (Enochrus ochraceus)	1	has some	
		features of	
		sublongus but	
		that doesn't occur	
		in Indiana	
1096 (SCIRTIDAE)	4	4L	5
7307 (Stenelmis)	1	larva	5
9266 (Stenelmis grossa)	6	5 males, 1 female	
		J20 -010.1	
3432 (Cheumatopsyche)	2		3
9154 (Hydropsyche venularis)	2	?	3
3000 (Hydroptila)	3		3
8923 (Nectopsyche diarina)	1		3
7452 (Tipula)	1	Yamatotipula	7
7830 (Atrichopogon)	1		5
7843 (Dasyhelea)	1	Dasyhelea?	
1073 (CHIRONOMIDAE(all	1	unclear maybe P.	6
other))		halterale grp or	
		orthoclad?	
7984 (Procladius)	32		7
9153 (Tribelos)	1	fuscicorne?	5
8083 (Chironomini (Tribe))	9	1 pupae	
8227 (Tanytarsini (Tribe))	1	pupa, no	
		abdomen,	
		tanytarsus?	
9248 (Ablabesmyia	4		
(Ablabesmyia) mallochi grp.)			
9261 (Thienemannimyia grp.)	2	0.1	
8006 (Orthocladiinae (Subfamily)	1	O. dorenus?	0
8086 (Chironomus)	24		8
8099 (Cryptochironomus)	13 75	4	5 6
8112 (Dicrotendipes)	75	4 pupae most	6
		modestus/neomo	
8126 (Clyptotondinoc)	20	destus?	6
8126 (Glyptotendipes) 8179 (Polypedilum)	20	1 00002	U
		1 pupa? 1probably	
		halterale grp,	
		antennae	
		obscured	
9165 (Saetheria tylus)	4		4
8206 (Stenochironomus)	1		4
8221 (Pseudochironomus)	1		5
8228 (Cladotanytarsus)	7	1 pupa?	4
8235 (Paratanytarsus)	1		4
8241 (Tanytarsus)	20	6 pupae	4
9260 (Cricotopus (Cricotopus)	1	O. dorenus?	
/Orthocladius (Orthocladius)	-		

TAXON	COUNT	NOTES	HBI Tolerance
9277 (Polypedilum (Tripodura)	2		
scalaenum grp)			
9278 (Polypedilum (Tripodura)	6		
halterale-simulans grp)			
9238 (Polypedilum	5		
(Uresipedilum) flavum)			
9241 (Polypedilum	5		
(Polypedilum) illinoense grp.)			
9346 (Cricotopus (Cricotopus)	3		
tremulus grp)			
8274 (Stratiomys)	1		
8320 (Chrysops)	2		5

Identifier	Date	Count	%PSE
MSG	9/1/2020	3	99.34

Site Name	EPA ID	Macro Sample Type	Type Sample # Macro Event #		# Sample Date	County
WBU-18-0014	20T-015	MHAB	AB42966	AB42966 200714804		Knox
	Stream Name		Location		HUC 12	HUCTO14
Tributa	ary of Maria Cre	ek	Freelandville Road		051201111801	05120111190010
Northing	Eas	ting Eco	Ecoregion Gradient		Drainage Area	QHEI Score
4303633.71	4693	96.62	72	7.362	2.96	24

TAXON	COUNT	NOTES	HBI	Туре	Value	<u>Metric</u> Score
			Tolerance	Total Taxa:	33	3
1260 (NEMATODA)	1		6	Total No. Individuals:	120	1
1552 (Tubificidae with bifid	4			EPT Taxa:	3	3
chetae and no hair chetae)				% Orthocladiinae +	5	5
1234 (GLOSSIPHONIIDAE)	1			Tanytarsini of	19.23	5
1233 (ERPOBDELLIDAE)	4		0	Chironomidae:		_
1090 (Physa)	40		8	% Non-insects excluding Astacidae:	42.5	1
1083 (ACARI) 1251 (ISOTOMIDAE)	1		4	-	12	3
3048 (Stenacron)	1		3	Diptera Taxa:	12	
3081 (Callibaetis)	2		6	% Intolerant (0-3):	0.83	1
9361 (Caenis dimunata grp.)	9	white globular	0	% Tolerant (8-10):	44.17	1
soon (Caeriis dinidiata gip.)	3	stuff covering		. ,		
		many specimens,		% Predators FFG 1:	25	3
		fungi?		% Shredders + Scrapers FFG 1:	35.83	5
3228 (Anax junius)	1	female nymph		% Collector-Filterers	0.5	
1026 (COENAGRÍONIDAE)	3	small instars with	9	FFG 1:	2.5	5
, , , , , , , , , , , , , , , , , , ,		under developed		% Sprawlers:	0.83	1
		eye + gill			•	
		pigmentation		mIBI Metric	Score:	32
3540 (Ischnura)	3	gills missing	9			
7031 (Ischnura verticalis)	5					
3542 (Ischnura posita)	7					
1041 (CORIXIDAE)	2	nymphs	5	<u>S</u>	upplement	al Metrics
7201 (Trichocorixa calva)	3	1 male + 2	4			
		females			HBI	7.16
7105 (Gerris marginatus)	1	1 male				
3850 (Berosus pantherinus)	1	10 elytral spots		Shannon-We	eaver Index	2.72
3872 (Tropisternus)	1	larva				
3884 (Enochrus ochraceus)	1	male see slide		Shannon I	Equitability	0.78
	4	G20-073	0			
1193 (CULICIDAE)	1		8 7	% Domina	int 3 Taxon	48.33
9369 (Bezzia grp.)	1					
7984 (Procladius)	1		7	% Chi	ronomidae	21.67
7926 (Tanypodinae (Subfamily)) 8227 (Tanytarsini (Tribe))	1					
8086 (Chironomus)	6		8			
8112 (Dicrotendipes)	9		8 6			
8123 (Endochironomus)	9 2		6			
8235 (Paratanytarsus)	3		4			
8241 (Tanytarsus)	1		4			
9204 (Phaenopsectra/Tribelos)	1		4			
9241 (Polypedilum	1					
(Polypedilum) illinoense grp.)						
		1		l		

Residuals			
Identifier	Date	Count	%PSE

Site Name	EPA ID	Macro Samp	ole Type	le Type Sample # Macro Event #		Sample Date	County		
WBU-18-0009	20T-006	MHA	В	AB42962 200713801		AB42962 200713801		7/13/20	Knox
s	tream Name			Location			HUC 12	HUCTO14	
Т	illey Ditch			E Pepmeir Road		051201111802	05120111190020		
Northing	Eas	ting	Eco	Ecoregion Gradient		Drainage Area	QHEI Score		
4298547.08	4684	76.93	-	72		4.379	9.299	42	

TAXON	COUNT	NOTES	HBI Tolerance
1498 (Nais)	2		8
1552 (Tubificidae with bifid chetae and no hair chetae)	2		
1087 (Ferrissia)	2	I accidently crushed shell of one	6
1090 (Physa)	17	some very small were crushed when picked up	8
1210 (BIVALVIA)	1	tiny	
2156 (Corbicula fluminea)	9		6
9031 (Lirceus)	1		8
9001 (Orconectes immunis)	8	females, form II males, or small instars	
1251 (ISOTOMIDAE)	2		
3048 (Stenacron)	2		3
1012 (BAETIDAE)	1	see slide G20- 001.1+.2	4
3081 (Callibaetis)	4		6
3183 (Caenis)	4	possibly C. hillaris grp. triad of dots not apparent	3
9361 (Caenis dimunata grp.)	55		
3248 (Basiaeschna janata)	1		6
7025 (ZYGOPTERA)	1		
1026 (COENAGRIONIDAE)	77	very small instars, eye pattern poorly developed, or damaged	9
3540 (Ischnura)	8	no gills or gills poorly pigmented	9
7031 (Ischnura verticalis)	2		
3542 (Ischnura posita)	6		
3546 (Enallagma)	23	no gills or poorly developed	9
3549 (Enallagma divagans)	13		
3568 (Argia)	3	no gills	5
3569 (Argia apicalis)	1		
9095 (Argia fumipennis)	2		
1041 (CORIXIDAE)	4	nymphs	5
7208 (Belostoma flumineum)	1		4

Туре	Value		<u>Metric</u> Score
Total Taxa:	61		5
Total No. Individuals:	465		5
EPT Taxa:	6		3
% Orthocladiinae + Tanytarsini of Chironomidae:	31.18		3
% Non-insects excluding Astacidae:	7.31		5
Diptera Taxa:	26		5
% Intolerant (0-3):	2.37		1
% Tolerant (8-10):	27.53		1
% Predators FFG 1:	16.34		1
% Shredders + Scrapers FFG 1:	6.02		1
% Collector-Filterers FFG 1:	8.17		5
% Sprawlers:	1.94		1
mIBI Metric	:	36	

Supplemental Metrics

НВІ	6.66
Shannon-Weaver Index	3.04
Shannon Equitability	0.74
% Dominant 3 Taxon	48.17
% Chironomidae	40

ΤΑΧΟΝ	TAXON COUNT NOTES		HBI
in a contract of the second se	000111		Tolerance
7107 (Limnoporus canaliculatus)	1		
7145 (Mesovelia mulsanti)	1		
3600 (Peltodytes	5	some without	
duodecimpunctatus)	C C	sublateral elytral	
,		blotch	
3851 (Berosus peregrinus)	1		6
9266 (Stenelmis grossa)	3	2 females + 1	
		male; see slide	
		G20-001.4	
7296 (Dubiraphia)	3	3 larvae	5
7300 (Dubiraphia vittata)	7	4 males + 3	
		females; G20-	
		001.3 ~240 um	
3000 (Hydroptila)	4	2 withoug cases,	3
		may have lost	_
		one when spilled	
		the vial	
1073 (CHIRONOMIDAE(all	1		6
other))	-		-
7964 (Labrundinia pilosella)	1		3
7984 (Procladius)	4		7
8083 (Chironomini (Tribe))	2		-
8227 (Tanytarsini (Tribe))	1		
9248 (Ablabesmyia	2		
(Ablabesmyia) mallochi grp.)	-		
9261 (Thienemannimyia grp.)	1		
8006 (Orthocladiinae (Subfamily)	2		
8099 (Cryptochironomus)	4		5
8104 (Cryptotendipes)	2		4
8112 (Dicrotendipes)	92		6
8162 (Paracladopelma)	1		7
8166 (Paralauterborniella	1		
nigrohalterale)	•		
8179 (Polypedilum)	1		
8206 (Stenochironomus)	1		4
8228 (Cladotanytarsus)	9		4
8235 (Paratanytarsus)	13		4
8241 (Tanytarsus)	27		4
9260 (Cricotopus (Cricotopus)	2		4
/Orthocladius (Orthocladius)	2		
9277 (Polypedilum (Tripodura)	2		
scalaenum grp)	2		
9278 (Polypedilum (Tripodura)	5		
halterale-simulans grp)	5		
9241 (Polypedilum	8		
(Polypedilum) illinoense grp.)	0		
9344 (Cricotopus (Cricotopus)	1		
bicinctus)			
9346 (Cricotopus (Cricotopus)	3		
	ാ		
tremulus grp) 8355 (Tabanus)	1		F
			5
1074 (EMPIDIDAE)	1		6

Identifier	Date	Count	%PSE
RAC	8/6/2020	6	98.71

Site Name	EPA ID	Macro Sample	e Type Sample # Macro Event #		# Sample Date	County	
WBU190-0002	20T-016	MHAB	B AB42965		200714802	7/14/20	Knox
	Stream Name			Location		HUC 12	HUCTO14
Ν	/laria Creek		CR 1050 N/Freelandville Road			051201111801	05120111190010
Northing	Eas	ting	Eco	Ecoregion Gradient		Drainage Area	QHEI Score
4303709.05	4699	30.39	-	72	5.282	17.468	38

TAXON	COUNT	NOTES	HBI	<u>Type</u>	Value	<u>Metric</u> <u>Score</u>
	000111	110120	Tolerance	Total Taxa:	45	5
1552 (Tubificidae with bifid chetae and no hair chetae)	1			Total No. Individuals:	148	3
1090 (Physa)	7		8	EPT Taxa:	8	5
1094 (Corbicula)	4		0	% Orthocladiinae +		
9019 (Cambarus)	1	1F	2	Tanytarsini of	11.11	5
8996 (Orconectes)	1	1F	4	Chironomidae: % Non-insects		
3048 (Stenacron)	2	R20-045.2, L&R	3	excluding Astacidae:	8.11	5
		maxilla &	-	Diptera Taxa:	12	3
	4	mandible		% Intolerant (0-3):	4.73	1
3081 (Callibaetis)	1	R20-045.3 labium	6	% Tolerant (8-10):	7.43	5
		&proleg, R20- 045.4 mandible				
1013 (CAENIDAE)	3	imm.	7	% Predators FFG 1:	43.92	5
9361 (Caenis dimunata grp.)	15		,	% Shredders +	11.49	3
3397 (Macromia)	1		2	Scrapers FFG 1: % Collector-Filterers		
7027 (Hetaerina americana)	1			FFG 1:	4.73	5
1026 (COENAGRIONIDAE)	1	imm.	9	% Sprawlers:	4.73	3
3540 (Ischnura)	1	no gills	9			
3542 (Ischnura posita)	1			mIBI Metric	Score:	48
3546 (Enallagma)	2		9			
3549 (Enallagma divagans)	35					
3560 (Enallagma basidens)	1					
3568 (Argia)	1	imm.	5	<u>Su</u>	<u>ipplement</u>	al Metrics
9095 (Argia fumipennis)	1					
3572 (Argia tibialis)	1				HBI	5.93
7207 (Belostoma)	1	imm.				
7216 (Ranatra)	1	imm.		Shannon-Wea	aver Index	3.09
7111 (Rheumatobates)	5	imm.				
7107 (Limnoporus canaliculatus)	1	1M		Shannon E	quitability	0.81
7122 (Microvelia)	3	imm.				
3600 (Peltodytes	1			% Dominar	nt 3 Taxon	39.86
duodecimpunctatus)						
3606 (Peltodytes litoralis)	1			% Chir	onomidae	24.32
3851 (Berosus peregrinus)	8	_	6			
9266 (Stenelmis grossa)	5	R20-045.1				
		genitalia &				
	4	protarsus	4			
1057 (HYDROPSYCHIDAE)	1	imm.	4			
3432 (Cheumatopsyche)	1		3			
9154 (Hydropsyche venularis)	1		<u> </u>			
8818 (Oxyethira) 7964 (Labrundinia pilosella)	1		3			
	7		<u> </u>			
7984 (Procladius)	1		1	l		

TAXON	COUNT	NOTES	HBI Tolerance
7926 (Tanypodinae (Subfamily))	2		
8083 (Chironomini (Tribe))	9	1P	
9248 (Ablabesmyia	2		
(Ablabesmyia) mallochi grp.)			
8104 (Cryptotendipes)	1		4
8112 (Dicrotendipes)	8		6
8221 (Pseudochironomus)	1		5
8235 (Paratanytarsus)	3		4
8241 (Tanytarsus)	1		4
9278 (Polypedilum (Tripodura)	1		
halterale-simulans grp)			
8560 (SCIOMYZIDAE)	1		

Identifier	Date	Count	%PSE
------------	------	-------	------

Site Name	EPA ID	Macro Sample	e Type Sample # Macro Event		# Sample Date	County	
WBU-18-0018	20T-017	MHAB	AB AB4296		200714801	7/14/20	Knox
	Stream Name			Locatio	n	HUC 12	HUCTO14
Tributa	ry of Maria Cre	eek	County Road 700 E, Lane Road			051201111801	05120111190010
Northing	Eas	sting	Ecoregion Gradient		Drainage Area	QHEI Score	
4302453.83	4710	21.92	7	2	6.761	4.37	44

TAXON	COUNT	NOTES	HBI Tolerance	
1552 (Tubificidae with bifid	1			Total No.
chetae and no hair chetae)				
1204 (GASTROPODA)	2	tiny, ~ 1 mm long	7	
1090 (Physa)	9		8	% Orth
1083 (ACARI)	1		4	T: CI
8996 (Orconectes)	1	female	4	%
1251 (ISOTOMIDÁE)	2			excludin
1012 (BAETIDAE)	1	no gills, possibly Calibaetis	4	ا ۱ / ۱۰۰۱
9347 (Procloeon viridoculare)	3			% Int
9361 (Caenis dimunata grp.)	4			% То
1026 (COENAGRIONIDAE)	2	tiny instars/ eye pigment poorly developed	9	% Pred % Scr
3542 (Ischnura posita)	1			% Collec
3546 (Enallagma)	3	gills missing or poorly developed	9	c
3549 (Enallagma divagans)	28			
3568 (Argia)	1	gills missing	5	m
9095 (Argia fumipennis)	6			
1060 (LEPTOCERIDAE)	2	possibly Oecetus? tiny instars, ~ 1 mm long each	4	
1073 (CHIRONOMIDAE(all other))	1		6	
7964 (Labrundinia pilosella)	1		3	
7984 (Procladius)	11		7	
7926 (Tanypodinae (Subfamily))	2			
8083 (Chironomini (Tribe))	1			
8227 (Tanytarsini (Tribe))	3			
9246 (Ablabesmyia	2			
(Ablabesmyia))				
9248 (Ablabesmyia	6			
(Ablabesmyia) mallochi grp.)				
8086 (Chironomus)	11		8	
8099 (Cryptochironomus)	8		5	
8104 (Cryptotendipes)	8		4	
8112 (Dicrotendipes)	38		6	
9166 (Paracladopelma nereis)	1			
9335 (Paratendipes albimanus grp)	1			
8211 (Stictochironomus)	1		4	

Туре	Value		<u>Metric</u> Score
Total Taxa:	38		3
Total No. Individuals:	253		3
EPT Taxa:	4		5
% Orthocladiinae + Tanytarsini of Chironomidae:	44.62		3
% Non-insects excluding Astacidae: Diptera Taxa:	5.14		5
	22		5
% Intolerant (0-3):	0.4		1
% Tolerant (8-10):	9.88		5
% Predators FFG 1:	24.11		3
% Shredders + Scrapers FFG 1:	5.14		1
% Collector-Filterers FFG 1:	17.39		3
% Sprawlers:	7.51		5
mIBI Metric	:	42	

Supplemental Metrics

НВІ	5.28
Shannon-Weaver Index	2.9
Shannon Equitability	0.8
% Dominant 3 Taxon	42.29
% Chironomidae	73.52

TAXON	COUNT	NOTES	HBI Tolerance
8228 (Cladotanytarsus)	29		4
8235 (Paratanytarsus)	10		4
8241 (Tanytarsus)	40		4
9260 (Cricotopus (Cricotopus) /Orthocladius (Orthocladius)	1		
9277 (Polypedilum (Tripodura) scalaenum grp)	6		
9278 (Polypedilum (Tripodura) halterale-simulans grp)	4		
9241 (Polypedilum (Polypedilum) illinoense grp.)	1		

Identifier	Date	Count	%PSE
SEZ	8/11/2020	15	94.07

Site Name	EPA ID	Macro Sample Ty	pe Sample #	Macro Ever	nt # Sample Date	County
WBU-18-0011	20T-008	MHAB	AB42969	2007138	04 7/13/20	Knox
S	tream Name		Locat	tion	HUC 12	HUCTO14
Tributar	y of Maria Cre	eek	County Road 90 Freelandvi		051201111802	05120111190020
Northing	Eas	sting	Ecoregion	Gradient	Drainage Area	QHEI Score
4301109.34	4687	57.52	72	12.542	3.055	34

TAXON	COUNT	NOTES	HBI Tolerance	
1552 (Tubificidae with bifid chetae and no hair chetae)	1			
1090 (Physa)	6		8	
9036 (Caecidotea)	1		8	
8996 (Orconectes)	3		4	
1251 (ISOTOMIDAE)	1		7	
3081 (Callibaetis)	8	one without gills but similar color pattern	6	
9361 (Caenis dimunata grp.)	11	including one tiny instar (without conspicuous triad of dots)		
1026 (COENAGRIONIDAE)	7	tiny instars or eye pigment underdeveloped	9	
3540 (Ischnura)	1	gills missing	9	
7031 (Ischnura verticalis)	8			
3546 (Enallagma)	3	gill pigment poorly developed	9	
3549 (Enallagma divagans)	4			
3560 (Enallagma basidens)	1			
3568 (Argia)	2	lateral gills missing	5	
9095 (Argia fumipennis)	2			
7105 (Gerris marginatus)	2	1 male + 1 female		
7122 (Microvelia)	3	3 adults with wings		
7128 (Microvelia hinei)	4	4 apterous adults		
3600 (Peltodytes duodecimpunctatus)	1			
7296 (Dubiraphia)	1	male	5	
9369 (Bezzia grp.)	1		7	
7929 (Clinotanypus pinguis)	1		8	
7964 (Labrundinia pilosella)	1		3	
7984 (Procladius)	9		3 7	
8086 (Chironomus)	1		8	
8104 (Cryptotendipes)	5		4	
8112 (Dicrotendipes)	14		6	
8179 (Polypedilum)	2			
8235 (Paratanytarsus)	8		4	

Туре	<u>Value</u>		<u>Metric</u> <u>Score</u>
Total Taxa:	34		3
Total No. Individuals:	128		1
EPT Taxa:	2		3
% Orthocladiinae + Tanytarsini of Chironomidae:	19.64		5
% Non-insects excluding Astacidae:	6.25		5
Diptera Taxa:	13		3
% Intolerant (0-3):	0.78		1
% Tolerant (8-10):	15.63		3
% Predators FFG 1:	32.03		3
% Shredders + Scrapers FFG 1:	6.25		1
% Collector-Filterers FFG 1:	0		5
% Sprawlers:	7.03		5
mIBI Metric Score:			38

Supplemental Metrics

HBI	6.32
Shannon-Weaver Index	3.17
Shannon Equitability	0.9
% Dominant 3 Taxon	26.56
% Chironomidae	43.75

TAXON	COUNT	NOTES	HBI Tolerance
9278 (Polypedilum (Tripodura)	8		
halterale-simulans grp)			
9241 (Polypedilum	4		
(Polypedilum) illinoense grp.)			
9344 (Cricotopus (Cricotopus)	1		
bicinctus)			
9346 (Cricotopus (Cricotopus)	2		
tremulus grp)			
9376 (Brachycera	1	pupa in larval	
(Cyclorrhapha))		skin	

Identifier Date Count	%PSE
-----------------------	------

Site Name	EPA ID	Macro Sample Type	Sample #	Macro Event	# Sample Date	County
WBU-18-0016	20T-013	MHAB	AB42974	200715801	7/15/20	Sullivan
Stream Name			Location	า	HUC 12	HUCTO14
Marsh Creek			S County Road 50 E		051201111803	05120111190030
Northing	Eas	ting Ec	oregion	Gradient	Drainage Area	QHEI Score
4308292.57	308292.57 464999.74		72	5.502	8.376	37

TAXON	COUNT	NOTES	HBI	Туре	<u>Value</u>	<u>Metric</u> Score
			Tolerance	Total Taxa:	55	5
1552 (Tubificidae with bifid chetae and no hair chetae)	1			Total No. Individuals:	179	3
1555 (Tubificidae with bifid	1			EPT Taxa:	10	5
chetae and hair)				% Orthocladiinae +		
1090 (Physa)	1		8	Tanytarsini of	48.44	1
2156 (Corbicula fluminea)	4		6	Chironomidae: % Non-insects	0.04	
8996 (Orconectes)	1	small female	4	excluding Astacidae:	3.91	5
1251 (ISOTOMIDAE)	1			Diptera Taxa:	23	5
1012 (BAETIDAE)	1	no gills	4	0/ intelevent (0.2).	6.7	1
3066 (Baetis intercalaris)	3		3	% Intolerant (0-3):		-
3081 (Callibaetis)	1		6	% Tolerant (8-10):	7.82	5
9361 (Caenis dimunata grp.)	21			% Predators FFG 1:	29.05	3
3397 (Macromia)	1		2	% Shredders +		
7027 (Hetaerina americana)	5			Scrapers FFG 1:	4.47	1
1026 (COENAGRIONIDAE)	6	tiny instars	9	% Collector-Filterers	11.73	3
3542 (Ischnura posita)	5			FFG 1:		
3546 (Enallagma)	7	gills missing or	9	% Sprawlers:	4.47	3
		pigment poorly		mIBI Metric	Saara	40
		developed			Score.	40
3549 (Enallagma divagans)	17					
3560 (Enallagma basidens)	1					
9095 (Argia fumipennis)	4					
7105 (Gerris marginatus)	1	female		<u>5</u>	upplement	al metrics
3809 (Gyrinus)	2	larvae	4			- 1-
3851 (Berosus peregrinus)	1	adult female	6		HBI	5.17
1096 (SCIRTIDAE)	3	larvae	5			
9266 (Stenelmis grossa)	3	2 females + 1		Shannon-Weaver Index		3.56
		male slide G20-		-		
7000 (D. L.)		066.2		Shannon Equitability		0.9
7296 (Dubiraphia)	1	larva	5			
7300 (Dubiraphia vittata)	3	2 females + 1		% Dominant 3 Taxon		27.93
		male, penis ~				
		275 um Slide		% Chi	ronomidae	35.75
2700 (Convdelue corputue)	1	G20-066.1	2			
3799 (Corydalus cornutus)	1 3	tiny instar	2 4			
1057 (HYDROPSYCHIDAE)	5	tiny instars	4			
3432 (Cheumatopsyche) 3473 (Hydropsyche alvata)	5		3			
8980 (Hydropsyche betteni grp)	3					
3000 (Hydroptila)	2		3			
8922 (Nectopsyche candida)	2	or maybe N.	3			
		exquisita				
7984 (Procladius)	3		7			

TAXON	COUNT	NOTES	HBI
			Tolerance
7926 (Tanypodinae (Subfamily))	1	1 pupa	
8082 (Chironominae	1	1 pupa	
(Subfamily))			
8083 (Chironomini (Tribe))	1		
9261 (Thienemannimyia grp.)	1		
8006 (Orthocladiinae (Subfamily)	1		
8099 (Cryptochironomus)	3		5
8112 (Dicrotendipes)	8		6
8179 (Polypedilum)	1		
9165 (Saetheria tylus)	2		4
8211 (Stictochironomus)	1		4
8228 (Cladotanytarsus)	4		4
8235 (Paratanytarsus)	12		4
8241 (Tanytarsus)	9		4
9260 (Cricotopus (Cricotopus)	1		
/Orthocladius (Orthocladius)			
9277 (Polypedilum (Tripodura)	4		
scalaenum grp)			
9278 (Polypedilum (Tripodura)	4		
halterale-simulans grp)			
9241 (Polypedilum	1		
(Polypedilum) illinoense grp.)			
9344 (Cricotopus (Cricotopus)	2		
bicinctus)			
8397 (Hemerodromia)	2		
1082 (MUSCIDAE)	1	1 larva	6

Identifier Date Count %PSE			Identifier	Date	Count	%PSE
----------------------------	--	--	------------	------	-------	------

Site Name	EPA ID	Macro Sample Typ	e Sample #	Macro Event	# Sample Date	County
WBU-18-0015	20T-012	MHAB	AB42975	200715703	3 7/15/20	Knox
Stream Name			Locatio	on	HUC 12	HUCTO14
Marsh Creek			E Moody Road		051201111803	05120111190030
Northing	Eas	ting l	Ecoregion	Gradient	Drainage Area	QHEI Score
4305162.56	2.56 463398.79		72	2.932	12.234	25

TAXON	COUNT	NOTES	HBI	<u>Type</u>	Value	<u>Metric</u> <u>Score</u>
TAKON	000111		Tolerance	Total Taxa:	41	5
1552 (Tubificidae with bifid chetae and no hair chetae)	6			Total No. Individuals:	298	5
1556 (NAIDIDAE w/bifid chetae	1			EPT Taxa:	3	1
+ hair chetae)				% Orthocladiinae +		_
1233 (ERPOBDELLIDAE)	1			Tanytarsini of Chironomidae:	25.29	3
1091 (Lymnaea)	1		6	% Non-insects	10.07	F
1090 (Physa)	5		8	excluding Astacidae:	10.07	5
1210 (BIVALVIA)	13			Diptera Taxa:	18	5
2156 (Corbicula fluminea)	3	1 lost while placing in vial	6	% Intolerant (0-3):	0	1
1110 (EPHEMEROPTERA)	1	damaged - only head (Caenis?)		% Tolerant (8-10): % Predators FFG 1:	3.36 51.68	5 5
1012 (BAETIDAE)	5	damaged	4		00.10	Э
9361 (Caenis dimunata grp.)	37	Ŭ		% Shredders + Scrapers FFG 1:	2.35	1
7031 (Ischnura verticalis) 3542 (Ischnura posita)	1 2			% Collector-Filterers FFG 1:	5.03	5
3546 (Enallagma)	3	no gills, likely E.	9	% Sprawlers:	8.39	5
		divagans		mIBI Metric	Score.	46
3549 (Enallagma divagans)	3				00010.	40
1041 (CORIXIDAE)	43	nymphs	5 4			
7201 (Trichocorixa calva)	62	adults (24 males, 38 females)				
7202 (Trichocorixa kanza)	6	adults (3 males, 3 females)	4	<u>S</u>	upplement	al Metrics
7111 (Rheumatobates)	6	1 winged female, 5 nymphs			HBI	5.02
3600 (Peltodytes	4	adults (2F, 1M,		Shannon-We	aver Index	2.84
duodecimpunctatus)		1?); males with genitalia in small				0.76
		vial		Shannon i	Equitability	0.76
3604 (Peltodytes sexmaculatus)	1	adult		% Domina	nt 3 Taxon	47.65
3606 (Peltodytes litoralis)	2	adults				47.05
3851 (Berosus peregrinus)	1	adult	6	9/ Ch	ronomidae	29.19
7300 (Dubiraphia vittata)	3	S20-018 (PL =		% Chi	ronomidae	29.19
		255 um); adults (2M and 1F)				
9370 (Ceratopogon grp.)	1		8			
7974 (Pentaneura inconspicua)	1		5			
7984 (Procladius)	21		7			
8083 (Chironomini (Tribe))	2					
9248 (Ablabesmyia (Ablabesmyia) mallochi grp.)	1					
9261 (Thienemannimyia grp.)	1					

TAXON	COUNT	NOTES	HBI Tolerance
8086 (Chironomus)	1		8
8099 (Cryptochironomus)	4		5
8104 (Cryptotendipes)	4		4
8112 (Dicrotendipes)	22		6
8221 (Pseudochironomus)	1		5
8228 (Cladotanytarsus)	8		4
8235 (Paratanytarsus)	1		4
9221 (Stempellina)	1		
8241 (Tanytarsus)	12		4
9235 (Polypedilum (Tripodura))	1		
9278 (Polypedilum (Tripodura)	3		
halterale-simulans grp)			
9241 (Polypedilum	3		
(Polypedilum) illinoense grp.)			

Identifier	Date	Count	%PSE
SEZ	9/1/2020	7	97.65

Site Name	EPA ID	Macro Sample Type	Sample #	Macro Event	# Sample Date	County
WBU-18-0014	20T-015	MHAB	AB42981	200714805	5 7/14/20	Knox
Stream Name			Location		HUC 12	HUCTO14
Tributary of Maria Creek		eek	Freelandville Road		051201111801	05120111190010
Northing	Eas	sting Ec	oregion	Gradient	Drainage Area	QHEI Score
4303633.71	4303633.71 469396.62		72 7.362		2.96	23

TAXON	COUNT	NOTES	HBI	Туре	Value	<u>Metric</u> Score
			Tolerance	Total Taxa:	28	3
1552 (Tubificidae with bifid	2			Total No. Individuals:	120	1
chetae and no hair chetae)						-
1234 (GLOSSIPHONIIDAE)	1			EPT Taxa:	4	5
1233 (ERPOBDELLIDAE)	4			% Orthocladiinae +	07.50	2
1090 (Physa)	26		8	Tanytarsini of Chironomidae:	27.59	3
9031 (Lirceus)	1		8	% Non-insects	28.33	3
1012 (BAETIDAE)	2	gills missing	4	excluding Astacidae:	20.33	3
3081 (Callibaetis)	1		6	Diptera Taxa:	10	3
9347 (Procloeon viridoculare)	1			% Intolerant (0-3):	0	1
9361 (Caenis dimunata grp.)	30			. ,		
1026 (COENAGRIONIDAE)	2	eye pigmentation	9	% Tolerant (8-10):	27.5	1
		poorly developed		% Predators FFG 1:	18.33	3
3540 (Ischnura)	4	gills missing or poorly developed	9	% Shredders + Scrapers FFG 1:	23.33	5
3542 (Ischnura posita)	8			% Collector-Filterers	0.83	5
1041 (CORIXIDAE)	1	nymph	5	FFG 1:		
7201 (Trichocorixa calva)	3	females	4	% Sprawlers:	0.83	1
3851 (Berosus peregrinus)	1	adult	6	m DI Matria	See.	24
3863 (Paracymus)	1			mIBI Metric	Score:	34
3872 (Tropisternus)	1	larva				
9217 (Enochrus pygmaeus)	2	1 male + 1 female				
7984 (Procladius)	1		7	<u>S</u>	upplement	al Metrics
9248 (Ablabesmyia	2					
(Ablabesmyia) mallochi grp.)					HBI	6.78
9261 (Thienemannimyia grp.)	2					
8112 (Dicrotendipes)	9		6	Shannon-We	eaver Index	2.61
8179 (Polypedilum)	1					
8228 (Cladotanytarsus)	4		4	Shannon I	Equitability	0.78
8235 (Paratanytarsus)	3		4		-	
8241 (Tanytarsus)	1		4	% Domina	int 3 Taxon	54.17
9278 (Polypedilum (Tripodura)	2					
halterale-simulans grp)				% Chi	ronomidae	24.17
9241 (Polypedilum	4			,5 C		
(Polypedilum) illinoense grp.)						

Identifier Date	Count	%PSE
-----------------	-------	------

Site Name	EPA ID	Macro Sample Type	Sample #	Macro Event	# Sample Date	County
WBU-18-0020	20T-019	MHAB	AB42963	200715803	3 7/15/20	Sullivan
	Stream Name		Location	1	HUC 12	HUCTO14
N	/laria Creek		E County Roa	d 975 S	051201111801	05120111190010
Northing	Eas	ting Ec	oregion	Gradient	Drainage Area	QHEI Score
4309677.15	4719	87.13	72	7.687	7.331	64

TAXON	COUNT	NOTES	HBI	Туре	<u>Value</u>	<u>Metric</u> Score
-			Tolerance	Total Taxa:	47	5
1552 (Tubificidae with bifid	1			Total No. Individuals:	195	3
chetae and no hair chetae)	_		_	EPT Taxa:	8	5
2156 (Corbicula fluminea)	3		6		0	5
1083 (ACARI)	1		4	% Orthocladiinae + Tanytarsini of	42.22	3
8996 (Orconectes)	4	females + form II males	4	Chironomidae:	72.22	0
1012 (BAETIDAE)	3	damaged instars	4	% Non-insects excluding Astacidae:	2.56	5
7011 (Acerpenna pygmaea)	16		2	Diptera Taxa:	21	5
3066 (Baetis intercalaris)	5		3	_		
9361 (Caenis dimunata grp.)	23		<u> </u>	% Intolerant (0-3):	21.54	3
1120 (ANISOPTERA)	1	tiny instar ~ 1.5		% Tolerant (8-10):	3.59	5
		mm long		% Predators FFG 1:	15.38	1
3397 (Macromia)	2		2	% Shraddara		I
1026 (COENAGRIONIDAE)	6	tiny instars with	9	% Shredders + Scrapers FFG 1:	4.62	1
		poorly developed		% Collector Eilterere	15.9	3
		eye pigment		FFG 1:	15.9	
3542 (Ischnura posita)	1			% Sprawlers:	3.08	3
3546 (Enallagma)	1	gills missing	9		C	40
3549 (Enallagma divagans)	9			mIBI Metric S	Score:	42
3571 (Argia sedula)	6	or A. fumipennis?				
7111 (Rheumatobates)	1	nymph				
7117 (Trepobates)	2	female				
7120 (Trepobates pictus)	1	1 male + 1		<u>Su</u>	pplement	al Metrics
		female			ĺ	
7307 (Stenelmis)	7	larvae	5		HBI	4.22
9266 (Stenelmis grossa)	20	adults, 9 females				
		+ 11 males,		Shannon-Weav	ver Index	3.27
		slides G20-061.2				
		+.3		Shannon Eq	quitability	0.85
7296 (Dubiraphia)	13	adults 7 females	5			
		+ 6 males, G20-		% Dominant	t 3 Taxon	31.28
		061.1 penis ~270				
	· .	um		% Chiro	onomidae	23.08
7321 (Macronychus glabratus)	1	adult	3			_0.00
3432 (Cheumatopsyche)	18		3			
8980 (Hydropsyche betteni grp)	1					
1054 (HYDROPTILIDAE)	1	dorsoventrally	4			
		compressed with				
2045 (Tricorodo		cylindrical case				
8945 (Triaenodes nox)	2					
7943 (Ablabesmyia)	1		5			
7984 (Procladius)	1		7			
7926 (Tanypodinae (Subfamily))	1	1 pupa				

TAXON	COUNT	NOTES	HBI Tolerance
8082 (Chironominae	1	1 pupa	
(Subfamily))			
8083 (Chironomini (Tribe))	1		
8227 (Tanytarsini (Tribe))	1		
9248 (Ablabesmyia	1		
(Ablabesmyia) mallochi grp.)			
8023 (Cricotopus bicinctus)	1		7
9284 (Tribelos jucundus)	1		
8099 (Cryptochironomus)	4		5
8104 (Cryptotendipes)	3		4
8112 (Dicrotendipes)	5		6
8206 (Stenochironomus)	1		4
8221 (Pseudochironomus)	1		5
8228 (Cladotanytarsus)	4		4
8235 (Paratanytarsus)	4		4
8241 (Tanytarsus)	9		4
9278 (Polypedilum (Tripodura)	2		
halterale-simulans grp)			
9238 (Polypedilum	1		
(Uresipedilum) flavum)			
9241 (Polypedilum	2		
(Polypedilum) illinoense grp.)			
1078 (TABANIDAE)	1		6

Identifier Date Count	%PSE
-----------------------	------

Site Name	EPA ID	Macro Sample Type	Sample #	Macro Event	# Sample Date	County
WBU-18-0019	20T-018	MHAB	AB42972	200715802	2 7/15/20	Sullivan
S	Stream Name		Location	า	HUC 12	HUCTO14
N	laria Creek		E County Road	1050 S	051201111801	05120111190010
Northing	Eas	ting E	coregion	Gradient	Drainage Area	QHEI Score
4308436.12	4711	23.9	72	8.775	10.192	45

TAXON	COUNT	NOTES	HBI	Туре	Value	<u>Metric</u> Score
insten	COONT		Tolerance	Total Taxa:	56	5
1552 (Tubificidae with bifid	1			Total No. Individuals:	432	5
chetae and no hair chetae)				-		
1087 (Ferrissia)	1		6	EPT Taxa:	8	5
1090 (Physa)	8		8	% Orthocladiinae + Tanytarsini of	67.52	1
1210 (BIVALVIA)	2	tiny		Chironomidae:	07.52	I
2156 (Corbicula fluminea)	24		6	% Non-insects	9.03	5
1083 (ACARI)	3		4	excluding Astacidae:		
8996 (Orconectes)	13	Females + Form	4	Diptera Taxa:	21	5
		II males		% Intolerant (0-3):	5.79	1
7011 (Acerpenna pygmaea)	5		2		10.01	3
3065 (Baetis)	3	000.000.0	3	% Tolerant (8-10):	19.91	
9366 (Baetis intercalaris	6	G20-020.1	3	% Predators FFG 1:	18.75	3
complex)				% Shredders +	3.01	1
9347 (Procloeon viridoculare)	2			Scrapers FFG 1:	5.01	1
9361 (Caenis dimunata grp.)	33			% Collector-Filterers FFG 1:	18.98	3
3116 (Progomphus obscurus)	2		0	% Sprawlers:	3.7	3
3397 (Macromia)	6		2	⁷⁰ Sprawiers.	5.7	5
3448 (Somatochlora)	1		1	mIBI Metric	Score:	40
7025 (ZYGOPTERA)	3					
7026 (Calopteryx maculata)	67		0			
1026 (COENAGRIONIDAE)	67	tiny instars or eye pigment	9			
		underdeveloped		Si	upplement	al Metrics
7031 (Ischnura verticalis)	1	underdeveloped		<u>.</u>		
3546 (Enallagma)	11	lateral gills	9		НВІ	5.73
5540 (Enallagina)		missing or	J			0.10
		underdeveloped		Shannon-We	aver Index	3.2
3549 (Enallagma divagans)	22	2		Shannon-We		0.2
3568 (Argia)	2	gills missing or	5	Shannon E	auitability	0.79
	_	underdeveloped	· ·	Shannon E	quitability	0.73
3569 (Argia apicalis)	1	•		% Domina	nt 3 Taxon	35.19
3571 (Argia sedula)	14			/0 Domina		00.10
7111 (Rheumatobates)	1	nymph, tiny instar		% Chir	ronomidae	36.34
7122 (Microvelia)	2	nymphs		70 Om	ononnuae	00.04
3600 (Peltodytes	2					
duodecimpunctatus)						
7307 (Stenelmis)	4	larvae	5			
9266 (Stenelmis grossa)	21	adults; 10 males				
		+ 11 females;				
		see slides G20-				
		020.3+.4				
7296 (Dubiraphia)	3	larvae	5			

4

adults, 2 females

7300 (Dubiraphia vittata)

TAXON	COUNT	NOTES	HBI
			Tolerance
		+ 2 males; G20-	
		020.2 ~260 um	
7321 (Macronychus glabratus)	1	adult	3
1160 (TRICHOPTERA)	1	probably very	
		small	
		Hydropsychid	
		instar without gills	
8937 (Triaenodes)	1	tiny instar	
8926 (Oecetis)	1	tiny instar	3
9369 (Bezzia grp.)	1		7
1073 (CHIRONOMIDAE(all	1		6
other))			
7984 (Procladius)	13		7
9153 (Tribelos)	1		5
8082 (Chironominae	1		
(Subfamily))			
8083 (Chironomini (Tribe))	3		
8227 (Tanytarsini (Tribe))	3		
9248 (Ablabesmyia	2		
(Ablabesmyia) mallochi grp.)			
9284 (Tribelos jucundus)	2		
8074 (Thienemanniella)	1		4
8099 (Cryptochironomus)	1		5
8104 (Cryptotendipes)	3		4
8112 (Dicrotendipes)	17		6
8167 (Paratendipes)	1		6
9165 (Saetheria tylus)	3		4
8228 (Cladotanytarsus)	27		4
8235 (Paratanytarsus)	21		4
8238 (Rheotanytarsus)	2		3
8241 (Tanytarsus)	52		4
9278 (Polypedilum (Tripodura)	1		
halterale-simulans grp)			
9241 (Polypedilum	2		
(Polypedilum) illinoense grp.)			

Identifier	Date	Count	%PSE
SEZ	8/11/2020	6	98.61

Site Name	EPA ID	Macro Sample Ty	/pe Sample	#	Macro Event	# Sample Date	County
WBU-18-0010	20T-007	MHAB	AB42970		AB42970 200713802		Knox
	Stream Name		Loc	ation		HUC 12	HUCTO14
Tributa	ry of Maria Cre	eek (County Road 70)0 E, L	_ane Road	051201111802	05120111190020
Northing	Eas	ting	Ecoregion		Gradient	Drainage Area	QHEI Score
4300729.19	4709	97.09	72		9.923	2.623	29

TAXON	COUNT	NOTES	HBI
			Tolerance
1233 (ERPOBDELLIDAE)	5		_
1204 (GASTROPODA)	2	tiny, with crushed shells	7
1090 (Physa)	9		8
1083 (ACARI)	4	some with strange abdominal constriction, Arreneus?	4
9001 (Orconectes immunis)	2	form II male	
1251 (ISOTOMIDAE)	1		
3245 (Boyeria vinosa)	1		4
3305 (Erythemis simplicicollis)	8	tiny instars	
1026 (COENAGRIONIDAE)	2	small instars with underdeveloped eye pigment	9
3540 (Ischnura)	4	gills missing or poorly developed	9
7031 (Ischnura verticalis)	6		
3542 (Ischnura posita)	2		
3568 (Argia)	1	gills missing	5
9095 (Argia fumipennis)	3		
7201 (Trichocorixa calva)	2	2 females	4
7230 (Neoplea striola)	1		
7207 (Belostoma)	1	nymph	
7208 (Belostoma flumineum)	1	male with eggs	4
3600 (Peltodytes duodecimpunctatus)	2		
3846 (Berosus)	1	larva	7
3872 (Tropisternus)	1	larva	
9216 (Tropisternus lateralis)	1	adult	
3879 (Enochrus)	1	larva	
9217 (Enochrus pygmaeus)	2	adults, 1 male + 1 female	
7300 (Dubiraphia vittata)	1	male, G20-049, penis ~255 um	
7321 (Macronychus glabratus)	1	adult	3
3899 (Helophorus)	1	adult	5
1077 (CERATOPOGONIDAE)	1		6
9369 (Bezzia grp.)	10		7
9370 (Ceratopogon grp.)	5		8
1073 (CHIRONOMIDAE(all other))	2		6

Туре	Value		<u>Metric</u> Score
Total Taxa:	40		3
Total No. Individuals:	108		1
EPT Taxa:	0		1
% Orthocladiinae + Tanytarsini of Chironomidae:	15.38		5
% Non-insects excluding Astacidae:	18.52		3
Diptera Taxa:	13		3
% Intolerant (0-3):	0.93		1
% Tolerant (8-10):	18.52		3
% Predators FFG 1:	50.93		5
% Shredders + Scrapers FFG 1:	11.11		3
% Collector-Filterers FFG 1:	2.78		5
% Sprawlers:	4.63		3
mIBI Metric	:	36	

Supplemental Metrics

НВІ	6.25
Shannon-Weaver Index	3.3
Shannon Equitability	0.89
% Dominant 3 Taxon	29.63
% Chironomidae	24.07

TAXON	COUNT	NOTES	HBI Tolerance
7965 (Larsia)	2		4
7984 (Procladius)	2		7
8227 (Tanytarsini (Tribe))	1		
8112 (Dicrotendipes)	1		6
8221 (Pseudochironomus)	13		5
8228 (Cladotanytarsus)	2		4
8235 (Paratanytarsus)	1		4
9277 (Polypedilum (Tripodura)	1		
scalaenum grp)			
9278 (Polypedilum (Tripodura)	1		
halterale-simulans grp)			

Identifier	Date	Count	%PSE
SEZ	8/11/2020	0	100

Site Name	EPA ID	Macro Sample Ty	e Type Sample # Macro Event #		sample Date	County	
WBU-18-0006	20T-003	MHAB	AB42978 200714702		7/14/20	Knox	
	Stream Name		Location HUC 12 HUCTO14				
C	otton Branch		E Springtown Road			051201111804	05120111190040
Northing	Eas	ting	Ecoregion Gradient		Drainage Area	QHEI Score	
4295210.91	4620	69.86	72		9.645	3.133	63

TAXON	COUNT	NOTES	HBI	Туре	Value	<u>Metric</u> <u>Score</u>
			Tolerance	Total Taxa:	27	3
1091 (Lymnaea)	2	2 different	6	Total No. Individuals:	56	1
		species? is one a		EPT Taxa:	2	3
		hydroboid w/out		% Orthocladiinae +	2	5
1090 (Physa)	1	operculum?	8	Tanytarsini of	14.29	5
9031 (Lirceus)	9		8	Chironomidae:		
8996 (Orconectes)	1	f	4	% Non-insects excluding Astacidae:	21.43	3
1017 (HEPTAGENIIDAE)	1	Stenacron or	4	Diptera Taxa:	14	5
	•	Stenonema?	·	•		
7011 (Acerpenna pygmaea)	1		2	% Intolerant (0-3):	3.57	1
7025 (ZYGOPTERA)	1	Coenagrionidae?		% Tolerant (8-10):	28.57	1
3551 (Enallagma exsulans)	1			% Predators FFG 1:	12.5	1
9095 (Argia fumipennis)	1			% Shredders +		
1041 (CORIXIDAE)	1	nymph, big	5	Scrapers FFG 1:	14.29	3
		swimming hairs		% Collector-Filterers	7.14	5
		on back legs		FFG 1:		_
3809 (Gyrinus)	1	1L	4	% Sprawlers:	5.36	3
1096 (SCIRTIDAE)	4	4L	5	mIBI Metric	Score.	34
7321 (Macronychus glabratus)	1	1A	3			37
7732 (Anopheles)	3		7			
7984 (Procladius)	3	fueciesree	7 5			
9153 (Tribelos) 9248 (Ablabesmyia	2	fuscicorne?	5	S	unnlomont	al Metrics
(Ablabesmyia) mallochi grp.)	1			<u>.</u>	applement	
8006 (Orthocladiinae (Subfamily)	1	3 median teeth,			нві	6.31
	'	imm. smittia?				0.01
8011 (Brillia flavifrons)	1			Shannon-We	aver Index	2.92
8086 (Chironomus)	6		8			2.02
8112 (Dicrotendipes)	1		6	Shannon E	Equitability	0.89
9335 (Paratendipes albimanus	1					
grp)				% Domina	nt 3 Taxon	41.07
9353 (Phaenopsectra punctipes	1	Ph. flavipes?		/0 2 0.1111u		
grp)				% Chi	ronomidae	50
8228 (Cladotanytarsus)	1		4	,. C		
8241 (Tanytarsus)	1		4			
9277 (Polypedilum (Tripodura)	1					
scalaenum grp)						
9241 (Polypedilum	8					
(Polypedilum) illinoense grp.)						

Residuals

Identifier Date Count %PSE

SEZ	9/1/2020	0	100

Site Name	EPA ID	Macro Sampl	e Type Sample # Macro Event #			# Sample Date	e County	
WBU190-0002	20T-016	MHAE	5	AB42982 200714803		7/14/20	Knox	
	Stream Name		Location HUC 12 HUCTO14					
Ν	/laria Creek		CR	1050 N/Freelan	dville Road	051201111801	05120111190010	
Northing	Eas	ting	Eco	region	Gradient	Drainage Area	QHEI Score	
4303709.05	4699	30.39	-	72	5.282	17.468	38	

TAXON	COUNT	NOTES	HBI Tolerance	
1090 (Physa)	4	2 imm.	8	То
1094 (Corbicula)	2			10
1083 (ACARI)	1		4	
8996 (Orconectes)	1	1F	4	Q
3081 (Callibaetis)	3	Slide R20-007.1 & R20-007.2 labial palp and mandible	6	ex
9347 (Procloeon viridoculare)	1	Slide R20-007.3 labial palp & mandible		
3183 (Caenis)	5	imm.	3	q
9361 (Caenis dimunata grp.)	13			
9362 (Caenis hilaris grp.)	1			
3397 (Macromia)	3		2	%
1026 (COENAGRIONIDAE)	1	imm.	9	
3540 (Ischnura)	1	no gills	9	
3546 (Enallagma)	5		9	
3549 (Enallagma divagans)	18			
3551 (Enallagma exsulans)	1			
3560 (Enallagma basidens)	1			
3568 (Argia)	2	imm.	5	
3569 (Argia apicalis)	1			
1041 (CORIXIDAE)	1		5	
1038 (GERRIDAE)	1	imm.		
7107 (Limnoporus canaliculatus)	2			
7122 (Microvelia)	4			
7145 (Mesovelia mulsanti)	1			
3600 (Peltodytes	2			
duodecimpunctatus)				
3601 (Peltodytes lengi)	2	2A		
3604 (Peltodytes sexmaculatus)	5	5A		
3846 (Berosus)	1	1L	7	
3851 (Berosus peregrinus)	6	6A	6	
1096 (SCIRTIDAE)	3	3L	5	
7307 (Stenelmis)	3	1AF, 2L	5	
7300 (Dubiraphia vittata)	3	1M 2F, R20- 007.4 250um		
9369 (Bezzia grp.)	3		7	
7964 (Labrundinia pilosella)	1		3	
7984 (Procladius)	10		7	
8083 (Chironomini (Tribe))	2	1P		
9248 (Ablabesmyia	5			

Туре	Value		<u>Metric</u> Score
Total Taxa:	46		5
Total No. Individuals:	159		3
EPT Taxa:	5		3
% Orthocladiinae + Tanytarsini of Chironomidae:	24.14		3
% Non-insects excluding Astacidae: Diptera Taxa:	4.4		5
	15		5
% Intolerant (0-3):	5.66		1
% Tolerant (8-10):	6.92		5
% Predators FFG 1:	34.59		3
% Shredders + Scrapers FFG 1:	10.69		3
% Collector-Filterers FFG 1:	4.4		5
% Sprawlers:	7.55		5
mIBI Metric	:	46	

Supplemental Metrics

НВІ	5.68
Shannon-Weaver Index	3.35
Shannon Equitability	0.87
% Dominant 3 Taxon	32.7
% Chironomidae	36.48

TAXON	COUNT	NOTES	HBI Tolerance
(Ablabesmyia) mallochi grp.)			
8017 (Corynoneura)	1		4
8023 (Cricotopus bicinctus)	1		7
8099 (Cryptochironomus)	1		5
8112 (Dicrotendipes)	21		6
8206 (Stenochironomus)	1		4
8221 (Pseudochironomus)	1		5
8228 (Cladotanytarsus)	2		4
8235 (Paratanytarsus)	5		4
8241 (Tanytarsus)	5		4
9278 (Polypedilum (Tripodura)	2		
halterale-simulans grp)			

Identifier	Date	Count	%PSE
MSG	12/1/2020	5	96.86

Site Name	EPA ID	Macro Sample Ty	vpe Sample	#	Macro Event #	Sample Date	County
WBU-18-0008	20T-005	MHAB	AB429	77	200715701	7/15/20	Knox
	Stream Name		Location HUC 12				HUCTO14
Ν	/laria Creek		N Risley Road		051201111802	05120111190020	
Northing	Eas	ting	Ecoregion	(Gradient	Drainage Area	QHEI Score
4297182.92	4660	01.32	72		1.971	49.206	30

TAXON	COUNT	NOTES	HBI
4000 (Dhung)	1		Tolerance
1090 (Physa)	1		8
	1		4
1012 (BAETIDAE)	1	damaged	4
9361 (Caenis dimunata grp.)	8	and that an	
1120 (ANISOPTERA)	1	early instar;	
		Corduliidae or	
3540 (Ischnura)	1	Libellulidae	9
	7	no gills no gills	9
3546 (Enallagma)	3	no gilis	9
3549 (Enallagma divagans)	2		
3560 (Enallagma basidens)		wingloop/averate	
1041 (CORIXIDAE)	64	wingless/nymphs	5
7201 (Trichocorixa calva)	27	adults (12M and	4
7202 (Trichocorixa kanza)	17	15F)	A
	11	adults (8M and 9F)	4
7220 (Neoples striels)	1	9F)	
7230 (Neoplea striola)		nymanh	
7122 (Microvelia)	2	nymph	
3600 (Peltodytes	1	adults (1F)	
duodecimpunctatus)	2		
3601 (Peltodytes lengi)	1	adults (2F)	
3604 (Peltodytes sexmaculatus)	1	adult (1F)	
3606 (Peltodytes litoralis)		adult	0
3851 (Berosus peregrinus)	4		6
1096 (SCIRTIDAE)	2	larvae	5
7300 (Dubiraphia vittata)	2	adults (1M and	
		1F); S20-004.1	
3000 (Hydroptila)	2	(PL = 250 um) 1 not final instar,	3
	2	but with 3	3
		posterior gills	
7830 (Atrichopogon)	1	posterior gills	5
9370 (Ceratopogon grp.)	4		8
7984 (Procladius)	23		7
8083 (Chironomini (Tribe))	1		1
9248 (Ablabesmyia	3		
	<u>ہ</u>		
(Ablabesmyia) mallochi grp.) 8086 (Chironomus)	2		8
	2		8 5
8099 (Cryptochironomus)	1		5 6
8112 (Dicrotendipes)			
8228 (Cladotanytarsus)	9		4
8235 (Paratanytarsus)	1		4
8241 (Tanytarsus)	16		4

Туре	Value		<u>Metric</u> Score
Total Taxa:	37		3
Total No. Individuals:	218		3
EPT Taxa:	3		1
% Orthocladiinae + Tanytarsini of Chironomidae:	44.07		3
% Non-insects excluding Astacidae: Diptera Taxa:	0.92		5
	15		5
% Intolerant (0-3):	0.92		1
% Tolerant (8-10):	6.88		5
% Predators FFG 1:	70.18		5
% Shredders + Scrapers FFG 1:	4.13		1
% Collector-Filterers FFG 1:	7.8		5
% Sprawlers:	12.39		5
mIBI Metric	:	42	

Supplemental Metrics

НВІ	5.15
Shannon-Weaver Index	2.64
Shannon Equitability	0.73
% Dominant 3 Taxon	52.29
% Chironomidae	27.06

TAXON	COUNT	NOTES	HBI Tolerance
9278 (Polypedilum (Tripodura)	1		
halterale-simulans grp)			
9294 (Myxosargus)	1	early instar	
8301 (Odontomyia)	1	cool!	
8274 (Stratiomys)	1		

Identifier	Date	Count	%PSE
MSG	8/14/2020	0	100

Site Name	EPA ID	Macro Sample Typ	e Sample	# M a	acro Event #	Sample Date	County
WBU-18-0004	20T-001	MHAB	AB4297	9 2	00714701	7/14/20	Knox
S	Stream Name		Location HUC 12 HUCTO14				HUCTO14
N	laria Creek		N OI	d 41		051201111804	05120111190040
Northing	Eas	ting E	Ecoregion	Gra	adient	Drainage Area	QHEI Score
4291744.55	4589	32.16	72	3.	217	90.629	55

TAXON	COUNT	NOTES	HBI
			Tolerance
1090 (Physa)	2		8
2156 (Corbicula fluminea)	1		6
1017 (HEPTAGENIIDAE)	1	missing abdomen and all legs	4
3048 (Stenacron)	1		3
9366 (Baetis intercalaris complex)	3	Slide S20-011.3	3
9361 (Caenis dimunata grp.)	1		
3175 (Tricorythodes)	3		3
3397 (Macromia)	1		2
1026 (COENAGRIONIDAE)	1	immature - 5 segment atennae	9
3568 (Argia)	3	missing gills, immature	5
1041 (CORIXIDAE)	6	nymphs	5
7201 (Trichocorixa calva)	27	21 males and 6 females (adults)	4
7202 (Trichocorixa kanza)	6	4 males and 2 females (adults)	4
7116 (Metrobates hesperius)	5		
3874 (Tropisternus mixtus)	1	adult	
1096 (SCIRTIDAE)	1	larva	5
7307 (Stenelmis)	1	larva	5
9266 (Stenelmis grossa)	8	adults (3F and 5M); Slide S20- 011.1	
7295 (Ancyronyx variegatus)	2	adults	4
7321 (Macronychus glabratus)	1	adult female	3
3799 (Corydalus cornutus)	1		2
3432 (Cheumatopsyche)	11		3
3473 (Hydropsyche alvata)	12		
3000 (Hydroptila)	1		3
8837 (Neureclipsis crepuscularis)	1	S20-011.2	
7984 (Procladius)	1		7
9250 (Ablabesmyia	1		
(Ablabesmyia) rhamphae grp.)			
9261 (Thienemannimyia grp.)	2		
8099 (Cryptochironomus)	1		5
8126 (Glyptotendipes)	2		6
8184 (Polypedilum fallax)	1		
9165 (Saetheria tylus)	1		4
8206 (Stenochironomus)	1		4

Туре	<u>Value</u>	<u>Metric</u> Score
Total Taxa:	39	3
Total No. Individuals:	162	3
EPT Taxa:	9	3
% Orthocladiinae + Tanytarsini of Chironomidae:	9.84	5
% Non-insects excluding Astacidae: Diptera Taxa:	1.85	5
	14	5
% Intolerant (0-3):	14.2	1
% Tolerant (8-10):	1.85	5
% Predators FFG 1:	31.48	3
% Shredders + Scrapers FFG 1:	4.32	1
% Collector-Filterers FFG 1:	11.73	3
% Sprawlers:	1.23	1
mIBI Metric	38	

Supplemental Metrics

НВІ	4.11
Shannon-Weaver Index	2.87
Shannon Equitability	0.78
% Dominant 3 Taxon	47.53
% Chironomidae	37.65

TAXON	COUNT	NOTES	HBI Tolerance
8235 (Paratanytarsus)	1		4
8238 (Rheotanytarsus)	1		3
8241 (Tanytarsus)	4		4
9278 (Polypedilum (Tripodura)	2		
halterale-simulans grp)			
9238 (Polypedilum	5		
(Uresipedilum) flavum)			
9241 (Polypedilum	38		
(Polypedilum) illinoense grp.)			

Identifier	Date	Count	%PSE
MSG	8/31/2020	1	99.38

APPENDIX C. FISH AND MACROINVERTEBRATE COMMUNITY QUALITATIVE HABITAT EVALUATION INDEX

Sample #	QHEI Type	bioSan	nple #	St	tream Na	ame				Locati	on		
AB42679	Fish	20T012	<u>.</u> 2	М	arsh Cre	ek				E Mood	dy Road		
Surveyor	Sample		County		Ма	cro Sample	е Туре	⊗ Hab	oitat Com	nlete		QHEI Score) : 37
KAG	6/23/20		Knox		N/A			* Has		piere			57
1-SUBST	<u>TRATE</u>			substrate e every typ						Ch	eck ONE (or 2 & average)	
BEST TYP	PES				OTHEF	R TYPES				0	RIGIN	QUALITY	
		TOTAL	POOL	RIFFLE			TOTAL	POOL	RIFFLE			SILT	
◊ ◊ Bldrs/S	Slabs (10)				◇ ◇ Har	dpan (4)			·		stone (1)	Heavy (-2)	Substrate
◊ ◊ Boulde	.,				-	ritus (3)	<u> </u>	<u>x</u>		♦ Tills (♦ ♦ ♦ ♦ ♦	(1) ands (0)	 ◇ Moderate (-1) ◇ Normal (0) 	0
◊ ◊ Cobble					◊ ◊ Mu		<u> </u>			♦ Hard	pan (Ì)	◊ Free (1)	9
◊ ◊ Gravel					_	(2)		<u>x</u>	x	◇ Sand ◇ Rip/F	stone (0) ap (0)	EMBEDDEDNESS	Maximum
*	6)		x	x	_	ificial (0)				_	strine (0)	Moderate (-1)	20
◊ ◊ Bedroo					-	(Sc			es; ignore		e (-1) fines (-2)		
NUMBER	OF BEST T	YPES:		r more (2 r less (0)			sludge	from poin	nt-sources)	oour	11100 (2)		
COMMENT	rs		· 3 0	1 1655 (0)									
2-INSTR	EAM COVE	FR Indicat	te presen	ce () to 3.	n -Absont	• 1 -\/erv sma	all amounts	or if mor		of margi	nal quality:		
2-Moderate	amounts, but n	not of highe	est quality	or in sma	II amount	s of highest	quality; 3-	Highest q	uality in m	oderate o	or greater	AMOUN Check ONE (or 2 &	
	.g., very large b ep, well-define			ast water,	large dia	meter log tha	at is stable	, well dev	eloped roc	otwad in o	deep / fast	♦ Extensive >75%	0,
,	ndercut bank	,	_	0	Pools	> 70cm (2)	0	Oxbov	ws, Backv	waters (1	1)	Moderate 25-75%	6 (7)
<u> </u>	verhanging v	egetatior	ר) ר (1)	0	Rootw	ads (1)	1	Aquat	ic macrop	phytes (1)	* Sparse 5-<25% (3)
	hallows (in sl	low water	·) (1) _	0	Bould	ers (1)	1	_Logs a	and wood	ly debris	s (1)	◊ Nearly absent <	5% (1)
	ootmats (1)											G	over
COMMENT	13											Maxim	
3-CHAN	NEL MORP	PHOLOC	<u>GY</u>	Check	ONE in e	each categor	y (Or 2 &	average)					
SINUOSIT\ ◇ High (4)		DEVELOF			CHAN ◇ Nor		NC		TABILITY High (3)				
 Moderate 		 Good (overed (4)			Moderat			Chai Maxin	-
♦ Low (2) ♦ None (1)		 Fair (3) Poor (1) 				overing (3) ent or no r			Low (1)			Maxin	20
◇ None (1) COMMENT		* F001 (1)		~ Ret		ecovery	(1)					
4- BANK		& RIPA		ZONE	Check	ONE in eac	h category	for EAC	H BANK (Or 2 per	bank & avei	rage)	
-	oking downstrea			PARIAN			······································			•	AIN QUAL	e ,	
LR	EROSION		- R			L			2)			nonvetion Tillego (4)
\diamond \diamond None of				>50m (4) erate 10-5			Forest, S Shrub or					nservation Tillage (oan or Industrial (0)	
	ate (2) /Severe (1)	\diamond	♦ Narro	w 5-10m	(2)	\diamond \diamond	Residen	tial, Park	k, New fie	ld (1)	◇ ◇ Mir	ning, construction (0)
· · neavy	Severe (1)		° ∾ very	narrow < (0)	:5m (1)		Fenced Open Pa		(1) owcrop (0))		predominant land use(s m riparian.	
				(-)			-			,			arian imum 4
COMMENT	TS												10
<u>5-POOL/</u>	GLIDE AN	<u>D RIFFL</u>	_E/RUN	I QUAL	<u>.ITY</u>								
											RF	CREATION POTEN	τιδι
<pre>Check ONE</pre>		Chec ♦ Pool wi		r 2 & avera fl e width		◇ Torrenti		ALL that a Slov				 Primary Contact 	
◇ 0.7-<1m	n (4)	Pool wi	idth = rif	fle width	(1)	◊ Very Fast	st (1)	◇ Inte	rstitial (-1			Secondary Conta	ct
	• •	Pool wi	idth < rif	fle width	(0)	 ◇ Fast (1) ◇ Moderat 			rmittent (lies (1)	-2)	(circ	le one and comment or	n back)
	(0) _(metric=0)						• •		and riffles.			Pool/Cur	rent
COMMENT												Maxim	um 4 12
Indicate fo	or functional r	iffles; Be	st areas	must be	large er	ough to su	ipport a p	opulatio	on of riffle	e-obliga	te species	∶	l
		ck ONE (C	,						(or 2 & av	•			
	IFFLE DEPTH as >10cm (2)			RUN DEP num >50		RIF ♦ Stable	FLE/RUN (e.a. cob				LE/RUN El None (2)	MBEDDEDNESS	
◇ Best Are	as 5-10cm (1)		num <50	• • •	◇ Mod. S	table (e.g	j. large g	gravel) (1)	\$ ^	Low (1)	(n) Riffle	-
♦ Best Are	eas <5cm _{(metri}	ic=0)				◊ Unstab	ole (e.g. s	and, fine	e gravel) (01	Moderate Extensive	(0)	8
COMMENT	TS												<u> </u>
<u>6-GRADI</u>	<u>IENT</u>												
(2.932 DRAINAGE	,			♦ Very lo ♦ Modera			% PC	OOL: 20	%	% GLIDE	: 80	Grac Maxin	
(12.234				 High – 	•		% F	RUN: 0	%	RIFFLE	: 0		₃₅ 10 4

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

Circle some & COMMENT

A-CANOPY	B-AESTHETICS	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		♦ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◊ Landfill	◇ Industry
> 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	♦ Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	◊ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	◇ Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	♦ Golf	♦ Home
98 Middl	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Stream Drawing

OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index) QHEI Type bioSample # Stream Name Location Sample # AB42682 Fish 20T015 Tributary of Maria Creek Freelandville Road Sample Date Macro Sample Type Surveyor County QHEI Score: 37 * Habitat Complete CPB 6/22/20 Knox N/A Check ONLY Two substrate TYPE BOXES; **1-SUBSTRATE** Check ONE (or 2 & average) estimate % or note every type present **BEST TYPES** OTHER TYPES ORIGIN QUALITY TOTAL POOL RIFFLE TOTAL POOL RIFFLE SILT ◊ ◊ Bldrs/Slabs (10) Substrate х Limestone (1) Heavy (-2) * Tills (1) Moderate (-1) ◊ ◊ Detritus (3) ♦ ♦ Boulders (9) Normal (0) Vetlands (0) 10 ◊ ◊ Cobble (8) х ◊ ◊ Muck (2) Hardpan (0) Free (1) Sandstone (0) EMBEDDEDNESS ◊ ◊ Gravel (7) ◊ ◊ Silt (2) Rip/Rap (0) Extensive (-2) Maximum х ◇ ◇ Artificial (0) * <> Sand (6) Moderate (-1) Lacustrine (0) 20 (Score natural substrates; ignore \diamond Coal fines (-2) Normal (0) None (1) NUMBER OF BEST TYPES: ◊ 4 or more (2) sludge from point-sources) * 3 or less (0) COMMENTS 2-INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; AMOUNT 2-Moderate amounts, but not of highest guality or in small amounts of highest guality; 3-Highest guality in moderate or greater Check ONE (or 2 & average) amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast Extensive >75% (11) water, or deep, well-defined, functional pools. 0 Undercut banks (1) 0 Pools > 70cm (2) 0 Oxbows, Backwaters (1) Moderate 25-75% (7) 2 Overhanging vegetation (1) 0 0 Rootwads (1) Aquatic macrophytes (1) * Sparse 5-<25% (3)</p> Shallows (in slow water) (1) 0 Boulders (1) 0 Logs and woody debris (1) Nearly absent <5% (1)</p> 0 Rootmats (1) Cover **COMMENTS** Maximum 5 20 3-CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) STABILITY SINUOSITY DEVELOPMENT **CHANNELIZATION** Excellent (7) None (6) High (3) High (4) Channel Moderate (3) Good (5) Recovered (4) Moderate (2) Maximum 8 Recovering (3) * Low (2) Fair (3) * Low (1) 20 * Poor (1) Recent or no recovery (1) None (1) COMMENTS **4- BANK EROSION & RIPARIAN ZONE** Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream **RIPARIAN WIDTH** FLOOD PLAIN QUALITY EROSION LR LR LR LR ◊ ◊ Wide >50m (4) ◇ ◇ Forest, Swamp (3) ◊ ◊ Conservation Tillage (1) * * None or little (3) ◊ ◊ Moderate 10-50m (3) ◇ ◇ Shrub or Old field (2) ◊ ◊ Urban or Industrial (0) ◊ ◊ Narrow 5-10m (2) ◊ ◊ Mining, construction (0) * * Very narrow <5m (1) </p> ◇ ◇ Fenced pasture (1) Indicate predominant land use(s) past 100m riparian. * * Open Pasture/Rowcrop (0) Riparian Maximum 4 COMMENTS 10 5-POOL/GLIDE AND RIFFLE/RUN QUALITY MAXIMUM DEPTH **CHANNEL WIDTH CURRENT VELOCITY RECREATION POTENTIAL** Check ONE (ONLY!) Check ONE (or 2 & average) Check ALL that apply ◇ >1m (6) * Pool width > riffle width (2) Torrential (-1) * Slow (1) Primary Contact Pool width = riffle width (1) Very Fast (1) ◊ 0.7-<1m (4)</p> Interstitial (-1) Secondary Contact ◇ 0.4-<0.7m (2) Pool width < riffle width (0)</p> ◇ Intermittent (-2) Fast (1) (circle one and comment on back) * 0.2-<0.4m (1) Moderate (1) Eddies (1) Indicate for reach - pools and riffles. Pool/Current 4 COMMENTS Maximum 12 Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: * No Riffle (metric=0) Check ONE (ONLY!) Check ONE (or 2 & average) **RIFFLE DEPTH RUN DEPTH RIFFLE/RUN SUBSTRATE RIFFLE/RUN EMBEDDEDNESS** None (2) Sest Areas >10cm (2) Maximum >50cm (2) Stable (e.g. cobble, boulder) (2) Riffle/Run ◇ Low (1) Maximum <50cm (1)</p> Mod. Stable (e.g. large gravel) (1) Sest Areas 5-10cm (1) 0 Maximum Moderate (0) ♦ Best Areas <5cm_(metric=0) Unstable (e.g. sand, fine gravel) (0) 8 Extensive (-1) COMMENTS 6-GRADIENT (7.362 ft/mi) ◊ Very low – Low (2-4) % POOL: 10 % GLIDE: 90 Gradient DRAINAGE AREA Moderate (6-10) Maximum 6

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

% RUN: 0

% RIFFLE: 0

High – Very high (10-6)

(2.96 mi²)

A87¹⁰

Circle some & COMMENT

A-CANOPY	B-AESTHETICS	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	◇ Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{>} 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◊ Landfill	◇ Industry
^{>} 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Output Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
90 Middl	e	Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Stream Drawing

		WQ Biolo	ogical Stu	idies Q	HEI (Qual	itativ	e Habi	itat E	valuatio	n Ind	<u>ex)</u>
Sample #	QHEI Type	bioSample #	Stream N	ame				Location				
AB42683	Fish	20T016	Maria Cre	ek				CR 1050 I	N/Freela	ndville Road		
Surveyor	Sample		Ма	cro Sample	Туре	⊗ Hah	itat Comp	olete		QHEI Sc	ore:	52
KAG	6/22/20	Knox	N/A			• Hau		Jiele				JZ
1-SUBST	RATE	Check ONLY Two estimate % or note	substrate TYPE B e every type preser	OXES; nt				Checl	k ONE (o	r 2 & average)		
BEST TYP				R TYPES				ORIC	GIN	QUALITY	•	
		TOTAL POOL	RIFFLE		TOTAL	POOL	RIFFLE			SILT		
◊ ◊ Bldrs/Sl	abs (10)			dpan (4)		<u>x</u>	x	◇ Limesto	one (1)	Heavy (-2)		ostrate
◊ ◊ Boulder	s (9)			ritus (3)		<u>x</u>		Tills (1)♦ Wetland	ds (0)	 Moderate (-' Normal (0) 	-	
◊ ◊ Cobble	(8)	<u> </u>	◇	ck (2)				Hardpa	n (0)	◇ Free (1)		14
◊ ♦ Gravel (7)	<u> </u>	×◇ Silt	(2)	. <u> </u>			 ◇ Sandsto ◇ Rip/Rap 		EMBEDDEDNESS ♦ Extensive (-)	a) 🖳	
* Sand (6)		<u> </u>	×	ificial (0)				♦ Lacustr	ine (0)	♦ Moderate (-1	, ivia	ximum 20
◊ ◊ Bedrock				(Sco	ore natura	l substrate	es; ignore	◇ Shale (-◇ Coal fin		 Normal (0) ◇ None (1) 		
NUMBER C	OF BEST TY		more (2)		sludge	from poin	t-sources)		63 (-2)	• None (1)		
COMMENTS	5	* 3 Of	less (0)									
2-Moderate a amounts (e.g. water, or deep 1 Un 1 Ov 1 Shi 0 Ro <i>COMMENTS</i> 3-CHANN SINUOSITY ◊ High (4) ◊ Moderate ◊ Low (2) ◊ None (1) <i>COMMENTS</i> 4- BANK I River right look	mounts, but nc , very large bo p, well-defined, dercut banks erhanging ve allows (in slo otmats (1) S EL MORPH (3) (3) S EROSION King downstrean ROSION r little (3) te (2)	egetation (1) pw water) (1) EVELOPMENT Excellent (7) Good (5) Fair (3) Poor (1) & RIPARIAN 2 m RII L R ◇ Wide ◇ Model ◇ Narrow	or in small amoun ist water, large dia 0 Pools 0 Rootw 1 Bould Check ONE in 6 Check ONE in 6 CHAN \diamond Noi \diamond Rec \diamond Rec ϕ R	ts of highest of meter log tha > 70cm (2) vads (1) ers (1) each category NELIZATIO ne (6) covered (4) covering (3) cent or no re covering (3) cover on o re cover on o re	quality; 3-I t is stable 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2	Highest qu , well devo _ Oxbow _ Aquati _ Logs a average) S (1) for EACI Swamp (3 ○ Old field tial, Park basture (uality in mo eloped roo vs, Backw ic macrop and wood TABILITY High (3) Moderate Low (1) <i>H BANK</i> ((FLC 3) d (2)	oderate or g twad in dee vaters (1) ohytes (1) ly debris (1 y debris (1 c) c) c) c) c) c) c) c) c) c) c) c) c)	reater p / fast 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)	gge) TY servation Tillag an or Industrial ing, construction redominant land un rinarian.	r 2 & aver 5% (11) 75% (7) % (3) t <5% (1) Cover iximum 20 Channel aximum 20 Channel (0) (0) (0)	9
COMMENTS	3										Maximum 10	5
5-POOL/C	<u>SLIDE AND</u>	RIFFLE/RUN	QUALITY									
MAXIMUN Check ONE (◇ >1m (6) ◇ 0.7-<1m ◇ 0.4-<0.7n ◇ 0.2-<0.4n ◇ <0.2m (0) COMMENTS	1 DEPTH ONLY!) (4)	CHANNEL Check ONE (or Pool width > riff Pool width = riff Pool width < riff	. WIDTH 2 & average) le width (2) le width (1)	 ◇ Torrentia ◇ Very Fas ◇ Fast (1) ◊ Moderate Indicate 	Check / al (-1) st (1) e (1)	◇ Inter ◇ Eddi	apply v (1) rstitial (-1 rmittent (·	-	<		ntact ontact nt on back) Current aximum	4
Indicate for	functional rit	fles: Rest cross	must be large of		nnort o -	onulatio	n of riffi-	obligate	species		12	
RIF ◇ Best Area ◇ Best Area	Check FLE DEPTH	◇ Maxim ◇ Maxim	must be large er UN DEPTH num >50cm (2) num <50cm (1)	•	Ch FLE/RUN (e.g. cobl able (e.g	eck ONE SUBSTF ble, boul l. large g	(or 2 & ave RATE der) (2) ravel) (1)	erage) RIFFLE/ ◇ No ◇ Lo 0) ◇ Mo	•	(0) ^{<i>N</i>}		0

COMMENTS

6-GRADIENT				
(5.282 ft/mi)	♦ Very low – Low (2-4)	% POOL: 10	% GLIDE: 0	Gradient
DRAINAGE ARÉA	♦ Moderate (6-10)	9/ DUN: 00		Maximum 6
(17.468 mi²)	◇ High – Very high (10-6)	% RUN: 90	% RIFFLE: 0	A89 ¹⁰

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

Circle some & COMMENT

<u>A-CANOPY</u>	B-AESTHETICS	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Vuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	◇ Dirt & Grime
^{>} 30%-<55%	◇ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{>} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	♦ Cooling
	Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
99 Middle	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	♦ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Stream Drawing

) =	M	OWQ	Biolo	ogica	l Stu	<u>dies C</u>	<u> 2HEI (</u>	(Qua	litativ	e Ha	ibitat E	Evaluation	Index)
Sample #	QHEI Type	bioSam	ple #	St	ream Na	ame				Locati	ion		
AB42681	Fish	20T014	-	Ma	arsh Cre	ek				S Cou	nty Road 5	SE	
Surveyor	Sample	e Date	County		Мас	cro Sample	е Туре	⊛ Hal	bitat Com	nloto		QHEI Sco	ore: 33
KAG	6/23/20		Sullivan		N/A			* Ha		piete			
1-SUBST	<u>RATE</u>	Check ON estimate	VLY Two: % or note	substrate every typ	TYPE BC	DXES; it				С	heck ONE (d	or 2 & average)	
BEST TYP	ES					TYPES				0	RIGIN	QUALITY	
		TOTAL	POOL	RIFFLE			TOTAL	POOL	RIFFLE			SILT	
◊ ◊ Bldrs/Sl	labs (10)	·	· .		◊ ◊ Hare	dpan (4)					estone (1)	Heavy (-2)	Substrate
◊ ◊ Boulder	rs (9)	·	<u> </u>		◊ ◊ Detr	ritus (3)				♦ Tills ♦ Wetl	(1) ands (0)	 ♦ Moderate (-1) ♦ Normal (0) 	
◊ ◊ Cobble	.,	<u> </u>	· ·		♦ ♦ Muc			<u>x</u>	x	⊳ Harc	lpan (Ò)	◇ Free (1)	7
◊ ◊ Gravel (·	· .		◊ ◊ Silt	(2)		<u>x</u>	<u>x</u>		dstone (0) Rap (0)	EMBEDDEDNESS ♦ Extensive (-2)	Maximum
◊ ♦ Sand (6))			x	◇ ◇ Arti	ficial (0)				♦ Lacı	ustrine (0)	Moderate (-1)	
◊ ◊ Bedrock	• •					(Sc			tes; ignore		le (-1) fines (-2)	◇ Normal (0)◇ None (1)	
NUMBER (OF BEST T	YPES:		more (2) less (0))		sludge	from poi	nt-sources)	oou	11103 (2)		
COMMENTS	s		* 5 01	1633 (0)									
	EAM COVE											AMOU	INT
amounts (e.g	amounts, but r J., very large b p, well-define	oulders in a	deep or fa									Check ONE (or 2 ♦ Extensive >75	0,
,	dercut bank	,		0	Pools	> 70cm (2))0	Oxbo	ws, Backv	waters (1)	♦ Moderate 25-7	5% (7)
1 Ov	verhanging v	egetation	(1)	0	Rootw	ads (1)	0	Aqua	tic macrop	phytes	(1)	* Sparse 5-<25%	5 (3)
	allows (in sl	low water))(1) _	0	Boulde	ers (1)	1	_ Logs	and wood	ly debri	s (1)	Nearly absent	<5% (1)
1 Ro COMMENTS	ootmats (1) S												Cover imum 7
													20
	IEL MORF			Check		ach catego	• •	• •					
SINUOSITY		DEVELOP Exceller			CHAN	INELIZATI ne (6)	ON		STABILITY > High (3)	(
♦ Moderate	(3)	Good (5)	• •		◇ Rec	overed (4)	,	<	> Moderat	e (2)			annel ximum 8
 Low (2) None (1) 		 Fair (3) Poor (1) 				ent or no			» Low (1)			, inclusion of the second seco	20
COMMENTS		• 1 001 (1)			· Nec		recovery	(')					<u> </u>
4- BANK	EROSION	& RIPA	RIAN Z	ONE	Check	ONE in ead	ch categor	v for EAC	CH BANK	Or 2 per	bank & aver	rage)	
-	king downstrea			PARIAN V			J				AIN QUAL		
E L R	ROSION			>50m (4)		L	R > Forest, \$	Swamn	(2)			sorvation Tillag	x (1)
◊ ◊ None or				rate 10-5			Shrub o					nservation Tillage an or Industrial (• •
♦ ♦ Modera ♦ ♦ Heavy/S				v 5-10m					k, New fie	ld (1)		ing, construction	• •
incavy/c			 Very i None (narrow < (0)	5111(1)		› Fenced › Open Pa	•	() owcrop (0))		predominant land use m riparian.	
	_			. ,					• •				R iparian aximum 5
COMMENTS	S												10
<u>5-POOL/0</u>	<u>GLIDE AN</u>	<u>D RIFFL</u>	E/RUN	QUAL	<u>ITY</u>								
		-									RE	CREATION POTE	
Check ONE (♦ Pool wie		2 & avera le width		◇ Torrent		ALL that \$ Slo				◇ Primary Cont	
◇ 0.7-<1m	(4)	Pool wie	dth = riff	le width	(1)	◊ Very Fa	ast (1)		erstitial (-1			Secondary Cor	ntact
◇ 0.4-<0.7r ◇ 0.2-<0.4r	• •	Pool wie	dth < riff	le width	(0)	 ◇ Fast (1) ◇ Modera 			ermittent (dies (1)	-2)	(circ	le one and comment	on back)
◇ <0.2m (0) (metric=0)						• •		and riffles.			Pool/C	urrent
COMMENTS	S											Max	imum 0 12
Indicate for	functional r	riffles; Bes	st areas i	must be	large en	ough to s	upport a	populati	on of riffle	e-obliga	te species	No Riffle	e (metric=0)
		eck ONE (O							(or 2 & av	• •			
	FFLE DEPTH as >10cm (2)			UN DEP1 1um >50c			FFLE/RUN e (e.g. cob				LE/RUN EN	MBEDDEDNESS	
Sest Area	as 5-10cm (1)		um <500	• •	◇ Mod. S	Stable (e.g	g. large g	gravel) (1)		· Low (1)	N/=	f le/Run aximum ()
♦ Best Area	as <5cm _{(metri}	ic=0)				◊ Unstal	ble (e.g. s	and, fin	e gravel) (01	Moderate Extensive	(0)	8
COMMENTS	s										-		
6-GRADIE					-								,
(7.445 ft DRAINAGE				Very lov Modera			% P	OOL: 20	9	% GLIDI	E: 80		radient kimum 6
(3.624 n				High –	• •		%	RUN: 0	%	RIFFL	E: 0		A91 ¹⁰

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

Circle some & COMMENT

A-CANOPY	B-AESTHETICS	<u>C-N</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◊ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◊ Landfill	◇ Industry
^{>} 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	◇ Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedloa	ıd	◇ False bank	♦ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◇ Cutoffs	◊ Quarry Mine	◇ Golf	◇ Home
0 Middl	е	Impounded	Oesiccated	◇ Park	Oata Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Stream Drawing

) =		DWQ Bi	ological Stu	udies Q	HEI (Qual	itative	e Habi	tat E	valuation	<u>Index)</u>
Sample #	QHEI Type	bioSample	# Stream N	lame				Location			
AB42678	Fish	20T011	Marsh Cr	reek				E Hunley F	Road		
Surveyor	Sample			acro Sample	Туре	⊛ ∐ab	itat Comp	loto		QHEI Scor	re: 45
KAG	6/22/20	Kno				∛ ⊓au		iele			43
<u>1-SUBSTI</u>	RATE	Check ONLY estimate % or	Two substrate TYPE E note every type prese	BOXES; ent				Check	ONE (o	r 2 & average)	
BEST TYP	ES			R TYPES				ORIG	SIN	QUALITY	
		TOTAL POO			TOTAL	POOL				SILT	0
◇ ◇ Bldrs/Sl	. ,	·		rdpan (4)	<u> </u>			◇ Limesto		 ♦ Heavy (-2) ♦ Moderate (-1) 	Substrate
◊ ◊ Boulder	. ,			etritus (3)		<u>×</u>		Wetland	s (0)	 Normal (0) 	14
◊ ◊ Cobble	. ,	<u>_</u>		.,	<u> </u>			 Hardpar Sandsto 	n (0)	Free (1) EMBEDDEDNESS	14
			<u>×</u> ◇ ◇ Sil					 Sandsto Rip/Rap 		Extensive (-2)	Maximum
◊ ♦ Sand (6)	-	X	<u>x</u>	tificial (0)	. <u></u>			 Lacustri Shale (-' 		 ◇ Moderate (-1) ◇ Normal (0) 	20
	k (5) DF BEST TY		<u> </u>	(Sco	ore natural		es; ignore t-sources)	 Shale (- Coal fine 	es (-2)	 None (1) 	
		-	4 or more (2) 3 or less (0)		sludge		t-sources)				
COMMENTS	S										
2-Moderate a amounts (e.g. water, or deep 1 Un 1 Ov 1 Sh	mounts, but no	ot of highest qu bulders in deep l, functional po s (1) egetation (1)	0 Pools 0 Root	nts of highest o ameter log tha s > 70cm (2) wads (1)	quality; 3-l t is stable 0 1	Highest qı , well dev _ Oxbow _ Aquati	uality in mo eloped root vs, Backw c macrop	derate or gr twad in deer r aters (1)	eater o / fast	AMOUN Check ONE (or 2 Extensive >75% Moderate 25-75 Sparse 5-<25% Nearly absent <	& average) 5 (11) % (7) (3)
COMMENTS										C Maxir	Cover mum 20
SINUOSITY	(3)	EVELOPMEI Excellent (7 Good (5) Fair (3) Poor (1))	NNELIZATIO one (6) ecovered (4) ecovering (3) ecent or no re		 ↓ ↓	TABILITY High (3) Moderate Low (1)	e (2)			annel imum 9 20
4- BANK	EROSION	& RIPARIA	AN ZONE Chec	k ONE in each	n category	for EAC	H BANK (C)r 2 per ban	k & avera	age)	
	king downstrear		RIPARIAN WIDTH		_		FLO	OD PLAIN		ТҮ	
L R ◇ ◇ None or ◇ ◇ Modera ◇ ◇ Heavy/S	te (2)	◇ ◇ N ◇ ◇ N ◈ ◈ V	/ide >50m (4) loderate 10-50m (3) arrow 5-10m (2) ery narrow <5m (1) one (0)	$\begin{array}{c} \diamond \ \diamond \\ \diamond \ \diamond \\ \diamond \ \diamond \end{array}$	Forest, S Shrub or Resident Fenced p	Old field ial, Park basture (d (2) , New field	< d (1) < /	> ◇ Urba > ◇ Mini ndicate p)) (0) ^(s) parian
COMMENTS	S									ivia.	ximum 3 10
<u>5-POOL/0</u>	<u>SLIDE AND</u>	D RIFFLE/F	RUN QUALITY								
MAXIMUN Check ONE (◇ >1m (6) ◇ 0.7-<1m ◇ 0.4-<0.7r ◇ 0.2-<0.4r ◇ <0.2m (0 COMMENTS	A DEPTH ONLY!) (4) & n (2) & n (1)) (metric=0)	CHAN Check ON Pool width	NEL WIDTH E (or 2 & average) > riffle width (2) = riffle width (1) < riffle width (0)	 ◇ Torrentia ◇ Very Fas ◇ Fast (1) ◇ Moderate Indicate 	Check / al (-1) st (1)	◇ Inter ◇ Edd	apply v (1) rstitial (-1) rmittent (- ies (1)		<	CREATION POTE	ct tact on back) mrent mum 3
Indicate for	functional ri	ffles: Best ar	eas must be large e	nough to su	pport a n	opulatio	n of riffle	-obligate s	pecies.	* No Diffle	12 (metric=0)
RIF ◇ Best Area ◇ Best Area	Chec FLE DEPTH Is >10cm (2) Is 5-10cm (1) Is <5cm _{(metric}	k ONE (<i>ONLY</i> ◇ M ◇ M	-		Ch FLE/RUN (e.g. cobl able (e.g	eck ONE SUBSTI ble, boul large g	(or 2 & ave RATE der) (2) ravel) (1)	erage) RIFFLE/I ◇ No ◇ Lo ◇ Lo	-	IBEDDEDNESS Riffi Max	(metric=0) le/Run kimum 8
6-GRADIE											
<u>6-GRADIE</u> (3.392 ft DRAINAGE (20.805	t/mi) AREA		 ◊ Very low – Lov ◊ Moderate (6-10 ◊ High – Very hi 	0)`´		OOL: 20 RUN: 0		GLIDE: 80 RIFFLE: 0	D	Maxi	imum 6 A93 ¹⁰

12/22/2020 1	13.52.54	PM OWO	Biologi	cal Studies ()HFI ((Jualitative	Habitat	Evaluation	Index)	Page 1	1 of 2
12/22/2020	15.52.54	1 M O N Q	Diologi			Zuantative	maomat	L'aluation	mach),	I ugo I	1 01 2

Circle some & COMMENT

A-CANOPY	B-AESTHETICS	<u>C-M</u>	AINTENANCE		D-ISSUES	
[≫] >85% - Open	Nuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◊ Excess turbidity	 Young – Success Old - Succession 		◇ Contaminated	◊ Landfill	◇ Industry
^{>} 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	Sediment BMPs	
<10% - Closed	◊ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	led	Output Bank Erosion	Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bare	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	♦ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	◇ Natural Flow
	Sludge deposits	Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◇ Golf	◇ Home
100 Middle	•	Impounded	Desiccated	◇ Park	Oata Paucity	◇ Lawn
		Flood Control	◊ Drainage	◇ Agriculture	◇ Livestock	
		Snag Removed		◇ Atmosphere		
		Snag Modified		Deposition		
Left						

Stream Drawing

) =		WQ Biol	ogical Stu	dies QHE	<mark>I (Qua</mark>	litativ	e Habitat	Evaluation	Index)
Sample #	QHEI Type	bioSample #	Stream N	ame			Location		
AB42677	Fish	20T010	Marsh Cre	ek			E Springtown Ro	ad	
Surveyor	Sample			cro Sample Type	e ──	oitat Com	plete	QHEI Score	e: 38
KAG	6/22/20	Knox	N/A		Tax				
1-SUBSTR	RATE		substrate TYPE B te every type preser				Check ONE ((or 2 & average)	
BEST TYPE	ES		OTHER	R TYPES			ORIGIN	QUALITY	
		TOTAL POOL	RIFFLE	то	TAL POOL	RIFFLE		SILT	
◊ ◊ Bldrs/Sl	abs (10)		¢	rdpan (4)		<u> </u>	◇ Limestone (1)	Heavy (-2)	Substrate
◊ ◊ Boulder	's (9)			ritus (3)		<u> </u>	 Tills (1) ♦ Wetlands (0) 	◇ Moderate (-1) Normal (0)	
◊ ◊ Cobble ((8)			ck (2)	X	x	♦ Hardpan (0)	◊ Free (1)	14
◇	7)	<u> </u>	<u>x</u>	(2)		·	 ◇ Sandstone (0) ◇ Rip/Rap (0) 	EMBEDDEDNESS	
)	x	x	ificial (0)			 Clip/Cap (0) Clacustrine (0) 	 Moderate (-1) 	Maximum 20
◇ ◇ Bedrock	c (5)			(Score na	atural substrat	es; ignore	♦ Shale (-1)	Normal (0)	20
NUMBER C	OF BEST TY		or more (2)		idge from poir	-	♦ Coal fines (-2)	◊ None (1)	
	_	* 3 c	or less (0)						
COMMENTS	Š								
2-Moderate an amounts (e.g. water, or deep 1 Un	mounts, but no ., very large bo p, well-defined dercut banks	ot of highest qualit oulders in deep or , functional pools. 5 (1)		ts of highest qualit; meter log that is st > 70cm (2)	y; 3 -Highest q able, well dev	uality in mo veloped roc ws, Backv	oderate or greater otwad in deep / fast vaters (1)	Check ONE (or 2 & Check	k average) (11) 6 (7)
	erhanging ve allows (in slo		0 Rootw 0 Bould		0 Aquat	-	ly debris (1)	 Sparse 5-<25% (3 Nearly abcent 45 	
	otmats (1)	w water) (1)		ers (1)			ly debris (1)	♦ Nearly absent <5) %(1)
COMMENTS	. ,							Co Maxim	over oum 7 20
3-CHANN	EL MORPI	HOLOGY	Check ONE in e	each category (Or	2 & average)				
SINUOSITY		EVELOPMENT		NELIZATION	• ·	TABILITY	,		
◇ High (4) ◇ Mederate		Excellent (7) Good (5)		ne (6)		High (3)	o (2)	Char	nnel
◇ Moderate◇ Low (2)	· ·	Good (5) Fair (3)		covered (4) covering (3)		Moderate Low (1)	e (2)	Maxin	num 5 20
* None (1)		Poor (1)	* Rec	cent or no recov	ery (1)				20
COMMENTS	5								
		<u>& RIPARIAN</u>		ONE in each cate	gory for EAC	`	Or 2 per bank & ave	0,	
	king downstrear ROSION	n R LR	IPARIAN WIDTH	LR		FLO	DOD PLAIN QUAI L R	LITY	
LR		◇ ◇ Wide	e >50m (4)	◊ ♦ Fore	st, Swamp (onservation Tillage (1)
◊ ◊ None or ◊ ◊ Moderat	• • •		erate 10-50m (3)		b or Old fiel			ban or Industrial (0)	0)
A Heavy/S			ow 5-10m (2) narrow <5m (1)		dential, Parl ed pasture (•	.,	ning, construction (predominant land use(s	•
-		◊ ◊ None		♦ ♦ Oper	n Pasture/Ro	owcrop (0) m riparian.	arian
COMMENTS	5								imum 3 10
5-POOL/G	LIDE AND	RIFFLE/RU	N QUALITY						<u>, п</u>
MAXIMUN		CHANNE		CUI		OCITY			
Check ONE (or 2 & average)	Ch	eck ALL that	apply	RI		
◇ >1m (6) ◇ 0.7-<1m (Pool width > ri Pool width = ri	· · /	 ◇ Torrential (-1) ◇ Very Fast (1) 	•	w (1) rstitial (-1		 Primary Contac Secondary Conta 	
♦ 0.4-<0.7n	n (2) ◇	Pool width < ri	• •	 ◇ Fast (1) 		rmittent (-2)	cle one and comment or	
◇ 0.2-<0.4n				* Moderate (1)		lies (1)			,
◇ <0.2m (0) COMMENTS	/ (metric=0)			muicale for f	each – pools a			Pool/Cur Maxim	
									12
Indicate for			must be large er	lough to suppor				s: <u> </u>	<u>metric=0)</u>
RIF	Chec FLE DEPTH	k ONE (<i>ONLY!</i>)	RUN DEPTH	RIFFLE/I	Check ONE RUN SUBST		0,	MBEDDEDNESS	
Sest Area	s >10cm (2)	Maxi	mum >50cm (2)	◊ Stable (e.g.	cobble, bou	lder) (2)	◇ None (2)	Riffle	/Run
	s 5-10cm (1) s <5cm _{(metric}		mum <50cm (1)	 Mod. Stable Unstable (e. 				Mari	mum ()
	-	=0)		· Unstable (e.	y. sanu, inte	- yravel) (O)	• •	8

COMMENTS	
6-GRADIENT	

<u>6-GRADIENT</u>				
(2.96 ft/mi) DRAINAGE AREA	 ◊ Very low – Low (2-4) ◊ Moderate (6-10) 	% POOL: 20	% GLIDE: 80	Gradient Maximum 4
(23.57 mi²)	◊ High – Very high (10-6)	% RUN: 0	% RIFFLE: 0	A95 ¹⁰

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

Circle some & COMMENT

A-CANOPY	B-AESTHETICS	<u>C-M</u>	IAINTENANCE		D-ISSUES	
[≫] >85% - Open	Nuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{>} 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{>} 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	◊ Oil sheen	A Leveed – One side	ded	Output Series Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	♦ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◇ Quarry Mine	◊ Golf	◇ Home
100 Middle	•	Impounded	Oesiccated	◇ Park	♦ Data Paucity	♦ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Stream Drawing

) =	$\overline{\mathbf{M}}$	OWQ I	Biolo	ogical St	<u>udies Q</u>	<u>HEI (</u>	Qual	itative	e Hal	<u>oitat E</u>	Evaluation	<u>n Inde</u>	ex)
Sample # QHEI Type bioSample # Stream Na			Name Location										
AB42680	Fish	20T013		Marsh C	reek				S Count	y Road 50) E		
Surveyor	Sample	Date C	County	N	lacro Sample	Туре	⊗ ∐ab	itat Comp	loto		QHEI Sco	ore:	50
KAG	6/23/20		Sullivan		I/A		∛ Παυ		nele				50
1-SUBST	RATE			substrate TYPE e every type pres					Che	eck ONE (d	or 2 & average)		
BEST TYP	ES				ER TYPES				OR	IGIN	QUALITY		
		TOTAL F	POOL	RIFFLE		TOTAL	POOL	RIFFLE			SILT	• •	
◊ ◊ Bldrs/Sl	labs (10)	<u> </u>			ardpan (4)		<u>x</u>		◇ Limes		◇ Heavy (-2)	Subs	trate
◊ ◊ Boulder	.,				etritus (3)				 ♦ This (♦ Wetla 		 Moderate (-1) Normal (0) 	, 1 [.]	4
◊ ◊ Cobble					luck (2)		<u>x</u>		♦ Hardp	• • •	◇ Free (1)	· ·	1
◊ ◊ Gravel (x	<u>×</u>			<u>x</u>		 Sands Rip/Ratio 	stone (0) ap (0)	EMBEDDEDNESS ♦ Extensive (-2) Maxii	mum
		×	x	× ◊ ◊ A	rtificial (0)					trine (0)	Moderate (-1) August (2)		
	k (5) OF BEST T`	VDES.	<u> </u>	(<u>0</u>)	(Sco	ore natura		es, ignore	◇ Shale◇ Coal f	(-1) ines (-2)			
		1723.		r more (2) r less (0)		siudge	from poin	it-sources)					
COMMENTS		_											
2-Moderate a amounts (e.g water, or dee	mounts, but n	ot of highes oulders in d d, functional	st quality leep or f	ce 0 to 3: 0 -Abse or in small amou ast water, large d	ints of highest	quality; 3 - at is stable	Highest q , well dev	uality in mo	oderate or twad in d	greater eep / fast	AMOU Check ONE (or Check Solution Statements) Check ONE (or Check Solution Statements) Check Solution Statements Check Solut	2 & averag % (11)	ge)
	erhanging v	-			twads (1)	1		ic macrop	•		◊ Sparse 5-<25%	• •	
	allows (in sl otmats (1)	ow water)	(1) _	<u>0</u> Bou	lders (1)	1	_Logs a	and woody	y debris	(1)	Nearly absent	<5% (1)	
COMMENTS											Max	Cover kimum 20	13
3-CHANN	IEL MORP	HOLOG	Y	Check ONE ir	n each category	y (Or 2 & a	average)					20	
SINUOSITY High (4) Moderate Low (2) None (1) COMMENTS	(3)	DEVELOPI Construction Good (5) Fair (3) Output Description Description Developing	t (7)	◇ N ◇ R ◇ R	ANNELIZATIC one (6) ecovered (4) ecovering (3) ecent or no re)	 <!--</td--><td>TABILITY High (3) Moderate Low (1)</td><td></td><td></td><td></td><td>hannel ximum 20</td><td>10</td>	TABILITY High (3) Moderate Low (1)				h annel ximum 20	10
4- BANK	EROSION	& RIPA	RIAN	ZONE Che	ck ONE in eacl	h category	for EAC	H BANK (C	Dr 2 per b	ank & avei	rage)		
River right lool	king downstrea	ım	RI	PARIAN WIDTH				FLO			ITY		
E L R ◇ ◇ None or ◇ ◇ Modera ◇ ◇ Heavy/S	ite (2)	 <td>◇ Mode◇ Mode◇ Narro</td><td>>50m (4) trate 10-50m (3) w 5-10m (2) narrow <5m (1) (0)</td><td></td><td>Forest, S Shrub or Residen Fenced</td><td>Old field tial, Park pasture (</td><td>d (2) a, New field</td><td>()</td><td>◇ ◇ Urb ◇ ◇ Min Indicate µ</td><td>nservation Tillag an or Industrial hing, construction predominant land us m riparian.</td><td>(0) n (0)</td><td></td>	◇ Mode◇ Mode◇ Narro	>50m (4) trate 10-50m (3) w 5-10m (2) narrow <5m (1) (0)		Forest, S Shrub or Residen Fenced	Old field tial, Park pasture (d (2) a, New field	()	◇ ◇ Urb ◇ ◇ Min Indicate µ	nservation Tillag an or Industrial hing, construction predominant land us m riparian.	(0) n (0)	
COMMENTS	S											laximum 10	5
5-POOL/C	GLIDE ANI		E/RUN	I QUALITY									
MAXIMUN Check ONE ((4) (4) m (2) m (1))) (metric=0)	Check • Pool wid • Pool wid	ONE (o Ith > rif Ith = rif	L WIDTH r 2 & average) fle width (2) fle width (1) fle width (0)	 ◇ Torrentia ◇ Very Fas ◇ Fast (1) ◊ Moderat Indicate 	Check al (-1) st (1)	◇ Inter ◇ Edd	apply v (1) rstitial (-1) rmittent (-: ies (1)				tact ntact	5
Indicate for	functional r	iffles; Best	t areas	must be large	enough to su	pport a r	opulatio	on of riffle	-obligate	species	∗ <u>No Riffl</u>		=0)
RIF ◇ Best Area ◇ Best Area	Cheo FLE DEPTH as >10cm (2) as 5-10cm (1) as <5cm _{(metric}	ck ONE (<i>ON</i>	VLY!) R ◇ Maxin	SUN DEPTH num >50cm (2) num <50cm (1)	RIFI ◇ Stable (◇ Mod. St	Ch FLE/RUN (e.g. cob table (e.g	eck ONE SUBSTR ble, boul J. large g	(or 2 & ave RATE I der) (2)	erage) RIFFL 	-	MBEDDEDNESS Rin (0)	ffle/Run aximum 8	0
6-GRADIE													
(5.502 fr DRAINAGE (8.376 n	t/mi) AREA		•	 Very low – Lo Moderate (6-1 High – Very h 	l0)`´´		DOL: 10 RUN: 0		GLIDE:			radient ximum A97 ¹⁰	6

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

Circle some & COMMENT

A-CANOPY	B-AESTHETICS	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Vuisance algae	◊ Public	◊ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	◊ Dirt & Grime
^{>} 30%-<55%	♦ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{>} 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	♦ Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◇ Quarry Mine	◊ Golf	♦ Home
58 Middle	•	Impounded	Desiccated	◇ Park	◇ Data Paucity	♦ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Stream Drawing

		WQ Biolog	gical Studies QHEI	(Qualitative Habita	t Evaluation Ind	lex)	
Sample #	QHEI Type	bioSample #	Stream Name	Location			
AB42685	Fish	20T018	Maria Creek	E County Road 1050 S			
Surveyor	Sample	Date County	Macro Sample Type		QHEI Score:	AE	
CWY	6/22/20	Sullivan	N/A	Habitat Complete		45	
1-SUBST	RATE	Check ONLY Two su	bstrate TYPE BOXES;	Check ONE (or 2 & average)			

<u>1-SUBSTRATE</u>			te every typ						Check ONE	(or 2 & av	/erage)	
BEST TYPES				•	R TYPES				ORIGIN	Q	UALITY	
	TOTAL	POOL	RIFFLE		doon (4)	TOTAL	POOL		A 1 b b c c c c c c c c c c	SILT		Substrate
◊ ◊ Bldrs/Slabs (10)			x		dpan (4)				 Limestone (1) Tills (1) 		avy (-2) derate (-1)	
◊ ◊ Boulders (9)			·		ritus (3)			·	Wetlands (0)		rmal (0)	6
◊ ◊ Cobble (8)				◇ ◇ Mu			<u></u>		 Hardpan (0) Sandatana (0) 	◇ Fre	.,	0
◊ ◊ Gravel (7)			<u>x</u>	♦ ♦ Silt	(2)		X		 Sandstone (0 Rip/Rap (0) 	•	DDEDNESS ensive (-2)	Movimum
◇		x	x	◇ ◇ Arti	ificial (0)				◇ Lacustrine (0)) * Moo	derate (-1)	Maximum 20
◊ ◊ Bedrock (5)					(Sc	ore natura	l substrat		◇ Shale (-1)		mal (0)	
NUMBER OF BEST T	YPES:		or more (2)		sludge	from poir	nt-sources)	Coal fines (-2)) ◇ Nor	ie (1)	
000000		* 3 c	or less (0)									
COMMENTS												
2-INSTREAM COVI 2-Moderate amounts, but r amounts (e.g., very large b water, or deep, well-define 0 Undercut bank 1 Overhanging v 2 Shallows (in s	not of highe boulders in td, function ks (1) vegetation	est qualit <u>y</u> deep or f al pools. n (1)	y or in sma	II amount large dia Pools Rootw	s of highest	quality; 3 -l at is stable <u>1</u> 	Highest q , well dev Oxbov Aquat	uality in mo veloped roo ws, Backw ic macrop	oderate or greater twad in deep / fas vaters (1)	t	AMOUNT k ONE (or 2 & nsive >75% (erate 25-75% rse 5-<25% (3 rly absent <5	average) (11) (7) 3)
2 Rootmats (1)												
COMMENTS											Co Maximu	ver um 10 20
3-CHANNEL MORF	PHOLO	GY	Check	ONE in e	each categor	y (Or 2 & a	average)					
SINUOSITY	DEVELO	PMENT		CHAN	INELIZATIO	ON	S	TABILITY				
		• •		◇ Nor	• •			High (3)	(2)		Chan	nel
.,	 ◇ Good (♦ Fair (3) 				overed (4) overing (3))		Moderate Low (1)	e (2)		Maxim	num 11
• •	Poor (1)				ent or no r			()				20
COMMENTS												
4- BANK EROSION	& RIP	ARIAN	ZONE	Check	ONE in eac	h category	for EAC	H BANK (C	Dr 2 per bank & av	erage)		
River right looking downstrea	am	R	IPARIAN	WIDTH				FLC	OOD PLAIN QUA	LITY		
EROSION L R			e >50m (4)		L	R Forest, S	womn (2)		onconvot	ion Tillage (1	IN IN
♦ ♦ None or little (3)			erate 10-5			Shrub or	• •				ndustrial (0))
◊ ♦ Moderate (2)	\$	♦ Narro	ow 5-10m	(2)	\diamond \diamond	Resident	tial, Park	k, New fiel	d (1) ◇ ◇ M	ining, co	onstruction (0	,
♦ ♦ Heavy/Severe (1)		·	narrow <	5m (1)		Fenced p		(1) owcrop (0)		e predomin)0m riparia	nant land use(s) n	
	~	~ NONE	: (0)		* *	Ореп Ра	Sture/Rt	Swerop (U)		ionn npana	 Maxii	arian mum 3
COMMENTS											Μαλί	10
5-POOL/GLIDE AN	D RIFFI	_E/RUI	N QUAL	ITY								N
	Chec ◇ Pool w	k ONE (d idth > ri	EL WIDTH or 2 & avera ffle width ffle width	(Ž)	 ◇ Torrenti ◇ Very Fas 	Check al (-1)	NT VELO ALL that a ◇ Slov ◇ Inte	apply		◊ Prin	ION POTEN mary Contact	t
◇ 0.4-<0.7m (2)	Pool w	idth < ri	ffle width	(0)	◇ Fast (1)	.,	Intel	rmittent (-	2) (c		nd comment on	
* 0.2-<0.4m (1)					Moderat	• •		lies (1)	(0			-
◇ <0.2m (0) (metric=0) COMMENTS					Indicate	e for reach	– poois a	and rimes.			Pool/Curr Maximu	
Indicate for functional r	riffles; Be	st areas	must be	large er	ough to su	pport a p	opulatio	on of riffle	-obligate specie	es: «	◇ <u>No Riffle (n</u>	netric=0)
	eck ONE (C							(or 2 & ave	•			
RIFFLE DEPTH						FLE/RUN			RIFFLE/RUN ♦ None (2		EDNESS	
 Best Areas >10cm (2) Best Areas 5-10cm (1) 			mum >500 mum <500	• • •	 ◇ Stable ◇ Mod. S 		•	ider) (2) jravel) (1)	◇ Low (1)		Riffle/	
♦ Best Areas <5cm _{(metri})		••		(-)				e gravel) ((0)		Maxin	num 2 8

COMMENTS

6-GRADIENT				
(8.775 ft/mi)	◊ Very low – Low (2-4)	% POOL: 15	% GLIDE: #\$	Gradient
DRAINAGE AREA (10.192 mi ²)		% RUN: 60	% RIFFLE: 25	Maximum 10 A99 ¹⁰

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

<u>A-CANOPY</u>	B-AESTHETICS	<u>C-M</u>	IAINTENANCE		D-ISSUES		
> >85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO	
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime	
> 30%-<55%	♦ Excess turbidity	 Young – Success Old - Succession 		♦ Contaminated		◇ Industry	
> 10%-<30%	Discoloration	◇ Spray		Construction BMPs	Sediment BMPs		
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling	
	◊ Oil sheen	Leveed – One side	ded	Output Bank Erosion	Surface Erosion	♦ H2O table	
	◇ Trash/Litter	Leveed – Both Barbara	anks				
Canopy Upstream Reading	I	◇ Moving – Bedload		◇ False bank	♦ Manure	♦ Lagoon	
		Stable - Bedload					
Righ	^t ◇ Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow	
	Sludge deposits	Islands	♦ Scoured	◊ Acid Mine	◊ Wetlands	Stagnant Flow	
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home	
7 Mide	lle	Impounded	Oesiccated	◇ Park	◇ Data Paucity	◊ Lawn	
		Flood Control	Orainage	◇ Agriculture	Livestock		
		Snag Removed		Atmosphere			
		Snag Modified		Deposition			
Left							

NE 🤇	OWQ Biologic	cal Studies QHEI	(Qualitative Habitat	Evaluation Index)

Sample #	QHEI Type	bioSample #	Stream N	ame		L	ocation		
AB42673	Fish	20T006	Tilley Ditc	h		E	E Pepmeir Road		
Surveyor	Sample	Date Count	iy Ma	icro Sample Ty	/pe & Hel	itat Cample	-	QHEI Score	e: 38
RAC	7/8/20	Knox	N//	4		bitat Comple	ete		30
1-SUBSTI	RATE	Check ONLY Tw	o substrate TYPE B	BOXES;			Check ONE (d	or 2 & average)	
BEST TYP		estimate % or n	ote every type prese	R TYPES			ORIGIN	QUALITY	
BLUITIN	20	TOTAL POOL					ONION	QUALITI	
◇ ◇ Bldrs/Sl	abe (10)	IUTAL POOL		rdpan (4)	OTAL POOL		Limesters (1)	SILT	Substrate
				• • • –			Limestone (1) Tills (1)	 ◇ Heavy (-2) ◇ Moderate (-1) 	
◊ ◊ Boulder	.,	·		tritus (3)			Tills (1) Wetlands (0)	 Normal (0) 	12
◊ ◊ Cobble	(8)			., _		<u> </u>	Hardpan (0)	Free (1)	12
◊ ◊ Gravel (7)		_ <u>×</u> _	t (2)	<u> </u>		Sandstone (0) Rip/Rap (0)	EMBEDDEDNESS	
* * Sand (6))	х	x ◇ ◇ Art	ificial (0)	x		Lacustrine (0)	 Moderate (-1) 	Maximum 20
◊ ◊ Bedrock	c (5)			(Score	natural substra	¢	Shale (-1)	Normal (0)	20
	OF BEST TY	/PES:	or more (2)		sludge from poi	- ~	Coal fines (-2)	◊ None (1)	
			or less (0)		o .	,			
COMMENTS	5								
2-INSTRE	AM COVE	R Indicate prese	ence 0 to 3: 0-Absent	t [.] 1-Verv small a	mounts or if mo	re common o	f marginal guality.	AMOUN	
amounts (e.g. water, or deep 1 Un 2 Ov 0 Sha	., very large bo p, well-defined dercut banks erhanging ve allows (in slo	oulders in deep o , functional pools s (1) egetation (1)		ameter log that is 5 > 70cm (2) vads (1)	s stable, well de 0 Oxbo 0 Aqua		vad in deep / fast ters (1) ytes (1)	Check ONE (or 2 8 Check ONE (or 2 8 Check Constraints of the second se	(11) 5 (7) 3)
	otmats (1)							0	
COMMENTS	5							Maxim	um 8 20
3-CHANN	EL MORPI		Check ONE in	each category ((Or 2 & average)				
SINUOSITY		EVELOPMENT				STABILITY			
High (4)	\$	Excellent (7)	-	ne (6)	<	High (3)		Char	mal
♦ Moderate	• •	Good (5)		covered (4)		Moderate ((2)	Char Maxin	-
∗ Low (2)∗ None (1)		Fair (3) Poor (1)		covering (3) cent or no reco		» Low (1)			20
COMMENTS									
								```	
		& RIPARIAN		K ONE IN each ca	ategory for EAC		2 per bank & aver	-	
-	king downstrear ROSION	"LR	RIPARIAN WIDTH	LR		FLOC	DD PLAIN QUAL L R	11 Y	
LR			le >50m (4)	◇ ◇ Fo	rest, Swamp (			nservation Tillage (*	1)
♦ ♦ None or	r little (3)		derate 10-50m (3)		rub or Old fie			an or Industrial (0)	
<ul> <li>♦ ♦ Moderat</li> <li>♦ ♦ Heavy/S</li> </ul>			row 5-10m (2)		sidential, Par nced pasture			ing, construction (	•
• • neavy/c	Severe (1)	◇ ◇ Ver ◇ ◇ Nor	y narrow <5m (1) be (0)		nced pasture oen Pasture/R	· ·		predominant land use(s) m riparian.	
				-		•••••••••••••••••••••••••••••••••••••••			<b>arian</b> imum 5
COMMENTS	5								10
5-POOL/G		RIFFLE/RU	IN QUALITY						I
MAXIMUN	I DEPTH	CHANN	EL WIDTH	C	URRENT VEL	OCITY			-
Check ONE (	ONLY!)		(or 2 & average)	(	Check ALL that	apply	RE		
◇ >1m (6)		Pool width > I	• • •	◇ Torrential (				◇ Primary Contact	
◇ 0.7-<1m ◇ 0.4-<0.7n		Pool width = I Pool width < I	()	<ul> <li>◊ Very Fast ( ◊ Fast (1)</li> </ul>	-	erstitial (-1) ermittent (-2		Secondary Conta	ct
◇ 0.2-<0.4n			inie width (0)	<ul> <li>Moderate (*)</li> </ul>		dies (1)	(circ	le one and comment on	back)
◇ <0.2m (0				•	r reach – pools	• •		Pool/Curi	rent
COMMENTS								Maxim	um 5 12
Indicate for	functional ri	ffles: Best area	s must be large ei	nouah to supp	ort a populati	on of riffle-o	bligate species	····	
		k ONE (ONLY!)		5 ····PP		(or 2 & aver	• •		<u></u>
RIF	FLE DEPTH	()	RUN DEPTH	RIFFLE	E/RUN SUBST	•	<b>RIFFLE/RUN EN</b>	BEDDEDNESS	
◇ Best Area	• • •		imum >50cm (2)		g. cobble, bou		◊ None (2)	Riffle	/Run
	s 5-10cm (1)		imum <50cm (1)		le (e.g. large		♦ Low (1)♦ Moderate	Mavi	mum0
○ Best Area	s <5cm _{(metric}	=0)		◊ Unstable (	(e.g. sand, fin	e gravel) (0)	<ul> <li>Moderate</li> <li>Extensive</li> </ul>	• •	8
COMMENTS	6								
6-GRADIE	ENT								
( 0 ft/mi)			◊ Very low – Lov		% POOL: 40	%	GLIDE: #\$	Grad	lient
	AREA		◇ Moderate (6-10 ◇ Illiate Variable)	,	0/ 51151 00			Maxim	· · ·
( 0 mi²)			High – Very high	gn (10-6)	% RUN: 60	% R	IFFLE: #\$	A10	0110



<u>A-CANOPY</u>	<b>B-AESTHETICS</b>	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◇ WWTP		♦ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	<ul> <li>◇ Excess turbidity</li> <li>◇ Young – Succession</li> <li>◇ Old - Succession</li> </ul>		◇ Contaminated	◇ Landfill	◇ Industry	
^{&gt;} 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	Oil sheen	Leveed – One side	ded	♦ Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	Quarry Mine	◊ Golf	◇ Home
90 Middle	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

<b>DETA</b> OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index)
--------------------------------------------------------------------------------

Sample #	QHEI Type	bioSample #	Stream Na	ame				Locatio	n		
AB43849	Fish	20T006.5	Tilley Ditcl	h				E Pepm	eir Road		
Surveyor	Sample			cro Sample	Туре	⊗ Habi	itat Comp	loto		QHEI Scor	e: 51
KRW	8/20/20	Knox	N/A					hele			51
1-SUBST	<u>RATE</u>		substrate TYPE B e every type preser					Che	eck ONE (o	or 2 & average)	
BEST TYP	ES			RTYPES				OR	IGIN	QUALITY	
		TOTAL POOL	RIFFLE		TOTAL	POOL	RIFFLE			CII T	
◇ ◇ Bldrs/Sl	labs (10)			dpan (4)		x		◇ Limes	tone (1)	SILT ◇ Heavy (-2)	Substrate
◊ ◊ Boulder	rs (9)		◇ ◇ Det	ritus (3)				◇ Tills (1		◇ Moderate (-1)	
◊ ◊ Cobble	(8)		◇ ◇ Mu	ck (2)				<ul> <li>Wetlan</li> <li>Hardp</li> </ul>		<ul> <li>Normal (0)</li> <li>◇ Free (1)</li> </ul>	12
◊ ◊ Gravel (	(7)		× ◇ Silt			х	х	♦ Sands	tone (0)	EMBEDDEDNESS	
* * Sand (6)		x		ificial (0)				◇ Rip/Ra	• • •	♦ Extensive (-2)	Maximum
♦ ♦ Bedrock				.,				<ul> <li>Lacus</li> <li>Shale</li> </ul>		◇ Moderate (-1) Normal (0)	20
	OF BEST TY	/PES: ◇ 4 o	r more (2)	(Sco	ore natural sludae f		es; ignore t-sources)	Coal f	ines (-2)	◇ None (1) ´	
			r less (0)		g- ·		,				
COMMENTS	S										
2-Moderate a amounts (e.g water, or dee 1_Un 1_Ov 1_Sh	mounts, but no ., very large bo	ot of highest quality pulders in deep or f , functional pools. s (1) egetation (1)	ce 0 to 3: <b>0</b> -Absent r or in small amount ast water, large dia <u>0</u> Pools <u>0</u> Rootw <u>0</u> Bould	ts of highest of meter log that > 70cm (2) /ads (1)	quality; <b>3-</b> ⊢ t is stable, 0	lighest qu well deve Oxbow Aquati	uality in mo	oderate or twad in de vaters (1) ohytes (1	greater eep / fast	AMOUN Check ONE (or 2 of Extensive >75% Moderate 25-75% Sparse 5-<25% ( Nearly absent <	& average) (11) % (7) (3)
COMMENTS	5									<b>C</b> Maxin	over num 10 20
3-CHANN	EL MORP	HOLOGY	Check ONE in e	each category	(Or 2 & a	verage)					
SINUOSITY	D	EVELOPMENT		NELIZATIO	N	-	TABILITY				
<ul><li>◇ High (4)</li><li>◇ Moderate</li></ul>		Excellent (7) Good (5)	◇ Noi ◇ Rec	ne (6) covered (4)			High (3) Moderate	(2)		Cha	nnel
<ul> <li>Low (2)</li> </ul>	• •	Fair (3)		covering (3)			Low (1)	. (_)		Maxii	mum 10 20
◇ None (1) COMMENTS		Poor (1)	◇ Rec	ent or no re	ecovery (	1)					
4- BANK	EROSION	& RIPARIAN	ZONE Check	ONE in each	category	for <b>EAC</b>	H BANK (C	Dr 2 per b	ank & aver	age)	
•	king downstrear		PARIAN WIDTH				FLO	OOD PLA	IN QUALI	ITY	
	ROSION	L R ◇ ◇ Wide	>50m (4)	L F	१ Forest, S	wamp (3	3)		L R ◇ ◇ Cor	servation Tillage	(1)
* * None of		◊ ◊ Mode	erate 10-50m (3)		Shrub or					an or Industrial (0)	• •
◇ ◇ Modera◇ ◇ Heavy/S			w 5-10m (2) narrow <5m (1)		Resident Fenced p		, New fiel	d (1)		ing, construction (	
Ticavy/		<ul><li>◇ Very</li><li>◇ None</li></ul>	( )		•	•	wcrop (0)	)			oarian kimum 5
COMMENTS	5										10
5-POOL/G	SLIDE AND	RIFFLE/RUN	N QUALITY								
MAXIMUM Check ONE ( > 1m (6) > 0.7-<1m > 0.4-<0.7r > 0.2-<0.4r > <0.2m (0 COMMENTS	ONLY!) (4)	CHANNE Check ONE (o Pool width > rif Pool width = rif Pool width < rif	r 2 & average) fle width (2) fle width (1)	<ul> <li>◇ Torrentia</li> <li>◇ Very Fas</li> <li>◇ Fast (1)</li> <li>◊ Moderate</li> <li>Indicate</li> </ul>	al (-1) t (1)	ALL that a * Slow < Inter < Inter < Eddi	apply v (1) stitial (-1) mittent (- ies (1)		<	CREATION POTEN	ct act n back) rrent
Indicate for	functional rit	ffles; Best areas	must be large er	nough to su	pport a p	opulatio	n of riffle	-obligate	species:	◊ No Riffle (	metric=0)
<ul><li>◇ Best Area</li><li>◇ Best Area</li></ul>	FLE DEPTH is >10cm (2) is 5-10cm (1) is <5cm _{(metric}	◇ Maxir Maxir	RUN DEPTH num >50cm (2) num <50cm (1)	RIFF ◇ Stable ( ◈ Mod. St ◇ Unstabl	LE/RUN e.g. cobb able (e.g.	SUBSTF le, boul large g	der) (2) ravel) (1)	ŘÍFFL ◇ ♪ ◇ ↓ ) ◇ ♪	E/RUN EM None (2) Low (1) Moderate Extensive	ABEDDEDNESS Riffl (0)	e/Run imum 3 8
6-GRADIE	ENT										
( 4.379 fr DRAINAGE ( 9.299 n	t/mi) AREA		◇ Very Iow – Low ◇ Moderate (6-10 ◇ High – Very hig	)`´		OL: 10 UN: 85		GLIDE: RIFFLE:	_	Maxir	dient num 6 03 ¹⁰

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	AINTENANCE		D-ISSUES	
	Nuisance algae	◊ Public	◇ Private	◇ WWTP	♦ NPDES	♦ CSO
[⊳] 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
◇ 30%-<55%	◊ Excess turbidity	<ul> <li>◊ Young – Succession</li> <li>◊ Old - Succession</li> </ul>		◇ Contaminated	◊ Landfill	◇ Industry
[⊳] 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◊ Cooling
	◊ Oil sheen	Leveed – One side	led	◊ Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		◊ Moving – Bedload		◇ False bank	♦ Manure	Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	♦ Acid Mine	◊ Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
92 Middl	е	Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

		OWQ	Biol	ogical S	Studies (		Qua	litativ	e Habitat	Evaluation	Index)
Sample #	QHEI Type	bioSan	nple #	Strea	m Name				Location		
AB43431	Fish	20T018	3.5	Maria	Creek				E County Road 1	050 S	
Surveyor	Sample	e Date	County		Macro Samp	Іе Туре	⊗ Hał	oitat Comp		QHEI Score	e: 46
TAF	8/18/20		Sullivan		N/A		• Hat		here		
<u>1-SUBST</u>	<u> IRATE</u>	Check <b>O</b> estimate	NLY Two % or note	substrate TYA	PE BOXES; resent				Check ONE (	or 2 & average)	
BEST TYP	PES		,		HER TYPES				ORIGIN	QUALITY	
		TOTAL	POOL	RIFFLE		TOTAL	POOL	RIFFLE		SILT	
◇ ◇ Bldrs/S	Slabs (10)				Hardpan (4)		x	<u> </u>	Limestone (1)	SILT ♦ Heavy (-2)	Substrate
◊ ◊ Boulde	ers (9)				Detritus (3)				◇ Tills (1)	Moderate (-1)	
◊ ◊ Cobble	e (8)				Muck (2)		x		<ul> <li>Wetlands (0)</li> <li>Hardpan (0)</li> </ul>	◇ Normal (0) ◇ Free (1)	10
◊ ◊ Gravel	( )		x		Silt (2)		x		<ul> <li>Sandstone (0)</li> </ul>	EMBEDDEDNESS	
* * Sand (	• •				Artificial (0)		x		Aip/Rap (0)	♦ Extensive (-2)	Maximum
<ul> <li>◇ ◇ Bedroc</li> </ul>	-								<ul><li>Lacustrine (0)</li><li>Shale (-1)</li></ul>	Moderate (-1)     ∧ Normal (0)	20
	OF BEST T	YPES:		r more (2) r less (0)	(S	core natura sludge			<ul> <li>♦ Coal fines (-2)</li> </ul>	<ul> <li>None (1)</li> </ul>	
COMMENT	rs										
water, or dec <u>1</u> Ui <u>1</u> O <u>1</u> Si	ep, well-defined ndercut bank verhanging v hallows (in sl ootmats (1)	d, function (s (1) (egetation	al pools. - 1 (1)	0 P	e diameter log ir ools > 70cm (2 ootwads (1) oulders (1)	2) 0	Oxbov Aquat	ws, Backw ic macrop	()	Check ONE (or 2 & Check ONE (or 2 & Extensive >75% Moderate 25-75% Sparse 5-<25% (: Nearly absent <5 Coc Maxim	(11) 6 (7) 3) 5% (1) Dver
	NEL MORP				E in each catego						20
SINUOSIT\ ◇ High (4)		DEVELO		-	HANNELIZAT	ION	-	TABILITY High (3)			
♦ Moderate		Good (	• •	\$	Recovered (4			Moderate	e (2)	<b>Chai</b> Maxin	
<ul> <li>Low (2)</li> <li>None (1)</li> <li>COMMENT</li> </ul>	~	<ul> <li>Fair (3)</li> <li>Poor (1</li> </ul>			Recovering ( Recent or no			Low (1)		Waxin	20
4- BANK	EROSION	& RIPA		ZONE C	heck <b>ONE</b> in ea	ich category	/ for <b>EAC</b>	H BANK (	Dr 2 per bank & ave	erage)	
•	oking downstrea			PARIAN WIE	ТН			FLC	OOD PLAIN QUAI	ITY	
L R ◇ ◇ None o ◇ ◇ Moder	• • •	0 0 0	<ul> <li>♦ Mode</li> <li>♦ Marro</li> </ul>	>50m (4) rate 10-50m w 5-10m (2) narrow <5m (0)	(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	R Shrub o Residen Fenced Open Pa	r Old fiel tial, Parl pasture	ld (2) k, New fiel (1)	<ul> <li>◊ ◊ Ur</li> <li>◊ ◊ Mi</li> <li><i>Indicate</i></li> </ul>		0) ) arian
COMMENT	rs									Max	imum 2 10
<u>5-POOL/</u>	GLIDE AN	D RIFFI	_E/RUN		<u>(</u>						
MAXIMU Check ONE ◇ >1m (6) ◇ 0.7-<1m		Chec • <b>Pool w</b> i	k ONE (o idth > rif	L WIDTH r 2 & average) fle width (2) fle width (1)	<ul> <li>◇ Torren</li> <li>◇ Very Fa</li> </ul>	Check tial (-1)	NT VEL ALL that	apply		ECREATION POTEN	t

(circle one and comment on back) Indicate for reach - pools and riffles. Pool/Current

Maximum 6 12

Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: No Riffle (metric=0) Check ONE (or 2 & average) Check ONE (ONLY!) **RIFFLE DEPTH RUN DEPTH RIFFLE/RUN SUBSTRATE RIFFLE/RUN EMBEDDEDNESS** None (2) ♦ Best Areas >10cm (2) Maximum >50cm (2) Stable (e.g. cobble, boulder) (2) Riffle/Run ◇ Low (1) Maximum <50cm (1)</li> * Best Areas 5-10cm (1) Mod. Stable (e.g. large gravel) (1) Maximum 1 Moderate (0) ◊ Best Areas <5cm_(metric=0) * Unstable (e.g. sand, fine gravel) (0) 8 * Extensive (-1)

Intermittent (-2)

Eddies (1)

Fast (1)

Moderate (1)

## COMMENTS

* 0.4-<0.7m (2)

◇ 0.2-<0.4m (1)

**COMMENTS** 

Pool width < riffle width (0)</p>

COMMENTS				
<u>6-GRADIENT</u>				
( 8.775 ft/mi) DRAINAGE AREA	<ul> <li>◊ Very low – Low (2-4)</li> <li>◊ Moderate (6-10)</li> </ul>	% POOL: 50	% GLIDE: 10	Gradient Maximum 10
(10.192 mi ² )	<ul> <li>◇ High – Very high (10-6)</li> </ul>	% RUN: 30	% RIFFLE: 10	A105 ¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◊ Excess turbidity	<ul> <li>Young – Success</li> <li>Old - Succession</li> </ul>		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Output Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Barbara	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
68 Middle		Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

БЗ	$\mathbf{M}$	OWQ E	Biologica	al Stu	udies C	<u> HEI (</u>	Qua	litativ	<u>e Ha</u>	bitat E	Evaluation	<u>Index)</u>
Sample #	QHEI Type	bioSamp	ole#	Stream I	Name				Locati	on		
AB42670	Fish	20T003	(	Cotton B	ranch				E Sprin	ngtown Roa	d	
Surveyor	Sample		County		acro Sample	е Туре		oitat Comp	nlete		QHEI Sco	ore: 65
CWY	7/8/20		ínox	N			* Hak		piete			
1-SUBSTR	RATE	Check ONL estimate %	LYTwo substrat 6 or note every t	e TYPE I ype prese	BOXES; ent				Ch	neck ONE (c	or 2 & average)	
BEST TYPE	ES				R TYPES				0	RIGIN	QUALITY	
		TOTAL P	OOL RIFFLE			TOTAL	POOL	RIFFLE			SILT	
◊ ◊ Bldrs/Sla	abs (10)			_	ardpan (4)					stone (1)	Heavy (-2)	Substrate
◊ ◊ Boulders	s (9)			_	etritus (3)				♦ Tills ( ♦ Wetla	(1) ands (0)	<ul> <li>♦ Moderate (-1)</li> <li>♦ Normal (0)</li> </ul>	
◊ ◊ Cobble (	8)			_	uck (2)		х		* Hard	pan (Ò)	◇ Free (1)	10
◊ ◊ Gravel (7	7)			_	lt (2)		Х		◇ Sand ◇ Rip/F	stone (0)	EMBEDDEDNESS	
* * Sand (6)		X	x	_	tificial (0)			<u> </u>	♦ Lacu	strine (0)	* Moderate (-1)	maximani
◊ ◊ Bedrock		<u> </u>		_	(Sc			tes; ignore	♦ Shale	e (-1) fines (-2)	◇ Normal (0)◇ None (1)	
NUMBER O	OF BEST T	YPES:	♦ 4 or more (			sludge	from poir	nt-sources)		iiies (-z)	· None (1)	
COMMENTS	;		* 3 or less (0	")								
2-Moderate ar amounts (e.g., water, or deep 1 Unc 2 Ove	nounts, but n , very large b	ot of highest oulders in de d, functional <b>s (1)</b> regetation (	(1)	all amou r, large di 2 <b>Pool</b> :	nts of highest ameter log tha s > 70cm (2) wads (1)	quality; <b>3</b> - at is stable 0 0	Highest q , well dev Oxbov Aquat	uality in mo	oderate o otwad in o waters (1 ohytes (	or greater deep / fast 1) 1)	AMOU Check ONE (or 2 Check ONE (or 2) Extensive >75° Moderate 25-72 Sparse 5-<25% Nearly absent	2 & average) % (11) 5% (7) ‰ (3)
1 Roc	otmats (1)										-	
COMMENTS	;											Cover timum 13
SINUOSITY	(3)	DEVELOPM Excellent Good (5) Fair (3) Poor (1)		<ul> <li>♦ No</li> <li>◇ Re</li> <li>◇ Re</li> </ul>	NNELIZATIO one (6) ecovered (4) ecovering (3) ecent or no r	)	\$	• High (3) • Moderate • Low (1)				nannel ximum 20
4- BANK E		& RIPAR	RIAN ZONE	Cheo	k ONE in eac	h category	for <b>EAC</b>	H BANK (	Or 2 per	bank & aver	ade)	
River right look	ing downstrea		RIPARIAN			0,				AIN QUAL		
EF L R ◇ ◇ None or ◇ ◈ Moderat ◈ ◇ Heavy/S	:e (2)		R • Wide >50m (+ • Moderate 10- • Narrow 5-10r • Very narrow • None (0)	50m (3) n (2)		Forest, S Shrub or Resident Fenced	Old fiel tial, Parl basture	ld (2) k, New fiel	.,	◊ ◊ Urb ◊ ◊ Min Indicate p		0) n (0) e(s) Riparian
COMMENTS											IVI	aximum 9 10
<u>5-POOL/G</u>	LIDE AN	D RIFFLE	<u>E/RUN QUA</u>	<u>LITY</u>						r		1
MAXIMUM Check ONE (( * >1m (6) > 0.7-<1m ( > 0.4-<0.7m > 0.2-<0.4m > <0.2m (0) COMMENTS	ONLY!) (4) 1 (2) 1 (1) (metric=0)	Check ( • Pool widt • Pool widt	ANNEL WIDTI ONE (or 2 & ave th > riffle widtl th = riffle widtl th < riffle widtl	e <i>rage</i> ) h <b>(2)</b> h <b>(1)</b>	<ul> <li>◇ Torrenti</li> <li>◇ Very Fas</li> <li>◊ Fast (1)</li> <li>◊ Moderat</li> <li>Indicate</li> </ul>	ial (-1) st (1)	ALL that * Slow > Inte > Inte > Edd	apply w (1) erstitial (-1 ermittent (· lies (1)	,		CREATION POTE	act ntact on back)
Indicate for f	functional r	iffles; Best	areas must b	e large e	enough to su	ipport a r	opulatio	on of riffle	e-obliga	te species:	♦ No Riffle	e (metric=0)
	Che FLE DEPTH s >10cm (2) s 5-10cm (1) s <5cm _{(metri}	ck ONE (ON   ◇		PTH 0cm (2)	RIF ◇ Stable ◇ Mod. S	Ch FLE/RUN (e.g. cob (table (e.g	eck ONE SUBST ble, bou l. large g	(or 2 & ave RATE	erage) RIFFI ◇ ◇	-	ABEDDEDNESS Rif (0)	fle/Run aximum 8
6-GRADIE												
( 9.645 ft/ DRAINAGE / ( 3.133 m	/mi) AREA		◇ Very I ◈ Mode ◇ High -	rate (6-1			DOL: 50 RUN: 40		6 GLIDE		Max	ximum 6



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◊ Private	◊ WWTP		♦ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◊ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
[∞] 10%-<30%	Discoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	* Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedloa	d	False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◇ Quarry Mine	◊ Golf	◇ Home
11 Middle		Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Sample # QHEI Typ	e bioSample	# Stream N	ame			Location		
AB42669 Fish	20T001	Maria Cre	ek			N Old 41		
	le Date Cou	-	acro Sample Type	¬ ⊗ Hah	oitat Com		QHEI Score	e: 66
CWY 7/7/20	-			• 1145		biete		00
<u>1-SUBSTRATE</u>		<b>Two</b> substrate TYPE B note every type prese				Check ONE (	or 2 & average)	
BEST TYPES		OTHEI	R TYPES			ORIGIN	QUALITY	
	TOTAL POC		-	AL POOL			SILT	Crishadaada
◊ ◊ Bldrs/Slabs (10)				<u> </u>		<ul><li>◇ Limestone (1)</li><li>◇ Tills (1)</li></ul>	<ul><li>◇ Heavy (-2)</li><li>⊗ Moderate (-1)</li></ul>	Substrate
◇ ◇ Boulders (9)	·		tritus (3)			◊ Wetlands (0)	Normal (0)	10
◇ ◇ Cobble (8)			.,	— <u>x</u>	·	<ul> <li>♦ Hardpan (0)</li> <li>♦ Sandstone (0)</li> </ul>	<ul> <li>Free (1)</li> <li>EMBEDDEDNESS</li> </ul>	10
◊ ◊ Gravel (7)				_ ^		◇ Rip/Rap (0)	<ul> <li>♦ Extensive (-2)</li> </ul>	Maximum
* * Sand (6)	X	× ◇ ◇ Art	tificial (0)			<ul><li>◇ Lacustrine (0)</li><li>◇ Shale (-1)</li></ul>	<ul> <li>Moderate (-1)</li> <li>◇ Normal (0)</li> </ul>	20
◇ ◇ Bedrock (5) NUMBER OF BEST ⁻		4 or more (2)		ural substrat ge from poir	es, ignore	♦ Coal fines (-2)	<ul> <li>None (1)</li> </ul>	
NOMBER OF BEOT	-	3 or less (0)	Sida	ge nom poli	it-sources)			
COMMENTS								
2-INSTREAM COV 2-Moderate amounts, but amounts (e.g., very large water, or deep, well-defin 1 Undercut ban 0 Overhanging 1 Shallows (in s 1 Rootmats (1)	not of highest qu boulders in deep ed, functional poo <b>ks (1)</b> <b>vegetation (1)</b>	ality or in small amoun or fast water, large dia bls.	tis of highest quality; ameter log that is stat 5 > 70cm (2) wads (1)	3-Highest q ble, well dev 1 Oxbov 0 Aquat	uality in mo veloped roc ws, Backw ic macrop	oderate or greater otwad in deep / fast vaters (1)	AMOUN Check ONE (or 2 & Extensive >75% ( Moderate 25-75% Sparse 5-<25% ( Nearly absent <5	average) (11) 6 (7) 3)
COMMENTS							<b>Co</b> Maxim	ver ^{um} 13 20
<ul> <li>High (4)</li> <li>Moderate (3)</li> <li>Low (2)</li> <li>None (1)</li> <li>COMMENTS</li> </ul>	<ul> <li>◇ Excellent (7)</li> <li>◊ Good (5)</li> <li>◊ Fair (3)</li> <li>◊ Poor (1)</li> </ul>	<ul> <li>◇ Re</li> <li>◇ Re</li> </ul>	ne (6) covered (4) covering (3) cent or no recover	♦	High (3) Moderate Low (1)	e (2)	<b>Char</b> Maxin	-
4- BANK EROSIO		N ZONE Check RIPARIAN WIDTH	k ONE in each categ	ory for <b>EAC</b>	`	Or 2 per bank & ave DOD PLAIN QUAL	8,	
EROSION L R $\diamond$ $\diamond$ None or little (3) $\Rightarrow$ $\Rightarrow$ Moderate (2) $\diamond$ $\diamond$ Heavy/Severe (1) COMMENTS	L R	/ide >50m (4) oderate 10-50m (3) arrow 5-10m (2) ery narrow <5m (1) one (0)	L R	or Old fiel ential, Park d pasture (	3) d (2) <, New fiel (1)	L R ◇ ◇ Co ◇ ◇ Url Id (1) ◇ ◇ Min <i>Indicate</i>	nservation Tillage ( oan or Industrial (0) ning, construction (( predominant land use(s, im riparian. <b>Rip</b> a	D)
5-POOL/GLIDE AN	D RIFFLE/R							
MAXIMUM DEPTH Check ONE (ONLY!) [♦] >1m (6) [◊] 0.7-<1m (4) [◊] 0.4-<0.7m (2) [◊] 0.2-<0.4m (1) [◊] <0.2m (0) (metric=0) COMMENTS	CHAN Check ON * Pool width : * Pool width :	INEL WIDTH E (or 2 & average) > riffle width (2) = riffle width (1) < riffle width (0)		◇ Inte ◇ Edd	apply w (1) rstitial (-1 rmittent (· lies (1)	) -2)	CREATION POTEN	t ict back) rent
Indicate for functional	riffles; Best ar	eas must be large ei	nough to support	a populatio	on of riffle	obligate species	:	
RIFFLE DEPT * Best Areas >10cm (2 * Best Areas 5-10cm ( * Best Areas <5cm _{(met}	2) ◇ M 1) ◇ M	/) RUN DEPTH aximum >50cm (2) aximum <50cm (1)		e.g. large g	RATE Ider) (2) Jravel) (1)	RIFFLE/RUN E ◇ None (2) ◇ Low (1)	• •	_
<u>6-GRADIENT</u> (3.217 ft/mi) DRAINAGE AREA (90.629 mi ² )		<ul> <li>◊ Very low – Lov</li> <li>◊ Moderate (6-10</li> <li>◊ High – Very high</li> </ul>	))``	POOL: 35 6 RUN: 50		6 GLIDE: 0 RIFFLE: 15	<b>Grad</b> Maxim A10	



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	AINTENANCE		D-ISSUES		
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP	♦ NPDES	◇ CSO	
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime	
» 30%-<55%	♦ Excess turbidity	<ul> <li>◊ Young – Succession</li> <li>◊ Old - Succession</li> </ul>		◇ Contaminated	◊ Landfill	◇ Industry	
× 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	♦ Sediment BMPs		
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling	
	◊ Oil sheen	Leveed – One side	led	Sank Erosion	♦ Surface Erosion	♦ H2O table	
◇ Trash/Litter		Leveed – Both Bath	anks				
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	♦ Manure	◇ Lagoon	
		◊ Stable - Bedload					
49 Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	Natural Flow	
	Sludge deposits	Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flov	
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◇ Golf	◇ Home	
51 Middle	•	Impounded	Desiccated	◇ Park	Oata Paucity	◇ Lawn	
		Flood Control	Orainage	◇ Agriculture	Livestock		
		Snag Removed		◇ Atmosphere			
		Snag Modified		Deposition			
32 Left							

Sample #	QHEI Type	bioSample #	Stream Name	Loc	ation		
AB42686	Fish	20T019	Maria Creek	E C	ounty Road 97	75 S	
Surveyor	Sample		Macro Sample Type	e ──		QHEI Score:	58
CWY	6/22/20	Sullivan	N/A				50
1-SUBST	RATE	Check ONLY Two sul estimate % or note ev	ostrate TYPE BOXES; very type present		Check ONE (d	or 2 & average)	
BEST TYP	ES		OTHER TYPES		ORIGIN	QUALITY	
		TOTAL POOL RI	FFLE TOT	AL POOL RIFFLE		SILT	
◇ ◇ Bldrs/Sl	labs (10)		◇ ◇ Hardpan (4)		mestone (1)	Heavy (-2)	Substrate
◇ ◇ Boulder	rs (9)		◇ ◇ Detritus (3)		lls (1) etlands (0)	<ul> <li>Moderate (-1)</li> <li>◊ Normal (0)</li> </ul>	
◊ ◊ Cobble	(8)				ardpan (0)	<ul> <li>Normal (0)</li> <li>Free (1)</li> </ul>	6
◇ ◇ Gravel (	(7)	<u> </u>			andstone (0)	EMBEDDEDNESS	
◊ ♦ Sand (6)	)	x x	◊ ◊ Artificial (0)		ip/Rap (0) acustrine (0)	<ul> <li>Extensive (-2)</li> <li>Moderate (-1)</li> </ul>	Maximum 20
◊ ◊ Bedrock	k (5)		(Score na	+ unal authetration imperie	hale (-1)	<ul><li>◇ Normal (0)</li></ul>	20
	OF BEST TY	<b>PES:</b>		dge from point-sources) $\diamond$ Co	oal fines (-2)	◊ None (1)	
		* 3 or le	ss (0)				
COMMENTS	S						
water, or dee <u>1</u> Un <u>0</u> Ov <u>2</u> Sh	p, well-defined dercut banks verhanging ve allows (in slo	, functional pools. <b>5 (1)</b> getation (1)	3       Pools > 70cm (2)         2       Rootwads (1)         0       Boulders (1)	able, well developed rootwad         0       Oxbows, Backwater         1       Aquatic macrophyte         1       Logs and woody de	rs (1) es (1)	Check ONE (or 2 & 4 • Extensive >75% (1 • Moderate 25-75% • Sparse 5-<25% (3) • Nearly absent <5%	1) (7) )
	otmats (1)					Co	
COMMENTS	5					<b>Cov</b> Maximu	^m 15
3-CHANN			Check ONE in each category (Or:	2 & average)			20
SINUOSITY		EVELOPMENT	CHANNELIZATION	STABILITY			
* High (4)		Excellent (7)	* None (6)	◊ High (3)		Chanr	nel
<ul> <li>Moderate</li> <li>Low (2)</li> </ul>		Good (5) Fair (3)	<ul> <li>◇ Recovered (4)</li> <li>◇ Recovering (3)</li> </ul>	<ul> <li>♦ Moderate (2)</li> <li>♦ Low (1)</li> </ul>		Maximu	um 17
None (1)		Poor (1)	♦ Recent or no recover				20
COMMENTS	S						
4- BANK	EROSION	& RIPARIAN ZO	NE Check ONE in each cate	gory for <b>EACH BANK</b> (Or 2 µ	per bank & aver	age)	
	king downstrean			FLOOD	PLAIN QUAL	ΙΤΥ	
	RUSION	L R ◇ ◇ Wide >5	L R 0m (4) ◇ ◇ Fore:	st, Swamp (3)	L R ◇ ◇ Cor	servation Tillage (1)	)
	• • •		e 10-50m (3)	b or Old field (2)	◇ ◇ Urb	an or Industrial (0)	
♦ ♦ Modera ♦ ♦ Modera ♦ ♦ Heavy/\$		◇ ◆ Narrow 5 ◇ ◇ Very nar		dential, Park, New field (1) ed pasture (1)	•	iing, construction (0) predominant land use(s)	)
	()	◇ ◇ None (0)		Pasture/Rowcrop (0)		n riparian. <b>Ripa</b>	rian
COMMENTS	S					Maxin	
5-POOL/O	GLIDE AND	RIFFLE/RUN G	UALITY				<u> </u>
MAXIMUN	M DEPTH	CHANNEL W	IDTH CUF	RENT VELOCITY			
Check ONE (		Check ONE (or 2 a Pool width > riffle		eck ALL that apply	KE	CREATION POTENT	IAL
<ul><li>♦ 0.7-&lt;1m</li></ul>		Pool width = riffle		<ul> <li>◇ Interstitial (-1)</li> </ul>		<ul> <li>Secondary Contact</li> </ul>	t
◇ 0.4-<0.7r		Pool width < riffle		Intermittent (-2)		le one and comment on b	
◇ 0.2-<0.4r ◇ <0.2m (0			Moderate (1) Indicate for re	<ul> <li>Eddies (1)</li> <li>each – pools and riffles.</li> </ul>	(0.10	Pool/Curre	
COMMENTS						Maximu	m 7
		fles: Rest areas m	st be large enough to suppor	a nonulation of riffle-obl	inate species		12
		k ONE (ONLY!)	or se iarge enough to suppor	Check ONE (or 2 & average		◇ <u>No Riffle (m</u>	<u>etric=0)</u>
	FLE DEPTH	RUN		UN SUBSTRATE RI	FFLE/RUN EN	BEDDEDNESS	ſ
	as >10cm (2)		.,	cobble, boulder) (2)	◇ None (2) ◇ Low (1)	Riffle/I	
	as 5-10cm (1) as <5cm _{(metric:}			(e.g. large gravel) (1) g. sand, fine gravel) (0)	<ul> <li>♦ Moderate</li> <li>♦ Extensive</li> </ul>		1000 2
		=111					

COMMENTS	
----------	--

6-GRADIENT				
( 7.687 ft/mi)	◊ Very low – Low (2-4)	% POOL: 70	% GLIDE: 0	Gradient
DRAINAGE AREA (7.331 mi ² )	◇ Moderate (6-10) ◇ High – Very high (10-6)	% RUN: 20	% RIFFLE: 10	Maximum 6 A111 ¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES		
>85% - Open	Vuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO	
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime	
→ 30%-<55%	◊ Excess turbidity	<ul> <li>Young – Succession</li> <li>Old - Succession</li> </ul>		◇ Contaminated	◊ Landfill	◇ Industry	
[»] 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs		
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling	
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table	
		◇ Leveed – Both Banks					
Canopy Upstream Reading		Moving – Bedload		◇ False bank	◊ Manure	♦ Lagoon	
		◊ Stable - Bedload					
Right	Nuisance odor	Armoured	Slumps	◊ Wash H2O	◊ Tile	◇ Natural Flow	
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow	
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home	
29 Middl	e	Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn	
		Flood Control	Orainage	◇ Agriculture	Livestock		
		Snag Removed		Atmosphere			
		Snag Modified		Deposition			
Left							

## OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index) QHEI Type bioSample # Stream Name Location Sample # AB42674 Fish 20T007 Tributary of Maria Creek County Road 700 E, Lane Road Sample Date Surveyor County Macro Sample Type QHEI Score: 46 * Habitat Complete KJC 6/22/20 Knox N/A Check ONLY Two substrate TYPE BOXES; **1-SUBSTRATE** Check ONE (or 2 & average) estimate % or note every type present **BEST TYPES** OTHER TYPES ORIGIN QUALITY TOTAL POOL RIFFLE TOTAL POOL RIFFLE SILT ◊ ◊ Bldrs/Slabs (10) Substrate ◊ ◊ Hardpan (4) Limestone (1) Heavy (-2) Tills (1) ♦ Moderate (-1) ◊ ◊ Detritus (3) ◊ ◊ Boulders (9) Normal (0) Vetlands (0) 11 ◊ ◊ Cobble (8) ◊ ◊ Muck (2) х Hardpan (0) Free (1) Sandstone (0) EMBEDDEDNESS х х ◊ ♦ Gravel (7) х ◊ ◊ Silt (2) Rip/Rap (0) Extensive (-2) Maximum х х * <> Sand (6) A Lacustrine (0) * Moderate (-1) 20 (Score natural substrates; ignore $\diamond$ Coal fines (-2) Normal (0) None (1) NUMBER OF BEST TYPES: ◊ 4 or more (2) sludge from point-sources) * 3 or less (0) COMMENTS 2-INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; AMOUNT 2-Moderate amounts, but not of highest guality or in small amounts of highest guality; 3-Highest guality in moderate or greater Check ONE (or 2 & average) amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast Extensive >75% (11) water, or deep, well-defined, functional pools. 0 Undercut banks (1) 0 Pools > 70cm (2) 0 Oxbows, Backwaters (1) * Moderate 25-75% (7) 2 Overhanging vegetation (1) 0 1 Rootwads (1) Aquatic macrophytes (1) Sparse 5-<25% (3) </p> Shallows (in slow water) (1) 0 Boulders (1) 0 Logs and woody debris (1) Nearly absent <5% (1)</p> 0 Rootmats (1) Cover **COMMENTS** Maximum 8 20 Check ONE in each category (Or 2 & average) 3-CHANNEL MORPHOLOGY STABILITY SINUOSITY DEVELOPMENT **CHANNELIZATION** Excellent (7) None (6) High (3) High (4) Channel Moderate (3) Recovered (4) Moderate (2) Good (5) Maximum 10 Recovering (3) Low (2) * Fair (3) ◇ Low (1) 20 * Poor (1) Recent or no recovery (1) None (1) COMMENTS **4- BANK EROSION & RIPARIAN ZONE** Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream **RIPARIAN WIDTH** FLOOD PLAIN QUALITY EROSION LR LR LR LR ◊ ◊ Wide >50m (4) ◇ ◇ Forest, Swamp (3) ◊ ◊ Conservation Tillage (1) ◇ ◇ None or little (3) ◊ ◊ Moderate 10-50m (3) ◇ ◇ Shrub or Old field (2) ◊ ◊ Urban or Industrial (0) * * Moderate (2) ◊ ◊ Narrow 5-10m (2) ◊ ◊ Mining, construction (0) * * Very narrow <5m (1) </p> ◇ ◇ Fenced pasture (1) Indicate predominant land use(s) past 100m riparian. * * Open Pasture/Rowcrop (0) Riparian Maximum 3 COMMENTS 10 5-POOL/GLIDE AND RIFFLE/RUN QUALITY MAXIMUM DEPTH **CHANNEL WIDTH CURRENT VELOCITY RECREATION POTENTIAL** Check ONE (ONLY!) Check ONE (or 2 & average) Check ALL that apply ◊ >1m (6) * Pool width > riffle width (2) Torrential (-1) * Slow (1) Primary Contact Pool width = riffle width (1) Very Fast (1) ◊ 0.7-<1m (4)</p> Interstitial (-1) * Secondary Contact * 0.4-<0.7m (2) Pool width < riffle width (0)</p> ◇ Intermittent (-2) Fast (1) (circle one and comment on back) ◇ 0.2-<0.4m (1) Moderate (1) Eddies (1) Indicate for reach - pools and riffles. Pool/Current 6 COMMENTS Maximum 12 Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: No Riffle (metric=0) Check ONE (ONLY!) Check ONE (or 2 & average) **RIFFLE DEPTH RUN DEPTH RIFFLE/RUN SUBSTRATE RIFFLE/RUN EMBEDDEDNESS** None (2) Sest Areas >10cm (2) Maximum >50cm (2) Stable (e.g. cobble, boulder) (2) Riffle/Run ◇ Low (1) Maximum <50cm (1) </p> * Best Areas 5-10cm (1) Mod. Stable (e.g. large gravel) (1) 2 Maximum Moderate (0) ♦ Best Areas <5cm_(metric=0) Unstable (e.g. sand, fine gravel) (0) 8 * Extensive (-1) **COMMENTS** 6-GRADIENT (9.923 ft/mi) ◊ Very low – Low (2-4) % POOL: 10 % GLIDE: 70 Gradient DRAINAGE AREA Moderate (6-10) Maximum 6

12/22/2020 13:52:54 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

% RUN: 10

% RIFFLE: 10

High – Very high (10-6)

(2.623 mi²)

A113¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES		
>85% - Open	Nuisance algae	◊ Public	◊ Private	◊ WWTP		♦ CSO	
² 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime	
30%-<55%	◊ Excess turbidity	<ul> <li>◊ Young – Succession</li> <li>◊ Old - Succession</li> </ul>		◇ Contaminated	◊ Landfill	◇ Industry	
10%-<30%	Discoloration	◇ Spray		Construction BMPs	Sediment BMPs		
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling	
	◊ Oil sheen	A Leveed – One side	ded	Output Series Bank Erosion	Surface Erosion	♦ H2O table	
	◇ Trash/Litter	◊ Leveed – Both Banks					
Canopy Upstream Reading		◇ Moving – Bedload		◇ False bank	♦ Manure	Lagoon	
		◊ Stable - Bedload					
Right	Nuisance odor	Armoured	Slumps	◊ Wash H2O	◇ Tile	Natural Flow	
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow	
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◇ Golf	◇ Home	
80 Middl	е	Impounded	Oesiccated	◇ Park	Oata Paucity	◇ Lawn	
		Flood Control	Orainage	◇ Agriculture	Livestock		
		Snag Removed		◇ Atmosphere			
		Snag Modified		Deposition			
Left							

	M C	<u>OWQ Bi</u>	ological Stu	udies QHE	<u>El (Qua</u>	litative	e Habitat	Evaluation	lndex)
Sample #	QHEI Type	bioSample	# Stream N	lame			Location		
AB42676	Fish	20T009	Maria Cre	ek			County Road 90	0 N	
Surveyor	Sample		unty Ma	acro Sample Typ	е « На	bitat Comp	lete	QHEI Score	e: 43
KRW	6/23/20		-		• па	bitat Comp	lete		40
<u>1-SUBST</u>	RATE	check ONLY estimate % o	Two substrate TYPE E r note every type prese	BOXES; ent			Check ONE	(or 2 & average)	
BEST TYP	PES			R TYPES			ORIGIN	QUALITY	
		TOTAL POO		-	TAL POOL			SILT	Cubatrata
◊ ◊ Bldrs/S	. ,	<u> </u>		rdpan (4)	<u>x</u>		◇ Limestone (1) ◇ Tills (1)	<ul> <li>◇ Heavy (-2)</li> <li>◊ Moderate (-1)</li> </ul>	Substrate
◊ ◊ Boulde	.,	<u> </u>		tritus (3)			◊ Wetlands (0)	<ul> <li>Normal (0)</li> </ul>	7
◊ ◊ Cobble		<u> </u>	◇ ◇ Mu X ◇ ◇ Sil		<u>x</u>		<ul> <li>♦ Hardpan (0)</li> <li>♦ Sandstone (0)</li> </ul>	<ul> <li>Free (1)</li> <li>EMBEDDEDNESS</li> </ul>	'
		<u> </u>	•• 01	.,	^		◇ Rip/Rap (0)	Extensive (-2)	Maximum
◇ ◇ Sand (6	-		<u>×</u>	tificial (0)			<ul> <li>Lacustrine (0)</li> <li>Shale (-1)</li> </ul>	<ul> <li>♦ Moderate (-1)</li> <li>♦ Normal (0)</li> </ul>	20
◇ ◇ Bedroc	نk (٥) OF BEST T		4 or more (2)		atural substra udge from po	ates; ignore	<ul> <li>Coal fines (-2)</li> </ul>		
NUMBER			3 or less (0)	50	luge nom po	int-sources)			
COMMENT	S								
2-Moderate a amounts (e.g water, or dee 1_Ur 1_Ov 1_St	amounts, but n g., very large b ep, well-define ndercut bank verhanging v	ot of highest qu oulders in deep d, functional po	<u>1</u> Pools 0 Rooty	nts of highest qualit ameter log that is s s > 70cm (2) wads (1)	y; <b>3</b> -Highest table, well de <u>0</u> <b>Oxbo</b> 0 <b>Aqua</b>	quality in mo	derate or greater twad in deep / fast aters (1) hytes (1)		& average) (11) 6 (7) 3)
COMMENT								Сс Махіт	
3-CHANN			Check ONE in	each category (Or	2 & average	)			20
SINUOSITY High (4) Moderate Low (2) None (1) COMMENT	e (3)	DEVELOPME ◇ Excellent (7 ◇ Good (5) ◎ Fair (3) ◇ Poor (1)	′) ◇ No ◇ Re ◈ Re	NNELIZATION one (6) covered (4) covering (3) cent or no recov		STABILITY ◇ High (3) ◈ Moderate ◈ Low (1)	(2)	<b>Char</b> Maxin	
4- BANK	EROSION	& RIPARI	AN ZONE Chec	k ONE in each cate	egory for EA	CH BANK (C	)r 2 per bank & av	erage)	
River right loc	oking downstrea		RIPARIAN WIDTH		0	FLO	OD PLAIN QUA	LITY	
E C R ◇ ◇ None o ◇ ◇ Modera ◇ ◇ Heavy/	ate (2)	◇ ◇ N ◇ ◇ N ◇ ◆ V	Vide >50m (4) Ioderate 10-50m (3) Iarrow 5-10m (2) Yery narrow <5m (1) Ione (0)	<ul> <li>◇ ◇ Shru</li> <li>◇ ◇ Resi</li> <li>◇ ◇ Fend</li> </ul>	est, Swamp Ib or Old fie dential, Par ced pasture n Pasture/R	eld (2) rk, New field (1)	<ul> <li>◇ ◇ U</li> <li>◇ ◇ M</li> <li><i>Indicate</i></li> </ul>		0) ) arian
COMMENT	S							Maxi	imum 3 10
5-POOL/	GLIDE AN	D RIFFLE/F	RUN QUALITY						
	M DEPTH (ONLY!) (4) (m (2) (m (1) 0) (metric=0)	CHAI Check ON ◇ Pool width ◇ Pool width	NNEL WIDTH IE (or 2 & average) > riffle width (2) = riffle width (1) < riffle width (0)	Ch	<ul><li>◇ Inte</li><li>◇ Inte</li></ul>	t apply ow (1) erstitial (-1) ermittent (-2 dies (1)	2)	ECREATION POTEN	t nct back) rent wm 8
Indicate for	functional	ifflos: Post -	and must be lever -	nough to come	t a populat	ion of rittle	obligato cresi-		12
RII ◇ Best Area ◇ Best Area ◇ Best Area	Che FFLE DEPTH as >10cm (2) as 5-10cm (1 as <5cm _{(metri}	ck ONE ( <i>ONL</i> )   	reas must be large e (!) RUN DEPTH laximum >50cm (2) laximum <50cm (1)		Check ONI RUN SUBS cobble, bot (e.g. large	E (or 2 & ave TRATE ulder) (2) gravel) (1)	rage) RIFFLE/RUN I ◇ None (2) ◇ Low (1)	EMBEDDEDNESS Riffle e (0)	/Run
									<u> </u>
<u>6-GRADI</u> ( 3.885 f DRAINAGE ( 30.791	ft/mi) E AREA		<ul> <li>◊ Very low – Lov</li> <li>◊ Moderate (6-10</li> <li>◊ High – Very high</li> </ul>	D)	% POOL: 20 % RUN: 80		GLIDE: 0 RIFFLE: 0	<b>Gra</b> o Maxin A1 ⁻	

12/22/2020 13:52:54 PM OWQ	Biological Studies QHEI	(Qualitative Habitat Evaluation	Index), Page 1 of 2
----------------------------	-------------------------	---------------------------------	---------------------



<u>A-CANOPY</u>	<b>B-AESTHETICS</b>	<u>C-M</u>	IAINTENANCE		D-ISSUES		
85% - Open	◇ Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO	
◇ 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime	
◇ 30%-<55%	◇ Excess turbidity	<ul> <li>◊ Young – Succession</li> <li>◊ Old - Succession</li> </ul>		◇ Contaminated	◇ Landfill	◇ Industry	
◇ 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs		
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◊ Cooling	
	◇ Oil sheen	Leveed – One side	ded	◊ Bank Erosion	♦ Surface Erosion	♦ H2O table	
	◇ Trash/Litter	Leveed – Both Banks					
Canopy Upstream Reading		◇ Moving – Bedload		◇ False bank	◇ Manure	◇ Lagoon	
		◊ Stable - Bedload					
Righ	^t ◇ Nuisance odor	Armoured	Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow	
	Sludge deposits	◊ Islands	♦ Scoured	♦ Acid Mine	◊ Wetlands	Stagnant Flow	
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home	
91 Midd	le	Impounded	Oesiccated	◇ Park	◇ Data Paucity	◇ Lawn	
		Flood Control	Orainage	◇ Agriculture	Livestock		
		Snag Removed		Atmosphere			
		Snag Modified		Deposition			
Left							

		OWQ Bi	ologica	I Studie	<u>s QHEI</u>	(Qua	litativ	e Hal	<u>oitat E</u>	Evaluation	Index)
Sample #	QHEI Type	bioSample	# S	tream Name				Locatio	n		
AB42671	Fish	20T004	Μ	aria Creek				N Perry	Road		
Surveyor	Sample				ample Type	♦ Hat	oitat Com	nlete		QHEI Score	e: 30
KJC	6/22/20					- Tuk		piete			
<u>1-SUBSTI</u>	RATE	Check ONLY estimate % or	wo substrate note every ty	TYPE BOXES; pe present				Che	eck ONE (d	or 2 & average)	
BEST TYPI	ES			OTHER TYP	ES			OR	IGIN	QUALITY	
		TOTAL POO	L RIFFLE		ΤΟΤΑΙ	POOL	RIFFLE			SILT	
◊ ◊ Bldrs/Sl	labs (10)			◊ ◊ Hardpan	(4)			◇ Limes		Heavy (-2)	Substrate
◊ ◊ Boulder	rs (9)	. <u> </u>		◇ ◇ Detritus (	(3)		<u> </u>	<ul> <li>♦ Tills (1</li> <li>♦ Wetland</li> </ul>		<ul> <li>◊ Moderate (-1)</li> <li>◊ Normal (0)</li> </ul>	
◊ ◊ Cobble	(8)	. <u> </u>		◊ ◊ Muck (2)				♦ Hardp	an (0)	<ul> <li>◇ Free (1)</li> </ul>	9
◊ ◊ Gravel (	(7)		<u>x</u>	◇ ◇ Silt (2)		<u>x</u>		♦ Sands ♦ Rip/Ra		EMBEDDEDNESS	
* * Sand (6)	)	X	x	◊ ◊ Artificial	(0)			♦ Lacus	trine (0)	Moderate (-1)	Maximum 20
◇ ◇ Bedrock	• •			_	(Score natur	al substrat	tes; ignore	<ul><li>◇ Shale</li><li>◇ Coal f</li></ul>	(-1)	<ul> <li>◊ Normal (0)</li> <li>◊ None (1)</li> </ul>	
NUMBER C	OF BEST T		4 or more (2		sludge	e from poir	nt-sources)		iiies (-z)	• None (1)	
COMMENTS	S	v	3 or less (0)								
2-INSTRE		R Indicate pre	sence 0 to 3:	0-Absent; 1-Ver	v small amoun	s or if mo	re common	of margir	al quality:	AMOUN	т
2-Moderate a	imounts, but n	ot of highest qu	ality or in sma	Il amounts of high	ghest quality; 3	-Highest o	uality in mo	oderate or	greater	Check ONE (or 2 8	
		oulders in deep d, functional poc		large diameter	iog triat is stabl	e, well de\	veloped roc	nwaa in d	eep / tast	♦ Extensive >75%	0 /
	dercut bank	.,	0	Pools > 70c	m (2)	Oxbo	ws, Backv	vaters (1)	)	♦ Moderate 25-75%	<b>6 (7)</b>
		egetation (1)		_ Rootwads (	·		tic macrop	•	•	Sparse 5-<25% (3)	
	allows (in sl otmats (1)	ow water) (1)	0	Boulders (1)	)	Logs	and wood	ly debris	(1)	Nearly absent <5	5% (1)
										Co	over
oomment e										Maxim	
3-CHANN	EL MORP	HOLOGY	Check	ONE in each ca	ategory (Or 2 &	average)					
SINUOSITY		DEVELOPMEN		CHANNELI	ZATION	-	TABILITY High (3)	,			
<ul> <li>Moderate</li> </ul>	(3)	> Good (5) 🎽		<ul> <li>Recovere</li> </ul>	ed (4)		Moderate	e (2)		<b>Char</b> Maxin	
◊ Low (2) ◊ None (1)		◇ Fair (3) ◊ Paar (4)		♦ Recovering			[,] Low (1)			νιαλιτι	num 6 20
None (1)     COMMENTS		Poor (1)		~ Recent of	r no recovery	(1)					
	EDUSION	& RIPARIA			in each catego			Or 2 por b	ank & avo	rago)	
	king downstrea				in each calego						
Ĕ	ROSION	LR			LR				LR		
L R ◇ ◇ None or	r little (3)		ide >50m (4) oderate 10-5		<ul> <li>◇ ◇ Forest,</li> <li>◇ ◇ Shrub o</li> </ul>					nservation Tillage ( [.] oan or Industrial (0)	
* * Modera	te (2)		rrow 5-10m	• •	◊ ◊ Resider			ld (1)		ning, construction (	
◊ ◊ Heavy/S	Severe (1)	◇ ◇ Ve ◈ ◇ Ne	ery narrow <	:5m (1)	<ul> <li>◇ ◇ Fenced</li> <li>◇ ◇ Open P</li> </ul>	•	• •			predominant land use(s, m riparian.	)
		* * INC	me (0)			asture/R	owcrop (u	')	puor roor	Rip	arian imum 3
COMMENTS	S									maxi	10
5-POOL/G	GLIDE ANI	D RIFFLE/R	UN QUAL	.ITY							
MAXIMUN		-	NEL WIDTH						DE	CREATION POTEN	τιλι
Check ONE ( > >1m (6)		Check ONI < <b>Pool width</b> ◊	E (or 2 & aver riffle width		Check rrential (-1)	ALL that • <b>Slo</b> v				◇ Primary Contac	
◇ 0.7-<1m		Pool width =			ry Fast (1)	Intel	erstitial (-1			Secondary Conta	
	• •	◇ Pool width <	riffle width	• •	st (1)		ermittent (·	-2)	(circ	le one and comment on	back)
◇ 0.2-<0.4n ◇ <0.2m (0)					<pre>oderate (1) ndicate for read</pre>		lies (1) and riffles.	L		Pool/Curi	rent
COMMENTS	S (metho=0)									Maxim	
Indicate for	functional r	iffles; Best are	as must be	large enough	to support a	population	on of riffle	e-obligate	species	∶	
		ck ONE (ONLY!					(or 2 & av	• •		·	
	FFLE DEPTH Is >10cm (2)		RUN DEP 120 ximum		RIFFLE/RU				E/RUN El None (2)	MBEDDEDNESS	
♦ Best Area	is 5-10cm (1)	)	aximum <50	• •	od. Stable (e.	•	, , ,	<b>\$</b>	_ow (Ì)	Riffle Maxii	-
	is <5cm _{(metric}				nstable (e.g.			'0) [◇]	Moderate Extensive	(0)	8
COMMENTS	S									<u> </u>	
6-GRADIE	ENT										
( 1.971 ft DRAINAGE			◇ Very lo ◇ Modera	w – Low (2-4)	% P	00L: 0	%	6 GLIDE:	100	<b>Gra</b> o Maxim	
(78.969				Very high (10-	-6) %	RUN: 0	%	RIFFLE:	0		17 ¹⁰ 4



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◊ Private	◊ WWTP		♦ CSO
» 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	◇ Dirt & Grime
> 30%-<55%	◊ Excess turbidity	<ul> <li>◊ Young – Succession</li> <li>◊ Old - Succession</li> </ul>		◇ Contaminated	◇ Landfill	◇ Industry
>  10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◊ Foam/Scum			◇ Logging	Irrigation	Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
◇ Trash/Litter		◇ Leveed – Both Banks				
Canopy Upstream Reading		<ul> <li>◇ Moving – Bedload</li> <li>◇ Stable - Bedload</li> </ul>		◇ False bank	◊ Manure	◇ Lagoon
58 Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flov
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◇ Quarry Mine	◊ Golf	◇ Home
78 Middle		Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		♦ Snag Removed		Atmosphere		
		Snag Modified		Deposition		
55 Left						

Somele #			ogical Stu								
-	QHEI Type Fish	bioSample # 20T008	Stream N	ame of Maria Creek				Locatio		N, E Lower Freelan	dville Road
Surveyor	Sample		,	cro Sample Ty	pe			County	10au 900	QHEI Scor	<u>.</u>
KJC	6/22/20	Knox	N/A		****************	Habita	at Comp	olete			e. 33
1-SUBSTR	ATE		substrate TYPE B					Che	ck ONE (d	or 2 & average)	
BEST TYPE		estimate % of nor	e every type preser OTHEF					OR	IGIN	QUALITY	
		TOTAL POOL	RIFFLE	т	OTAL PO	OOL F	RIFFLE			CII T	
◇ ◇ Bldrs/Sla	ıbs (10)			dpan (4)	<u>x</u>	<u> </u>		♦ Limes		siL⊺ ◇ Heavy (-2)	Substrat
◊ ◊ Boulders	; (9)			ritus (3)				<ul><li>◊ Tills (1</li><li>◊ Wetlar</li></ul>	) ) de (0)	<ul> <li>♦ Moderate (-1)</li> <li>♦ Normal (0)</li> </ul>	
	3)		◇	ck (2)				Hardp	an (0)	<ul> <li>Free (1)</li> </ul>	6
◊ ◊ Gravel (7)	)		◇ ◇ Silt	(2)	<u>x</u>	>		♦ Sands ♦ Rip/Ra		EMBEDDEDNESS	A.4.0
◇			◇ ◇ Art	ificial (0)	X			♦ Lacus	trine (0)	Moderate (-1)	Maximun 20
◇ ◇ Bedrock					natural su		, ignore	<ul><li>◇ Shale</li><li>◇ Coal fi</li></ul>	(-1) nes (-2)	◇ Normal (0) ◇ None (1)	
NUMBER O	F BEST TY		or more (2) or less (0)	S	sludge fror	m point-s	sources)	oourn	1100 ( 2)		
COMMENTS		÷ 5 C	1635 (0)								
2-INSTRE		R Indicate preser	ce 0 to 3: 0-Absent	• <b>1-</b> Verv small an	nounts or	if more (	common	of margin	al quality:	AMOUN	IT.
2-Moderate am amounts (e.g., water, or deep,	nounts, but no very large bo	ot of highest quality oulders in deep or f I, functional pools.	/ or in small amoun ast water, large dia	ts of highest qua	lity; <b>3</b> -Higl stable, we	hest qua ell devel	ality in mo oped roo	oderate or	greater ep / fast	Check ONE (or 2 Check ONE (or 2 Check ONE (or 2 Check ONE (or 2 Check ONE (or 2) Check ONE (or 2)	& average) (11)
1 Ove	rhanging v	egetation (1)	0 Rootw	/ads (1)	0	Aquatic	macrop	hytes (1	)	* Sparse 5-<25%	.,
	•	ow water) (1)	0 Bould	ers (1)	0 L	.ogs an	d wood	y debris	(1)	Nearly absent <	5% (1)
	tmats (1)									C	over i
COMMENTS										Maxin	over num 5 20
3-CHANNE				each category (C	0r2&ave	rage)					
SINUOSITY ◇ High (4)		> Excellent (7)		NELIZATION ne (6)			ABILITY ligh (3)				
Moderate (3)	3) <	> Good (5)	◇ Red	overed (4)		* N	loderate	e (2)		<b>Cha</b> Maxii	nnel mum 8
<ul> <li>Low (2)</li> <li>None (1)</li> </ul>		[⊳] Fair (3) ◎ Poor (1)		covering (3) cent or no reco	verv (1)	♦ L	ow (1)				20
COMMENTS					, , ,						
4- BANK E	ROSION	& RIPARIAN	ZONE Check	ONE in each ca	tegory for	EACH	BANK (C	Dr 2 per b	ank & avei	rage)	
River right lookin	-		IPARIAN WIDTH				FLC	OOD PLA	IN QUAL	ITY	
	OSION	L R ◇ ◇ Wide	>50m (4)	L R ◇	rest, Swa	amp (3)			L R ◇ ◇ Coi	nservation Tillage	(1)
◇ ◇ None or		◊ ◊ Mode	erate 10-50m (3)	◊ ◊ Shi	rub or Ol	ld field	(2)		◇ ◇ Urb	an or Industrial (0)	Ì
<ul> <li>♦ Moderate</li> <li>♦ Heavy/Set</li> </ul>			ow 5-10m (2) narrow <5m (1)		sidential, nced pas			d (1)		ning, construction ( predominant land use(s	. ,
		♦ ♦ None			en Pastu			)		n riparian.	parian
COMMENTS										Max	kimum 2
		<u>D RIFFLE/RUI</u>		c				Г			
MAXIMUM Check ONE (O	DNLY!)	Check ONE (c	L WIDTH or 2 & average)		JRRENT Check ALL	that ap	ply		RE	CREATION POTEN	
◇ >1m (6) ◇ 0.7-<1m (4		Pool width > rif Pool width = rif		<ul> <li>◇ Torrential (-</li> <li>◇ Very Fast (1)</li> </ul>		Slow ( Inters	(1) titial (-1)	<b>`</b>		◇ Primary Contac	
♦ 0.4-<0.7m		Pool width < rif	• • •	<ul> <li>Fast (1)</li> </ul>			nittent (-			<ul> <li>Secondary Cont</li> <li>and commont of</li> </ul>	
◊ 0.2-<0.4m ◊ 40.2m (0)	• •		-	<ul> <li>Moderate (1 Indicate for</li> </ul>		> Eddie	• •		(Circ	le one and comment o	
◇ <0.2m (0) COMMENTS	(metric=0)			muicate 10f	10001 - F		a nines.			<b>Pool/Cu</b> Maxin	
Indicate for f			must be large er	hough to suppo	• •			•	species	* <u>No Riffle (</u>	metric=0)
RIFF	Cheo FLE DEPTH	ck ONE ( <i>ONLY!</i> )	RUN DEPTH	RIFFI F	Check Check		or 2 & ave ATE			MBEDDEDNESS	
Sest Areas	>10cm (2)	♦ Maxii	num >50cm (2)	Stable (e.g	. cobble	, bould	er) (2)		lone (2)		e/Run
<ul> <li>Best Areas</li> <li>Best Areas</li> </ul>			mum <50cm (1)	<ul> <li>◊ Mod. Stabl</li> <li>◊ Unstable (</li> </ul>				D) ^o I	.ow (1) Ioderate Extensive	(0) Max	imum 0 8
COMMENTS											<u> </u>
6-GRADIE	<u>NT</u>										
( 12.542 ft DRAINAGE A			<ul> <li>Very low – Low</li> <li>Moderate (6-10</li> </ul>		% POOL	L: 0	%	GLIDE:	100	<b>Gra</b> Maxii	dient num 8
( 3.055 mi			High – Very high	,	% RUN	N: 0	%	RIFFLE:	0		19 ¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◊ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
97 Middle	l de la construcción de la constru	Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

	<u>OW</u>	<u>Q Biol</u>	ogical	<u>Studies C</u>	<u>HEI (</u>	Qua	litativ	e Ha	bitat E	Evaluation I	<u>ndex)</u>
Sample # QHEI Ty	pe bio	Sample #	Stre	am Name				Locatio	n		
AB42684 Fish	20T	017	Trib	utary of Maria Cre	ek			County	Road 700	E, Lane Road	
	ple Date	County		Macro Sample	Туре	۵ Uoh	oitat Comp	alata		QHEI Score	: 41
CWY 6/22		Knox		N/A		· nau		Jiele			
<u>1-SUBSTRATE</u>	Checł estim	k ONLYTwo ate % or not	substrate <i>T</i> ' e every type	YPE BOXES; present				Ch	eck ONE (d	or 2 & average)	
BEST TYPES				THER TYPES				OF	RIGIN	QUALITY	
	тоти	AL POOL	RIFFLE		TOTAL	POOL	RIFFLE			SILT	
$\diamond$ $\diamond$ Bldrs/Slabs (10)				Hardpan (4)		x	x	♦ Limes	stone (1)	Heavy (-2)	Substrate
◊ ◊ Boulders (9)			<u> </u>	Oetritus (3)				<ul><li>◇ Tills (</li><li>◇ Wetla</li></ul>		<ul> <li>Moderate (-1)</li> <li>◇ Normal (0)</li> </ul>	
◊ ◊ Cobble (8)			◊	◇ Muck (2)				* Hard	• • •	<ul> <li>Free (1)</li> </ul>	6
$\diamond$ $\diamond$ Gravel (7)			<u>X</u> ⊗	◇ Silt (2)		х		♦ Sands ♦ Rip/R	stone (0)	EMBEDDEDNESS ◇ Extensive (-2)	
◇		х	×	◇ Artificial (0)				♦ Lacus	strine (0)	<ul> <li>Moderate (-1)</li> </ul>	Maximum 20
◊ ◊ Bedrock (5)				(Sc	ore natura	l substrat	es; ignore	♦ Shale		◇ Normal (0)	
NUMBER OF BEST	TYPES		r more (2)		sludge	from poir	nt-sources)		ines (-2)	◇ None (1)	
COMMENTS		* 3 0	r less (0)								
2-INSTREAM CO	VER Ind	licate presen	ce 0 to 3: 0-A	Absent; 1-Very sma	II amounts	s or if mor	e common	of margi	nal quality;	AMOUN	г
2-Moderate amounts, be amounts (e.g., very larg water, or deep, well-def	ut not of hi e boulders	ighest quality s in deep or f	or in small a	mounts of highest	quality; 3-	Highest q	uality in mo	oderate o	r greater	Check ONE (or 2 & ♦ Extensive >75% (	average)
2 Undercut ba			0	Pools > 70cm (2)	0	Oxbov	ws, Backw	vaters (1	)	♦ Moderate 25-75%	
1 Overhangin	g vegetat	tion (1)	0	Rootwads (1)	0	Aquat	ic macrop	ohytes (1	)	* Sparse 5-<25% (3	)
2 Shallows (ir 3 Rootmats (1		ater) (1)	0	Boulders (1)	1	_ Logs a	and wood	ly debris	(1)	◊ Nearly absent <5	% (1)
	)									<b>Co</b> Maximu	-
3-CHANNEL MO		002	Chook O	NE in each categor	V (Or 2 8						20
SINUOSITY	DEVEL	OPMENT ellent (7) d (5) (3)		CHANNELIZATIO	)	\$ \$ \$	TABILITY High (3) Moderate Low (1)			<b>Chan</b> Maxim	
4- BANK EROSIC		PARIAN		Check ONE in eac	h category		HBANK	Or 2 nor h	ank & aver	rade)	
River right looking downs			PARIAN WI		nearegory						
EROSION L R ◇ ◇ None or little (3) ◇ ◇ Moderate (2) ◇ ◇ Heavy/Severe (1)	)		>50m (4) erate 10-50n ow 5-10m (2 narrow <5n	n (3)	Forest, S Shrub or	Old fiel	d (2) <, New fiel	ld (1)	◇ ◇ Urb ◇ ◇ Min	nservation Tillage (1 pan or Industrial (0) hing, construction (0 predominant land use(s)	
		◊ ◊ None	(0)	* *	Open Pa	sture/Ro	owcrop (0	)	past 100ı	m riparian. <b>Ripa</b> Maxii	arian mum 4
COMMENTS											10
5-POOL/GLIDE A	ND RIF	FLE/RUN	N QUALIT	Y							
MAXIMUM DEPTH Check ONE (ONLY!) ◇ >1m (6) ◇ 0.7-<1m (4) ◇ 0.4-<0.7m (2) ◇ 0.2-<0.4m (1) ◇ <0.2m (0) (metric=0)	◇ Pool	l width > rif l width = rif	L WIDTH r 2 & average fle width (2) fle width (1) fle width (0)	)	Check al (-1) st (1) e (1)	◇ Inte ◇ Edd	apply			CREATION POTENT	ct back) ent
COMMENTS										Maxim	12
Indicate for functiona			must be la	rge enough to su		-		-	e species	◇ <u>No Riffle (n</u>	netric=0)
C RIFFLE DEP	TH (2) (1)	◊ Maxir	RUN DEPTH num >50cm num <50cm	n (2)	FLE/RUN (e.g. cob table (e.ç	SUBST ble, bou j. large ç		RIFFL	E/RUN EM None (2) Low (1) Moderate Extensive		-
COMMENTS										-	
<u>6-GRADIENT</u> ( 6.761 ft/mi) DRAINAGE AREA ( 4.37 mi ² )			Moderate	– Low (2-4) (6-10) rry high (10-6)		DOL: 10 RUN: 70		6 GLIDE RIFFLE		<b>Grad</b> Maxim A12	um 6



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◇ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
[»] 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	◇ Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Output Bank Erosion	♦ Surface Erosion	◇ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◇ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	Slumps	◊ Wash H2O	◇ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◊ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
12 Middle	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		◇ Atmosphere		
		Snag Modified		Deposition		
Left						

Sample #	QHEI Type	bioSample #	Stream Na	me				Location			
Sample # AB42672	Fish	20T005	Maria Cree					N Risley R	oad		
Surveyor	Sample			cro Sample Typ	е				544	QHEI Score	•
KRW	8/18/20	Knox	N/A	1 71	-	♦ Hab	itat Com	plete			- 32
1-SUBST	RATE	Check ONLY Two s						Check	ONF (o	r 2 & average)	
BEST TYP		estimate % or note		nt R TYPES				ORIC		QUALITY	
	20	TOTAL POOL	-	-	тлі	POOL	RIFFLE	ONIC		QUALITY	
◇ ◇ Bldrs/S	labs (10)	IUTAL FOOL R		dpan (4)		X		. ◇ Limesto	ne (1)	SILT ♦ Heavy (-2)	Substrate
◊ ◊ Boulde	• •			ritus (3)				◇ Tills (1)		Moderate (-1)	
◊ ◊ Cobble	()					x		<ul> <li>♦ Wetland</li> <li>♦ Hardpar</li> </ul>		<ul> <li>◇ Normal (0)</li> <li>◇ Free (1)</li> </ul>	6
◊ ◊ Gravel		<u> </u>						<ul> <li>Sandsto</li> </ul>	• •	EMBEDDEDNESS	
	.,	<u> </u>		ficial (0)				<ul> <li>◇ Rip/Rap</li> <li>◇ Lacustri</li> </ul>		Extensive (-2)     Addresse (-1)	Maximum
◊ ◊ Bedroc	-				- 4 1			<ul> <li>◇ Lacustri</li> <li>◇ Shale (-'</li> </ul>	ne (0) 1)	<ul> <li>◇ Moderate (-1)</li> <li>◇ Normal (0)</li> </ul>	20
	OF BEST TY	/PES: ◇ 4 or 1	nore (2)	•			es; ignore it-sources)	♦ Coal fin		◇ None (1) ´	
			ess (0)		0		,				
COMMENT	S										
		R Indicate presence								AMOUNT	-
		ot of highest quality o oulders in deep or fas								Check ONE (or 2 &	
water, or dee	ep, well-defined	, functional pools.	t water, large dia	meter log that is s	labie,	wentdev	eloped loc		571030	◊ Extensive >75% ( [*]	11)
	ndercut banks	. ,		> 70cm (2)		-		vaters (1)		Moderate 25-75%	
	verhanging ve	• • –	0 Rootw			-		ohytes (1)		Sparse 5-<25% (3)	•
	nallows (in slo potmats (1)	ow water) (1)	0 Bould	ers (1)	0	Logs a	and wood	ly debris (1	)	Nearly absent <5 ^e	% (1)
										Co	ver
0011112111	•									Maximu	0
3-CHANN			Check ONE in e	each category (Or	282	(erage)					20
SINUOSITY		EVELOPMENT			200	• •	TABILITY	,			
High (4)	\$	Excellent (7)	♦ Nor	ne (6)		$\diamond$	High (3)			Chan	nol
<ul> <li>Moderate</li> <li>Low (2)</li> </ul>	• •	Good (5) Fair (3)		overed (4) overing (3)			Moderate Low (1)	e (2)		Maxim	um 7
* None (1)		Poor (1)		ent or no recov	ery (1		2011 (1)				20
COMMENT	S										
4- BANK	EROSION	& RIPARIAN Z	ONE Check	ONE in each cate	egory	for <b>EAC</b>	H BANK (	Or 2 per ban	k & avera	age)	
	king downstrear		ARIAN WIDTH				FLO	OOD PLAIN		ТҮ	
	EROSION	L R ◇ ◇ Wide >	50m (4)	L R ◇ ◇ Fore	st. S	vamn (:	3)		L R 〉◇ Con	servation Tillage (1	<b>`</b>
$\diamond$ $\diamond$ None o	• • •		ate 10-50m (3)	♦ ♦ Shru	•	• •				an or Industrial (0)	,
◊ ◊ Modera ◊ ◊ Heavy/	• •	* * Narrow				,	(, New fie	• •		ing, construction (0	)
• • Heavy/	Severe (1)	◇ ◇ very na ◇ ◇ None (0)	arrow <5m (1) ))	◇ ◇ Fenc			) wcrop (0			redominant land use(s) n riparian.	rion
			,							<b>Ripa</b> Maxir	num 3
COMMENT	S										10
5-POOL/0	<u>GLIDE AND</u>	RIFFLE/RUN	<u>QUALITY</u>								
	M DEPTH	CHANNEL		CUI	RREN		OCITY		DE	CREATION POTENT	
Check ONE		Check ONE (or 2 Pool width > riffle		Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch		LL that a Slov *			REV	◇ Primary Contact	
♦ 0.7-<1m		Pool width = riffle	• • •	<ul> <li>◊ Very Fast (1)</li> </ul>			rstitial (-1	)	<	> Secondary Contact	
◊ 0.4-<0.7	m (2) ◇	Pool width < riffle	• • •	◇ Fast (1)		Inter	rmittent (	-		e one and comment on	
◇ 0.2-<0.4 ◇ <0.2m (0				<ul> <li>Moderate (1)</li> <li>Indicate for r</li> </ul>	each		ies (1) and riffles		(****		
COMMENT					20011	P 0010 C				Pool/Curre Maximu	<i>Im</i> 6
			ust he large	ouch to over	4 0 -		n of sife	oblicate -	noolog		12
maicate for		ffles; Best areas m	iust de large en	ougn to suppor	•	•		•	pecies:	No Riffle (m	<u>netric=0)</u>
RI	FFLE DEPTH	k ONE (ONLY!) RU	N DEPTH	RIFFLE/			(or 2 & av RATE	0,	RUN EM	IBEDDEDNESS	_
	as >10cm (2)		ım >50cm (2)	◊ Stable (e.g.				<b>^</b> •	ne (2)	Riffle/	'Run
	as 5-10cm (1) as <5cm _{(metric}		ım <50cm (1)	<ul> <li>Mod. Stable</li> <li>Unstable (e.</li> </ul>				^ N/ -	w (1) derate (	Mavin	-
	•	=0)		011010010 (0.	.g. 3a		giuvei) (	°,	tensive	(-1)	
COMMENT	3										

<u>6-GRADIENT</u>					
( 1.971 ft/mi)	* Very low – Low (2-4)	% POOL: 40	% GLIDE: 0	Gradient	
DRAINAGE AREA	Moderate (6-10)			Maximum 4	
( 49.206 mi²)	High – Very high (10-6)	% RUN: 60	% RIFFLE: 0	A123 ¹⁰	



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	IAINTENANCE		D-ISSUES	
◇ >85% - Open	Vuisance algae	◊ Public	◊ Private	◊ WWTP		♦ CSO
✤ 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	◇ Dirt & Grime
◇ 30%-<55%	♦ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
◇ 10%-<30%	Oiscoloration	◊ Spray		◇ Construction BMPs	♦ Sediment BMPs	
◇ <10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedloa	d	False bank	◊ Manure	◇ Lagoon
		Stable - Bedload				
59 Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◇ Quarry Mine	◊ Golf	◇ Home
80 Middle	e	Impounded	Desiccated	◇ Park	◊ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
77 Left						

		DWQ	Biolo	ogical S	Studies Q	HEI (	Qual	litativ	e Ha	bitat E	Evaluation	Index)
Sample #	QHEI Type	bioSam	nple #	Strea	m Name				Locatio	n		
AB42965	Macro	200714	•		Creek				1		Indville Road	
Surveyor	Sample		County		Macro Sample	Туре	۵ Uob	itat Comp			QHEI Sco	re: 38
RAC	7/14/20		Knox		MHAB			itat Comp	Diete			30
<u>1-SUBST</u>	RATE			substrate TYP e every type pr					Ch	eck ONE (d	or 2 & average)	
BEST TYP	PES				HER TYPES				OF	RIGIN	QUALITY	
		TOTAL	POOL	RIFFLE		TOTAL	POOL	RIFFLE			SILT	<b>.</b>
◊ ◊ Bldrs/S	• •				Hardpan (4)			·		stone (1)	<ul> <li>Heavy (-2)</li> <li>Medarate (4)</li> </ul>	Substrate
◊ ◊ Boulde		. <u> </u>			Detritus (3)		x		<ul><li>♦ Tills (</li><li>♦ Wetla</li></ul>		<ul> <li>Moderate (-1)</li> <li>Normal (0)</li> </ul>	7
◊ ◊ Cobble					Muck (2)				♦ Hardi	• • •	◇ Free (1)	
◊ ◊ Gravel					Silt (2)		<u>x</u>	·	Sands Rip/R	stone (0) ap (0)	EMBEDDEDNESS	Maximum
	-		x	<u>×</u>	Artificial (0)		x			strine (0)	<ul> <li>Moderate (-1)</li> </ul>	20
	k (5) OF BEST T`	DEC.		( <u>0</u> )	(Sco			es, ignore	<ul><li>◇ Shale</li><li>◇ Coal f</li></ul>	(-1) ines (-2)	◇ Normal (0) ◇ None (1)	
COMMENT		IFES.		r more (2) r less (0)		siudge	from poir	nt-sources)				
2-INSTRE	FAM COVE	R Indicat	e presen	ce 0 to 3 [.] 0-Ab	sent; 1-Very sma	Il amounts	s or if mor	e common	of margin	nal quality:	AMOU	
2-Moderate a	amounts, but n	ot of highe	st quality	or in small arr	ounts of highest	quality; <b>3</b> -l	Highest q	uality in mo	oderate o	r greater	Check ONE (or 2	
	g., very large bo ep, well-defined			ast water, large	e diameter log tha	at is stable	, well dev	eloped roo	twad in d	eep / fast	♦ Extensive >75%	÷ .
	ndercut bank		-	Po	ools > 70cm (2)		Oxbov	vs, Backw	/aters (1	)	♦ Moderate 25-75	5% (7)
	verhanging v	-			ootwads (1)			ic macrop	• •	•	* Sparse 5-<25%	.,
	hallows (in sl ootmats (1)	ow water)	)(1) _	Во	oulders (1)	<u> </u>	_Logs a	and wood	y debris	(1)	♦ Nearly absent	<5% (1)
COMMENT		ohytes coa	ated in fil	amentous alg	ae							Cover imum 7
3-CHANN			Y	Check ONF	E in each categor	v (Or 2 & a	average)					20
SINUOSITY		DEVELOP			HANNELIZATIC		•	TABILITY				
<ul> <li>High (4)</li> <li>Moderate</li> </ul>		Exceller Good (5			None (6) Recovered (4)			High (3) Moderate	<b>(2)</b>		Ch	annel
<ul> <li>Moderate</li> <li>Low (2)</li> </ul>	• •	> Good (3 > Fair (3)	"		Recovering (3)	)		Low (1)	# (Z)		Max	kimum 9 20
◇ None (1) COMMENT		Poor (1)		\$	Recent or no re	ecovery	(1)					20
	EROSION			ZONE C PARIAN WID	heck ONE in eacl TH	h category	for EAC	•	•	ank & avei	0,	
E	EROSION	L	. R		LI					LR		
L R ♦ ♦ None o	or little (3)			>50m (4) rate 10-50m		Forest, S Shrub or		,			nservation Tillage an or Industrial ((	• •
◊ ◊ Modera	ate (2)	\$	◊ Narro	w 5-10m (2)		Residen	tial, Park	k, New fiel	d (1)	◊ ◊ Mir	ing, construction	(0)
◊ ◊ Heavy/	Severe (1)		<ul><li>◊ Very </li><li>◊ None</li></ul>	narrow <5m (0)		Fenced   Open Pa		(1) owcrop (0)	۱.		predominant land use m riparian.	
			Hello	(0)		oponra			,		· R	<b>iparian</b> aximum 5
COMMENT	S											10
<u>5-POOL/0</u>	GLIDE ANI	D RIFFL	<u>E/RUN.</u>	I QUALITY	-							
-		-								RE	CREATION POTE	NTIAL
Check ONE				r 2 & <i>average</i> ) f <b>le width (2)</b>	♦ Torrentia		ALL that a <b>Slov ال</b>				♦ Primary Conta	
◇ 0.7-<1m	• •			fle width (1)	◇ Very Fas	st (1)		rstitial (-1)	,		Secondary Con	tact
♦ 0.4-<0.7 ♦ 0.2-<0.4			atn < rifi	fle width (0)	♦ Fast (1)♦ Moderat	e (1)		rmittent (- lies (1)	-2)	(circ	le one and comment	on back)
	0) _(metric=0)				Indicate	e for reach	n – pools a	and riffles.			Pool/Cu Maxi	<i>urrent</i> imum 4 12
Indicate for	r functional ri	iffles; Bes	st areas	must be larg	e enough to su	pport a p	oopulatio	on of riffle	-obligat	e species	∗ <u>No Riff</u> le	(metric=0)
		ck <b>ONE</b> (O	,					(or 2 & ave	0,	E/D:		
	FFLE DEPTH as >10cm (2)			UN DEPTH num >50cm (		FLE/RUN (e.g. cob			$\diamond$	None (2)	MBEDDEDNESS	() - (P)
♦ Best Area	as 5-10cm (1) as <5cm _{(metric}			num <50cm (	1) ◇ Mod. S	table (e.g	j. large g		° (∩	Low (1) Moderate	(0) Ma	f <b>le/Run</b> ximum 0 8
COMMENT	-								~	Extensive	(-1)	
6-GRADI	ENT											
( 5.282 f	ft/mi)			◇ Very low –		% PC	DOL: 20	%	GLIDE	40		adient
DRAINAGE (17.468				Moderate ( High – Very	,	% F	RUN: 40	%	RIFFLE	#\$		125 ¹⁰



<u>A-CANOPY</u>	<b>B-AESTHETICS</b>	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Nuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
[°] 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	◇ Dirt & Grime
30%-<55%	◊ Excess turbidity	<ul> <li>Young – Success</li> <li>Old - Succession</li> </ul>		◇ Contaminated	◊ Landfill	◇ Industry
[•] 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading	9	Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Righ	^{nt} ◇ Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	♦ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
97 Midd	lle	Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

	$\overline{\Omega}$	<u>DWQ</u>	Biolo	ogica	l Stu	<u>idies C</u>	<u> HEI (</u>	Qua	litativ	<u>e Ha</u>	bitat E	valuation	Index)
Sample # QH	IEI Type	bioSam	nple #	Si	tream N	ame				Locati	on		
	acro	200715		М	arsh Cre					S Cour	nty Road 50		
Surveyor	Sample	Date	County			cro Sample	е Туре		oitat Comp	olete		QHEI Sco	re: 37
RAC	7/15/20	Check O	Sullivan	substrate		HAB							
<u>1-SUBSTRA</u>	<u>TE</u>			e every typ	pe prese	nt						er 2 & average)	
BEST TYPES					OTHEF	R TYPES				0	RIGIN	QUALITY	
	(( )	TOTAL	POOL	RIFFLE			TOTAL	POOL	RIFFLE			SILT	Substrata
◊ ◊ Bldrs/Slabs	``					rdpan (4)		<u>x</u>	x x	. ◇ Lime ◇ Tills	estone (1)	<ul> <li>Heavy (-2)</li> <li>Moderate (-1)</li> </ul>	Substrate
◊ ◊ Boulders (9	)					tritus (3)		<u>x</u>	<u>×</u>		ands (0)	<ul> <li>Normal (0)</li> </ul>	4
◇ ◇ Cobble (8)					◇ ◇ Mu			<u>x</u>	- <u> </u>		lpan (0)	◇ Free (1)	4
◊ ◊ Gravel (7)		·		X	. ◇	: <b>(2)</b>		x	x		istone (0) Rap (0)	EMBEDDEDNESS ♦ Extensive (-2)	Maximum
◇				x	◇ ◇ Art	ificial (0)					istrine (0)	* Moderate (-1)	
◇ ◇ Bedrock (5)		050				(Sc	core natura			<ul><li>♦ Shal</li><li>♦ Coal</li></ul>	e (-1) fines (-2)	◇ Normal (0) ◇ None (1)	
NUMBER OF E	BE2111	PES:		r more (2 r less (0)			sludge	from poir	nt-sources)		(_)		
COMMENTS													
2-INSTREAM		R Indicat	te presen	ce 0 to 3:	0-Absent	: <b>1</b> -Verv sma	all amounts	s or if mor	e common	of marg	inal quality:	AMOU	
2-Moderate amou	ints, but no	ot of highe	est quality	or in sma	ll amoun	ts of highest	quality; 3-	Highest q	uality in mo	oderate o	or greater	Check ONE (or 2	
amounts (e.g., ve water, or deep, we				ast water,	large dia	meter log the	at is stable	, well dev	eloped roc	otwad in		<ul> <li>Extensive &gt;75%</li> </ul>	0,
· · · ·	cut banks	,			Pools	> 70cm (2)	)	Oxbov	ws, Backv	vaters (	1)	♦ Moderate 25-7	5% (7)
2 Overha	anging ve	egetation	n (1)		Rootv	vads (1)		Aquat	ic macrop	ohytes (	(1)	Sparse 5-<25%	5 <b>(3)</b>
	ws (in slo	ow water	)(1)		Bould	lers (1)	1	_ Logs a	and wood	ly debri	s (1)	Nearly absent	<5% (1)
1 Rootm	ats (1)												Cover
COMMENTS													imum 6 20
3-CHANNEL	MORPI	HOLOG	<u>SY</u>	Check	ONE in e	each categor	ry ( <i>Or</i> 2 & a	average)					
		EVELOF					ON			,			
<ul> <li>High (4)</li> <li>Moderate (3)</li> </ul>		Exceller Good (5				ne (6) covered (4)			High (3) Moderate	e (2)			annel
* Low (2)	\$	Fair (3)			◇ Ree	covering (3	5)	$\diamond$	Low (1)			Max	kimum 9 20
◇ None (1) COMMENTS	*	Poor (1)	)		◇ Red	cent or no r	recovery	(1)					
4- BANK ER						<b>ONE</b> in eac	ch category	for EAC				•	
ERO			- R	PARIAN		L	R		FLU		AIN QUALI	ΙT	
L R * * None or litt	lo (3)			>50m (4)			Forest, S					servation Tillage	· · /
<ul> <li>Mone of fitt</li> <li>Moderate (2)</li> </ul>				rate 10-5 w 5-10m			Shrub or Residen		a (2) <, New fiel	ld (1)		an or Industrial ( ing, constructior	
◊ ◊ Heavy/Seve	ere (1)	$\diamond$	◊ Very	narrow <	• •	$\diamond$ $\diamond$	Fenced	pasture	(1)	.,	Indicate p	redominant land use	• •
		\$	None	(0)		* *	Open Pa	sture/Ro	owcrop (0	)	past 100n	R	iparian
COMMENTS	more m	oderate e	erosion d	ownstrea	m of rea	ch						IVIE	aximum <b>4</b> 10
5-POOL/GLII		) RIFFI	F/RUN		ΙΤΥ								I
MAXIMUM DE							CURRE	NT VELO					
Check ONE (ONL	Y!)	Checl	k ONE (o	r 2 & avera			Check	ALL that a	apply		RE	CREATION POTE	
◇ >1m (6) ◇ 0.7 <1m (4)				fle width	• •	<ul> <li>◇ Torrenti</li> <li>◇ Very Fa</li> </ul>		♦ Slov	• •	`		◇ Primary Contained	
◇ 0.7-<1m (4) ◇ 0.4-<0.7m (2				fle width	• •	<ul> <li>very ra</li> <li>♦ Fast (1)</li> </ul>	• •		rstitial (-1 rmittent (·	•		Secondary Con	
◇ 0.2-<0.4m (1					. ,	♦ Moderation	• •		lies (1)		(CIrci	e one and comment	
◇ <0.2m (0) (me COMMENTS	etric=0)					Indicat	e for reach	ı – pools a	and riffles.			<b>Pool/C</b> Max	urrent imum 4 12
Indicate for fun	ctional rif	ffles; Be	st areas	must be	large er	nough to su	upport a p	oopulatio	on of riffle	e-obliga	te species:	◇ No Riffle	(metric=0)
<b></b>		k <b>ONE</b> (C	,						(or 2 & av	0,			
RIFFLE >1 Best Areas	E DEPTH			UN DEP			FLE/RUN (e.g. cob				LE/RUN EN None (2)	IBEDDEDNESS	
* Best Areas 5-	10cm (1)			num <50	• • •			•	gravel) (1)	*	Low (1)	Ma	f <b>le/Run</b> ximum 4
◊ Best Areas <	5cm _{(metric}	=0)				Unstat	ole (e.g. s	and, fine	e gravel) (	<b>U</b> 1	Moderate Extensive	(0)	8
COMMENTS	riffle wa	as sampl	ed 27 m	downstre	am of re	ach						. ,	
6-GRADIEN	<u>ר</u>					_							
( 5.502 ft/mi) DRAINAGE ARE				> Very lo > Modera		• •	% PC	OOL: 30	%	6 GLIDE	E: 30		adient kimum 6
( 8.376 mi ² )				High –	•	,	% F	RUN: 40	%	RIFFLE	<u>:</u> #\$		(mum 6 (127 ¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
» 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
× 10%-<30%	Discoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◊ Foam/Scum			Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Output Bank Erosion	◊ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Barbara	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
65 Middle		Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

<b>)</b> =		DWQ	Biol	ogica	l Stu	idies C	<u>QHEI (</u>	(Qua	litativ	e Ha	<u>bitat E</u>	Evaluation	<u>Index)</u>
Sample #	QHEI Type	bioSan	nple #	S	tream N	ame				Locati	on		
AB42961	Macro	200714	703	N	laria Cre	ek				N Perr	y Road		
Surveyor	Sample		County			cro Sample	е Туре	♦ Hab	oitat Com	nlete		QHEI Scor	e: 28
PDM	7/14/20		Knox			IAB		Tax		piete			
<u>1-SUBST</u>	RATE	estimate	% or not	e substrate	e <i>I YPE B</i> pe presei	OXES; nt				Cł	neck ONE (d	or 2 & average)	
BEST TYP	ES					R TYPES				0	RIGIN	QUALITY	
		TOTAL	POOL	RIFFLE			TOTAL	POOL	RIFFLE			SILT	
◊ ◊ Bldrs/S	labs (10)					rdpan (4)					stone (1)	Heavy (-2)	Substrate
◊ ◊ Boulder	rs (9)				_	tritus (3)		<u>X</u>	Х	♦ Tills - ♦ Wetla	(1) ands (0)	<ul> <li>♦ Moderate (-1)</li> <li>♦ Normal (0)</li> </ul>	
◊ ◊ Cobble	.,				◇ ◇ Mu					_	pan (0)	◇ Free (1)	6
◊ ◊ Gravel (	(7)		X	X	_◇	t <b>(2)</b>		X	<u>X</u>	◇ Sand ◇ Rip/F	stone (0)	EMBEDDEDNESS	Maximum
	5)		X	Х	◇ ◇ Art	ificial (0)				◇ Lacu	strine (0)	Moderate (-1)	Maximum 20
◊ ◊ Bedroc	.,				_	(Sc	ore natura	al substrat	es; ignore	<ul> <li>◇ Shale</li> <li>◇ Coal</li> </ul>	e (-1) fines (-2)	◇ Normal (0) ◇ None (1)	
NUMBER	OF BEST T	YPES:		r more (2 r less (0)			sludge	from poir	nt-sources)	· Ooai	iiiic3 (-2)		
COMMENT	Substra	ate origin				om map, or	from dun	es/glacia	Loutwash	/ river flo	odolain der	oosits	
		-		-				-					
2-Moderate a amounts (e.g water, or dee	EAM COVE amounts, but n g., very large bo p, well-defined indercut bank	ot of highe oulders in I, function	est quality deep or f	or in sma ast water,	all amoun large dia	ts of highest	quality; <b>3</b> - at is stable	Highest q e, well dev	uality in m	oderate o otwad in o	or greater deep / fast	AMOUN Check ONE (or 2	& <i>average</i> ) ( <b>11)</b>
0 <b>O</b> v	verhanging v	egetatior	י ו (1)	0	Rootw	vads (1)	0	Aquat	ic macrop	phytes (	1)	◊ Sparse 5-<25%	()
	allows (in sl	ow water	[.] ) (1)	0	Bould	lers (1)	1	Logs	and wood	ly debri	s (1)	Nearly absent <	5% (1)
	ootmats (1)												
COMMENT	S											C Maxir	num 3 20
SINUOSITY	* (3)	HOLOC DEVELOF > Excelle > Good (5 > Fair (3) > Poor (1)	PMENT nt (7) 5)	Спеск	CHAN ◇ Noi ◇ Rec ◈ Rec	each categor NNELIZATIO ne (6) covered (4) covering (3 cent or no r	ON )	S ◇ ◇	TABILITY High (3) Moderate Low (1)				mmel mum 20
	-												
	EROSION king downstrea					<b>ONE</b> in eac	ch category	y for <i>EAC</i>		•		<b>e</b> ,	
-	ROSION		_ R	PARIAN	WIDTH	L	R		FLO		AIN QUAL L R	11 Y	
L R * * None o * * Modera * * Heavy/	ate (2)		<ul> <li>♦ Mode</li> <li>♦ Marro</li> </ul>	>50m (4 erate 10-{ ow 5-10m narrow < (0)	50m (3) (2)	$\diamond$ $\diamond$ $\diamond$ $\diamond$ $\diamond$	Fenced	r Old fiel tial, Park pasture	d (2) k, New fie	()	<ul> <li>◇ ◇ Cor</li> <li>◇ ◇ Urb</li> <li>◇ ◇ Min</li> <li>Indicate p</li> </ul>		) (0)
COMMENT			- /										10
	GLIDE ANI										[		]
MAXIMUI Check ONE ( ◇ >1m (6) ◇ 0.7-<1m ◇ 0.4-<0.7i ◇ 0.2-<0.4i ◇ <0.2m (0	(ONLY!) (4) (4) m (2) (7) m (1)		k ONE (o idth > rif idth = rif	fle width	age) (2) (1)	<ul> <li>◇ Torrenti</li> <li>◇ Very Fa</li> <li>◇ Fast (1)</li> <li>◊ Moderation</li> </ul>	Check ial (-1) st (1)	◇ Inte ◇ Edd	apply w (1) rstitial (-1 rmittent ( lies (1)			CREATION POTEN	ct act n back)
COMMENT												Maxin	
Indicate for	functional ri			must be	large er	nough to su		-		-	te species	♦ <u>No Riffle</u>	(metric=0)
BI	Cheo FFLE DEPTH	ck ONE (C	,		тн	RIE	Ch FLE/RUN		(or 2 & av RATF			BEDDEDNESS	
<ul> <li>◇ Best Area</li> <li>◇ Best Area</li> </ul>	as >10cm (2) as 5-10cm (1) as <5cm _{(metric}	)	Maxir	num >50 num <50	cm (2)	◇ Stable◇ Mod. S	(e.g. cob table (e.ç	ble, bou g. large g		(0)	None (2) Low (1) Moderate Extensive	(0)	<b>e/Run</b> iimum 0 8
COMMENT	S											-	
6-GRADII (1.971 f DRAINAGE	t/mi) AREA			◇ Very lo ◇ Modera	ate (6-10	)`´´		DOL: 10		6 GLIDE		Maxii	
( 78.969	· · · · · · · · · · · · · · · · · · ·			◇ High –	very nig	JII (10-0)	70 1	RUN: 20	70	RIFFLE	Ψ	A1	2910



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Vuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◊ Landfill	◇ Industry
^{&gt;} 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedload		◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	♦ Golf	◇ Home
99 Middle	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

## OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index) bioSample # Stream Name Location QHEI Type Sample # AB42981 Macro 200714805 Tributary of Maria Creek Freelandville Road Sample Date Macro Sample Type Surveyor County QHEI Score: 23 * Habitat Complete MSG 7/14/20 Knox MHAB Check ONLY Two substrate TYPE BOXES; **1-SUBSTRATE** Check ONE (or 2 & average) estimate % or note every type present **BEST TYPES** OTHER TYPES ORIGIN QUALITY TOTAL POOL RIFFLE TOTAL POOL RIFFLE SILT Substrate ◊ ◊ Bldrs/Slabs (10) ◊ ◊ Hardpan (4) х Limestone (1) Heavy (-2) ◇ Tills (1) ♦ Moderate (-1) ◊ ◊ Detritus (3) ◊ ◊ Boulders (9) Normal (0) Wetlands (0) 0 ◊ ◊ Cobble (8) ◊ ♦ Muck (2) х Hardpan (0) Free (1) Sandstone (0) EMBEDDEDNESS х х ◊ ◊ Gravel (7) ♦ ♦ Silt (2) Rip/Rap (0) Extensive (-2) Maximum х ◊ ◊ Artificial (0) Moderate (-1) A Lacustrine (0) 20 (Score natural substrates; ignore $\diamond$ Coal fines (-2) Normal (0) ◇ None (1) NUMBER OF BEST TYPES: ◊ 4 or more (2) sludge from point-sources) * 3 or less (0) COMMENTS 2-INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; AMOUNT 2-Moderate amounts, but not of highest guality or in small amounts of highest guality; 3-Highest guality in moderate or greater Check ONE (or 2 & average) amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast Extensive >75% (11) water, or deep, well-defined, functional pools. Undercut banks (1) Pools > 70cm (2) **Oxbows, Backwaters (1)** Moderate 25-75% (7) 2 Overhanging vegetation (1) Aquatic macrophytes (1) Rootwads (1) Sparse 5-<25% (3)</p> Shallows (in slow water) (1) Boulders (1) Logs and woody debris (1) Nearly absent <5% (1)</p> 1 Rootmats (1) Cover COMMENTS Maximum Δ 20 3-CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) STABILITY SINUOSITY DEVELOPMENT **CHANNELIZATION** Excellent (7) None (6) High (3) High (4) Channel Moderate (3) Good (5) Recovered (4) Moderate (2) Maximum Recovering (3) ◊ Low (2) Fair (3) * Low (1) 20 * Poor (1) Recent or no recovery (1) None (1) COMMENTS **4- BANK EROSION & RIPARIAN ZONE** Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream **RIPARIAN WIDTH** FLOOD PLAIN QUALITY EROSION LR LR LR LR ◊ ◊ Wide >50m (4) ◇ ◇ Forest, Swamp (3) ◊ ◊ Conservation Tillage (1) * * None or little (3) ◊ ◊ Moderate 10-50m (3) ◇ ◇ Shrub or Old field (2) ◊ ◊ Urban or Industrial (0) * * Moderate (2) ◊ ◊ Narrow 5-10m (2) ◊ ◊ Mining, construction (0) ◊ ◊ Very narrow <5m (1)</p> ◇ ◇ Fenced pasture (1) Indicate predominant land use(s) past 100m riparian. * * None (0) * * Open Pasture/Rowcrop (0) Riparian Maximum 3 COMMENTS 10 5-POOL/GLIDE AND RIFFLE/RUN QUALITY MAXIMUM DEPTH **CHANNEL WIDTH CURRENT VELOCITY RECREATION POTENTIAL** Check ONE (ONLY!) Check ONE (or 2 & average) Check ALL that apply ◇ >1m (6) Pool width > riffle width (2) Torrential (-1) * Slow (1) Primary Contact * Pool width = riffle width (1) Very Fast (1) ◊ 0.7-<1m (4)</p> Interstitial (-1) * Secondary Contact ◇ 0.4-<0.7m (2) Pool width < riffle width (0)</p> ◇ Intermittent (-2) Fast (1) (circle one and comment on back) * 0.2-<0.4m (1) Moderate (1) Eddies (1) Indicate for reach - pools and riffles. Pool/Current 3 COMMENTS Maximum 12 Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: * No Riffle (metric=0) Check ONE (ONLY!) Check ONE (or 2 & average) **RIFFLE DEPTH RUN DEPTH RIFFLE/RUN SUBSTRATE RIFFLE/RUN EMBEDDEDNESS** None (2) Sest Areas >10cm (2) Maximum >50cm (2) Stable (e.g. cobble, boulder) (2) Riffle/Run ◇ Low (1) Maximum <50cm (1)</p> Mod. Stable (e.g. large gravel) (1) Output Best Areas 5-10cm (1) 0 Maximum Moderate (0) ◊ Best Areas <5cm_(metric=0) Unstable (e.g. sand, fine gravel) (0) 8 Extensive (-1) COMMENTS 6-GRADIENT (7.362 ft/mi) ◊ Very low – Low (2-4) % POOL: 30 % GLIDE: 70 Gradient DRAINAGE AREA ♦ Moderate (6-10) Maximum 6

1/27/2021 16:35:23 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

% RUN: #\$

% RIFFLE: #\$

High – Very high (10-6)

(2.96 mi²)

A131¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
[≫] >85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	◊ Oil sheen	A Leveed – One side	ded	Output Series Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		◇ Moving – Bedload		◇ False bank	♦ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◇ Quarry Mine	◊ Golf	◇ Home
100 Middle	•	Impounded	Oesiccated	◇ Park	♦ Data Paucity	♦ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

<b>   </b> =	$\overline{\mathbf{M}}$	OWQ Biolo	ogical Studies Q	HEI (Qualitative Habitat Evaluation Index	<u>()</u>
Sample #	QHEI Type	bioSample #	Stream Name	Location	

Surveyor         Sample Date         County         Madro Sample Type         * Habitat Complete         OHEI Score:         35           1:SUBSTRATE         Check OWL Yrwe substate 17/YE 50/XES.         Check OWL (or 2.6 average)         Check OWL (or 2.6 average)         35           1:SUBSTRATE         Check OWL Yrwe substate 17/YE 50/XES.         ORIGIN         QUALITY         Substate         35           0:Bitrd/Stabs (10)         TOTAL POOL RIFLE         TOTAL POOL RIFLE         Check OWL (or 2.6 average)         Substate         Substate         *         Moderate (1)         *         Moderate (1)         *         Substate         *         Substate         *         Moderate (1)         *         Substate         *         Substate         *         Substate         *         Substate         *         Moderate (1)         *         Substate         *         Substate         *         Substate         *         Nome (1)         *         Substate         Substate         *         Substate         Substate         Substate         Substate         Substate         Substate	Sample # QHEI Typ	e bioSample #	Stream	Name				Location		
IppM         [Index         [MAIA]         * Habital Complete         33           1:SUBSTRATE         Check ONE (or 2 & average)           BEST TYPES         Official Washington (Streege Streege)           0:BitrarSIble (10)         0         O Hardyhan (A)         0         Check ONE (or 2 & average)           0:BitrarSIble (10)         0         0         Filter Sible (S)         0         Hardyhan (A)           0:Cobbit (8)         0         0         Filter (Sible (S)         0         Hardyhan (A)           0:Cobbit (8)         0         State (1)         0         Filter (Sible (S)         0         Hardyhan (A)           0:Cobbit (8)         0         State (1)         0         Extensive (2)         Moderate (1)           0:Secon analysis (2)         X         0         State (1)         Nome (1)         Moderate (1)           0:Secon analysis (2)         0         A or more (2)         State (1)         Scate (1)         Nome (1)           1:         0         A or more (2)         State (1)         Scate (1)         Scate (1)         Scate (1)           2:         Shale (1)         0         Decks (N)         Moderate (2)         Nome (1)           1:         0         Fore (1)	AB42967 Macro	200714704	Marsh C	reek				E Springtown Roa	ad	
PLOM         [71420]         [R000         [R000]         [R000] </td <td></td> <td>e Date County</td> <td>/ N</td> <td>lacro Sample</td> <td>е Туре</td> <td>⊗ ∐ab</td> <td>itat Comp</td> <td>lata</td> <td>QHEI Score</td> <td>e: 35</td>		e Date County	/ N	lacro Sample	е Туре	⊗ ∐ab	itat Comp	lata	QHEI Score	e: 35
I_SUDSTICE       estimate % or node every type present       Charlow (20 A submitty)         ENT TYPES       ORIGIN       QUALITY         ENT TYPES       ORIGIN       QUALITY         Startardistable (10)       — O Derifus (3)       — O TIL (10)       Network (2)         Startardistable (10)       — O Derifus (3)       — O TIL (10)       Network (2)       Network (2)         Startardistable (10)       — O Derifus (3)       — O TIL (10)       Network (2)       Network (2)         Startardistable (10)       — O Derifus (3)       — O TIL (10)       Network (2)       Network (2)         Startardistable (10)       — O Antificial (0)       — O Antificial (0)       — O Control (2)       Startardistable (10)       Startardistable (10)       Startardistable (10)       Notme (1)         Startardistable (10)       — O Control (2)       - O Control (2) <td>PDM 7/14/2</td> <td></td> <td></td> <td></td> <td></td> <td>∘пар</td> <td>nai comp</td> <td>lete</td> <td></td> <td></td>	PDM 7/14/2					∘пар	nai comp	lete		
BEST TYPES       OTHER TYPES       ORIGIN       OULTIV         • Bildra/Slabs (10)       TOTAL POOL RIFFLE       • Hardpan (4)       TOTAL POOL RIFFLE       Statistics	1-SUBSTRATE							Check ONE (	or 2 & average)	
• ○ Blardstaba (10)       · ○ Hardpan (4)       · ○ Umestone (1)       · ○ Mardpan (4)       · ○ Umestone (1)       · ○ Mardpan (4)       · ○ Debie (1)	BEST TYPES							ORIGIN	QUALITY	
• ○ Blardstaba (10)       · ○ Hardpan (4)       · ○ Umestone (1)       · ○ Mardpan (4)       · ○ Umestone (1)       · ○ Mardpan (4)       · ○ Debie (1)		TOTAL POOL	RIFFLE		TOTAL	POOL	RIFFLE			
Could a Color Cobbie (8) Cobbie	◊ ◊ Bldrs/Slabs (10)			ardpan (4)				Limestone (1)		Substrate
• ○ Cobble (6)       ····································	◇ ◇ Boulders (9)		◊ ◊ D	etritus (3)						
								· · ·	• • •	7
* • Sand (6) X X · • • Artificial (0) · · PloPha(P) (0) · • Extensive (-2) Maximum · · · PloPha(P) (0) · • Extensive (-2) Maximum · · · · · · · · · · · · · · · · · ·	()	X				Х		• • • •	( )	
Construction       Classifier       Classifier<	.,	X								
NUMBER OF BEST TYPES: [•] 4 or more (2) [•] 3 or less (0) [•] None (1)          COMMENTS [•] 3 or less (0) [•] 3 or less (0) [•] None (1) [•] None (		·	· · A					<ul> <li>Lacustrine (0)</li> <li>Shale (-1)</li> </ul>		20
* 3 or less (d) COMMENTS ? 2.INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2.Moderate amounts, but not of highest quality or is small amounts or if more common of marginal quality; 2.Moderate 2.Stark, functional pools. 1. Undervice taskets (1) 0. Pools > 70cm (2) 0. Cobows, Backwaters (1) * Moderate 2.Stark, (7) 2. Control taskets (1) 0. Rootwads (1) 0. Logs and woody debris (1) * Basent -57% (1) 3. Channel (1) 0. Rootwads (1) 0. Logs and woody debris (1) * Moderate 2.Stark, (7) 3. Channel MORPHOLOGY SINUOSITY DEVELOPMENT Channel (1) * None (6) * High (3) Moderate (2) * Fair (3) * Recovering (3) * Low (1) * Conservation Tillage (1) * None (1) * Poor (1) * Recovering (3) * Low (1) * Conservation Tillage (1) * None (1) * Poor (1) * Recovering (3) * Low (1) * Conservation Tillage (1) * None (1) * Poor (1) * Recovering (3) * Conservation Tillage (1) * None (1) * Poor (1) * Recovering (3) * Conservation Tillage (1) * None (0) * None (0) * Sinub of (1) & Conservation Tillage (1) * None (1) * Poor (1) * Recovering (1) * Recovering (1) * Sinub of (1) * Conservation Tillage (1) * None (1) * Poor (1) * Recovering (1) * Recovering (2) * Sinub of (1) * Conservation Tillage (1) * None (1) * Poor (1) * Recovering (2) * Sinub of (1) * Sin	( )		or more (2)	(Sc			es; ignore			
2-INSTREAM COVER Indicate presence 0 to 3: 0 -Absent; 1-Very small amounts of ill more common of marginal quality: 2-Moderate amounts, but not of highest quality or in small amounts of highest quality. 3-Highest quality in moderate or greatest watter, or deep, wall-defined, functional pools.       AMOUNT Check OKE (or 2.8 average) 			• • •		oludgo	nom pom				
2-Moderate amounts, but not of highest quality or in small amounts of highest quality. 3-Highest quality in moderate or great water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in get also used in developed rouxadin (deep / fast water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in get also used in developed rouxadin (deep / fast water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in get also used in developed rouxadin (deep / fast water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in the open fast water	COMMENTS ?									
2-Moderate amounts, but not of highest quality or in small amounts of highest quality. 3-Highest quality in moderate or great water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in get also used in developed rouxadin (deep / fast water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in get also used in developed rouxadin (deep / fast water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in get also used in developed rouxadin (deep / fast water, or deep, well-defined, functional pools. 1 Undervitation of the open fast water, large diameter in the open fast water	2-INSTREAM COV	FR Indicate preser	ace () to 3: <b>0-</b> Abse	nt: <b>1-</b> Verv sma	ll amounts	or if mor		of marginal quality:		
Initiation of been velocitized functional pools.       Image: conservation of been velocitized status in a status in the status in										
1       Undercut banks (1)       0       Pools > 70cm (2)       0       Oxbows, Backwaters (1)       * Moderate 25-75% (7)         1       Overhanging vegetation (1)       0       Rootwads (1)       2       Aquatic macrophytes (1)       * Sparse 525% (3)         2       Shallows (in slow water) (1)       0       Boulders (1)       0       Logs and woody debris (1)       * Nearly absent -5% (1)         2       Schannet (1)       0       Boulders (1)       0       Logs and woody debris (1)       * Nearly absent -5% (1)         2       Cower (1)       * None (1)       * Recovering (3)       * Low (1)       * Channel (1)         * None (1)       * Poor (1)       * Recovering (3)       * Low (1)       * Conservation Tillage (1)         * None or little (3)       * Moderate (2)       * None (0)       * Sprate Samp (3)       * Conservation Tillage (1)         * None (0)       * Very narrow -510m (2)       * Residential, Fark, New field (1)       * Orderate (2)       * Onservation Tillage (1)         * Macharder (2)       * None (0)       * Server (1)       * Server (1)       * Conservation Tillage (1)         * None (0)       * Very narrow -510m (2)       * Forest, Swamp (3)       * Conservation Tillage (1)       * Conse				liameter log tha	at is stable	, well dev	eloped root	wad in deep / fast		
1       Overhanging vegetation (1)       0       Rootwads (1)       2       Aquatic macrophytes (1)       • Sparse 5-25% (3)         2       Shallows (in slow water) (1)       0       Boulders (1)       0       Logs and woody debris (1)       • Nearly absent 25% (1)         COMMENTS       Cover Maximum 20       9         3-CHANNEL MORPHOLOGY       Check ONE in each category (0/ 2 & average)       STABILITY       • Moderate (2)       Channel Maximum 20       9         3-CHANNEL MORPHOLOGY       Check ONE in each category (0/ 2 & average)       STABILITY       • Moderate (2)       Channel Maximum 20       7         SINUGSITY       DEVELOPMENT       CHANNELIZATION       STABILITY       • Moderate (2)       Channel Maximum 20       7         COMMENTS       • Soro (1)       • Recovering (3)       + Low (1)       Maximum 20       7         4       EARN (0/2 per bank & average)       River agin tooking downstream (eNSION       RIPARIAN WIDTH       FLOOD PLAIN OUALITY       • Conservation Tillage (1)       • Maximum 20       • Conservation Tillage (1)       • Maximum 20       • Conservation Tillage (1)       • Conservation Tillage (1)       • Conservation Tillage (1)       • Conservation				ls > 70cm (2)	0	Oxboy	vs Backw	ators (1)		• •
2       Shallows (in slow water) (1)       0       Boulders (1)       0       Logs and woody debris (1)       ○ Nearly absent <5% (1)		()		• •			•	. ,		.,
○ Rootmats (1)       Cover Maximum 20         20       3-CHANNEL MORPHOLOGY       Check ONE in each category (0r 2 & average)         SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         SINUOSITY       DEVELOPMENT       Channel (1)       © Stability         Sinuosity       * Stability       * Recent or no recovery (1)       Channel (2)       Channel (2)         COMMENTS       RIPARIAN WIDTH       REACH ONE in each category for EACH BANK (Or 2 per bank & average)       River and the cover and the						_			• •	. ,
Maximum 20         The second of the sec						9				
3-CHANNEL MORPHOLOGY       Check ONE in each category (0r 2 & average)         SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         • High (a)       • Excellent (7)       • None (6)       • High (3)       Channel         • Moderate (2)       • Fair (3)       • Recovering (3)       • Low (1)       * Channel         • None (1)       • Poor (1)       • Recovering (3)       • Low (1)       * Conservation         • Moderate (2)       • Fair (3)       • Recovering (3)       • Low (1)       * Conservation Tillage (1)         • None (1)       • Poor (1)       • Recovering (3)       • Conservation Tillage (1)       • Orservation Tillage (1)         • None on little (3)       • Moderate (2)       • Narrow 5-10m (2)       • Shrub or Old field (2)       • UR       UR         • None (0)       • Ware startow 5-00m (2)       • Residential, Park, New field (1)       • Orservation Tillage (1)       • Orservation (0)         • Moderate (2)       • None (0)       • Very narrow -5m (1)       • Serued pasture (1)       • Orservation (0)       • Ware startow (1)       • Orservation (1)       • Ware startow (1)       • None (2)       • Orservation (1)       • Ware startow (1)       • Orservation (1)       • Ware startow (1)       • Orservation (1)       • Ware startow (1)       • Orserod pasture (1)       • Check ALL tha	COMMENTS									
3-CHANNEL MORPHOLOGY       Check ONE in each category (0r 2 & average)         SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         Valid (4)       Check Collent (7)       None (6)       o High (3)       Channel (2)       7         4- BANK EROSION & RIPARIAN ZONE (Rer right looking downatream (Rer right looking									Maxim	U U
SINUOSITY       DEVELOPMENT       CHANNELIZATION       STABILITY         • High (a)       ○ Excellent (7)       ○ None (b)       ○ High (a)       ○ Moderate (2)       Channel Maximum 20       7         • None (1)       * Poor (1)       • Recovering (3)       * Low (1)       * Moderate (2)       Maximum 20       7         • None (1)       * Poor (1)       • Recovering (3)       * Low (1)       * Moderate (2)       Maximum 20       7         • Monterster       • RipARIAN WIDTH       • Recovering (3)       • Conservation Tillage (1)       • Conservation Tillage (1)       • Conservation Tillage (1)       • O vide >50m (4)       • ○ Forest, Swamp (3)       • ○ Conservation Tillage (1)       • ○ Conservation Tillage (1)       • ○ O vide >50m (4)       • ○ Forest, Swamp (3)       • ○ Conservation Tillage (1)       • ○ Conservation Tillage (1)       • ○ Vide >50m (4)       • ○ Forest, Swamp (3)       • ○ Conservation Tillage (1)       • ○ Conservation (0)       • ○ Mining, constru	3-CHANNEL MOR	PHOLOGY	Check ONE ir	n each categor	v (Or 2 & a	average)				20
<ul> <li>Moderate (3)</li> <li>Good (5)</li> <li>Recovered (4)</li> <li>Moderate (2)</li> <li>Channel Maximum 20</li> <li>T</li> <li>Comment Comment (3)</li> <li>Recovering (3)</li> <li>Low (1)</li> <li>Recovering (3)</li> <li>Secondary Contact 10-50m (3)</li> <li>Secondary Secondary Sec</li></ul>				-	• •	•	TABILITY			
• Moderate (c)       • Guidate (z)       • Maximum       7         • Low (2)       • Fair (3)       • Recovering (3)       • Low (1)       20         • None (1)       • Poor (1)       • Recovering (3)       • Low (1)       20         • None (1)       • Poor (1)       • Recovering (3)       • Low (1)       20         • None (1)       • Poor (1)       • Recovering (3)       • Low (1)       20         • Moderate (2)       • Moderate (2)       • Wide > 50m (3)       • Conservation Tillage (1)       • Urban or Industrial (0)         • Moderate (2)       • Wide > 50m (3)       • Second pasture (1)       • Wide > 60m (2)       • Conservation Tillage (1)       • Urban or Industrial (0)         • Moderate (2)       • None (0)       • Very narrow <5m (1)	• • • •	• • •		• •				<i>(</i> -)	Cha	nnel
• None (1)	• • •	• • •						(2)		mum 7
COMMENTS         4 BANK EROSION & RIPARIAN ZONE       Check ONE in each category for EACH BANK (Or 2 per bank & average)         River right looking downstream       RIPARIAN WIDTH       FLOOD PLAIN QUALITY         E R       L R       L R       L R       Coorest, Swamp (3) $\diamond \circ$ Conservation Tillage (1) $\diamond \circ$ None or little (3) $\diamond \circ$ Moderate 10-50m (3) $\diamond \circ$ Shrub or Old field (2) $\diamond \diamond \circ$ Urban or Industrial (0) $\diamond \circ$ Moderate (2) $\diamond \circ$ Narrow 5-10m (2) $\diamond \circ$ Residential, Park, New field (1) $\diamond \circ \circ$ Mining, construction (0) $\diamond \circ None (0)$ $\diamond \circ None (0)$ $\diamond \circ None (0)$ $\diamond \circ \circ None (0)$ $\diamond \circ \circ \circ None (0)$ $\diamond \circ \circ None (0)$ $\diamond \circ \circ None (0)$ $\circ None (0)$ $\diamond \circ \circ None (0)$ $\diamond \circ \circ None (0)$ $\diamond \circ \circ None (0)$ $\diamond \circ O Para or Industrial (0)$ $\circ None (0)$ $\diamond \circ None (0)$ $\diamond \circ None (0)$ $\diamond \circ None (0)$ $\diamond \circ None (0)$ $\circ DZOL/GLIDE AND RIFFLE/RUN QUALITY       Maximum 20       Noretat (1) \diamond Noretat (1) \diamond Pool width - riffle width (1) \diamond Very Fast (1) \cap Irentatial (-1) \diamond Stade (0) \diamond Primary Contact (corLecA) Aw (1) \diamond OZm (0) (metre$							LOW (1)			20
River right looking downstream EROSION       RIPARIAN WIDTH L R       FLOOD PLAIN QUALITY         EROSION       L R       Conservation Tillage (1)         ** None or little (3)       · Wide >50m (4)       · Forest, Swamp (3)       · Conservation Tillage (1)         ** None or little (3)       · Moderate 10-50m (3)       · Forest, Swamp (3)       · Conservation Tillage (1)         · Moderate (2)       · Narrow 5-10m (2)       · Residential, Park, New field (1)       · Conservation Tillage (1)         · Heavy/Severe (1)       · Very narrow v5m (1)       · Penced pasture (1)       · · · · · · · · · · · · · · · · · · ·						. ,				<u> </u>
River right looking downstream EROSION       RIPARIAN WIDTH L R       FLOOD PLAIN QUALITY         EROSION       L R       Conservation Tillage (1)         ** None or little (3)       · Wide >50m (4)       · Forest, Swamp (3)       · Conservation Tillage (1)         ** None or little (3)       · Moderate 10-50m (3)       · Forest, Swamp (3)       · Conservation Tillage (1)         · Moderate (2)       · Narrow 5-10m (2)       · Residential, Park, New field (1)       · Conservation Tillage (1)         · Heavy/Severe (1)       · Very narrow v5m (1)       · Penced pasture (1)       · · · · · · · · · · · · · · · · · · ·	4- BANK EROSION	N & RIPARIAN	ZONE Che	ck ONE in eac	h category	for EAC	H BANK (O	)r 2 per bank & ave	rage)	
L R					0,			•	• ·	
* * None or little (3)			50 (1)				•			(A)
<ul> <li>◇ Moderate (2)</li> <li>◇ Narrow 5-10m (2)</li> <li>◇ Residential, Park, New field (1)</li> <li>◇ Residential, Park, New field (1)</li> <li>◇ Mining, construction (0)</li> <li>Indicate predominant land use(s)</li> <li>Past 100m riparian.</li> <li>Recreation (1)</li> <li>◇ None (0)</li> <li>◇ Open Pasture/Rowcrop (0)</li> <li>S-POOL/GLIDE AND RIFFLE/RUN QUALITY</li> <li>MAXIMUM DEPTH Check ONE (07 2 &amp; average)</li> <li>&gt; Conduct of the strift e width (2)</li> <li>&gt; 100</li> <li>&gt; 100</li></ul>									• •	• •
Maximum 10       4         S-POOL/GLIDE AND RIFFLE/RUN QUALITY         COMMENTS         CORRENT VELOCITY Check ONE (O/LY)       Check ONE (or 2 & average)       Check ALL that apply         > >1m (6)       > Pool width > riffle width (2)       > Torrential (-1)       > Slow (1)       > Primary Contact         > 0.7-<1m (4)	◊ ◊ Heavy/Severe (1)	♦ ♦ Very	narrow <5m (1)	$\diamond \diamond$	Fenced	pasture (	(1)	Indicate		<i>s)</i>
10         S-POOL/GLIDE AND RIFFLE/RUN QUALITY         MAXIMUM DEPTH CHANNEL WIDTH Check ONE (or/2 & average)         0.1       Check ALL that apply         0.1       Check ALL that apply         0.1       Pool width > riffle width (2)         0.1       Pool width > riffle width (1)         0.1       Check ONE (0)         0.1       Pool width > riffle width (1)         0.1       Check ONE (0)         0.1 <td></td> <td>◊ ◊ None</td> <td>€ (0)</td> <td>* *</td> <td>Open Pa</td> <td>sture/Ro</td> <td>owcrop (0)</td> <td>past 100</td> <td>' Rip</td> <td></td>		◊ ◊ None	€ (0)	* *	Open Pa	sture/Ro	owcrop (0)	past 100	' Rip	
MAXIMUM DEPTH Check ONE (ONLY!) > 1m (6)       CHANNEL WIDTH Check ONE (or 2 & average)       CURRENT VELOCITY Check ALL that apply Check ALL that apply       RECREATION POTENTIAL         > 1m (6)       Pool width > riffle width (2)       Torrential (-1)       Slow (1)       Primary Contact         > 0.7-<1m (4)	COMMENTS								Max	
MAXIMUM DEPTH Check ONE (ONLY!) > 1m (6)       CHANNEL WIDTH Check ONE (or 2 & average)       CURRENT VELOCITY Check ALL that apply Check ALL that apply       RECREATION POTENTIAL         > 1m (6)       Pool width > riffle width (2)       Torrential (-1)       Slow (1)       Primary Contact         > 0.7-<1m (4)										
Check ONE (ONLY)       Check ONE (or 2 & average)       Check ALL that apply         > >1m (6)       Pool width > riffle width (2)       Torrential (-1)       Slow (1)         > 0.7-<1m (4)										
	_	•••••						RE	CREATION POTEN	ITIAL
O 4-<0.7m (2)	◇ >1m (6) ໌			Torrenti					Primary Contac	;t
<ul> <li>         • 0.2-&lt;0.4m (1)         • Moderate (1)         • Eddies (1)         Indicate for reach – pools and riffles.         <b>Pool/Current</b>         Maximum 12         <b>Pool/Current</b>         Maximum 12     </li> <li>Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species:         <b>Check ONE</b> (ONLY!)         <b>Check ONE</b> (or 2 &amp; average)         <b>RIFFLE DEPTH RUN DEPTH RIFFLE/RUN SUBSTRATE RIFFLE/RUN EMBEDDEDNESS</b>         • Stable (e.g. cobble, boulder) (2)         • None (2)         • None (2)         • None (2)         • Maximum &lt;50cm (1)         • Mod. Stable (e.g. large gravel) (1)         • Extensive (-1)         <b>COMMENTS Comments Comments Comments Comments Output Ou</b></li></ul>			• • •		st (1)				Secondary Conta	act
O - 20m (0) (metric=0)     COMMENTS     Indicate for reach – pools and riffles.     Indicate for functional riffles.     Indicate for reach – pools and riffle.     Indicate for functional riffles.     Indicate for reach – pools and riffle.     Indicate for reach – pools and riffle.     Indicate for functional riffles.     Indicate for reach – pools and riffles.     Indicate for functional riffle		◇ Pool width < rip	ffle width (0)	• • •	bo (1)		•	2) (circ	cle one and comment or	n back)
COMMENTS       Maximum 12       4         Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species:									Pool/Cur	rrent
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (ONLY!) RIFFLE DEPTH & RUN DEPTH & RIFFLE/RUN SUBSTRATE & Best Areas >10cm (2) $\diamond$ Maximum >50cm (2) $\diamond$ Best Areas 5-10cm (1) $\diamond$ Maximum <50cm (1) $\diamond$ Best Areas <5cm _(metric=0) $\diamond$ Unstable (e.g. sand, fine gravel) (1) $\diamond$ Best Areas <5cm _(metric=0) $\diamond$ Unstable (e.g. sand, fine gravel) (0) $\diamond$ Extensive (-1) COMMENTS G-GRADIENT ( 2.96 ft/mi) DRAINAGE AREA $\diamond$ Moderate (6-10) $\diamond$ Maximum $\diamond$ Moderate (6-10) $\diamond$ Maximum $\diamond$ Moderate (6-10) $\diamond$ Moderate (0) $\diamond$ Cradient Maximum $\phi$ Moderate (6-10) $\diamond$ Maximum $\phi$ Moderate (6-10) $\diamond$ Maximum $\phi$ Moderate (6-10) $\diamond$ Maximum $\phi$ Moderate (6-10) $\diamond$ Maximum $\phi$ Moderate (6-10) $\phi$ Maximum $\phi$ Moderate (6-10) $\phi$ Maximum $\phi$ Max										num 4
Check ONE (ONLY!)       Check ONE (or 2 & average)         RIFFLE DEPTH       RUN DEPTH       RIFFLE/RUN SUBSTRATE       RIFFLE/RUN EMBEDDEDNESS	Indicate for functional	riffles: Best areas	must be large	enough to su	innort a r	onulatio	on of riffle	obligate species		
RIFFLE DEPTH       RUN DEPTH       RIFFLE/RUN SUBSTRATE       RIFFLE/RUN EMBEDDEDNESS ^o Best Areas >10cm (2) ^o Best Areas 5-10cm (1) ^o Best Areas 5-10cm (1) ^o Best Areas <5cm _(metric=0) ^o Maximum <50cm (2) ^o Mod. Stable (e.g. cobble, boulder) (2) ^o Mod. Stable (e.g. large gravel) (1) ^o Unstable (e.g. sand, fine gravel) (0) ^o Moderate (0) ^o Extensive (-1) <i>Riffle/Run Maximum 4             <b>6-GRADIENT</b> (2.96 ft/mi) DRAINAGE AREA           ^o Very low – Low (2-4) ^o Moderate (6-10)           ^o POOL: 10 ^o GLIDE: 30 ^o Maximum 4    </i>			s must be large	chough to st					• <u>• NO Rittle (</u>	<u>metric=U)</u>
<ul> <li>◇ Best Areas 5-10cm (1)</li> <li>◇ Maximum &lt;50cm (1)</li> <li>◇ Mod. Stable (e.g. large gravel) (1)</li> <li>◇ Low (1)</li> <li>∧ Moderate (0)</li> <li>◇ Moderate (0)</li> <li>◇ Extensive (-1)</li> </ul>			RUN DEPTH	RIF			•	•	MBEDDEDNESS	
<ul> <li>▷ Best Areas 5-10cm (1)</li> <li>▷ Maximum &lt;50cm (1)</li> <li>▷ Mod. Stable (e.g. large gravel) (1)</li> <li>○ LOW (1)</li> <li>▷ Moderate (0)</li> <li>○ Moderate (0)</li> <li>○ Extensive (-1)</li> </ul>	•		• • • • • • • • • • • • • • • • • • • •					• • •	Riffle	e/Run
COMMENTS         6-GRADIENT         ( 2.96 ft/mi)         O Very low – Low (2-4)         % POOL: 10         % GLIDE: 30         Gradient         Maximum         4			mum <50cm (1)					∧ Madanata	Mavi	imum0
6-GRADIENT           ( 2.96 ft/mi)         ◇ Very low – Low (2-4)         % POOL: 10         % GLIDE: 30         Gradient           DRAINAGE AREA         ◇ Moderate (6-10)         ✓ Moderate (6-10)         ✓ Maximum         4		ric=0)			ne (e.g. S	anu, fine	e gravel) (0		· ·	Ø
( 2.96 ft/mi)         ◇ Very low – Low (2-4)         % POOL: 10         % GLIDE: 30         Gradient           DRAINAGE AREA         ◇ Moderate (6-10)         ◇ Moderate (6-10)         ✓ Maximum         4										
DRAINAGE AREA										
	· · · · ·				% PC	DOL: 10	%	GLIDE: 30		
	$(23.57 \text{ mi}^2)$		•		% F	RUN: 60	%	RIFFLE: #\$		



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
[→] 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			Logging	Irrigation	◇ Cooling
	◇ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	◇ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedload		◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	◇ Natural Flow
	Sludge deposits	Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
98 Middle	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

<b>OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index)</b>										
Sample #	e # QHEI Type bioSample #		e # Strean	n Name	Location					
AB42978	Macro	200714702	2 Cotton	Branch		E Springtown Road				
Surveyor	Sample	Date Co	unty	Macro Sample Type			QHEI Score:	62		
JMB	7/14/20	Kno	ох	MHAB	Habitat Compl	ete		63		
1-SUBSTRATE Check ONLY Two substrate			<b>Two</b> substrate TYP	E BOXES;		Check ONE (or 2	& average)			

<u>1-SUBSTRATE</u>			b substrate te every typ		XES;				С	heck ONE (c	or 2 & avera	age)		
BEST TYPES	ootinnato	<i>, , , , , , , , , ,</i>		OTHER	TYPES				C	ORIGIN	QUA	ALITY		
	TOTAL	POOL	RIFFLE			TOTAL		RIFFLE			SILT			
◊ ◊ Bldrs/Slabs (10)				◇	pan (4)		Х			estone (1)	Heavy	• •	Subs	trate
◇ ◇ Boulders (9)			<u> </u>	◇ ◇ Detri	tus (3)		Х		♦ Tills	(1) lands (0)	<ul> <li>Moder</li> <li>Norma</li> </ul>			
◇				◊ ◊ Muc	k (2)					dpan (0)	<ul> <li>Free (*</li> </ul>	• •	1(	0
◇ ◇ Gravel (7)			Х	◇ ◇ Silt (	2)		Х	Х	♦ San	dstone (0)	EMBEDDE			
		х	Х	◊ ◊ Artif	icial (0)					'Rap (0) ustrine (0)	<ul> <li>Extens</li> <li>Moder</li> </ul>	• •	Maxii	
◇ ◇ Bedrock (5)			·		(50)				♦ Sha	le (-1)	<ul> <li>Norma</li> </ul>	• • •	20	0
NUMBER OF BEST TY	PES:	<b>♦</b> 4 c	or more (2	)	(500					I fines (-2)	None (	(1)		
			or less (0)	,				,						
COMMENTS														
2-INSTREAM COVE	R Indicat	te preser	nce 0 to 3: <b>(</b>	D-Absent;	1-Very sma	II amounts	or if mor	e common	of marg	ginal quality;		AMOUN	г	
2-Moderate amounts, but no amounts (e.g., very large bo	ot of highe	est qualit	y or in smal	Il amounts	of highest	quality; 3-l	Highest q	uality in mo	derate	or greater		NE (or 2 &		qe)
water, or deep, well-defined			last water,	large diarr	leter log tria	IL IS SLADIE	, well dev	reloped 100	twad in	deep / last	Extensi	ve >75% (	(11) [°]	
2 Undercut banks			3	Pools >	70cm (2)	0	Oxbov	ws, Backw	aters	(1)	Modera	te 25-75%	(7)	
0 Overhanging ve	egetatior	า (1)	1	Rootwa	ıds (1)	0	Aquat	ic macrop	hytes	(1)	◇ Sparse	5-<25% (3	3)	
3 Shallows (in slo	ow water	·) (1)	0	Boulde	rs (1)	2	_ Logs a	and woody	y debr	is (1)	Nearly	absent <5	% (1)	
1 Rootmats (1)												-		
COMMENTS												Co Maxim	ver um 20	14
3-CHANNEL MORP	HOLOG	GY	Check	ONE in ea	ch category	y (Or 2 & a	average)							
	EVELO	PMENT		CHAN	NELIZATIC	<b>N</b>		TABILITY						
• • • •	Excelle	• •		♦ None	• •			High (3)	(0)			Chan	nel	
	· Good ( · Fair (3)				overed (4) overing (3)			Moderate Low (1)	÷(2)			Maxim	num	15
	Poor (1				ent or no re								20	
COMMENTS														
4- BANK EROSION	& RIPA	RIAN	ZONE	Check (	ONE in each	n category	for <b>EAC</b>	H BANK (C	Dr 2 pei	r bank & aver	age)			
River right looking downstrear				WIDTH				FLC	DOD PI	LAIN QUAL	ITY			
EROSION L R		_ R ∕⊗Wida	e >50m (4)			R Forest, S	wamn (	3)		L R	servation	Tillage (1	n -	
◇ ◇ None or little (3)			erate 10-5			Shrub or	• •				an or Indu		,	
♦ ♦ Moderate (2)			ow 5-10m					, New fiel	d (1)		ing, cons	•	,	
♦ ♦ Heavy/Severe (1)		· ◇ Very · ◇ None	narrow <	5m (1)		Fenced p		(1) owcrop (0)	`		predominant n riparian.	( )	Г	
	Ť	* NOR	÷ (0)		• •	Openra	31010/110		,	<i>p</i>		<b>Ripa</b> Maxi	arian mum	5
COMMENTS												maxi	10	5
5-POOL/GLIDE AND		_E/RU	N QUAL	ΙΤΥ									JL	
						CURRE	NT VELO							
Check ONE (ONLY!)	Chec	k ONE (d	or 2 & avera				ALL that a			RE	CREATIO			
.,			ffle width	• •	Torrentia	. ,		• •	、			y Contact		
• • •			ffle width ffle width	• •	◊ Very Fas ◊ Fast (1)	st (1)		rstitial (-1) rmittent (-	,		Second	ary Conta	ct	
◇ 0.2-<0.4m (1)	1001		ine width		<ul> <li>Moderate</li> </ul>	e (1)		lies (1)	-)	(circ	le one and c	comment on	back)	
< <0.2m (0) (metric=0)					Indicate	e for reach	– pools a	and riffles.				Pool/Curr		
COMMENTS												Maxim	um 12	10
Indicate for functional ri	ffles; Be	st areas	s must be	large end	ough to su	pport a p	opulatio	on of riffle	-obliga	ate species	◇ N	lo Riffle (n		:0)
	k ONE (C			-	-	••••••	-	(or 2 & ave	-	-		<u>, , , , , , , , , , , , , , , , , , , </u>		
RIFFLE DEPTH			RUN DEPI			FLE/RUN				LE/RUN EN	IBEDDED	NESS	F	
<ul> <li>Best Areas &gt;10cm (2)</li> <li>Best Areas 5-10cm (1)</li> </ul>			mum >50c mum <50c	• • •	<ul> <li>Stable (</li> <li>Mod. St</li> </ul>		•	, , ,		◇ None (2) ◇ Low (1)		Riffle		
<ul> <li>Best Areas 5-10cm (1)</li> <li>Best Areas &lt;5cm_{(metric}</li> </ul>		* ινιαλί				• •		gravel) (1) gravel) ((	D) <	Moderate	• •	Maxir	num 8	3
	-~1						,	J	• <	Extensive	(-1)		Ĭ	
COMMENTS														

<u>6-GRADIENT</u>					
( 9.645 ft/mi)	◊ Very low – Low (2-4)	% POOL: 30	% GLIDE: #\$	Gradient	-
DRAINAGE AREA ( 3.133 mi ² )	◇ Moderate (6-10) ◇ High – Very high (10-6)	% RUN: 60	% RIFFLE: 10	Maximum A135 ¹⁰	6
				· · · · · · · · · · · · · · · · · · ·	



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-N</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◊ Excess turbidity	◊ Young – Succession ◊ Old - Succession		◇ Contaminated	◊ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		◇ Construction BMPs	Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	◊ Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		◊ Moving – Bedload		◇ False bank	♦ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◇ Cutoffs	◊ Quarry Mine	◇ Golf	◇ Home
0 Middl	е	Impounded	Oesiccated	◇ Park	Oata Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

=		OWQ Biol	logical Stu	idies QH	<u>IEI ((</u>	Qual	litativ	e Hal	oitat E	Evaluation	Index)
Sample #	QHEI Type	bioSample #	Stream N	ame				Locatio	n		
AB42977	Macro	200715701	Maria Cre	ek				N Risley	/ Road		
Surveyor	Sample			cro Sample Ty	уре		itat Com	plete		QHEI Score	e: 30
PDM	7/15/20			HAB		Than		piete			
<u>1-SUBST</u>	RATE		o substrate TYPE B ote every type presented by the pre					Che	eck ONE (d	or 2 & average)	
BEST TYP	PES		OTHER	R TYPES				OF	RIGIN	QUALITY	
		TOTAL POOL	RIFFLE	т	-		RIFFLE			SILT	
◊ ◊ Bldrs/S	ilabs (10)			rdpan (4)		X	·		tone (1)	♦ Heavy (-2) ♠ Meadewate ( 4)	Substrate
◊ ◊ Boulde	rs (9)			tritus (3)		Х	·	◇ Tills (' ◇ Wetla		<ul> <li>Moderate (-1)</li> <li>◇ Normal (0)</li> </ul>	-
◊ ◊ Cobble	(8)		◇				·	_	oan (Ò)	◇ Free (1)	5
◊ ◊ Gravel (	(7)			t (2) _		Х	·	♦ Sands ♦ Rip/R:	stone (0)	EMBEDDEDNESS	Marrian
◇ ◇ Sand (6	5)	X		ificial (0)				♦ Lacus	strine (0)	◇ Moderate (-1)	Maximum 20
◊ ◊ Bedroc				(Score	natural	substrat	es; ignore	♦ Shale	(-1) ines (-2)	<ul> <li>Normal (0)</li> <li>∧ None (1)</li> </ul>	
NUMBER	OF BEST T		or more (2) or less (0)	:	sludge f	rom poir	nt-sources)	• Coarr	iiies (-z)	· None (1)	
COMMENT	S	* 3 (	or less (0)								
2-INSTRE		<b>ER</b> Indicate prese	nce 0 to 3: 0-Absent	t [.] 1-Verv small a	mounts	or if mor	e common	of margin	nal quality.	AMOUN	т
2-Moderate a	amounts, but n	ot of highest qualit	ty or in small amoun	its of highest qua	ality; 3-H	ighest q	uality in m	oderate o	greater	Check ONE (or 2 &	
		oulders in deep or d, functional pools.	fast water, large dia	ameter log that is	s stable,	well dev	eloped roc	otwad in d	eep / fast	♦ Extensive >75%	0,
	ndercut bank	•		> 70cm (2)	0	Oxbov	ws, Backv	waters (1	)	Moderate 25-75%	6 (7)
<u>0</u> Ov	verhanging v	egetation (1)	0 <b>Rootv</b>	vads (1)	0	Aquat	ic macrop	phytes (1	)	* Sparse 5-<25% (	3)
	•	ow water) (1)	0 <b>Bould</b>	lers (1)	0	Logs	and wood	ly debris	(1)	Nearly absent <	5% (1)
	ootmats (1)									C	over
COMMENT	3									Maxim	
3-CHANN	NEL MORP	HOLOGY	Check ONE in	each category (	0r 2 & a	verage)					
SINUOSITY		<pre>DEVELOPMENT ◇ Excellent (7)</pre>		NNELIZATION ne (6)			TABILITY High (3)	1			<b></b>
<ul> <li>Moderate</li> </ul>		<ul> <li>Good (5)</li> </ul>		covered (4)			Moderat	e (2)		<b>Chai</b> Maxin	
◇ Low (2) ◇ None (1)		◇ Fair (3)		covering (3)			Low (1)			IVIAXIII	20
None (1)     COMMENT     COMMENT		Poor (1)	* Rei	cent or no reco	overy (1	)					
		& RIPARIAN	ZONE Check	k ONE in each c	ategory	for FAC	H BANK (	Or 2 ner h	ank & ave	rage)	
	king downstrea				alogoly						
	EROSION	LR	50 (1)	LR					LR		~
L R ♦ ♦ None o	or little (3)		e >50m (4) lerate 10-50m (3)		orest, Sv nrub or		,			nservation Tillage ( an or Industrial (0)	
*      Modera	ate (2)	◇ ◇ Narr	ow 5-10m (2)	◇ ◇ Re	esidenti	al, Park	k, New fie	ld (1)		ing, construction (	
◊ ◊ Heavy/	Severe (1)	<ul> <li>♦ ♦ Very</li> <li>♦ None</li> </ul>	/ narrow <5m (1)		nced p		(1) owcrop (0	n		predominant land use(s m riparian	)
		v v Noria	e (0)	* * OF	Jen Fas	lure/RC	owcrop (u	")	puor roor	Rip	<b>arian</b> imum 5
COMMENT	S									max	10
5-POOL/0	GLIDE AN	D RIFFLE/RU	N QUALITY								I
MAXIMU	M DEPTH	CHANNE	EL WIDTH	С	URREN		OCITY				TIAL
Check ONE ( > >1m (6)		Check ONE ( ◆ Pool width > ri	or 2 & average)	◇ Torrential (	Check A	LL that : <b>♦ Slov</b>			RE	CREATION POTEN	
<ul><li>♦ 0.7-&lt;1m</li></ul>		<ul> <li>Pool width = ri</li> </ul>	• • •	<ul> <li>Very Fast (</li> </ul>	• •		rstitial (-1	)		<ul> <li>Secondary Contac</li> </ul>	
◊ 0.4-<0.7	• •	◇ Pool width < ri	iffle width (0)	◇ Fast (1)			rmittent (	-2)		le one and comment or	
◇ 0.2-<0.4ı ◇ <0.2m (0				Moderate ( Indicate fo			l <b>ies (1)</b> and riffles.		(* · ·	Pool/Cur	
COMMENT					, rouon	poolo				Maxim	
Indicate for	r functional r	iffles; Best areas	s must be large er	nough to supp	ort a po	opulatio	on of riffle	e-obligat	e species	* <u>No Riffle (</u>	metric=0)
יים		ck <b>ONE</b> ( <i>ONLY!</i> )		DIEEL			(or 2 & av	0,			
	FFLE DEPTH as >10cm (2)		RUN DEPTH imum >50cm (2)	RIFFLI	E/RUN \$ g. cobb				E/RUN El None (2)	ABEDDEDNESS	
Or Best Area	as 5-10cm (1	) 🔷 Maxi	imum <50cm (1)	♦ Mod. Stab	ole (e.g.	large g	jravel) (1)	·	Low (1)	Mavi	e/ <b>Run</b> mum 0
♦ Best Area	as <5cm _{(metri}	c=0)		♦ Unstable	(e.g. sa	nd, fine	e gravel) (	01	Moderate Extensive	(0)	8
COMMENT	S									-	
6-GRADI	<u>ENT</u>										
(1.971 f DRAINAGE			<ul> <li>◇ Very low – Low</li> <li>◇ Moderate (6-10)</li> </ul>	· ·	% PO	OL: 100	0 %	% GLIDE:	#\$	<b>Grac</b> Maxin	
( 49.206			♦ High – Very high	,	% R	UN: #\$	%	RIFFLE	#\$		37 ¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
> >85% - Open	Vuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
[≫] 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	<ul> <li>◇ Excess turbidity</li> <li>◇ Young – Succession</li> <li>◇ Old - Succession</li> </ul>		◇ Contaminated	◇ Landfill	◇ Industry	
>  10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	◇ Leveed – Both Banks				
Canopy Upstream Reading		♦ Moving – Bedload		◇ False bank	♦ Manure	Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
82 Midd	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Sample #	QHEI Type	bioSample #	Stream Nam	e		Loca	ition		
AB42982	Macro	200714803	Maria Creek			CR 2	050 N/Freela	indville Road	
Surveyor	Sample			o Sample Type	-  ♦ Habitat	t Complete		QHEI Score	e: 38
RAC	7/14/20	Knox	MHAE		Tabita	Complete			
1-SUBST	RATE		substrate TYPE BOX e every type present	ES;			Check ONE (d	or 2 & average)	
BEST TYP	ES		OTHER 1	YPES			ORIGIN	QUALITY	
		TOTAL POOL	RIFFLE	ΤΟΤΑ	L POOL RI	IFFLE		SILT	
◇ ◇ Bldrs/S	labs (10)		◇	oan (4)	<u> </u>		nestone (1)	Heavy (-2)	Substrate
◊ ◊ Boulde	rs (9)		◊ ◊ Detrit	us (3)	<u>x</u> <u>x</u>		s (1) tlands (0)	<ul> <li>Moderate (-1)</li> <li>◇ Normal (0)</li> </ul>	
◊ ◊ Cobble	(8)			(2)			rdpan (0)	<ul> <li>◇ Free (1)</li> </ul>	9
◊ ◊ Gravel	(7)	<u> </u>	<u>x</u>	)	<u>x</u> <u>x</u>		ndstone (0) /Rap (0)	EMBEDDEDNESS	
◆	5)	х	x	;ial (0)	x x		custrine (0)	<ul> <li>◇ Extensive (-2)</li> <li>◇ Moderate (-1)</li> </ul>	Maximum 20
◇ ◇ Bedroc	k (5)			(Score natu	ral substrates;	o Sh	ale (-1)	◇ Normal (0)	20
NUMBER	OF BEST TY		r more (2)		ge from point-so		al fines (-2)	◊ None (1)	
	•	* 3 o	r less (0)						
COMMENT	5								
2-Moderate a amounts (e.g water, or dee	amounts, but no g., very large bo	ot of highest quality ulders in deep or f , functional pools.	ce 0 to 3: <b>0</b> -Absent; 1 or in small amounts o ast water, large diame <b>Pools</b> >	of highest quality; eter log that is stat	<b>3</b> -Highest quali ble, well develo	ity in moderat	e or greater n deep / fast	AMOUN Check ONE (or 2 &	average) ( <b>11)</b>
2 0	/erhanging ve	egetation (1)	Rootwad	ls (1)	2 Aquatic n		• •	<ul> <li>Sparse 5-&lt;25% (3)</li> </ul>	.,
	allows (in slo		Boulders			l woody deb		<ul> <li>Nearly absent &lt;5</li> </ul>	•
	ootmats (1)	_							
COMMENT	S							Co Maxim	<b>um 7</b> 20
	IEL MORPH		Check ONE in eac	0,1	0,				
SINUOSITY ◇ High (4)		EVELOPMENT Excellent (7)	CHANN ◇ None	ELIZATION	-	BILITY gh (3)			
Moderate		Good (5)	* Recov	vered (4)		oderate (2)		<b>Chan</b> Maxim	
♦ Low (2)		Fair (3)		/ering (3) ht or no recover		ow (1)		IVIAXIII	20
◇ None (1) COMMENT		Poor (1)	~ Recei	it of no recover	y (1)				
	EDOSION					ANK (Ora n	rbank 8 ava	2020)	
	king downstream	<u>&amp; RIPARIAN (</u>	PARIAN WIDTH	NE in each catego			PLAIN QUAL	•	
	ROSION	LR		LR		1 2000 1	LR		
L R ◇ ◇ None o	r little (3)	◇ ◇ Wide	>50m (4) rate 10-50m (3)		, Swamp (3) or Old field (2	2)		nservation Tillage (1 an or Industrial (0)	1)
◇	ate (2) 🎽		w 5-10m (2)		ential, Park, N	,		ing, construction (0	D)
♦ ♦ Heavy/	Severe (1)	◊ ◊ Very	narrow <5m (1)		d pasture (1)	(0)		predominant land use(s)	, 
COMMENT	s	♦ ◊ None	(0)	⊗ ⊗ Open I	Pasture/Rowo	rop (0)	past 1001		arian imum 3 10
5-POOL /(		RIFFLE/RUN							I
	M DEPTH	CHANNE		CUPP		ту			
Check ONE	(ONLY!)	Check ONE (o	r 2 & average)	Chec	k ALL that app		RE	CREATION POTEN	
		Pool width > rif	• • •	Torrential (-1) Very Fast (1)	♦ Slow (1 ♦ Intersti	,		Primary Contact	
◇ >1m (6) ◇ 0 7-~1m	• •	Pool width < rif	• • •	Fast (1)	<ul> <li>Intersti</li> <li>Intermi</li> </ul>			Secondary Conta	
<ul> <li>◇ &gt;1m (6)</li> <li>◇ 0.7-&lt;1m</li> <li>◇ 0.4-&lt;0.7i</li> </ul>			\$	Moderate (1)	Eddies	• •	(Circ	le one and comment on	раск)
<ul> <li>◇ 0.7-&lt;1m</li> <li>◇ 0.4-&lt;0.7</li> <li>◇ 0.2-&lt;0.4</li> </ul>	m (1)			Indicate for rea	ch – pools and	riffles.		<b>Pool/Curr</b> Maxim	
<ul> <li>◇ 0.7-&lt;1m</li> <li>◇ 0.4-&lt;0.7i</li> <li>◇ 0.2-&lt;0.4i</li> <li>◇ &lt;0.2m (0)</li> </ul>	m (1) )) _(metric=0)								
<ul> <li>◇ 0.7-&lt;1m</li> <li>◇ 0.4-&lt;0.71</li> <li>◇ 0.2-&lt;0.41</li> <li>◇ &lt;0.2m (0</li> <li>COMMENTS</li> </ul>	m (1) )) _(metric=0) S	fles; Best areas	must be large enou	igh to support a	a population of	of riffle-oblig	ate species		12
<ul> <li>◇ 0.7-&lt;1m</li> <li>◇ 0.4-&lt;0.71</li> <li>◇ 0.2-&lt;0.41</li> <li>◇ &lt;0.2m (0)</li> <li>COMMENT</li> </ul>	m (1) )) _(metric=0) S functional rif	ifles; Best areas k ONE (ONL Y!)	must be large enou	• • • •	a population of Check ONE (or		jate species		12
<ul> <li>○ 0.7-&lt;1m</li> <li>○ 0.4-&lt;0.71</li> <li>○ 0.2-&lt;0.41</li> <li>○ &lt;0.2m (0</li> <li>COMMENT</li> <li>Indicate for</li> <li>RII</li> </ul>	m (1) )) _(metric=0) S functional rif Chec FFLE DEPTH	k ONE ( <i>ONLY!</i> ) R		RIFFLE/RU	Check ONE ( <i>or</i> JN SUBSTRA	2 & average) TE RIF	FLE/RUN EN		12
<ul> <li>○ 0.7-&lt;1m</li> <li>○ 0.4-&lt;0.71</li> <li>○ 0.2-&lt;0.41</li> <li>○ &lt;0.2m (0</li> <li>COMMENT</li> <li>Indicate for</li> <li>RII</li> <li>◇ Best Area</li> </ul>	m (1) )) _(metric=0) S functional rif Checl	k ONE ( <i>ONLY!</i> ) R ◇ Maxin	UN DEPTH num >50cm (2)	с (	Check ONE (or JN SUBSTRA bbble, boulde	2 & average) TE RIF r) (2)		⊗ <u>No Riffle (n</u>	12

COMMENTS	
----------	--

6-GRADIENT				
( 5.282 ft/mi) DRAINAGE AREA	<ul> <li>◊ Very low – Low (2-4)</li> <li>◊ Moderate (6-10)</li> </ul>	% POOL: 20	% GLIDE: 40	Gradient Maximum 6
( 17.468 mi ² )	<ul> <li>◇ High – Very high (10-6)</li> </ul>	% RUN: 40	% RIFFLE: #\$	A139 ¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◊ Excess turbidity	<ul> <li>◇ Young – Succession</li> <li>◇ Old - Succession</li> </ul>		◇ Contaminated	◇ Landfill	◇ Industry
× 10%-<30%	Discoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		♦ Moving – Bedload		◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	Natural Flow
	Sludge deposits	Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
100 Middle	9	Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

		OWQ Biolo	ogical Stu	idies QHE	<u>-i (Qua</u>	Itative	ена		valuation	Index
Sample #	QHEI Type	bioSample #	Stream N	ame			Locatio	on		
AB42964	Macro	200714801	Tributary	of Maria Creek			County	Road 700	E, Lane Road	
Surveyor	Sample			cro Sample Type	e → & Hah	itat Comp	lete		QHEI Sco	re: 4
MSG	7/14/20	Knox		IAB	1100		Acto			
1-SUBST	RATE	Check ONLY Two estimate % or note					Ch	eck ONE (c	or 2 & average)	
BEST TYP	PES			R TYPES			OF	RIGIN	QUALITY	
		TOTAL POOL	RIFFLE	TO	TAL POOL	RIFFLE			SILT	
◇ ◇ Bldrs/S	Slabs (10)			rdpan (4)	X			stone (1)	<ul> <li>◇ Heavy (-2)</li> </ul>	Substrat
◇ ◇ Boulde	ers (9)		◇ ◇ Det	tritus (3)	х		♦ Tills (	,	<ul> <li>Moderate (-1)</li> <li>Normal (0)</li> </ul>	
◊ ◊ Cobble	(8)		◊ ◊ Mu	ck (2)	х		<ul> <li>♦ Wetla</li> <li>♦ Hard</li> </ul>	• • •	<ul> <li>◇ Normal (0)</li> <li>◇ Free (1)</li> </ul>	8
◇ ◇ Gravel	(7)	x	×		x		♦ Sand	stone (0)	EMBEDDEDNESS	
◊ ♦ Sand (6)		x		ificial (0)	x		◇ Rip/R	• • •	◇ Extensive (-2)	Maximui
o Sand (	-			.,			✓ Lacus ♦ Shale	strine (0) e (-1)	<ul> <li>♦ Moderate (-1)</li> <li>♦ Normal (0)</li> </ul>	20
	OF BEST T	YPES: × 4 or	more (2)		atural substrat Idge from poir	es; ignore		fines (-2)	◊ None (1)	
			less (0)		ago nom pon					
COMMENT	S									
2-Moderate a amounts (e.c water, or dee <u>1</u> <u>1</u> <u>0</u> 2 Sh	amounts, but n g., very large b ep, well-defined ndercut bank verhanging v	.,	or in small amoun ist water, large dia Pools Rootv	ts of highest quality	y; <b>3</b> -Highest q table, well dev <b>Oxbov</b>	uality in mo reloped roo ws, Backw ic macrop	oderate o twad in c vaters (1 phytes (2	r greater leep / fast ) 1)	AMOU Check ONE (or 2 Check ONE (or 2 Extensive >75% Moderate 25-75 Sparse 5-<25% Nearly absent	2 & average) % (11) 5% (7) (3)
COMMENT	.,									Cover imum 10 20
3-CHANN	NEL MORP	HOLOGY	Check ONE in	each category (Or	2 & average)					
SINUOSITY		DEVELOPMENT		NNELIZATION	-	TABILITY				0
<ul> <li>High (4)</li> <li>Moderate</li> </ul>		Excellent (7) Good (5)		ne (6) covered (4)		High (3) Moderate	(2)		Ch	annel
* Low (2)	• •	<ul> <li>Fair (3)</li> </ul>		covering (3)		Low (1)	- (-)		Max	imum 11 20
◇ None (1) COMMENT		> Poor (1)	♦ Red	cent or no recove	ery (1)					20
<u>4- BANK</u>	EROSION	& RIPARIAN 2	ZONE Check	<b>ONE</b> in each cate	egory for EAC	H BANK (C	Dr 2 per l	oank & aver	age)	
-	oking downstrea		PARIAN WIDTH			FLC	DOD PL		ITY	
LR	EROSION	L R ◇ ◇ Wide :	>50m (4)	L R ◇ ◇ Fore	st, Swamp (	3)		L R ◇ ◇ Cor	servation Tillage	(1)
* * None o	• • •		rate 10-50m (3)	◇ ◇ Shru	b or Old fiel	d (2)			an or Industrial (	
◇ ◇ Modera ◇ ◇ Heavy/			w 5-10m (2)		dential, Park ced pasture (		d (1)		ing, construction	
neavy		<ul> <li>♦ ♦ None</li> </ul>	narrow <5m (1) (0)		n Pasture/Ro		)		predominant land use m riparian.	
COMMENT	S		(-)				,			<b>iparian</b> aximum 5 10
5-POOL/	GLIDE ANI	D RIFFLE/RUN	QUALITY							
Check ONE ◇ >1m (6) ◇ 0.7-<1m ◇ 0.4-<0.7 ◇ 0.2-<0.4	r (4) m (2) m (1)	CHANNEL Check ONE (or ◇ Pool width > riff ◇ Pool width = riff ◇ Pool width < riff	2 & <i>average</i> ) le width (2) le width (1)	Ch	<ul><li>◇ Inte</li><li>◇ Inte</li><li>◇ Edd</li></ul>	apply v (1) rstitial (-1) rmittent (- ies (1)	•		CREATION POTE	act tact on back)
	u) (metric=0) S				each – pools a	anu nines.			<b>Pool/Cu</b> Maxi	irrent imum 12
Indicate for	r functional ri	iffles; Best areas	must be large er	nough to suppor	t a populatio	on of riffle	-obligat	e species:	♦ <u>No Riffle</u>	(metric=0)
<b>-</b>		ck ONE (ONLY!)			Check ONE	•	0,			
<ul> <li>◇ Best Area</li> <li>◇ Best Area</li> </ul>	FFLE DEPTH as >10cm (2) as 5-10cm (1) as <5cm _{(metric}	<ul><li>◇ Maxim</li><li>◇ Maxim</li></ul>	UN DEPTH 1um >50cm (2) 1um <50cm (1)	RIFFLE/F ◇ Stable (e.g. d ◇ Mod. Stable ◇ Unstable (e.	(e.g. large g	lder) (2)  ravel) (1)	°	E/RUN EN None (2) Low (1) Moderate Extensive	(0) Ma	f <b>le/Run</b> ximum 0 8
COMMENT	s								、 /	
6-GRADI	ENT									

( 6.761 ft/mi) DRAINAGE AREA	<ul> <li>◊ Very low – Low (2-4)</li> <li>◊ Moderate (6-10)</li> </ul>	% POOL: 60	% GLIDE: 30	<b>Gradient</b> Maximum	6
( 4.37 mi ² )	<ul> <li>◇ High – Very high (10-6)</li> </ul>	% RUN: 10	% RIFFLE: #\$	A141 ¹⁰	0



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Vuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◊ Excess turbidity	<ul> <li>◊ Young – Succession</li> <li>◊ Old - Succession</li> </ul>		◇ Contaminated	◇ Landfill	◇ Industry
[»] 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	◊ Leveed – Both Banks				
Canopy Upstream Reading		♦ Moving – Bedload		◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
17 Middle	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

		OWQ	Biol	ogical St	udies Q	HEI (	Qua	litativ	<u>e Ha</u>	bitat E	Evaluation	<u>Index)</u>
Sample #	QHEI Type	bioSam	nple #	Stream	Name				Locatio	on		
AB42979	Macro	200714	<u> </u>	Maria C					N Old 4			
Surveyor	Sample	Date	County	ľ	Macro Sample	Туре					QHEI Scor	е:
PDM	7/14/20		Knox	Ν	ИНАВ		* Hat	oitat Comp	olete			e. 55
1-SUBST	RATE			substrate TYPE					Ch	eck ONE (d	or 2 & average)	
BEST TYP	PES	estimate	78 01 1100						O	RIGIN	QUALITY	
		TOTAL	POOL	RIFFLE		TOTAL	POOL	RIFFLE			011 <b>T</b>	
◊ ◊ Bldrs/S	Slabs (10)				lardpan (4)				♦ Limes	stone (1)	SILT ◇ Heavy (-2)	Substrate
◊ ◊ Boulde	ers (9)			<u> </u>	Detritus (3)		Х		◇ Tills (		◇ Moderate (-1)♦ Normal (0)	
$\diamond$ $\diamond$ Cobble	e (8)				/luck (2)				<ul> <li>♦ Wetla</li> <li>♦ Hard</li> </ul>	• • •	<ul> <li>Normal (0)</li> <li>Free (1)</li> </ul>	8
◊ ◊ Gravel	(7)			<u>X</u>	Silt (2)		Х			stone (0)	EMBEDDEDNESS	
♦ ♦ Sand (6)	6)		Х	X	Artificial (0)				◇ Rip/R ◇ Lacu:	ap (0) strine (0)	<ul> <li>◇ Extensive (-2)</li> <li>◇ Moderate (-1)</li> </ul>	Maximum 20
◊ ◊ Bedroc	:k (5)				(Sco	ore natura	lsubstrat	tos: ignoro	* Shale	ə (-1)	Normal (0)	20
NUMBER	OF BEST T	YPES:		r more (2)	(			nt-sources)	♦ Coal	fines (-2)	◊ None (1)	
COMMENT	s		* 3 o	r less (0)								
2-INSTRE	EAM COVE	R Indicat	e presen	ce 0 to 3: 0-Abse	ent; <b>1-</b> Very smal	II amounts	or if mor	re common	of margi	nal quality;	AMOUN	ІТ
				or in small amor ast water, large o							Check ONE (or 2	
	ep, well-defined			ast water, large t	ulameter log tila	11 15 510010	, wen det	veloped 100	nwau in c	ieep / iasi	◊ Extensive >75%	(11)
	ndercut bank	• •	-		ols > 70cm (2)	0	_	ws, Backw	•	•	* Moderate 25-75%	% (7)
	verhanging v	-			otwads (1)	0		ic macrop	• •	•	* Sparse 5-<25% (	,
	hallows (in sl ootmats (1)	ow water)	) (1)	<u>0</u> Bou	ılders (1)	2	_Logs	and wood	y debris	s (1)	♦ Nearly absent <	5% (1)
	.,										<b>C</b> Maxin	over num 11
						(						20
	<u>NEL MORP</u>				in each category							
SINUOSITY ◇ High (4)		DEVELOP > Exceller			ANNELIZATIC Ione (6)	<b>J</b> N	-	TABILITY High (3)				
♦ Moderate	· · ·	Good (5	5)		Recovered (4)			Moderate	e (2)		<b>Cha</b> Maxii	nnel mum 12
<ul> <li>Low (2)</li> <li>None (1)</li> </ul>		Fair (3) Poor (1)			Recovering (3) Recent or no re			[•] Low (1)				20
COMMENT			,									
4- BANK	EROSION	& RIPA	RIAN	ZONE Che	eck ONE in each	n category	for <b>EAC</b>	H BANK (	Or 2 per l	oank & avei	rage)	
-	oking downstrea	m	RI	PARIAN WIDT				FLC	DOD PL	AIN QUAL	ITY	
LR	EROSION		. R «Wide	>50m (4)	L F * *	R Forest, S	wamn (	3)		L R ◇ ◇ Coi	nservation Tillage (	(1)
♦ ♦ None o	• • •			erate 10-50m (3		Shrub or	• •			◇ ◇ Urb	oan or Industrial (0)	
♦ ♦ Modera ♦ ♦ Modera ♦ ♦ Heavy/				w 5-10m (2)				k, New fiel	ld (1)		ning, construction (	
• • Heavy/			<ul><li>very</li><li>◇ None</li></ul>	narrow <5m (1 (0)		Fenced p Open Pa		(1) owcrop (0)	)		predominant land use(s m riparian.	·
				. ,		•		• • • •	•			oarian kimum 9
COMMENT	S											10
<u>5-POOL/0</u>	GLIDE ANI	D RIFFL	<u>E/RUN.</u>	<u>NQUALITY</u>								
		-				CURRE				RE	CREATION POTEN	
* >1m (6)				r 2 & average) fle width (2)	◇ Torrentia		aLL that Slov ا				Primary Contac	
◇ 0.7-<1m	n (4)			fle width (1)	Very Fas		Intel	erstitial (-1)			Secondary Contact	act
◇ 0.4-<0.7 ◇ 0.2-<0.4		Pool wie	dth < rif	fle width (0)	◇ Fast (1)	o (1)		ermittent (- lies (1)	-2)	(circ	le one and comment o	n back)
						• •		and riffles.			Pool/Cur	rrent
COMMENT											Maxin	num 9 12
Indicate for	r functional r	iffles; Bes	st areas	must be large	enough to su	pport a p	opulatio	on of riffle	-obligat	e species	* No Riffle (	
_		ck <b>ONE</b> (O	,					(or 2 & ave	0,			
	FFLE DEPTH as >10cm (2)			RUN DEPTH num >50cm (2)		FLE/RUN (e.a. cobl				.E/RUN El None (2)	MBEDDEDNESS	_ []
	as 5-10cm (2) as 5-10cm (1)			num <50cm (2) num <50cm (1)				gravel) (2)	$\diamond$	Low (Ì)	Max	e/Run imum ()
	as <5cm _{(metric}			.,		• •		e gravel) ((	o) 🔷	Moderate Extensive	(0)	8
COMMENT	s										· · · ·	
6-GRADI	ENT											
( 3.217 f				Very low – Lo Mederate (6)		% PC	OOL: 50	%	6 GLIDE	: #\$		dient
DRAINAGE ( 90.629				◇ Moderate (6- ◇ High – Very I	,	% F	RUN: 50	%	RIFFLE	: #\$	Maxir A1	num 6 43 ¹⁰

A143¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	◇ Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
» 30%-<55%	◊ Excess turbidity	<ul> <li>Young – Succession</li> <li>Old - Succession</li> </ul>		◇ Contaminated	◊ Landfill	◇ Industry
> 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◊ Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	Surface Erosion	♦ H2O table
	◇ Trash/Litter	◇ Leveed – Both Banks				
Canopy Upstream Reading		♦ Moving – Bedload		◇ False bank	♦ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	Islands	♦ Scoured	♦ Acid Mine	◊ Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
45 Middl	е	Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

OWQ Biological Studies QHEI	(Qualitative Habitat Evaluation Index)

Sample #	QHEI Type	bioSam	nple #	Str	eam N	ame				Locatio	on			
AB42976	Macro	200715	702	Ma	rsh Cre	ek				E Hunle	ey Road			
Surveyor	Sample	Date	County		Ma	cro Sample	Туре	⊗ ∐abi	itat Comp	aloto		QHEI So	ore:	43
JMB	7/15/20		Knox			IAB		* Hap		Jiele				73
1-SUBST	RATE	Check Of estimate	VLY Two % or note	substrate e every type	TYPE B	OXES; nt				Ch	eck ONE (c	or 2 & average)		
BEST TYPI	ES	ootiinato	/0 01 11010			RTYPES				OF	RIGIN	QUALIT	ſ	
		TOTAL	POOL	RIFFLE			TOTAL	POOL	RIFFLE			C!! T		
◇ ◇ Bldrs/Sl	abs (10)				>	rdpan (4)			Х	♦ Limes	stone (1)	si∟⊤ ◇ Heavy (-2)	Su	bstrate
◊ ◊ Boulder	s (9)				⇒	ritus (3)		Х		◇ Tills (		◇ Moderate (-	1)	
◊ ◊ Cobble (	(8)			X	>	ck (2)				<ul><li>♦ Wetla</li><li>♦ Hard</li></ul>	inds (0) nan (0)	<ul> <li>Normal (0)</li> <li>◇ Free (1)</li> </ul>		9
◊ ◊ Gravel (	.,				⊳	• •		Х	Х		stone (0)	EMBEDDEDNES	s	
* Sand (6)	-		X			ificial (0)				◇ Rip/R		◇ Extensive (·	, 1010	aximum
<ul> <li>◇ ◇ Bedrock</li> </ul>										<ul> <li>◇ Lacus</li> <li>◇ Shale</li> </ul>	strine (0) e (-1)	<ul> <li>Moderate (-</li> <li>Normal (0)</li> </ul>	1)	20
	OF BEST TY	PFS:	<u> </u>	more (2)		(Sco	ore natural				fines (-2)	<ul> <li>◇ None (1)</li> </ul>		
		0.		r less (0)			Sludge		1 3001003)					
COMMENTS	5													
2-INSTRE	AM COVE	R Indicat	e preseno	ce 0 to 3. 0	-Absent	• <b>1</b> -Verv sma	II amounts	or if more	e common	of margi	nal quality.	AMC	UNT	
2-Moderate a amounts (e.g. water, or deep 0 Un 3 Ov 2 Sha	mounts, but no ., very large bo p, well-defined dercut banks erhanging ve allows (in slo otmats (1)	ot of highe oulders in o , functiona s (1) egetation	est quality deep or fa al pools. 	or in small ast water, la 0 0	amoun arge dia <b>Pools</b>	ts of highest of meter log that > 70cm (2) vads (1)	quality; <b>3-</b> H It is stable, 0 1	Highest qu well devo Oxbow Aquati	uality in mo	oderate o otwad in d vaters (1 ohytes (2	or greater deep / fast	Check ONE ( Check ONE ( Extensive >7 Moderate 25 Sparse 5-<25 Nearly absent	or 2 & ave 25% (11) -75% (7) 5% (3)	0,
													Cover	
COMMENTS	•											M	aximum	7
<u> </u>				<u></u>			(0.0.0						20	
	EL MORP			Check (		each category								
SINUOSITY ♦ High (4)		EVELOP Exceller				NNELIZATIC ne (6)	N		TABILITY High (3)					
Moderate	(3)	Good (5	• •		◇ Rec	covered (4)		۲	Moderate	e (2)			<b>Channel</b> Iaximum	10
<ul> <li>Low (2)</li> <li>None (1)</li> <li>COMMENTS</li> </ul>	\$	Fair (3) Poor (1)	)			covering (3) cent or no re			Low (1)				20	10
4- BANK	EROSION	& RIPA		ZONE	Check	ONE in each	n category	for EAC	H BANK (	Or 2 per b	bank & aver	aqe)		
	king downstrear			PARIAN V			0,				AIN QUALI	•		
	ROSION		. R	50m (4)		LI					L R		ana (4)	
L R ◇ ◇ None or	r little (3)			>50m (4) rate 10-50	)m (3)		Forest, S Shrub or					servation Tilla an or Industria	• • •	
* * Modera		$\diamond$	Narro	w 5-10m (	2)	$\diamond \diamond$	Resident	ial, Park	, Néw fiel	ld (1)		ing, constructi	• •	
◊ ◊ Heavy/S	Severe (1)		<ul><li>♦ Very I</li><li>♦ None</li></ul>	narrow <5	im (1)		Fenced p	•	1) wcrop (0)	、	Indicate p past 100r	predominant land ι n riparian	ise(s)	
COMMENTS	5	·	• None	(0)			open r a	sture/itto		)	<i>p</i>		<b>Ripariar</b> Maximun 10	1 3
5-POOL/G		) RIFFL	.E/RUN	I QUALI	ΤY									
MAXIMUN Check ONE ( > 1m (6) 0.7-<1m 0.4-<0.7m 0.2-<0.4m <0.2m (0) COMMENTS	ONLY!) (4) ≪ n (2) ∽ n (1) ) (metric=0)	Check Pool wie Pool wie	< ONE (or dth > riff dth = riff	- WIDTH 2 & avera ile width ( ile width ( ile width (	2) 1)	<ul> <li>◇ Torrentia</li> <li>◇ Very Fast</li> <li>◇ Fast (1)</li> <li>◊ Moderat</li> <li>Indicate</li> </ul>	Check / al (-1) st (1)	◇ Inter ◇ Eddi	apply v (1) rstitial (-1) rmittent (- ies (1)				ntact ontact	
Indicate for	functional ri	ffles; Bes	st areas	must be l	arge er	nough to su	pport a p	opulatio	on of riffle	-obligat	e species:	♦ No Rif	fle (metr	ic=0)
<ul><li>◇ Best Area</li><li>◇ Best Area</li><li>◇ Best Area</li></ul>	FLE DEPTH s >10cm (2) s 5-10cm (1) s <5cm _{(metric}		⊂ R ♦ Maxin	UN DEPT num >50c num <50c	m (2)	RIFI ◇ Stable ( ◈ Mod. St ◈ Unstab	FLE/RUN (e.g. cobi table (e.g	SUBSTF ble, boul . large g	der) (2) ravel) (1)	ŘÍFFL ◇ ⊗ 0) [♦]	-E/RUN EM None (2) Low (1) Moderate Extensive	IBEDDEDNESS F (0)	s Riffle/Rur Maximum	n 🗌
COMMENTS														
6-GRADIE				Ve	, 1			_					• ••	
( 3.392 ft DRAINAGE ( 20.805	ARÉA		<	> Very low> Moderat> High – V	e (6-10	)`´		OL: 25		6 GLIDE RIFFLE	-		<b>Gradient</b> laximum A145 ¹⁰	6



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◇ Public	◇ Private	◊ WWTP		♦ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◊ Landfill	◇ Industry
>  10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			Logging	Irrigation	♦ Cooling
	◊ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading	3	Moving – Bedloa	d	◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Righ	^{nt} ◇ Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
97 Mide	lle	Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

<b>)</b> =		OWQ Bio	ogical Stu	<u>idies Q</u>	<u>HEI (</u>	Qual	itativ	e Ha	bitat E	Evaluation	<u>Index)</u>
Sample #	QHEI Type	bioSample #	Stream N	ame				Locati	on		
AB42969	Macro	200713804	Tributary	of Maria Cre	ek			County	Road 900	N, E Lower Freelan	dville Road
Surveyor	Sample			cro Sample	туре	♦ Hab	itat Comp	olete		QHEI Scor	e: 34
RAC	7/13/20	Knox		IAB							•
<u>1-SUBSTI</u>	<u>RATE</u>	estimate % or no	o substrate TYPE B te every type prese	nt				Ch	neck ONE (d	or 2 & average)	
BEST TYPE	ES		OTHER	R TYPES				0	RIGIN	QUALITY	
		TOTAL POOL				POOL				SILT	Substrate
◊ ◊ Bldrs/Sl	. ,			rdpan (4)		<u>x</u>	x x	. ◇ Lime ◇ Tills (	stone (1)	<ul> <li>◇ Heavy (-2)</li> <li>◈ Moderate (-1)</li> </ul>	Substrate
◊ ◊ Boulder	.,			tritus (3)		<u>^</u>		♦ Wetla	ands (0)	◇ Normal (0)	4
◇ ◇ Cobble (						<b>v</b>			pan (0) Istone (0)	<ul> <li>Free (1)</li> <li>EMBEDDEDNESS</li> </ul>	-
◊ ◊ Gravel (						x		◇ Rip/F		* Extensive (-2)	Maximum
◊ ◊ Sand (6)			◇	ificial (0)				♦ Lacu ♦ Shale	strine (0)	◇ Moderate (-1)◇ Normal (0)	20
				(Sco			es, ignore	♦ Coal	fines (-2)	<ul> <li>None (1)</li> </ul>	
		-	or more (2) or less (0)		siudge	from poin	nt-sources)				
COMMENTS	5										
			nce 0 to 3: 0-Absent							AMOUN	NT
			y or in small amoun fast water, large dia							Check ONE (or 2	
water, or deep	p, well-defined	l, functional pools.	-	-						◊ Extensive >75%	(11)
	dercut bank	.,		> 70cm (2)		_	vs, Backw	•		♦ Moderate 25-75 ^o	.,
		egetation (1)		vads (1) Iers (1)	<u> </u>		ic macrop		,	Sparse 5-<25%     Alegente alegente	.,
	otmats (1)	ow water) (1)	Bould	iers (1)	<u> </u>	_Logs a	and wood	ly debris	5(1)	◇ Nearly absent <	5% (1)
COMMENTS	.,									<b>C</b> Maxir	over num 4 20
3-CHANN	EL MORP	HOLOGY	Check ONE in	each categor	y (Or 2 & a	average)					20
SINUOSITY		EVELOPMENT	CHAI	NELIZATIO	<b>DN</b>	-	TABILITY	,			
<ul><li>◇ High (4)</li><li>♦ Moderate</li></ul>		Excellent (7) Good (5)		ne (6) covered (4)			High (3) Moderate	o (2)		Cha	nnel
<ul> <li>Low (2)</li> </ul>	· ·	^{&gt;} Fair (3)		covering (3)			Low (1)	e (2)		Maxi	mum 10 20
◇ None (1)		Poor (1)	◇ Ree	cent or no re	ecovery	(1)					20
COMMENTS	-										
		& RIPARIAN		<b>ONE</b> in eacl	h category	for <b>EAC</b>					
-	king downstrea	m F	RIPARIAN WIDTH	LI	R		FLC	DOD PL	AIN QUAL L R	ITY	
L R	- little (2)	◊ ◊ Wide	e >50m (4)	$\diamond \diamond$	Forest, S				◊ ◊ Cor	nservation Tillage	
<ul> <li>♦ ♦ None or</li> <li>♦ ♦ Moderat</li> </ul>			erate 10-50m (3) ow 5-10m (2)		Shrub or Resident		d (2) k, New fiel	ld (1)		oan or Industrial (0 ning, construction	
◊ ◊ Heavy/S	Severe (1)	♦ ♦ Very	∕ narrow <5ḿ (1)	$\diamond$ $\diamond$	Fenced	oasture (	(1)	.,	Indicate p	predominant land use(	• •
		◊ ◊ Non	e (0)	* *	Open Pa	sture/Ro	owcrop (0	))	past 100		parian
COMMENTS	5									Max	kimum <b>4</b> 10
5-POOL/G		D RIFFLE/RU	N QUALITY								JL J
MAXIMUN	/ DEPTH	CHANNI			CURRE	NT VELC	OCITY				
Check ONE (		Check ONE ( <b>Pool width &gt; r</b> i	or 2 & average)	◇ Torrentia		ALL that a Slov			RE	CREATION POTEN	
◇ >1m (6) ◇ 0.7-<1m (		Pool width = ri		<ul> <li>Very Fas</li> </ul>	• •		rstitial (-1	)		<ul> <li>Secondary Conta</li> </ul>	
♦ 0.4-<0.7n	• •	Pool width < ri	ffle width (0)	◇ Fast (1)			rmittent (·	-2)		le one and comment o	
◇ 0.2-<0.4n ◇ <0.2m (0)				Moderat Indicate	• •		ies (1) and riffles.			Pool/Cu	
COMMENTS										Maxir	
Indicate for			s must be large ei	nough to su	••••••	•		•	te species	∗ <u>No Riffle</u>	(metric=0)
DIE	Cheo FLE DEPTH	ck <b>ONE</b> ( <i>ONLY!</i> )	RUN DEPTH	DICI	Ch FLE/RUN		(or 2 & ave	• •		MBEDDEDNESS	
♦ Best Area	is >10cm (2)	◇ Maxi	mum >50cm (2)	♦ Stable (				\$	None (2)		e/Run
	is 5-10cm (1) is <5cm _{(metric}		mum <50cm (1)	◇ Mod. St ◇ Unstab				o) 🔶	Low (1) Moderate Extensive	(0) Max	imum 0 8
COMMENTS	S									<u> </u>	
6-GRADIE	ENT										
( 12.542 ) DRAINAGE			<ul> <li>◊ Very low – Low</li> <li>◊ Moderate (6-10)</li> </ul>		% PC	OOL: 20	%	6 GLIDE	: 70	<b>Gra</b> Maxii	dient
( 3.055 m			<ul> <li>High – Very high</li> </ul>		% F	RUN: 10	%	RIFFLE	: #\$		mum 8 47 ¹⁰



overhanging veg throughout and only real cover. lots of hardpan throughout

A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	AINTENANCE		D-ISSUES	
	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
◇ 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
◇ 30%-<55%	◊ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
◇ 10%-<30%	Discoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
◇ <10% - Closed	♦ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	led	◇ Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading	Reading		d	◇ False bank	♦ Manure	Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◇ Quarry Mine	◊ Golf	◇ Home
100 Middle		Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	◇ Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

		WQ Biolo	ogical Stu	<u>idies QF</u>	<u>iei (</u>	Qual	itative	e Habitat	Evaluation	Index)
Sample #	QHEI Type	bioSample #	Stream N	ame				Location		
AB42975	Macro	200715703	Marsh Cre	ek				E Moody Road		
Surveyor	Sample	Date County	Ма	cro Sample Ty	уре	<u>^ 11-1</u>			QHEI Sco	re: วร
PDM	7/15/20	Knox	MH	IAB		* Hab	itat Comp	lete	•	^{re.} 25
1-SUBST	RATE	Check ONLY Two sestimate % or note	substrate TYPE B	OXES;				Check ONE	(or 2 & average)	
BEST TYP								ORIGIN	QUALITY	
		TOTAL POOL	-	-	ΓΟΤΑL	POOL	RIFFLE			
◇ ◇ Bldrs/S	blabs (10)			rdpan (4)	• • • •			Limestone (1)	SILT )     ♦ Heavy (-2)	Substrate
◊ ◊ Boulde	ers (9)		◇ ◇ Det	tritus (3)			•	◇ Tills (1) `	* Moderate (-1)	
◊ ◊ Cobble	(8)		0 0 Mar					<ul> <li>Wetlands (0)</li> <li>Hardpan (0)</li> </ul>	◇ Normal (0) ◇ Free (1)	5
◊ ◊ Gravel			♦ Silt		·	Х		<ul> <li>Sandstone (0)</li> </ul>		
* < Sand (6	.,	X		ificial (0)				◇ Rip/Rap (0)	<ul> <li>Extensive (-2)</li> </ul>	maximam
<ul> <li>Sand (d)</li> <li>Bedroc</li> </ul>	-				<u> </u>			◇ Lacustrine (0 ◇ Shale (-1)	<ul> <li>         ♦ Moderate (-1)     </li> <li>         ♦ Normal (0)     </li> </ul>	20
	OF BEST TY		more (2)	· ·			es; ignore nt-sources)	<ul> <li>Coal fines (-2</li> </ul>		
COMMENT	S	* 3 or	less (0)							
2-Moderate a amounts (e.g water, or dee 0 Ur 1 Ov	amounts, but no g., very large bo	egetation (1)	or in small amoun ist water, large dia	ts of highest qua ameter log that is > 70cm (2) vads (1)	ality; <b>3</b> -H s stable, 0 0	ighest qu well dev Oxbov Aquati	uality in mo reloped root vs, Backwa ic macropl	derate or greater wad in deep / fas <b>aters (1)</b>	Check ONE (or	2 & average) % (11) 5% (7) 6 (3)
	ootmats (1)	<u> </u>		<u> </u>	<u> </u>		and weedy			<370 (T)
COMMENT	S									Cover imum 3 20
<u>SINUOSITY</u> <ul> <li>→ High (4)</li> <li>→ Moderate</li> <li>◆ Low (2)</li> <li>◆ None (1)</li> </ul>	<ul> <li>⇒ (3)</li> <li>⇒</li> <li>⇒</li> </ul>	DEVELOPMENT Excellent (7) Good (5) Fair (3) Poor (1)	<ul> <li>◇ Nor</li> <li>◇ Rec</li> <li>◇ Rec</li> </ul>	NNELIZATION ne (6) covered (4) covering (3) cent or no reco		S ◇ ◇ ◇	TABILITY High (3) Moderate Low (1)	(2)		annel kimum 7 20
4- BANK	FROSION	& RIPARIAN Z		ONE in each c	ategory	for <b>EAC</b>	H BANK (C	)r 2 per bank & av	verage)	
	oking downstrear		PARIAN WIDTH		alogoly			OD PLAIN QUA	•	
E	EROSION	LR		LR				LR		<i></i>
L R ◇ ◇ None o	or little (3)	◇ ◇ Wide : ◇ ◇ Moder	>50m (4) rate 10-50m (3)		orest, Sv hrub or				onservation Tillage	
◊ ◊ Modera	ate (2)		w 5-10m (2)				, New field		lining, construction	
* * Heavy/	Severe (1)		narrow <5m (1)		enced p				e predominant land use	e(s)
COMMENT	-6	◊ ◊ None (	(0)	* * Op	pen Pas	ture/Ro	owcrop (0)	past n		<b>iparian</b> aximum 2 10
	-									10
		<u> </u>								
MAXIMUI Check ONE ◇ >1m (6) ◇ 0.7-<1m ◇ 0.4-<0.7 ◇ 0.2-<0.4	∘ ∩(4)	CHANNEL Check ONE (or Pool width > riffl Pool width = riffl Pool width < riffl	2 & <i>average</i> ) le width (2) le width (1)	-	(1)	LL that a * Slov * Inter * Inter	apply	2)	RECREATION POTE Primary Conta Secondary Contained	act ntact
◇ <0.2m (0 COMMENT)	0) (metric=0)			Indicate fo	• •		• •		<b>Pool/C</b> Max	urrent imum 4 12
Indicate for		ffles; Best areas r	nust be large er	rough to supp	-	-			es: <u> </u>	/2 (metric=0)
RI	FFLE DEPTH	k ONE (ONLY!) RI	UN DEPTH	RIFFL	E/RUN		(or 2 & ave <b>RATE</b>		EMBEDDEDNESS	
♦ Best Area	as >10cm (2) as 5-10cm (1) as <5cm _{(metric}	Maxim	um >50cm (2) um <50cm (1)	<ul> <li>◇ Stable (e.)</li> <li>◇ Mod. Stab</li> <li>◇ Unstable</li> </ul>	ble (e.g.	large g	ravel) (1)	<ul> <li>◇ None (2</li> <li>◇ Low (1)</li> <li>◇ Modera</li> </ul>	te (0)	f <b>le/Run</b> iximum 0 8
COMMENT	-						• / / /	✓ ◇ Extensi	ve (-1)	
6-GRADI										
( 2.932 f DRAINAGE	ft/mi)		Very low – Low Moderate (6-10	• •	% PO	OL: 10	%	GLIDE: 30		adient kimum 4

( 2.932 ft/mi) DRAINAGE AREA ( 12.234 mi²) A149¹⁰ % RUN: 60 % RIFFLE: #\$ ♦ High – Very high (10-6) 1/27/2021 16:35:23 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
[→] 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			Logging	Irrigation	◇ Cooling
	◇ Oil sheen	Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	◊ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	Quarry Mine	◊ Golf	◇ Home
98 Middle	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Sample #	QHEI Type	bioSan	nple #	St	ream Name				Location		
AB42968	Macro	200713	3803	Ma	aria Creek				County Road 900	N	
Surveyor	Sample	Date	County	1	Macro Sample	е Туре	⊗ Həł	oitat Com	nlete	QHEI Score	e: 33
MSG	7/13/20		Knox		MHAB		* Hai		piete		
1-SUBST	RATE			substrate te every typ	<i>TYPE BOXES</i> ; e present				Check ONE (	or 2 & average)	
BEST TYP	PES				OTHER TYPES				ORIGIN	QUALITY	
<ul> <li>◇ Bldrs/S</li> <li>◇ Boulde</li> <li>◇ Cobble</li> <li>◇ Gravel</li> <li>◇ Sand (i</li> <li>◇ Bedroo</li> <li>NUMBER</li> <li>COMMENT</li> </ul>	Slabs (10) ers (9) e (8) (7) 6) ck (5) OF BEST TY	TOTAL	x	x			x x I substrat	RIFFLE x	<ul> <li>◇ Limestone (1)</li> <li>◇ Tills (1)</li> <li>◇ Wetlands (0)</li> <li>◇ Hardpan (0)</li> <li>◇ Sandstone (0)</li> <li>◇ Rip/Rap (0)</li> <li>◇ Lacustrine (0)</li> <li>◇ Shale (-1)</li> <li>◇ Coal fines (-2)</li> </ul>	SILT	Substrat 2 Maximur 20
2-Moderate mounts (e.) vater, or de <u>0</u> <u>2</u> 0 5	amounts, but no	ot of highe oulders in , function s (1) egetation	est quality deep or f al pools. n <b>(1)</b>	y or in smal	-Absent; 1-Very sma amounts of highest arge diameter log tha Pools > 70cm (2) Rootwads (1) Boulders (1)	quality; <b>3</b> - at is stable	Highest c , well dev Oxbov Aquat	uality in m veloped roo ws, Backv ic macroj	oderate or greater	AMOUN Check ONE (or 2 & Sextensive >75% Moderate 25-75% Sparse 5-<25% ( Nearly absent <	a average) (11) 5 (7) 3)

Cover Maximum 20

0

6

8

Maximum

Gradient

COMMENTS

Output Best Areas 5-10cm (1)

COMMENTS 6-GRADIENT ( 3.885 ft/mi)

◊ Best Areas <5cm_(metric=0)

**3-CHANNEL MORPHOLOGY** Check ONE in each category (*Or* 2 & *average*)

Maximum <50cm (1)</p>

◊ Very low – Low (2-4)

SINUOSITY DEVELOPMENT **CHANNELIZATION** STABILITY Excellent (7) High (4) None (6) High (3) Channel Moderate (3) Good (5) Recovered (4) Moderate (2) Maximum Recovering (3) ◇ Low (2) ◇ Fair (3) * Low (1) 20 * Poor (1) None (1) Recent or no recovery (1) COMMENTS **4- BANK EROSION & RIPARIAN ZONE** Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream **RIPARIAN WIDTH** FLOOD PLAIN QUALITY EROSION LR LR LR LR ◊ ◊ Wide >50m (4) ◇ ◇ Forest, Swamp (3) ◊ ◊ Conservation Tillage (1) * 
 * None or little (3) ◊ ◊ Moderate 10-50m (3) ◊ ◊ Urban or Industrial (0) ◇ ◇ Shrub or Old field (2) * Moderate (2) ◊ ◊ Narrow 5-10m (2) ◊ ◊ Residential, Park, New field (1) ◊ ◊ Mining, construction (0) ◊ ◊ Heavy/Severe (1) ◇ ◇ Fenced pasture (1) Indicate predominant land use(s) past 100m riparian. * * None (0) * * Open Pasture/Rowcrop (0) Riparian Maximum 3 COMMENTS 10 5-POOL/GLIDE AND RIFFLE/RUN QUALITY MAXIMUM DEPTH **CHANNEL WIDTH CURRENT VELOCITY RECREATION POTENTIAL** Check ONE (ONLY!) Check ONE (or 2 & average) Check ALL that apply * >1m (6) Pool width > riffle width (2) Torrential (-1) * Slow (1) ♦ Primary Contact ◊ 0.7-<1m (4)</p> Pool width = riffle width (1) Very Fast (1) Interstitial (-1) * Secondary Contact ◇ 0.4-<0.7m (2) Pool width < riffle width (0)</p> ◇ Intermittent (-2) Fast (1) (circle one and comment on back) ◇ 0.2-<0.4m (1) ♦ Moderate (1) Eddies (1) Indicate for reach - pools and riffles. Pool/Current 8 COMMENTS Maximum 12 Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: * No Riffle (metric=0) Check ONE (ONLY!) Check ONE (or 2 & average) **RIFFLE DEPTH RUN DEPTH RIFFLE/RUN SUBSTRATE RIFFLE/RUN EMBEDDEDNESS** None (2) Sest Areas >10cm (2) Maximum >50cm (2) Stable (e.g. cobble, boulder) (2) Riffle/Run

Mod. Stable (e.g. large gravel) (1)

Unstable (e.g. sand, fine gravel) (0)

% POOL: 20

◇ Low (1)

% GLIDE: 60

Moderate (0)

Extensive (-1)

 DRÀINAGE ARÉA ( 30.791 mi²)

 Moderate (6-10)
 High – Very high (10-6)
 RUN: 20
 RIFFLE: #\$

 Maximum A151¹⁰

 1/27/2021 16:35:23 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	IAINTENANCE		D-ISSUES	
>85% - Open	Vuisance algae	◊ Public	◇ Private	◊ WWTP		♦ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	◇ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◊ Landfill	◇ Industry
× 10%-<30%	Discoloration	◇ Spray		Construction BMPs	Sediment BMPs	
<10% - Closed	◊ Foam/Scum			◇ Logging	◇ Irrigation	Cooling
	◊ Oil sheen	Leveed – One side	ded	Output Series Bank Erosion	Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	♦ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◇ Golf	♦ Home
89 Middle	9	Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

<u>]</u>	<u>WQ</u>	Biol	ogica	al S	tudies C	<u> HEI (</u>	Qua	litativ	e Habitat E	Evaluation	Index)
Туре	bioSar	nple #	;	Strean	n Name		Location				
C	200715	5803	I	Maria (	Creek				E County Road 97	75 S	
ample	Date	County	,		Macro Sample	е Туре	^ II-I			QHEI Score	): 64
15/20		Sullivar	1		MHAB		* Har	oitat Com	piete		- 64
					/				Check ONE (c	or 2 & average)	
			,	О́т⊦	IER TYPES				ORIGIN	QUALITY	
0)		POOL	RIFFLE X X		Detritus (3) Muck (2) Silt (2)		POOL X X X	RIFFLE X X X X	<ul> <li>◇ Limestone (1)</li> <li>◇ Tills (1)</li> <li>◇ Wetlands (0)</li> <li>◇ Hardpan (0)</li> <li>◇ Sandstone (0)</li> <li>◇ Rip/Rap (0)</li> <li>◇ Locations (0)</li> </ul>	SILT	Substrate
	<b>Type</b> ample 15/20	Type bioSar 200718 ample Date 15/20 Check O estimate	Type bioSample # 200715803 ample Date County 15/20 Sullivan Check ONLY Two estimate % or not TOTAL POOL 0)	Type       bioSample #         0       200715803         ample Date       County         15/20       Sullivan         Check ONLY Two substrates       Check ONLY Two substrates         estimate % or note every for the substrates       States         0)       TOTAL POOL       RIFFLE         0)       X       X	Type       bioSample #       Stream         200715803       Maria 0         ample Date       County         15/20       Sullivan         Check ONLY Two substrate TYP         estimate % or note every type pre         OTH         TOTAL       POOL         RIFFLE         0)	Type       bioSample #       Stream Name         0       200715803       Maria Creek         ample Date       County       Macro Sample         15/20       Sullivan       MHAB         15/20       Sullivan       MHAB         Check ONLY Two substrate TYPE BOXES; estimate % or note every type present       OTHER TYPES         TOTAL       POOL       RIFFLE         0)       ◇ ◇ Hardpan (4)       ◇ ◇ Muck (2)         X ◇ ◇ Silt (2)       X       ◇ Silt (2)	Type         bioSample #         Stream Name           0         200715803         Maria Creek           ample Date         County         Macro Sample Type           15/20         Sullivan         MHAB           15/20         Sullivan         MHAB           Check ONL Y Two substrate TYPE BOXES; estimate % or note every type present         OTHER TYPES           TOTAL         POOL         RIFFLE         TOTAL           0)	Type         bioSample #         Stream Name           0         200715803         Maria Creek           ample Date         County         Macro Sample Type           15/20         Sullivan         MHAB         * Hat           15/20         Sullivan         MHAB         * Hat           Check ONLY Two substrate TYPE BOXES; estimate % or note every type present         • OTHER TYPES           TOTAL         POOL         RIFFLE         TOTAL         POOL           0)	Type       bioSample #       Stream Name         200715803       Maria Creek         ample Date       County       Macro Sample Type         15/20       Sullivan       MHAB         Check ONLY Two substrate TYPE BOXES; estimate % or note every type present       • Habitat Com         OTHER TYPES       TOTAL       POOL       RIFFLE         0)         • ○ Detritus (3)       X       X           • ○ Muck (2)        X       X          X       ◇ Silt (2)       X       X	Type       bioSample #       Stream Name       Location         200715803       Maria Creek       E County Road 97         ample Date       County       Macro Sample Type       * Habitat Complete         15/20       Sullivan       MHAB       * Habitat Complete         15/20       Sullivan       MHAB       * Check ONLY Two substrate TYPE BOXES; estimate % or note every type present       Check ONE (c         OTHER TYPES       OTHER TYPES       ORIGIN         0)         * Hardpan (4)       X       X       < Limestone (1)	200715803       Maria Creek       E County Road 975 S         ample Date       County       Macro Sample Type       * Habitat Complete       QHEI Score         15/20       Sullivan       MHAB       * Habitat Complete       QHEI Score         15/20       Sullivan       MHAB       * Habitat Complete       QHEI Score         Check ONLY Two substrate TYPE BOXES; estimate % or note every type present       Check ONE (or 2 & average)       ORIGIN       QUALITY         00       TOTAL       POOL       RIFFLE       TOTAL       POOL       RIFFLE       SILT         0)

◊ ◊ Bedrock (5)

COMMENTS

NUMBER OF BEST TYPES:

♦ 4 or more (2) * 3 or less (0)

2-INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality;

* Normal (0)

AMOUNT

None (1)

2-Moderate amounts bu	it not of highest quality or	in small amounts of	f highest quality	y; 3-Highest quality in moderate of	or greater	ANOONI		
				able, well developed rootwad in (	deep / fast	Check ONE (or 2 & average)		
water, or deep, well-defi	· · ·					Extensive >75% (11)		
1 Undercut ba	inks (1)	2 Pools > 7	0cm (2)	Oxbows, Backwaters (*	1) *	Moderate 25-75% (7)		
2 Overhanging	g vegetation (1)	1 Rootwad	s (1)	Aquatic macrophytes (	1) ◇	◇ Sparse 5-<25% (3)		
1 Shallows (in	slow water) (1)	Boulders	(1)	1 Logs and woody debris	s (1) 🛛 🗘	Nearly absent <5% (1)		
3 Rootmats (1	)							
COMMENTS						Cover Maximum 20		
<b>3-CHANNEL MOP</b>	RPHOLOGY	Check ONE in each	n category (Or:	2 & average)				
SINUOSITY	DEVELOPMENT	CHANNE	ELIZATION	STABILITY				
* High (4)	Excellent (7)	None (		◊ High (3)		Channel		
Moderate (3)	* Good (5)	◇ Recover	• • •	Moderate (2)		Maximum 17		
> Low (2) ♦ Fair (3) ♦ Pair (4)		◇ Recov		◇ Low (1)		20		
◇ None (1) COMMENTS	◇ Poor (1)	◇ Recent	t or no recove	ery (1)				
4- BANK EROSIC	ON & RIPARIAN ZO	ONE Check ON	IE in each cate	egory for EACH BANK (Or 2 per	bank & avera	ge)		
River right looking downst	ream RIP/	ARIAN WIDTH		FLOOD PL	AIN QUALIT	Υ		
EROSION	LR		LR		LR			
LR	◇ ◇ Wide >			st, Swamp (3)		ervation Tillage (1)		
* * None or little (3)		te 10-50m (3)		b or Old field (2)		n or Industrial (0)		
♦ ♦ Moderate (2)	* * Narrow			dential, Park, New field (1)		ng, construction (0)		
◊ ◊ Heavy/Severe (1)		rrow <5m (1)		ed pasture (1)	Indicate pre past 100m	edominant land use(s)		
	◊ ◊ None (0	)	∘ ∘ Oper	n Pasture/Rowcrop (0)	μασι τουπ	Riparian		
<b>COMMENTS</b> eros	sion more severe downs	stream of reach				Maximum 5 10		
5-POOL/GLIDE A	ND RIFFLE/RUN	QUALITY						
MAXIMUM DEPTH Check ONE (ONLY!)	CHANNEL Check ONE (or 2			RENT VELOCITY eck ALL that apply	REC	REATION POTENTIAL		

<ul> <li>♦ 0.7-&lt;1m (4)</li> <li>♦ 0.4-&lt;0.7m (2)</li> <li>♦ 0.2-&lt;0.4m (1)</li> <li>♦ &lt;0.2m (0) (metric=0)</li> </ul>	Pool width > riffle width (2) Pool width = riffle width (1) Pool width < riffle width (0)	<ul> <li>◇ Torrential (-1)</li> <li>◇ Very Fast (1)</li> <li>◇ Fast (1)</li> <li>◊ Moderate (1)</li> </ul>	<ul> <li>ALL that apply</li> <li>Slow (1)</li> <li>Interstitial (-1)</li> <li>Intermittent (-2)</li> <li>Eddies (1)</li> <li>h – pools and riffles.</li> </ul>	* Se	rimary Contact condary Contact e and comment on back) Pool/Current Maximum	8
COMMENTS Indicate for functional riff	les; Best areas must be large ei	nough to support a	population of riffle-o	bligate species:	No Riffle (metric	
	ONE (ONLY!)		heck ONE (or 2 & avera			
RIFFLE DEPTH	RUN DEPTH			RIFFLE/RUN EMBED	DEDNESS	
◊ Best Areas >10cm (2)	◊ Maximum >50cm (2)	Stable (e.g. col	oble, boulder) (2)	None (2)	Riffle/Run	
<ul> <li>Best Areas 5-10cm (1)</li> </ul>	* Maximum <50cm (1)	Mod. Stable (e.	g. large gravel) (1)	* Low (1)	Maximum	3
Best Areas <5cm _{(metric=0}	0)	Unstable (e.g. s)     Output     Description:     Description:     Output     Description:     Descripti	sand, fine gravel) (0)	<ul> <li>◇ Moderate (0)</li> <li>◇ Extensive (-1)</li> </ul>	8	Ŭ
COMMENTS						
6-GRADIENT						
( 7.687 ft/mi) DRAINAGE AREA	<ul> <li>◇ Very low – Lov</li> <li>◇ Moderate (6-10)</li> </ul>	· · · · · ·	OOL: 40 % G	LIDE: #\$	<b>Gradient</b> Maximum	6
( 7.331 mi ² )	♦ High – Very high	ah (10-6) %	RUN: 40 % RI	FFLE: 20	A153 ¹⁰	-

1/27/2021 16:35:23 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	Vuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
× 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
[→] 30%-<55%	◇ Excess turbidity	♦ Young – Success ♦ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Output Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both B	anks			
Canopy Upstream Reading		Moving – Bedload		◇ False bank	◊ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	♦ Home
37 Middl	e	Impounded	Desiccated	◇ Park	◇ Data Paucity	◊ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

	<u>owq</u>	<b>Biological Studies</b>	<u>QHEI (Qualitative</u>	Habitat Evaluation Index)
Sample #	QHEI Type bioSan	nple # Stream Name	L	ocation

Sample #	QHEI Type	bioSar	nple #	St	ream Na	ıme				Loca	ation		
AB42972	Macro	200715	5802	Ma	aria Cree	k				E Co	ounty Road 10	)50 S	
Surveyor	Sample	Date	County		Mac	cro Sample	е Туре				-	QHEI Sc	ore:
MSG	7/15/20		Sullivan		MH	AB		* Hat	bitat Com	plete			ore. 45
1-SUBSTR		Check O	NLYTwo	substrate	TYPE BO	DXES;					Check ONE (c	or 2 & average)	
BEST TYPE		estimate	% or not	e every typ								0 /	,
BESTITE	29				UTHER	TYPES					URIGIN	QUALITY	
		TOTAL	POOL				TOTAL	POOL	RIFFLE			SILT	Substrate
◊ ◊ Bldrs/Sl	abs (10)					dpan (4)		<u>X</u>		_ ◇ Lin ◇ Till	nestone (1)	<ul> <li>Heavy (-2)</li> <li>Moderate (-1</li> </ul>	1
◊ ◊ Boulder	s (9)					ritus (3)		<u>X</u>			s (1) etlands (0)	<ul> <li>Normal (0)</li> </ul>	-
$\diamond$ $\diamond$ Cobble (	(8)			X	◇ ◇ Muc	:k (2)		X		_	rdpan (Ò)	◇ Free (1)	8
◊ ◊ Gravel ()	7)		Х	Х	◊ ◊ Silt	(2)		Х	Х	_	ndstone (0)	EMBEDDEDNESS	
◇			х	Х	◇ ◇ Arti	ficial (0)					o/Rap (0) custrine (0)	<ul> <li>Extensive (-2 Moderate (-1     </li> </ul>	, maximani
◊ ◊ Bedrock						.,				o Sh	ale (-1)	<ul> <li>Normal (0)</li> </ul>	) 20
	IFOCK (5)       (Score natural substrates; ignore          ER OF BEST TYPES:					al fines (-2)	◇ None (1)						
		•.		r less (0)			oluugo	, nom pon		/			
COMMENTS	5			.,									
	AM COVE	<b>D</b> Indiaa	to procop	00 0 to 2: 0	Abaanti	<b>1</b> \/on/om/		o or if mor		o of mo			
	mounts, but no											AMO	UNI
	, very large bo											Check ONE (or	r 2 & average)
water, or deep	p, well-defined	, function			U U	Ũ			•			♦ Extensive >7	5% (11)
	dercut banks	• •	-	0	Pools :	> 70cm (2)			ws, Backv		. ,	♦ Moderate 25-	75% (7)
	erhanging ve		-	0	-	ads (1)			ic macro	•••	()	* Sparse 5-<25	% (3)
	allows (in slo	ow water	·) (1)	0	Boulde	ers (1)	0	_ Logs	and wood	dy deb	oris (1)	Nearly absen	t <5% (1)
	otmats (1)												
COMMENTS	5											Мғ	Cover aximum 6
													20
<u>3-CHANN</u>	EL MORPI	HOLOO	<u>GY</u>	Check	ONE in e	ach catego	ry ( <i>Or</i> 2 &	average)					
SINUOSITY		EVELO				NELIZATI	ON	-	TABILITY				
◇ High (4)		Excelle	• •		◇ Non	• •			High (3)			c	Channel
<ul> <li>Moderate</li> <li>Low (2)</li> </ul>	• •	Good ( Fair (3)				overed (4) overing (3			Moderat Low (1)	e (2)			aximum 9
<ul> <li>◊ Low (2)</li> <li>◊ None (1)</li> </ul>		Poor (1				ent or no			LOW (1)				20
COMMENTS			,					( )					
	EDOSION				Chook		ab actoria	tor EAC		0-2 -	or honk & over	rage)	
	EROSION					ONE IN eac	ch categor	y for EAC		-	er bank & aver	•	
-	king downstrear ROSION		_ R	PARIAN	MIDTH	L	R		FLO		PLAIN QUAL	11 Y	
LR				>50m (4)			Forest,	Swamp (	3)			nservation Tillag	ge (1)
◇ ◇ None or	• •			erate 10-5	• • •		Shrub o					oan or Industrial	· · ·
◊ ♦ Moderat ♦ ◊ Heavy/S				w 5-10m					k, New fie	eld (1)		ning, construction	
• • neavy/3	bevere (1)		° ∜ very · ◇ None	narrow <	5m (1)		Fenced		(1) owcrop (0	))		oredominant land us m riparian.	
			Helle	(0)			oponii		0110100	-,			<b>Riparian</b> Maximum 3
COMMENTS	5												10
5-POOL /G			E/RII		ITV								I
							0	NIT 1/					]
MAXIMUN Check ONE (				L WIDTH r 2 & avera	nae)			ALL that			RE	CREATION POT	ENTIAL
◇ >1m (6)				fle width		◇ Torrent		* Slov				Primary Con	ntact
◇ 0.7-<1m (	(4) 🗘	Pool w	idth = rif	fle width	(1)	◊ Very Fa	ıst (1)	Intel	erstitial (-1	1)		Secondary Condition	ontact
∜ 0.4-<0.7n	• •	Pool w	idth < rif	fle width	(0)	◇ Fast (1)			rmittent (	(-2)	(circ	le one and commer	nt on back)
◇ 0.2-<0.4n	· · ·					* Modera	• •		lies (1)		(0		,
◇ <0.2m (0) COMMENTS						maicat	te for reacl	n – pools i	and nines.				Current aximum 6
COMMENTS	,												12
Indicate for	functional ri	ffles; Be	st areas	must be	large en	ough to si	upport a	populatio	on of riffle	e-oblig	gate species:	◇ <u>No Riff</u>	le (metric=0)
		k ONE (C	,						(or 2 & av	• •			
	FLE DEPTH			RUN DEPT			FLE/RUN			RIF		MBEDDEDNESS	
♦ Best Area				num >500	• • •		(e.g. cob			、	◇ None (2)	R	iffle/Run
	s 5-10cm (1) s <5cm _{(metric}	0)	✓ waxir	num <500	an (1)				gravel) (1) e gravel) (		<ul> <li>Moderate</li> </ul>	( <b>0</b> ) ^{<i>N</i>}	1aximum 3
	-	=0)				· Unside	ore (e.y. s	ana, mit	- yi avei) (	(*)	Extensive	• •	8
COMMENTS													
6-GRADIE	<u>INT</u>												
( 8.775 ft	,			◊ Very lov			% P	OOL: 50	%	% GLII	DE: 0		Gradient
DRAINAGE ( 10.192				◊ Modera ◊ High – \	• •		0/	RUN: 40	0/	RIFE	LE: 10		aximum 10 A155 ¹⁰
(10.152	···· /			·	ery mg		/0		/0	, INT T			A100.0



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	AINTENANCE		D-ISSUES	
>85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		♦ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
[»] 30%-<55%	◇ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Discoloration	◇ Spray		Construction BMPs	◊ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◊ Cooling
	◊ Oil sheen	Leveed – One side	led	◊ Bank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedload		◇ False bank	◊ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	♦ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
36 Middle		Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

#### OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index) bioSample # Stream Name Location QHEI Type Sample # AB42966 Macro 200714804 Tributary of Maria Creek Freelandville Road Sample Date Macro Sample Type Surveyor County QHEI Score: 24 * Habitat Complete MSG 7/14/20 Knox MHAB Check ONLY Two substrate TYPE BOXES; **1-SUBSTRATE** Check ONE (or 2 & average) estimate % or note every type present **BEST TYPES** OTHER TYPES ORIGIN QUALITY TOTAL POOL RIFFLE TOTAL POOL RIFFLE SILT Substrate ◊ ◊ Bldrs/Slabs (10) ◊ ◊ Hardpan (4) х Limestone (1) Heavy (-2) ◇ Tills (1) ♦ Moderate (-1) ◊ ◊ Detritus (3) ♦ ♦ Boulders (9) Normal (0) Wetlands (0) 0 ◊ ◊ Cobble (8) ◊ ♦ Muck (2) х Hardpan (0) Free (1) Sandstone (0) EMBEDDEDNESS х х ◊ ◊ Gravel (7) ♦ ♦ Silt (2) Rip/Rap (0) Extensive (-2) Maximum х ◊ ◊ Artificial (0) Moderate (-1) Lacustrine (0) 20 (Score natural substrates; ignore $\diamond$ Coal fines (-2) Normal (0) ◇ None (1) NUMBER OF BEST TYPES: ♦ 4 or more (2) sludge from point-sources) * 3 or less (0) COMMENTS 2-INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; AMOUNT 2-Moderate amounts, but not of highest guality or in small amounts of highest guality; 3-Highest guality in moderate or greater Check ONE (or 2 & average) amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast Extensive >75% (11) water, or deep, well-defined, functional pools. Undercut banks (1) Pools > 70cm (2) **Oxbows, Backwaters (1)** Moderate 25-75% (7) 3 Overhanging vegetation (1) Aquatic macrophytes (1) Rootwads (1) * Sparse 5-<25% (3)</p> Shallows (in slow water) (1) Boulders (1) Logs and woody debris (1) Nearly absent <5% (1)</p> 1 Rootmats (1) Cover COMMENTS Maximum 5 20 3-CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) STABILITY SINUOSITY DEVELOPMENT **CHANNELIZATION** Excellent (7) None (6) High (3) High (4) Channel Moderate (3) Good (5) Recovered (4) Moderate (2) Maximum Recovering (3) ◇ Low (2) Fair (3) * Low (1) 20 * Poor (1) Recent or no recovery (1) None (1) COMMENTS **4- BANK EROSION & RIPARIAN ZONE** Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream **RIPARIAN WIDTH** FLOOD PLAIN QUALITY EROSION LR LR LR LR ◊ ◊ Wide >50m (4) ◇ ◇ Forest, Swamp (3) ◊ ◊ Conservation Tillage (1) * * None or little (3) ◊ ◊ Moderate 10-50m (3) ◇ ◇ Shrub or Old field (2) ◊ ◊ Urban or Industrial (0) * * Moderate (2) ◊ ◊ Narrow 5-10m (2) ◊ ◊ Mining, construction (0) ◊ ◊ Very narrow <5m (1)</p> ◇ ◇ Fenced pasture (1) Indicate predominant land use(s) past 100m riparian. * * None (0) * * Open Pasture/Rowcrop (0) Riparian Maximum 3 COMMENTS 10 5-POOL/GLIDE AND RIFFLE/RUN QUALITY MAXIMUM DEPTH **CHANNEL WIDTH CURRENT VELOCITY RECREATION POTENTIAL** Check ONE (ONLY!) Check ONE (or 2 & average) Check ALL that apply ◊ >1m (6) Pool width > riffle width (2) Torrential (-1) * Slow (1) Primary Contact * Pool width = riffle width (1) Very Fast (1) ◊ 0.7-<1m (4)</p> Interstitial (-1) * Secondary Contact ◇ 0.4-<0.7m (2) Pool width < riffle width (0)</p> ◇ Intermittent (-2) Fast (1) (circle one and comment on back) * 0.2-<0.4m (1) Moderate (1) Eddies (1) Indicate for reach - pools and riffles. Pool/Current 3 COMMENTS Maximum 12 Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: * No Riffle (metric=0) Check ONE (ONLY!) Check ONE (or 2 & average) **RIFFLE DEPTH RUN DEPTH RIFFLE/RUN SUBSTRATE RIFFLE/RUN EMBEDDEDNESS** None (2) Sest Areas >10cm (2) Maximum >50cm (2) Stable (e.g. cobble, boulder) (2) Riffle/Run ◇ Low (1) Maximum <50cm (1)</p> Mod. Stable (e.g. large gravel) (1) Sest Areas 5-10cm (1) 0 Maximum Moderate (0) ◊ Best Areas <5cm_(metric=0) Unstable (e.g. sand, fine gravel) (0) 8 Extensive (-1) COMMENTS 6-GRADIENT (7.362 ft/mi) ◊ Very low – Low (2-4) % POOL: 30 % GLIDE: 70 Gradient DRAINAGE AREA ♦ Moderate (6-10) Maximum 6

1/27/2021 16:35:23 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

% RUN: #\$

% RIFFLE: #\$

High – Very high (10-6)

(2.96 mi²)

A157¹⁰



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
[≫] >85% - Open	Nuisance algae	◊ Public	◇ Private	◊ WWTP		◇ CSO
> 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
^{&gt;} 30%-<55%	♦ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
^{&gt;} 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	Cooling
	◊ Oil sheen	A Leveed – One side	ded	Sank Erosion	♦ Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		◇ Moving – Bedload		◇ False bank	♦ Manure	◇ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◊ Tile	Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◇ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◊ Golf	◇ Home
100 Middle	•	Impounded	Desiccated	◇ Park	◇ Data Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

		WQ Biologic	al Studies QHE	<u>El (Qualitative</u>	Habitat Evaluation	Index)
Sample #	QHEI Type	bioSample #	Stream Name	L	ocation	

Sample #	QHEI Type	bioSample #	Stream N	lame				Location		
AB42962	Macro	200713801	Tilley Dito	:h				E Pepmeir Road		
Surveyor	Sample	Date County	/ . / Ma	acro Sample	Туре				QHEI Scor	e: 40
MSG	7/13/20	Knox	MI	HAB		Hab	itat Compl	ete		e. 42
1-SUBSTR		Check ONLY Two	o substrate TYPE E	BOXES;				Check ONE (	or 2 & average)	
		estimate % or no	te every type prese						0,	
BEST TYPE	:5		OTHE	R TYPES				ORIGIN	QUALITY	
		TOTAL POOL	RIFFLE		TOTAL	POOL	RIFFLE		SILT	<b>.</b>
◊ ◊ Bldrs/Sla	abs (10)	·	◇	rdpan (4)		x		> Limestone (1)	Heavy (-2)	Substrate
◊ ◊ Boulders	s (9)		<u></u>	tritus (3)		х		> Tills (1) > Wetlands (0)	◇ Moderate (-1)	
◊ ◊ Cobble (8)	8)		◊ ◊ Μι	ıck (2)				<ul> <li>Wettands (0)</li> <li>Hardpan (0)</li> </ul>	◇ Normal (0) ◇ Free (1)	9
◊ ◊ Gravel (7						x		Sandstone (0)	EMBEDDEDNESS	
•	,	x					<	Rip/Rap (0)		Maximum
* * Sand (6)		^	- <u>~ ~ ~ An</u>	tificial (0)				> Lacustrine (0)	♦ Moderate (-1)	20
◇ ◇ Bedrock	• •			(Sco			es; ignore	Shale (-1) Coal fines (-2)	◇ Normal (0) ◇ None (1)	
NUMBER O	F BEST TY		or more (2)		sludge	from poir	nt-sources)			
00141451170		* 3 C	or less (0)							
COMMENTS										
2-INSTRE/	AM COVE	R Indicate preser	nce 0 to 3: 0-Absen	t; 1-Very smal	l amounts	or if mor	e common d	of marginal quality;	AMOUN	т
			y or in small amour							
amounts (e.g.,	very large bo	oulders in deep or	fast water, large dia						Check ONE (or 2	
		, functional pools.		== (0)		<u>.</u>	<u> </u>		♦ Extensive >75%	. ,
	lercut banks	· · ·		s > 70cm (2)		_	vs, Backwa	~ ~ ~	Moderate 25-75	()
		egetation (1)	0_ Rootv			-	ic macropl		<ul> <li>Sparse 5-&lt;25% (</li> </ul>	,
	•	ow water) (1)	0 <b>Bould</b>	ders (1)	0	_ Logs a	and woody	debris (1)	♦ Nearly absent <	5% (1)
	otmats (1)								0	
COMMENTS									Maxin	over num 10
										20
<b>3-CHANNE</b>	EL MORP	<u>HOLOGY</u>	Check ONE in	each category	(Or 2 & a	average)				
SINUOSITY	D	EVELOPMENT	CHA	NNELIZATIO	N		TABILITY			
High (4)		Excellent (7)		ne (6)		\$	High (3)		Cha	nnel
♦ Moderate ( ♦ Low (2)		Good (5)		covered (4)			Moderate	(2)	Maxii	
◇ Low (2) ♦ None (1)		[•] Fair (3) [•] Poor (1)		covering (3) cent or no re			Low (1)			20
COMMENTS						(.)				
	DOCION					<i>(</i> <b>-</b> 10		0 1 1 0	`````	<u> </u>
		& RIPARIAN		k ONE in each	n category	for EAC		r 2 per bank & ave	•	
River right looki	ing downstrear	n R LR	IPARIAN WIDTH	LF			FLO	OD PLAIN QUAL L R	.ITY	
LR			e >50m (4)		ັ Forest, S	Swamp (	3)		nservation Tillage (	(1)
* * None or	• •	◊ ◊ Mode	erate 10-50m (3)	$\diamond \diamond$	Shrub or	Old fiel	d (2)	◇ ◇ Urk	oan or Industrial (0)	
◇ ◇ Moderate ◇ ◇ Heavy/See			ow 5-10m (2)				k, New field	• •	ning, construction (	
° ° ⊓eavy/S	evere (1)	v very ⇔ ∧ None	v narrow <5m (1)		Fenced   Open Pa		(1) wcrop (0)		predominant land use(s m riparian.	·
		· · NOR	e (0)		openra	31016/110		<i>p</i> ====	' Rip	oarian kimum 5
COMMENTS									Max	10
<u>5-POOL/G</u>	LIDE ANL	DRIFFLE/RU	<u>N QUALITY</u>							
MAXIMUM		-				NT VELO		RE	CREATION POTEN	
Check ONE (C		• Pool width > ri	or 2 & average)	◇ Torrentia		ALL that a <b>Slov ال</b>			<ul> <li>Primary Contact</li> </ul>	
◇ 0.7-<1m (4		Pool width = ri	• • •	Very Fas			rstitial (-1)		<ul> <li>Secondary Conta</li> </ul>	
♦ 0.4-<0.7m	,	Pool width < ri	• • •	◊ Fast (1)			rmittent (-2	2		
◇ 0.2-<0.4m				Moderate	• •		ies (1)	(CIIC	cle one and comment o	п раск)
◇ <0.2m (0)	(metric=0)			Indicate	for reach	i – pools a	and riffles.		Pool/Cur	
COMMENTS									Maxin	num 5 12
Indicate for f	unctional ri	ffles: Best areas	s must be large e	nouah to su	pport a r	opulatio	on of riffle-	obligate species	No Pifflo (	
		k ONE (ONLY!)			•••••••••••••••••••••••••••••••••••••••	•	(or 2 & ave	•	:: <u>♦ No Riffle (</u>	<u></u>
RIFF	FLE DEPTH	· · ·	RUN DEPTH	RIFF	LE/RUN		•	•	MBEDDEDNESS	
◇ Best Areas	s >10cm (2)	◇ Maxi	mum >50cm (2)	Stable (	e.g. cob	ble, bou	lder) (2)	None (2)		e/Run
Or Best Areas			mum <50cm (1)	◇ Mod. St				◇ Low (1)	Max	imum ()
Our See the Areas	s <5cm _{(metric}	:=0)		Onstabl	e (e.g. s	and, fine	e gravel) (0	) [◊] Moderate [◊] Extensive	(0)	8
COMMENTS									· · · /	
6-GRADIE	NT									
( 4.379 ft/			◊ Very low – Low	v (2-4)	% P(	OOL: 30	0/_	GLIDE: 50	Gra	dient
DRAINAGE A	,		♦ Moderate (6-1)		70 T C				Maxir	
( 9.299 m	i²)		High – Very high	gh (10-6)	% F	RUN: 20	% F	RIFFLE: #\$	A1	5910



artificial riffle at bridge was not sampled

A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	AINTENANCE		D-ISSUES	
	Vuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
◇ 55%-<85%	Invasive macrophytes	♦ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
◇ 30%-<55%	◊ Excess turbidity	◇ Young – Success ◇ Old - Succession		◇ Contaminated	◇ Landfill	◇ Industry
[⊳] 10%-<30%	Oiscoloration	◇ Spray		Construction BMPs	♦ Sediment BMPs	
<10% - Closed	◊ Foam/Scum			◇ Logging	Irrigation	Cooling
	Oil sheen	Leveed – One sid	led	♦ Bank Erosion	♦ Surface Erosion	♦ H2O table
	◊ Trash/Litter	Leveed – Both Ba	anks			
Canopy Upstream Reading		Moving – Bedloa	d	◇ False bank	♦ Manure	A Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	◊ Wetlands	Stagnant Flow
	◊ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	Quarry Mine	◊ Golf	◇ Home
89 Middle		Impounded	Desiccated	◇ Park	◊ Data Paucity	◇ Lawn
		Flood Control	◊ Drainage	◇ Agriculture	Livestock	
		Snag Removed		Atmosphere		
		Snag Modified		Deposition		
Left						

Sample #	QHEI Type	bioSam	ple #	Stream N	ame				Location		
AB42970	Macro	2007138	•	Tributary of	of Maria Cre	ek			County Road 700	E, Lane Road	
Surveyor	Sample	Date (	County	Ма	cro Sample	Туре			- lata	QHEI Score	:
RAC	7/13/20	ŀ	Knox	MH	IAB		* Ha	bitat Com	piete		- 29
1-SUBST	RATE	Check ON	ILY Two subs	strate TYPE B	OXES;	•			Check ONE (	or 2 & average)	
BEST TYP		estimate %	% or note eve	ery type prese					ORIGIN	QUALITY	
DESTIT	23	TOTAL		-	VIIE20	TOTAL	DOOL		OKIGIN	QUALITI	
◇ ◇ Bldrs/S	(labs (10)	IOTAL I	POOL RIF		rdpan (4)	TOTAL	POOL X	RIFFLE x	^   imagetana (4)	SILT	Substrate
	. ,				• • • •		<u>~</u>	- <u>x</u>	<ul> <li>◇ Limestone (1)</li> <li>◇ Tills (1)</li> </ul>	<ul><li>♦ Heavy (-2)</li><li>♦ Moderate (-1)</li></ul>	
◇ ◇ Boulde	.,				tritus (3)			<u>^</u>	♦ Wetlands (0)	Normal (0)	5
◊ ◊ Cobble	.,	<u> </u>			.,		- <u></u>		♦ Hardpan (0)	◇ Free (1)	J
◊ ◊ Gravel	. ,	>	<u>x x</u>	◇	: (2)		<u>x</u>	<u>x</u>	<ul> <li>◇ Sandstone (0)</li> <li>◇ Rip/Rap (0)</li> </ul>	EMBEDDEDNESS	Maximum
	5)	<u> </u>	x <u>x</u>	◇ ◇ Art	ificial (0)			х	◇ Lacustrine (0)	♦ Moderate (-1)	20
◊ ◊ Bedroc	k (5)				(Sc	ore natura	al substra	tes; ignore	<ul> <li>♦ Shale (-1)</li> <li>♦ Shale (-1)</li> </ul>	◇ Normal (0)	
NUMBER	OF BEST TY	PES:		.,				nt-sources)	♦ Coal fines (-2)	◊ None (1)	
~~~~~~			* 3 or les	s (0)							
COMMENT	S										
									of marginal quality;	AMOUNT	Г
	,	0			0	1 27	0		oderate or greater otwad in deep / fast	Check ONE (or 2 &	average)
	ep, well-defined			ater, large ula	ineter log til	11 13 514510	s, wen de	veloped loc		◊ Extensive >75% (	11)
Ur	ndercut banks	s (1)	·	Pools	> 70cm (2)		Oxbo	ws, Backv	vaters (1)	♦ Moderate 25-75%	(7)
2 <b>0</b>	verhanging ve	egetation	(1)	Rootv	vads (1)		Aqua	tic macrop	ohytes (1)	* Sparse 5-<25% (3	)
	nallows (in slo	ow water)	(1)	Bould	ers (1)		Logs	and wood	ly debris (1)	♦ Nearly absent <5 ^e	% (1)
Rc	ootmats (1)									_	
COMMENT	S									<b>Co</b> Maximu	
											20
3-CHANN	NEL MORPI	HOLOG	<u>ү</u> с	heck ONE in e	each categor	y (Or 2 &	average)				·
SINUOSITY	′ D	EVELOP	MENT	CHAN	NELIZATIO	N	5	STABILITY	,		
◇ High (4)		Excellen	• •		ne (6)			> High (3)	- (0)	Chan	nel
<ul> <li>Moderate</li> <li>Low (2)</li> </ul>	• •	<ul> <li>Good (5)</li> <li>Fair (3)</li> </ul>	)		covered (4) covering (3)			Moderate Low (1)	e (2)	Maxim	um 8
<ul> <li>◇ None (1)</li> </ul>		⁹ Poor (1)			cent or no r			2011 (1)			20
COMMENT	S										
4- BANK	EROSION	& RIPA	RIAN ZOI	NE Check	ONE in eac	h categor	v for <b>EAC</b>	HBANK	Or 2 per bank & ave	rage)	
	king downstrear			IAN WIDTH			,		DOD PLAIN QUAL		
	ROSION		R		L				LR		
L R * * None o	r little (3)		◊ Wide >50 ◊ Mederate	• •		Forest,				nservation Tillage (1	)
♦ ♦ Modera	• • •		<ul> <li>Moderate</li> <li>Narrow 5-</li> </ul>	• • •		Shrub o Residen		k, New fie		oan or Industrial (0) ning, construction (0	)
◊ ◊ Heavy/			<ul> <li>Very narr</li> </ul>	• • •		Fenced		•	Indicate	predominant land use(s)	,
		<u>ج</u> ا	None (0)		* *	Open Pa	asture/R	owcrop (0	) past 100	m riparian. <b>Ripa</b>	arian
COMMENT	sovere	erosion da	ownstream o	freach						Maxii	mum 3 10
COMMENT	3 30000	crosion de	Swiisticamo	TCach							10
<u>5-POOL/0</u>	<u>GLIDE AND</u>	D RIFFLI	E/RUN QI	<u>UALITY</u>							
MAXIMU	M DEPTH		HANNEL WI			CURRE	NT VEL	OCITY			
Check ONE			ONE (or 2 & hth > riffle w		∧ Torronti		ALL that * Slo		RI	CREATION POTENT	
◇ >1m (6) ◇ 0.7-<1m			th = riffle w	• • •	<ul> <li>◇ Torrenti</li> <li>◇ Very Fast</li> </ul>	• •		w (1) erstitial (-1	)	<ul> <li>Secondary Contact</li> </ul>	
◊ 0.4-<0.7	• •		th < riffle w	• •	Fast (1)			ermittent (	-2)	-	
♦ 0.2-<0.4				-	Moderat	• •		dies (1)	(CIF	cle one and comment on	-
◇ <0.2m (0)		ot			Indicate	e for reacl	n – pools	and riffles.		Pool/Curr Maximu	
COMMENT	S Stagna	ant								IVIAXII II	um 2 12
Indicate for	functional ri	ffles; Bes	t areas mus	st be large er	nough to su	pport a	populati	on of riffle	-obligate species	e se	netric=0)
		k <b>ONE</b> ( <i>Ol</i>	NLY!)					(or 2 & av			
	FFLE DEPTH			DEPTH		FLE/RUN				MBEDDEDNESS	<b></b>
	as >10cm (2) as 5-10cm (1)		◇ Maximum ◇ Maximum	• • •	♦ Stable ♦ Mod. S			ilder) (2) gravel) (1)	◇ None (2) ◇ Low (1)	Riffle/	-
◇ Dest Area		Ň	maximum		✓ Mou. 3 ♦ Unstable					Maxin	num ()

Sest Areas <5cm_(metric=0)  $\diamond$  Unstable (e.g. sand, fine gravel) (0) Extensive (-1) COMMENTS **6-GRADIENT**  $\diamond$  Very low – Low (2-4) ( 9.923 ft/mi) Gradient Maximum % POOL: #\$ % GLIDE: 90 DRÀINAGE ARÉA ♦ Moderate (6-10)

% RUN: 10

% RIFFLE: #\$

8

A161¹⁰

6

1/27/2021 16:35:23 PM OWQ Biological Studies QHEI (Qualitative Habitat Evaluation Index), Page 1 of 2

◇ High – Very high (10-6)

( 2.623 mi²)



A-CANOPY	<b>B-AESTHETICS</b>	<u>C-M</u>	<b>IAINTENANCE</b>		D-ISSUES	
>85% - Open	◇ Nuisance algae	◇ Public	◇ Private	◊ WWTP		◇ CSO
» 55%-<85%	Invasive macrophytes	◇ Active	♦ Historic	◇ Hardened	◊ Urban	Oirt & Grime
> 30%-<55%	◊ Excess turbidity	<ul> <li>Young – Success</li> <li>Old - Succession</li> </ul>		◇ Contaminated	◊ Landfill	◇ Industry
> 10%-<30%	Oiscoloration	◇ Spray		◇ Construction BMPs	Sediment BMPs	
<10% - Closed	◇ Foam/Scum			◇ Logging	Irrigation	◇ Cooling
	◊ Oil sheen	Leveed – One side	ded	Output Bank Erosion	Surface Erosion	♦ H2O table
	◇ Trash/Litter	Leveed – Both Bath	anks			
Canopy Upstream Reading		Moving – Bedload		◇ False bank	♦ Manure	♦ Lagoon
		Stable - Bedload				
Right	Nuisance odor	Armoured	◊ Slumps	◊ Wash H2O	◇ Tile	◇ Natural Flow
	Sludge deposits	◊ Islands	♦ Scoured	◇ Acid Mine	Wetlands	Stagnant Flow
	♦ CSOs/SSOs/Outfalls	Relocated	◊ Cutoffs	◊ Quarry Mine	◇ Golf	◇ Home
84 Middl	е	Impounded	Desiccated	◇ Park	Oata Paucity	◇ Lawn
		Flood Control	Orainage	◇ Agriculture	Livestock	
		Snag Removed		◇ Atmosphere		
		Snag Modified		Deposition		
Left						

#### APPENDIX D. REASSESSMENT NOTES FOR THE MARIA CREEK WATERSHED TMDL

### General Notes: 2022 TMDL/Watershed Characterization Assessments for Maria Creek TMDL

1	Staff Participating in assessment meetings: Jody Arthur, Allie Gates. Caleb Rennaker, Lindsay Hylton, Paum McMurray, Kevin Gaston, Kayla Webianskyj, Maddie Genco, Ross Carlson, Scott Zello-Deean, Julien Buchbinder, Michel Ruan, Allison McKain (NRCS), Laura Demerest (Sullivan County SWCD), Tim Beckman, Tim Fields, Cameron Yeakle.
---	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Assessments based on the best professional judgement (BPJ) of IDEM scientists are notated with "(BPJ)". BPJ is indicated in cases where assessments based on data collected on the reach in question do not explicitly follow the assessment criteria in IDEM's Consolidatred Assessment and Listing Methodology (CALM).

Other acronyms used in these notes include:

1

	,		
	AUID = Assessment Unit ID	LSITE = Site identifier used in IDEM's AIMS database	WTP = Wastewater treatment plant
	RECR = Recreational Use Support	WS = Watershed	CFO = confined feeding operation (may or may not be required to have an IDEM permit)
3	ALUS = Aquatic Life Use Support	HW = Headwaters	DO = Dissolved Oxygen
	IBI = Fish Community Index of Biotic Integrity	US = Upstream	FS = Fully supporting the use
	mIBI = Macroinvertebrate Community Index of Biotic Integrity	DS = Downstream	NS = Not supporting the use (impaired)
	QHEI = Qualitative Habitat Evaluation Index		

# Method Notes: 2022 TMDL/Watershed Characterization Assessments for Maria Creek TMDL

Monitoring Data used in Assessments	Year Assessed	Method Code	
2020 Maria Creek TMDL Study (Water column surveys of E. coli)	2021	420	
2020 Maria Creek TMDL Study (non-fixed station physical, chemical)	2021	240	
2020 Maria Creek TMDL Study (fish community only w/habitat)	2021	330	
2020 Maria Creek TMDL Study (biosurveys of multiple taxonmonic groups)	2021	720	
Other Method Codes Applied	Year Assessed	Method Code	
Assessments for which biological data for one/more assemblages indicated full support and chemical data indicated impairment.	2021	910	
Assessments for which biological data for one/more assemblages indicated impairment of and chemical data indicated FS. This code was applied only in cases where there were no chemical exceedances, not in cases where there were chemical exceedances but results were insufficient to determine impairment.	2021	920	
Used for aquatic life use assessments in which the biological data for one/more assemblages indicates impairment and their corresponding Qualititative Habitat Evaluation Index (QHEI) scores are greater than or equal to 51 indicating good habitat conditions.	2021	925	

# Source Notes: 2022 TMDL/Watershed Characterization Assessments for Maria Creek TMDL

Source Name	Application to Assessments
SOURCE UNKNOWN	Associated with all impaired biotic communities (ADBv2 Cause ID: 163) to indicate that additional unidentified stressors may be contributing to impairment; Also applied to metals impairments except where a specific sources are suspected or known.
NON-POINT SOURCE	Non-Point Source. Source is unknown, but there are no permitted point sources upstream.
AGRICULTURE	Agriculture. Agriculture can represent a wide array of potential Agriculture related sources. Agriculture is used when either land-use analysis or impairment point to some type of Agriculture being the source, but a specific type of Agriculture could not be identified.
LIVESTOCK (GRAZING OR FEEDING OPERATIONS)	Livestock (Grazing or Feeding Operations). Insufficient information exists to specifically identify a particular type of animal feeding operation. Includes grazing and unpermitted animal feeding operations. Also includes CAFOs until a permitted facility is identified.
CONFINED ANIMAL FEEDING OPERATIONS (NPS)	Pollution resulting from inappropriate land application of manure from permitted confined feeding operations.
NATURAL SOURCES	Natural Sources. Natural Sources can represent one or a combination of factors that are natural occurring, and no other potential sources can be identified; applies to impairments suspected to be driven entirely by factors natural occurring; does not apply in combination with other source codes.
WET WEATHER DISCHARGES (NON-POINT SOURCE)	Wet Weather Discharges (Non-Point Source). Applied only to recreational use impairments in urban areas during or after wet weather events where a specific point source could not be identified. Does not apply to recreational use impairments downstream of CSOs (COMBINED SEWER OVERFLOWS) or urban- related sources of aquatic life use impairments (UNSPECIFIED URBAN STORMWATER).
UPSTREAM SOURCE	Upstream Source. For impairments where the source is attributable in part or whole to sources upstream of the boundaries of the assessment unit.

AUID	EPA Station Name	IDEM Station ID	Stream	IBI	Integrity Class	QHEI (IBI)	mIBI	Integrity Class	QHEI (mIBI)	2020 Aquatic Life Use (ALU) Notes	ALU Support	ALU_Impairments	ALU Sources	ATTAINS FLAG	ATTAINS METHOD CODE
INB11I4_03	20T-001	WBU-18-0004	Maria Creek	48	Good	66	38	Fair	55	Maria Creek. WBU-18-0004: IBI 48, QHEI 66, mIBI 38, QHEI 55. Chem OK. ALUS assessed as FS for chemistry and biology.	FS (both)				240; 720
INB11I4_T1004	20T-003	WBU-18-0006	Cotton Branch	42	Fair	65	34	Poor	63	Cotton Branch. WBU-18-0006: IBI 42, QHEI 65, mIBI 34, QHEI 63. Chem OK. Suspect habitat is driving the macro impairment (possible Cat 4C). Sampling site was comprised of severeal shallow pools likely created by erosion from US where the stream is more of an ag ditch. A lot of the macro habitat was out of the water making it inaccessible. The difference between the fish score and macro score could have been a difference between the time the macros were sampled and the fish. Stream could have been drier at that time. Runs were broken up by log jams. The substrate was made up of a lot of fine sediments. Although a passing score, the total number of fish was low, which supports an the idea that erosion is driving this impairment.	NS (biology)	BIOLOGICAL INTEGRITY	SOURCE UNKOWN	4C	240; 720; 920; 925
NB11I4_02	20T-004	WBU-18-0007	Maria Creek	16	Very Poor	30	48	Good	28	Maria Creek. WBU-18-0007: IBI 16, QHEI 30, mIBI 48, QHEI 28. Chem OK. Stream was not very deep (average depth 0.3 m); Fish community was dominated by one species, Longear, which is an intolerant species; 79% of the fish were from one feeding guild). A stream this far down in the WS should have more individuals but it doesn't. A typical ag ditch. Erosion could be playing a role; turbidity was 5, and it's a very sandy site. Conductivity was very high. New mine activity US but none discharging at low flow. Very strange site, hard to characterize. High conductivity can impact the electrical field created by the shocker. However, the potential impacts are not something that we would expect to significantly impact the fish score. The results are considered representative. While we didn't get the numbers or diversity we would expect, the site has TSS and turbidity issues. Source Unknown.	NS (biology)	BIOLOGICAL INTEGRITY	SOURCE UNKOWN		240; 720; 920
INB11I2_01	20T-005; 20T-009	WBU-18-0008; WBU-18-0013	Maria Creek	42	Fair	32	42	Fair	30	Maria Creek. WBU-18-0008: IBI 42, QHEI 32, mIBI 42, QHEI 30. Chem OK. WBU-18-0013: IBI 46, QHEI 43, mIBI 36, QHEI 33. Chem OK. ALUS assessed as FS for chemistry and biology.	FS (both)				240; 720
INB11I2_T1004	20T-006	WBU-18-0009	Tilley Ditch	42/50	Fair/	38/51	36	Fair	42	Tilley Ditch WB11-18-0009 IBI 42/50 OHEI 38/51 mIBI 36 OHEI 42 Chem OK ALLIS assessed as ES for	FS (both)				240; 720
INB11I2_T1001	20T-007	WBU-18-0010	Tributary of Maria Creek	40	Fair	46	36	Poor	29	Tributary of Maria Crook WRIL18-0010: IRI 40, OHEL46, mIRL26, OHEL20, Chom OK, ALLIS assossed as ES	FS (both)				240; 720
NB11I2_T1002	20T-008	WBU-18-0011	Tributary of Maria Creek	44	Fair	33	38	Fair	34	Tributary of Maria Creek. WBU-18-0011: IBI 44, QHEI 33, mIBI 38, QHEI 34. DO low 2/11 (3.6-3.92 mg/L) and moderately low 2/11 (4.27-4.99 mg/L). Impaired for DO, probably driven by low flow. No nutrient issues or high percent saturation, and the dates that these values occurred are those during which you would expect low flows. Possible 4C.		DISSOLVED OXYGEN	LOW FLOW	4C	240; 720; 910
INB11I3_05	20T-010	WBU190-0001	Marsh Creek	20	Very Poor	38	44	Fair	35	Marsh Creek. WBU190-0001: IBI 20, QHEI 38, mIBI 44, QHEI 35. Chem OK. However, conductivity is very high, especially for a small stream; mining activity is probably driving the conductivity. Fish catch is often not as high when conductivity is high because the conductivity can impact the electrical field created by the shocker. However, the potential impacts are not something that we would expect to significantly impact the scores. The results are considered representative. While we didn't get the numbers or diversity we might expect, the site has poor habitat is poor, and there are definitely TSS issues that could be driving the impairment. Sources are unknown.	NS (biology)	BIOLOGICAL INTEGRITY	SOURCE UNKOWN		240; 720; 920
NB11I3_04	20T-011	WBU-18-0012	Marsh Creek	20	Very Poor	45	42	Fair	43	Marsh Creek. WBU-18-0012: IBI 20, QHEI 45, mIBI 42, QHEI 43. Chem OK. Conductivity is high. High conductivity can impact the electrical field created by the shocker. However, the potential impacts are not something that we would expect to significantly impact the scores. While we didn't have the diversity we might expect, the results are considered representative. This site is located directly US of WBU-190-0001 and closer to the mine, which is probabl; what is driving the conductivity. Source unknown.	NS (biology).	BIOLOGICAL INTEGRITY	SOURCE UNKOWN		240; 720; 920
NB11I3_T1002	20T-013; 20T-012	WBU-18-0016; WBU-18-0015	Marsh Creek	44	Fair	37	46	Fair	25	Marsh Creek. WBU-18-0015: IBI 44, QHEI 37, mIBI 46, QHEI 25. Chem OK. WBU-18-0016: IBI 42, QHEI 50, mIBI 40, QHEI 37. Chem OK. ALUS assessed as FS for chemistry and biology.	FS (both)				240; 720
NB11I3_03	20T-012; 20T-013; 20T-012	WBU-18-0015 WBU-18-0016; WBU-18-0015	Marsh Creek	44	Fair	37	46	Fair	25	March Crook WRI 18-0015: IBI 44 OHEL 27 mIRL 46 OHEL 25 Cham OK WRI 18-0016: IBI 42 OHEL 50	FS (both)				240; 720
NB11I3_02	201-012 20T-014		Marsh Creek	20	Very Poor	33	NA	NA	NA	Marsh Creek. WBU-18-0017: IBI 20, QHEI 33. No macro data; stream went dry. DO low 2/8 (2.17-2.2 mg/L). Impaired for DO and bological integrity. Only 18 individuals. Stream was about to go dry when sampled. DO was good the rest of the year. DO a candidate for Cat 4C. TSS values support the idea that low flow is driving DO.	NS (both)	BIOLOGICAL INTEGRITY + DISSOLVED OXYGEN	SOURCE UNKOWN (Biological Integrity) + NATURAL SOURCES (Dissolved Oxygen)	4C	240; 330
NB11I1_T1004	20T-015	WBU-18-0014	Tributary of Maria Creek	20	Very Poor	37	32/34	Poor	24/23	Tributary of Maria Creek. WBU-18-0014: IBI 20, QHEI 37, mIBI 32/34, QHEI 24/23. DO low 3/9 (1.65-3.09 mg/L) and moderately low 2/9 (4.2-4.18 mg/L). Impaired for DO. DO could be a flow issue. Stream gets very low, with corresponding low TSS values. DO a possible 4C. Biology may habitat drive. No habitat for bugs; no cover, substrate silt & muck, water was warm. The drainage area small and stream was not very wide; not much room for fish community. 4C candidate.	NS (both)	BIOLOGICAL INTEGRITY + DISSOLVED OXYGEN	SOURCE UNKOWN (Biological Integrity) + Low flow (Dissolved Oxygen)	4C	240; 720
NB11I1_T1005	20T-017	WBU-18-0018	Tributary of Maria Creek	34	Poor	41	42	Fair	44	Tributary of Maria Creek. WBU-18-0018: IBI 34, QHEI 41, mIBI 42, QHEI 44. DO low 3/11 (1.38-3.67 mg/L). Impaired for DO. Freelandville, IN located on a tributary US. Low flow may be driving DO issues. DO values are fine outside of dry period. DO is a Candidate for 4C. Site had a high percentage of pioneering species suggesting stream may be recovering from a recent impact. Total number of individuals good and diversity was good. Elsewhere in the WS, TSS gets high during storm event. TSS may be the impact. A lot of debris on the bridge suggests it is super flashy.	NS (both)	BIOLOGICAL INTEGRITY + DISSOLVED OXYGEN	SOURCE UNKOWN (Biological Integrity) + Low flow (Dissolved Oxygen)	4C	240; 720

AUID	EPA Station Name	IDEM Station ID	Stream	2020 Recreational (RECR) Use Notes	RECR Support	RECR Impairment	RECR Sources	ATTAINS METHOD CODE
INB11I4_03	20T-001	WBU-18-0004	Maria Creek	Maria Creek. WBU-18-0004: GM 482.71cfu/100 mL. One high value driving impairment with remaining values relatively low in comparison. Suspect flushing from US tributaries.	NS	ESCHERICHIA COLI (E. COLI)	UPSTREAM SOURCE	420
INB11I4_T1004	20T-003	WBU-18-0006	Cotton Branch	Cotton Branch. WBU-18-0006: GM 887.3cfu/100 mL. US is all ag w/no buffer. One active CFO in the WS. One high value from a storm event. Other values exceed daily. Land app from CFO waste most likely source.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I4_T1005	20T-004; 20T-001	WBU-18-0007; WBU-18-0004	Beaver Ditch	Beaver Ditch. Stream not sampled. Assessment based on results from Maria Creek sites US and DS of its confluence with Beaver Ditch as well as results from Cotton Branch US. All results indicate increasing impairment in the DS direction suggesting inputs from this tributary. We know that Cotton Branch is impaired and likely contributing to the results we see at the lower site on Maria Creek. And, the land uses along Cotton Branch are identical to those along Beaver Ditch. Little to suggest that conditions are any different in this reach. Same sources apply: Land app from CFO waste.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I4_02	20T-004	WBU-18-0007	Maria Creek	Maria Creek. WBU-18-0007: GM 306.63cfu/100 mL. One flow event driving impairment. US sources likely.	NS	ESCHERICHIA COLI (E. COLI)	UPSTREAM SOURCE	420
INB11I4_T1001	20T-005; 20T-010; 20T-004	WBU-18-0008; WBU190-0001; WBU-18-0007	Maria Creek	Maria Creek - Unnamed Tributary. Stream not sampled. Assessment based on results from Maria Creek site WBU-18-0008 US and Marsh Creek site WBU190-0001, both of which are located US of Maria Creek site WBU-18-0007. All three sites indicate moderate impairment and land uses are relatively homogenous suggesting little reason to expect water quality conditions in this tributary are any different.	NS	ESCHERICHIA COLI (E. COLI)	LIVESTOCK (GRAZING OR FEEDING OPERATIONS) + UPSTREAM SOURCE	420
INB11I2_01	20T-005; 20T-009	WBU-18-0008; WBU-18-0013	Maria Creek	Maria Creek. WBU-18-0008: GM 734.99cfu/100 mL. WBU-18-0013: GM 166.32cfu/100 mL. US site is the lower value. DS site was always very turbid. Couldn't see the bottom. Tributaries coming into lower reach that are clearly impacting DS site. US site is more representative of HW. DS site is more representative of Tilley Ditch WS. Small WTPs at Freelandville RSD. North Knox High School also discharges in this WS on the only stream that passed for E.coli (not a potential source). Some small unpermitted animal operations; pasture-related sources are likely.	NS	ESCHERICHIA COLI (E. COLI)	LIVESTOCK (GRAZING OR FEEDING OPERATIONS) + UPSTREAM SOURCE	420
INB11I2_T1004	20T-006	WBU-18-0009	Tilley Ditch	Tilley Ditch. WBU-18-0009: GM 98.57cfu/100 mL. Site is fully supporting.	FS			420
INB11I2_T1001	20T-007	WBU-18-0010	Tributary of Maria Creek	Tributary of Maria Creek. WBU-18-0010: GM 1710.68cfu/100 mL. All the individual values were high, even at lower flow. Freelandville RSD is located US. TP and N+N are pretty low suggesting the RSD isn't a problem. There is a least one unpermitted facility (long barns) into the WS suggesting land of app of CFO waste a potential source. Very little buffer.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I2_T1002	20T-008	WBU-18-0011	Tributary of Maria Creek	Tributary of Maria Creek. WBU-18-0011: GM 1237.53cfu/100 mL. All the individual samples were high. Land use almost all ag fields farmed right up to edge of stream. No readily apparent sources. NPS likely.	NS	ESCHERICHIA COLI (E. COLI)	AGRICULTURE + NON-POINT SOURCE	420
INB11I3_05	20T-010	WBU190-0001	Marsh Creek	Marsh Creek. WBU190-0001: GM 425.09cfu/100 mL. One high value with a high flow. Other values are low. No buffer. Sparse housing and fields. Land application of CFO waste a potential source. No other readily apparent sources.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I3_04	20T-011	WBU-18-0012	Marsh Creek	Marsh Creek. WBU-18-0012: GM 499.26cfu/100 mL. One high value with a high flow. Other values are low. Sparsely populated, land use is mostly ag fields w/little to no buffer. Land application of CFO waste a potential source. No other readily apparent sources.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I3_T1002	20T-013; 20T-012	WBU-18-0016; WBU-18-0015	Marsh Creek	Marsh Creek - Unnamed Tributary. Stream assessed based on Marsh Creek sites US and DS of its confluence. WBU-18-0016: GM 439.81cfu/100 mL. WBU-18-0015: GM 2200.89cfu/100 mL. Sites are pretty close and values really increase in the DS direction. Suspect pasture-related sources along the stream and likely inputs from tributaries in between sites. Land uses are virtually the same along all the tribs (all ag fields w/no buffer). Looks like there may also be an unpermitted feeding operation along the main tributary flowing in from between these sites. Land application of animal waste to bufferless ag fields along these streams might explain the jump in pathogens. Assessment applied to the stream sampled and the tributary flowing in between the sites.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I3_03	20T-013; 20T-012	WBU-18-0016; WBU-18-0015	Marsh Creek	Marsh Creek. WBU-18-0016: GM 439.81cfu/100 mL. WBU-18-0015: GM 2200.89cfu/100 mL. Sites are pretty close and values really increase in the DS direction. Suspect pasture-related sources along the stream and likely inputs from tributaries in between sites. Land uses are virtually the same along all the tribs (all ag fields w/no buffer). Looks like there may also be an unpermitted feeding operation along the main tributary flowing in from between these sites. Land application of animal waste to bufferless ag fields along these streams might explain the jump in pathogens. Assessment applied to the stream sampled and the tributary flowing in between the sites.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I3_02	20T-014	WBU-18-0017	Marsh Creek	Marsh Creek. WBU-18-0017: GM 1209.73cfu/100 mL. Values are consistently high but still highly variable. Land use almost all ag fields w/thin buffer along some stream reaches; mostly farmed right up to edge of stream. No readily apparent sources. NPS likely.	NS	ESCHERICHIA COLI (E. COLI)	AGRICULTURE + NON-POINT SOURCE	420
INB11I1_T1004	20T-015	WBU-18-0014	Tributary of Maria Creek	Tributary of Maria Creek. WBU-18-0014: GM 165cfu/100 mL. Land app of CFO waste. All ag ditch w/no buffer, farmed right up to the stream.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420
INB11I1_T1005	20T-017		Tributary of Maria Creek	Tributary of Maria Creek. GM 727.95 cfu/100 mL. Results are all over the place. Land app of CFO waste is a likely source. All ag ditch w/no buffer, farmed right up to the stream. Long barns directly south of site. Some small operations US. Freelandville, IN located on a tributary US but does not discharge to this stream. Potential urban influences.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS) + LIVESTOCK (GRAZING OR FEEDING OPERATIONS) + WET WEATHER DISCHARGES (NON-POINT SOURCE)	420
INB11I1_01	20T-018; 20T-019; 20T-016	WBU-18-0019; WBU-18-0020; WBU190-0002	Maria Creek	Maria Creek. WBU-18-0019: 359.17 cfu/100 mL. WBU190-0002: 283.88 cfu/100 mL. WBU-18-0020: No data. Land app of CFO waste likely. No buffers anywhere to be found and almost all land use is ag fields w/a couple of nonpermitted animals operations in the WS.	NS	ESCHERICHIA COLI (E. COLI)	CONFINED ANIMAL FEEDING OPERATIONS (NPS)	420

#### APPENDIX E. SAMPLING AND ANALYSIS WORK PLAN FOR THE MARIA CREEK WATERSHED TMDL



### 2020 Watershed Characterization Work Plan for Maria Creek Watershed (Hydrologic Unit Code 0512011118)

PREPARED BY

Allie Gates

Indiana Department of Environmental Management Office of Water Quality Watershed Assessment and Planning Branch Watershed Planning and Restoration Section 100 North Senate Avenue MC65-40-2 Shadeland Indianapolis, Indiana 46204-2251

January 13, 2020

B-047-OWQ-WAP-WPR-20-W-R0

This page is intended to be blank

Date 1/13/20

Date

**APPROVAL SIGNATURES** 

Tim Beckman, Project Manager **Targeted Monitoring Section** 

Caleb Rennaker, TMDL Lead Watershed Planning and Restoration Section

wen

Timothy Bowren, Project Quality Assurance Officer Technical and Logistical Services Section

ally Job

Stacey Sobat, Section Chief Probabilistic Monitoring Section

Cyndi Wagner, Section Chief **Targeted Monitoring Section** 

Kristen Arnold, Section Chief Technical and Logistical Services Section

ALIXA

Jody Arthur, Integrated Report Coordinator Watershed Assessment and Planning Branch

Marylou Renshaw, Branch Chief Watershed Assessment and Planning Branch

IDEM Quality Assurance Staff reviewed and approves this work plan.

Quality Assurance Staff IDEM Office of Program Support

Date_1/13/2020

13/20

Date

Date /

13/20 Date

Date_ 1/13/20

13/20 Date

Date 14 bin 2020

A171

This page is intended to be blank

## WORK PLAN ORGANIZATION

This work plan is an extension of the existing Watershed Assessment and Planning Branch (WAPB), March 2017 Quality Assurance Project Plan (QAPP) for Indiana Surface Water Programs (Surface Water QAPP) (IDEM 2017a) and serves as a link to the existing QAPP as well as an independent QAPP of the project. Per the United States Environmental Protection Agency (U.S. EPA) 2006 Guidance on Systematic Planning Using the Data Quality Objectives (DQO) Process (U.S. EPA 2006) and the U.S. EPA 2002 Guidance for Quality Assurance Project Plans (U.S. EPA 2002), this work plan establishes criteria and specifications, pertaining to a specific water quality monitoring project, usually described in the following four groups or sections of a QAPP per Guidance for Quality Assurance Project Plans (U.S. EPA 2002).

### Section I. Project Management

- Project Objective
- Project or Task Organization and Schedule
- Background and Project or Task Description
- Data Quality Objectives
- Training and Staffing Requirements

### Section II. Data Generation and Acquisition

- Sampling Procedures
- Analytical Methods
- Sample and Data Acquisition Requirements
- Quality Control Measures Specific to the Project

#### Section III. Assessment and Oversight

- External and Internal Checks
- Audits
- Data Quality Assessments
- Quality Assurance and Quality Control Review Reports

#### Section IV. Data Validation and Usability

• Data Handling and Associated Quality Assurance and Quality Control activities

This page is intended to be blank

# TABLE OF CONTENTS

APPROV	AL SIGNATURES	i
WORK P	LAN ORGANIZATION	iii
TABLE C	PF CONTENTS	V
LIST OF	ATTACHMENTS	vi
LIST OF	FIGURES	vi
LIST OF	TABLES	vi
LIST OF	ACRONYMS	. vii
DEFINIT	ONS	viii
I. PROJE	CT MANAGEMENT	1
Α.	Project Objective	1
В.	Project or Task Organization and Schedule	2
C.	Background and Project or Task Description	2
D.	Data Quality Objectives (DQOs)	3
E.	Training and Staffing Requirements	9
II. DATA	GENERATION AND ACQUISITION	12
Α.	Sampling Sites and Sampling Design	.12
В.	Sampling Methods and Sample Handling	.15
C.	Analytical Methods	.19
D.	Quality Control and Custody Requirements	
III. ASSE	SSMENT AND OVERSIGHT	
Α.	Field and laboratory performance and system audits	.23
В.	Data Quality Assessment Levels	.24
IV. DATA	VALIDATION AND USABILITY	24
Α.	Quality Assurance, Data Qualifiers, and Flags	.24
В.	Data Usability	
C.	Information, Data, and Reports	.24
D.	Laboratory and Estimated Cost	.25
Ε.	Reference Manuals and Personnel Safety	.26
	NCES	
DISTRIB	UTION LIST	31
ATTACH	MENTS	32

# LIST OF ATTACHMENTS

Attachment 1: Modified Geometric Design Steps for Watershed Characterization	
Studies	. 32
Attachment 2: IDEM OWQ Site Reconnaissance Form	. 36
Attachment 3: IDEM OWQ Stream Sampling Field Data Sheet	. 37
Attachment 4: IDEM OWQ Fish Collection Data Sheet	. 38
Attachment 5: IDEM OWQ Macroinvertebrate Header Form	. 39
Attachment 6: IDEM OWQ Biological Qualitative Habitat Evaluation Index (front)	. 40
Attachment 7: IDEM OWQ Chain of Custody Form	. 42
Attachment 8: IDEM OWQ Water Sample Analysis Request Form	. 43
Attachment 9: Test America Chain of Custody Form	. 44
Attachment 10: Eurofins TestAmerica Chicago Laboratory Accreditation	. 45

## **LIST OF FIGURES**

Figure 1. Maria Cre	ek Watershed	Land Use		5
Figure 2. Maria Cre	ek Watershed	Characterization	Sampling Area	

## LIST OF TABLES

Table 1. Water Quality Criteria [327 IAC Article 2]	8
Table 2. Project Roles, Experience, and Training	9
Table 3. Sampling Locations for Watershed Characterization of Maria Creek (HUC	
0512011118)	. 14
Table 4. Water Chemistry Sample Handling	. 15
Table 5. E.coli, Nutrient, and General Chemistry Parameters Test Methods ⁴	. 19
Table 6. Field Parameters Test Methods	. 20
Table 7. Personnel Safety and Reference Manuals	. 26

# LIST OF ACRONYMS

AIMS ASTM AUID	Assessment Information Management System American Society for Testing and Materials Assessment Unit IDs
CFU	Colony Forming Units
DO	Dissolved Oxygen
DQA	Data Quality Assessment
DQO	Data Quality Objectives
E. coli	Escherichia coli
GPS	Global Positioning System
HUC	Hydrologic Unit Code
IAC	Indiana Administrative Code
IBI	Index of Biotic Integrity
IDEM	Indiana Department of Environmental Management
µS/cm	Micro Siemens per Centimeter
mg/L	Milligram per liter
MHAB	Multihabitat
mL	Milliliter
NTU	Nephelometric Turbidity Unit(s)
OHEPA	Ohio Environmental Protection Agency
OWQ	Office of Water Quality
PPE	Personal Protective Equipment
QA/QC	Quality Assurance and Quality Control
QAPP	Quality Assurance Project Plan
QHEI	Qualitative Habitat Evaluation Index
S.U.	Standard Units
SM	Standard Methods
SOP	Standard Operating Procedures
TDS	Total Dissolved Solids
TKN	Total Kjeldahl Nitrogen
TMDL	Total Maximum Daily Load
U.S. EPA	United States Environmental Protection Agency
WAPB	Watershed Assessment and Planning Branch

# DEFINITIONS

Assessment Unit	Reaches of waterbodies, with similar features, assigned unique identifiers to which all assessment information for that specific reach is associated and which allow for mapping with geographic information systems
Elutriate	To purify, separate, or remove lighter or finer particles by washing, decanting, and settling.
Geometric site	Sampling site chosen according to its drainage area within a watershed.
Fifteen-(15-)minute pick	A multihabitat macroinvertebrate sampling method in which the one-minute kick sample and fifty-meter sweep sample collected at a site are first combined and elutriated. Macroinvertebrates are then manually removed from the resulting sample for 15 minutes.
Fifty-(50-)meter sweep sample	A multihabitat macroinvertebrate sampling method in which approximately 50 meters (50m) of all available habitat in a stream or river is sampled with a standard 500 micrometer (500 $\mu$ m) mesh width D-frame dipnet by taking 20-25 individual "jab" or "sweep" samples, which are then composited.
Macroinvertebrate	Aquatic animals which lack a backbone, are visible without a microscope, and spend some period of their lives in or around water.
One-(1-)minute kick sample	A multihabitat macroinvertebrate sampling method in which approximately one square meter $(1 \text{ m}^2)$ of riffle or run substrate habitat in a stream or river is sampled with a standard 500 micrometer (500 µm) mesh width D-frame dipnet for approximately one (1) minute.
Pour point	The outlet of a subwatershed or the common point where all the water flows out of any given subwatershed.
Reach Targeted site	A segment of a stream used for sampling. A sampling site intentionally selected based on specific monitoring objectives or decisions to be made.

# I. PROJECT MANAGEMENT

### A. Project Objective

IDEM selected the Maria Creek watershed (10-digit Hydrologic Unit Code or HUC 0512011118) (see Figure 2, Table 3) for a watershed characterization project. The main objective of the watershed characterization monitoring project is to use an intensive targeted watershed design that characterizes the current condition of an individual watershed. This type of monitoring provides valuable data for the purposes of assessment, TMDL development, watershed planning, and allows for future comparisons to evaluate changes in the water quality within the watershed studied. Selecting a spatial monitoring design, with sufficient sampling density to accurately characterize water quality conditions, is a critical step in the process of developing an adequate local scale watershed study.

The water quality data generated from this monitoring effort is anticipated to provide information needed to characterize the watershed for the TMDL program, for local water quality managers, to identify sources of impairment, to designate critical areas, and to enable users in making valid and informed watershed decisions. By design, this project also adds new stream reaches which allow for assessment of aquatic life use support, recreational use support, and future comparisons to evaluate changes in water quality.

The approved 303(d) list for 2018 submitted to the U.S. EPA (IDEM 2018a) identifies 55.00 miles of impaired streams in the Maria Creek watershed with some reaches affected by multiple impairments. The total number of miles per each impairment in the Maria Creek watershed is reported in the following ways:

- Category 5(a): Impaired Biotic Community (IBC), 22.64 miles
- Category 5(a): Dissolved Oxygen Impaired (DO), 5.14 miles
- Category 5(a): Escherichia coli (E. coli), 55.00 miles

Assessment data have been collected in this watershed from multiple IDEM programs and projects.

### B. Project or Task Organization and Schedule

The main project objective is to provide a comprehensive assessment of the Maria Creek watershed streams' capability to support aquatic life and recreational uses. Sampling will begin in November 2019 and end in October 2020. Barring any hazardous weather conditions or unexpected physical barriers to access a site, sampling activities will be conducted for physical, chemical, bacteriological parameters, and biological communities.

Sampling activity timeframes include:

- 1. Site reconnaissance activities will be completed in June 2019. Reconnaissance activities will be conducted in the office and through physical site visits.
- 2. Water chemistry will be sampled monthly at all watershed sites during the recreational season, defined as April through October in [327 IAC 2-1-6]. During the months of November through March, only sites at the pour point of each 12-digit HUC will be sampled monthly (six sites for this project). The first sampling event will be conducted in November 2019 and the study will conclude in October 2020.
- 3. Biological sampling activities will begin in the summer of 2020 and end no later than October 18, 2020. Fish and macroinvertebrate community sampling will be conducted at all watershed sites via the observation, counting, and collection techniques described in the "Sampling Methods and Sample Handling" section of this work plan. Habitat quality will also be assessed at all watershed sites. Fish and macroinvertebrate community collection specific dates cannot be given, since sampling may be postponed due to a high water event resulting in scouring of the stream substrate or instream cover creating non-representative samples. Bacteriological sampling for *E. coli* at all sites in the watershed will take place monthly from April through October of 2020. In addition, *E. coli* samples will be collected five times from each site at equally spaced intervals over a 30-day period during the recreational season of April to October 2020 to determine a geometric mean.

#### C. Background and Project or Task Description

The Watershed Characterization Monitoring program was instituted to assist in characterizing existing conditions in watersheds throughout the state. The Maria Creek watershed data set will be utilized by the TMDL program, and shared with local watershed groups and any other interested parties. This monitoring will provide data for TMDL development and watershed planning, and will aid in future evaluations of changes within the basin. For this study, the following data will be used for assessment purposes: water chemistry, bacteriological contamination in the form of *E. coli*, fish community, macroinvertebrate assemblages, and habitat evaluations.

### D. Data Quality Objectives (DQOs)

The DQO process (U.S. EPA 2006) is a planning tool for data collection activities. The process provides a basis for balancing decision uncertainty with available resources. The DQO process is recommended by U.S. EPA when selecting between two alternatives or deriving an estimate of contamination. The DQO process is a seven-step systematic planning process used to clarify study objectives; define the types of data needed to achieve the objectives; and establish decision criteria for evaluating data quality. Results of the DQO seven step process, for the watershed characterization monitoring of the Maria Creek watershed, are documented in the following seven sections.

#### 1. State the Problem

Indiana is required to assess all waters of the state to determine their designated use attainment status. Surface waters of the state are designated for full-body contact recreation; will be capable of supporting a well-balanced, warm water aquatic community; and put-and-take trout fishing [327 IAC 2-1-3] in some northern portions of the state. Data from the intensive sampling of the Maria Creek watershed is needed to fully characterize the current water quality of the watershed. This project will gather water chemistry, bacteriological, biological (fish and macroinvertebrates), and habitat data for the purpose of assessing the designated use attainment status of the Maria Creek watershed.

#### 2. Identify the Goals of the Study

The main objective of this study is to fully assess whether the surface waters in this watershed are supporting or nonsupporting for aquatic life use and recreational use. In addition, the data from the watershed characterization monitoring will be used for TMDL development and may also be used for watershed planning and future comparisons to evaluate changes in water quality within the watershed studied.

#### 3. Identify Information Inputs

Grab samples will be collected at the surface water sampling locations for *E. coli* and the parameters listed in Table 5. Field measurements (Table 6) will be conducted at each site during each sampling event. Visual field observations will include weather conditions, stream conditions, and percent stream canopy at each sampling location. All samples collected for bacteriological samples will be analyzed for *E. coli* using SM9223B (IDEM 2019a) Idexx Colilert Enzyme Substrate Standard Method. Surface water chemistry samples will be collected monthly, and processed and analyzed by TestAmerica Laboratories, using the analytical methods listed in Table 5. A fish and macroinvertebrate community sample will be collected once at each site with a corresponding habitat evaluation.

4. Define the Boundaries of the Study

The Maria Creek Watershed covers 96.62 square miles and is located in Sullivan and Knox counties. The watershed is approximately 73% Agriculture, 14% Forest, 6% Developed Land (combined types), 5% Pasture/Hay, and 1% other uses. See Figure 1 for the Maria Creek Watershed land use.

Sampling locations for the 2020 Maria Creek Watershed Characterization study are listed in Table 3 and can be viewed spatially in Figure 2.

Site reconnaissance activities will be completed in June 2019. Sampling activities will begin in November 2019 and will conclude in October 2020. Water chemistry will be sampled monthly during the recreational season, defined as April through October in [327 IAC 2-1-6]. Biological sampling activities will be conducted in the summer of 2020 and end no later than October 18, 2020. Bacteriological sampling activities will be conducted from April through October of 2020.

Sampling activities will not be conducted when stream flow is potentially too dangerous for staff to enter the stream, there are hazardous weather conditions (e.g. thunderstorms or heavy rain in the vicinity), or there are unexpected physical barriers to accessing the site. The field crew chief will make the final determination as to whether or not a stream is safe to enter.

Even when weather conditions and stream flow are safe, sample collections for biological communities may be postponed at a particular site for one to four weeks. The cause of the postponement would be a high water event resulting in scouring of the stream substrate or instream cover creating non-representative samples.

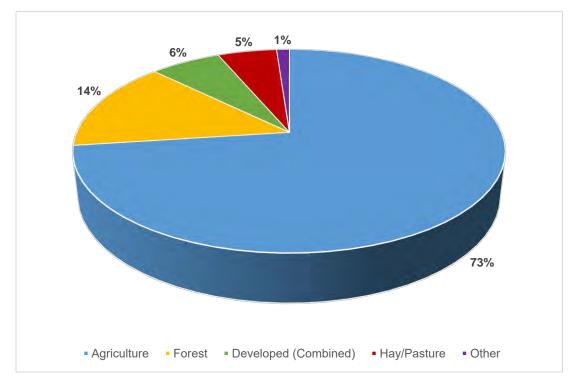



Figure 1. Maria Creek Watershed Land Use

⁴Data collected/calculated from USDA National Agricultural Statistics Service 2018 Cropland Data Layer

5. Develop the Analytical Approach

Samples will be collected for physical, chemical, and bacteriological parameters, as well as biological communities. Samples will be analyzed for *E.coli* in the IDEM *E. coli* mobile laboratory or IDEM Shadeland laboratory with the Idexx[™] Colilert Test. The Colilert Test is a multiple-tube enzyme substrate standard method SM-9223B (Clesceri et al. 2012). Samples will be analyzed for nutrient and general chemistry parameters at TestAmerica Laboratories. The nutrient and general chemistry parameters and respective test methods are listed in Table 5 of this work plan. Field parameters of DO, pH, water temperature, specific conductance, and DO percent saturation will be measured with a datasonde. Turbidity will be measured with a Hach[™] turbidity kit.

6. Specify Performance or Acceptance Criteria

Sampling design error is minimized by utilizing a comprehensive checklist of informational sources, evaluation of historical information, and a thorough watershed presurvey. Described in Section B.1.5.3 of the Surface Water QAPP (IDEM 2017a), this sampling design has been formulated to address data deficiencies and render the optimum amount of data needed to fill gaps in the decision process.

Good quality data are essential for minimizing decision error. By minimizing both sampling design error and measurement error for physical and biological parameters,

more confidence can be placed in the conclusions drawn on the stressors and sources affecting the water quality in the study area.

Site specific aquatic life use and recreational use assessments include program specific controls to identify the introduction of errors. These controls include blanks and duplicates for water chemistry and bacteriological samples; biological site revisits or duplicates; and laboratory controls through verification of species identifications as described in field procedure manuals (IDEM 1992a, 1992b, 2002, 2015, 2017a, 2018c, 2019a, 2019b, 2019c.2019d).

The QA/QC process detects deficiencies in the data collection as set forth in the Surface Water QAPP (IDEM 2017a). The QAPP requires all contract laboratories to adhere to rigorous standards during sample analyses and to provide good quality usable data. Laboratory accreditation is verified before the lab contract is awarded and before the project begins. Laboratory performance studies are reviewed annually in October. Chemists within the WAPB review the laboratory analytical results for quality assurance. Lab QA/QC for each data set is compared against acceptance limits as specified in laboratory methods, the laboratory's QA Manual, the Surface Water QAPP Section B5.3 (Laboratory Quality Control Checks), and the Surface Water QAPP Section D3 (Reconciliation with Data Quality Objectives). The data is validated based on the QA/QC review. Any data which is "Rejected" due to analytical problems or errors will not be used for water quality assessment decisions. Any data flagged as "Estimated" may be used on a case-by-case basis and is noted in the QA/QC report. Criteria for acceptance or rejection of results as well as application of data quality flags is presented in the following Surface Water QAPP tables:

- Table D3-1: Data Qualifiers and Flags
- Table A7-1: Precision and Accuracy Goals for Data Acceptability by Matrix (Precision and accuracy goals with acceptance limits for applicable analytical methods)
- Table B2.1.1.8-2: Field Parameters

Further investigation will be conducted, in response to consistent "rejected" data, to determine the source of error. Field techniques, used during sample collection and preparation along with laboratory procedures, will be subject to evaluation by both the WAPB QA manager and project manager to troubleshoot error introduced throughout the entire data collection process. Corrective actions will be implemented once the source of error is determined.

Sites will be evaluated as supporting or nonsupporting following the decision-making processes described in Indiana's 2020 Consolidated Assessment Listing Methodology (CALM). Indiana's 2020 CALM has not yet been drafted but will be based upon Indiana's 2018 CALM (<u>IDEM 2018b</u>) and the water quality criteria shown in Table 1.

Recreational use attainment decisions will be based on bacteriological criteria developed to protect primary contact recreational activities [<u>327 IAC 2-1-6</u>]. Aquatic life use support decisions will include independent evaluations of biological and chemical data. The fish assemblage data will be evaluated at each site using the appropriate IBI (Simon and Dufour, 2005). Macroinvertebrate multihabitat samples will also be evaluated using a statewide IBI developed for lowest practical taxonomic level identifications.

Indiana narrative biological criteria [327 IAC 2-1-3] states that "(2) All waters, except [limited use waters] will be capable of supporting: (A) a well-balanced, warm water aquatic community." The water quality standard definition of a "well-balanced aquatic community" is "[327 IAC 2-1-9] (59)] An aquatic community that: (A) is diverse in species composition; (B) contains several different trophic levels; and (C) is not composed mainly of pollution tolerant species." An interpretation or translation of narrative biological criteria into numeric criteria would be as follows: A stream segment is nonsupporting for aquatic life use when the monitored fish or macroinvertebrate community receives an Index of Biotic Integrity (IBI) score of less than 36 (on a scale of 0-60 for fish and 12-60 for macroinvertebrate communities), which is considered "Poor" or "Very Poor" (IDEM 2018b).

In addition, data for several nutrient parameters will be evaluated with the benchmarks listed below (IDEM 2018b). Assuming a minimum of three sampling events, if two or more of the conditions below are met on the same date, the waterbody will be classified as nonsupporting due to nutrients.

- Total Phosphorus (TP):
  - o One or more measurements greater than 0.3 mg/L
- Nitrogen (measured as Nitrate + Nitrite):
  - One or more measurements greater than 10.0 mg/L
- Dissolved Oxygen (DO):
  - Any measurement less than 4.0 mg/L
  - $\circ$  Any measurements consistently at or close to the standard, range 4.0-5.0 mg/L
- Percent Saturation
  - o Any measurement greater than 120%
- pH:
  - Any measurement greater than 9.0 Standard Units (SU)
  - $\circ$  Measurements consistently at or close to the standard, range 8.7-9.0 SU

Assessment of each site sampled will be reported to U.S. EPA in the 2022 update of Indiana's Integrated Water Monitoring and Assessment Report (Integrated Report). Site-specific data will be used to classify associated assessment units into one of five major categories in the State's Consolidated 303(d) list. Category definitions are available in Indiana's CALM (IDEM 2018b, pp. G-46 and G-47).

Parameters	Water Quality Criteria	Criterion
<i>E. coli</i> (April-October	<u>&lt;</u> 125 MPN/100 mL	5-Sample Geometric Mean
Recreational season)	<u>&lt;</u> 235 MPN/100 mL	Single Sample Maximum
Total Ammonia (NH ₃ -N)	Calculated based on pH and Temperature	Calculated CAC
Nitrate+Nitrite-Nitrogen	<u>≤</u> 10 mg/L	Human Health point of drinking water intake
Sulfate	Calculated based on hardness and chloride	In all waters outside the mixing zone
Dissolved Oxygen	At least 5.0 mg/L (Warm Waters)	Daily Average
Dissolved Oxygen	Not less than 4.0 mg/L at any time	Single Reading
рН	6.0 – 9.0 S.U. except for daily fluctuations that exceed 9.0 due to photosynthetic activity	Single Reading
Temperature	Varies Monthly	1% Annual; Maximum Limits
Chloride	Calculated based on hardness and sulfate values	Calculated CAC
Dissolved Solids	750 mg/L	Public water supply

## Table 1. Water Quality Criteria [327 IAC Article 2]

MPN = Most Probable Number, CAC = Chronic Aquatic Criterion, S.U. = Standard Units

#### 7. Optimize the Plan for Obtaining Data

A Modified Geometric Design (OHEPA 1999, 2012) site selection process in Attachment 1 will be used in this study to get the necessary spatial representation of the entire study area. Sites within this watershed have been selected based on a geometric progression of drainage areas and then located to the nearest bridge. Sample sites at road crossings allow for more efficient sampling of the watershed.

## E. Training and Staffing Requirements

Role	Required Training or	Responsibilities	Training References
	Experience		
Project Manager	- AIMS II Database experience - Demonstrated experience in project management and QA/QC procedures	<ul> <li>Establish Project in the AIMS II database</li> <li>Oversee development of Project Work Plan</li> <li>Oversee entry and QC of field data</li> <li>Querying data from AIMS II to determine results not meeting Water Quality Criteria</li> </ul>	- IDEM 2017a, 2017b - U.S. EPA 2006
Field Crew Chief Biological Community Sampling	<ul> <li>At least one year of experience in sampling methodology and taxonomy of aquatic communities in the region</li> <li>Annually review the Principles and Techniques of Electrofishing</li> <li>Annually review relevant safety procedures</li> <li>Annually review relevant Standard Operating Procedures (SOP) documents for field operations</li> </ul>	<ul> <li>Completion of field data sheets</li> <li>Taxonomic accuracy</li> <li>Sampling efficiency and representation</li> <li>Voucher specimen tracking</li> <li>Overall operation of the field crew when remote from central office</li> <li>Adherence to safety and field SOP procedures by crew members</li> <li>Ensure that multiprobe analyzers are calibrated weekly prior to field sampling activities</li> <li>Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities</li> </ul>	- YSI 2017 - IDEM 1992a, 1992b, 2002, 2008, 2010a, 2010b, 2015, 2017a, 2018c, 2019b, 2019c, 2019d - Newhouse 1998a, 1998b -YSI 2018
Field Crew Members Biological Community Sampling	<ul> <li>Complete hands-on training for sampling methodology prior to participation in field sampling activities</li> <li>Review the Principles and Techniques of Electrofishing</li> <li>Review relevant safety procedures</li> <li>Review relevant SOP documents for field</li> </ul>	<ul> <li>Follow all safety and SOP procedures while engaged in field sampling activities</li> <li>Follow direction of field crew chief while engaged in field sampling activities</li> </ul>	- YSI 2017 - IDEM 1992a, 1992b, 2002, 2008, 2010a, 2010b, 2015, 2017a, 2018c, 2019b, 2019c, 2019d - Newhouse 1998a, 1998b - YSI 2018

# Table 2. Project Roles, Experience, and Training

operations

Role	Required Training or Experience	Responsibilities	Training References
Field Crew Chief – Water Chemistry and/or Bacteriological Sampling	<ul> <li>At least one year of experience in sampling methodology</li> <li>Annually review relevant safety procedures</li> <li>Annually review relevant SOP documents for field operations</li> </ul>	<ul> <li>Completion of field data sheets</li> <li>Sampling efficiency and representation</li> <li>Overall operation of the field crew when remote from central office</li> <li>Adherence to safety and field SOP procedures by crew members</li> <li>Ensure that multiprobe analyzers are calibrated weekly prior to field sampling activities</li> <li>Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities</li> </ul>	- YSI 2017 - IDEM 1997, 2002, 2008, 2010a, 2010b, 2015, 2017a, 2019a - YSI 2018
Field Crew Members – Water Chemistry and/or Bacteriological Sampling	<ul> <li>Complete hands-on training for sampling methodology prior to participation in field sampling activities</li> <li>Review relevant safety procedures</li> <li>Review relevant SOP documents for field operations</li> </ul>	<ul> <li>Follow all safety and SOP procedures while engaged in field sampling activities</li> <li>Follow direction of field crew chief while engaged in field sampling activities</li> </ul>	- YSI 2017 - IDEM 1997, 2002, 2008, 2010a, 2010b, 2015, 2017a, 2019a - YSI 2018
Laboratory Supervisor – Biological Community Sample Processing	<ul> <li>At least one year of experience in taxonomy of aquatic communities in the region</li> <li>Annually review relevant safety procedures</li> <li>Annually review relevant SOP documents for laboratory operations</li> </ul>	<ul> <li>Adherence to safety and SOP procedures by laboratory staff</li> <li>Assist with identification of fish or macroinvertebrate specimens</li> <li>Verify taxonomic accuracy of samples</li> <li>Voucher specimen tracking</li> <li>QC calculations on data sheets, check for completeness</li> <li>Ensure data are entered into AIMS II correctly</li> </ul>	- IDEM 1992a, 1992b, 2008, 2010a, 2010b, 2017b - Newhouse 1998a, 1998b

Role	Required Training or	Responsibilities	Training References
Laborations Otoff	Experience		
Laboratory Staff –	- Complete hands-on	- Adhere to safety and	- IDEM 1992a, 1992b,
Biological Community	training for laboratory	SOP procedures	2008, 2010a, 2010b,
Sample Processing	sample processing	- Follow Laboratory	2017b
	methodology prior to	Supervisor direction while	- Newhouse 1998a,
	laboratory sample processing activities	processing samples - Identify fish or	1998b
	- Annually review relevant	macroinvertebrate	
	safety procedures and	specimens	
	relevant SOP documents for	- Perform necessary	
	laboratory operations	calculations on data, enter	
		field sheets	
Laboratory Supervisor –	- Annually review relevant	- Adherence to safety and	- IDEM 1997, 2002,
Water Chemistry and/or	safety procedures	SOP procedures by	2008, 2010a, 2010b,
Bacteriological Sample	- Annually review relevant	laboratory staff	2015a, 2017a, 2017b,
Processing	SOP documents for field	- Completion of laboratory	2019a
1 receipting	operations	data sheets	- Newhouse 1998a
		- Check data for	
		completeness	
		- Perform all necessary	
		calculations on the data	
		- Ensure that data are	
		entered into the AIMS II	
		Data Base	
Quality Assurance Officer	- Familiarity with QA/QC	- Ensure adherence to	- IDEM 2017a, 2017b
	practices and	QA/QC requirements of	- U.S. EPA 2006
	methodologies	Surface Water QAPP	
	- Familiarity with the Surface	<ul> <li>Evaluate data collected</li> </ul>	
	Water QAPP and data	by sampling crews for	
	qualification methodologies	adherence to project work	
		plan	
		- Review data collected by	
		field sampling crews for	
		completeness and	
		accuracy	
		- Perform a data quality	
		analysis of data generated	
		by the project	
		- Assign data quality levels based on the data	
		quality analysis	
		- Import data into the	
		AIMS II data base	
		- Ensure that field	
		sampling methodology	
		audits are completed	
		according to WAPB	
		procedures	
	1	P.00044100	1

## **II. DATA GENERATION AND ACQUISITION**

### A. Sampling Sites and Sampling Design

Sample sites will be chosen using a modified geometric site selection process as well as targeted site selection in order to obtain the necessary spatial representation of the entire watershed. Sites within this watershed will be selected based on a geometric progression of drainage areas starting with the area at the mouth of the main stem stream and then working upstream through the tributaries to the headwaters. Monitoring sites will then be established at the nearest bridge. Best professional judgement determined rejection of one site during reconnaissance, because a stream reach previously draining into Maria Creek now appears to drain into a pond. The site located on this stream reach will no longer be sampled.

A more complete description of the Modified Geometric Design Steps for Watershed Characterization Studies selection process is included as Attachment 1. Sample sites will also be chosen at the bridge nearest to the pour point of each 12-digit HUC in the watershed, or chosen to characterize sources for TMDL development.

Site reconnaissance activities will be conducted in-house and through physical site visits. In-house activities include preparation and review of site maps and aerial photographs. Physical site visits include verification of accessibility, safety considerations, equipment needed to properly sample the site, and property owner consultations, if required. All information will be recorded on the IDEM OWQ Site Reconnaissance Form (Attachment 2) and entered into the AIMS II database. Precise coordinates for each site will be determined during the physical site visits or at the beginning of the sampling phase of this project, using a Trimble Juno [™] SB Global Positioning System or a Trimble Juno 3D GPS (IDEM 2015), both of which have an accuracy of two to five meters. These coordinates will be entered into the AIMS II database. Digital photos will also be taken upstream and downstream of the site during reconnaissance. Digital photos will be stored on the shared drive upon return to the office in a specific folder for the Maria Creek watershed characterization. Photos will be labeled with the site number and indication of whether the photo faces upstream or downstream.

"Sampling Locations for Watershed Characterization of Maria Creek" (Table 3) provides a list of the selected sampling sites with the stream name, AUID, AIMS Site Number, County Name, and the latitude and longitude of each site. Figure 2, titled "Maria Creek Watershed Characterization Sampling Area," gives a spatial overview of the site locations for this project.

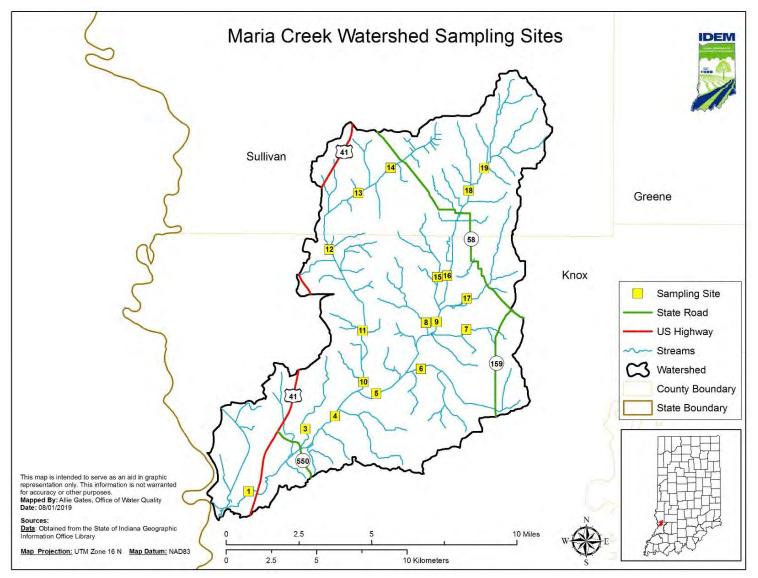



Figure 2. Maria Creek Watershed Characterization Sampling Area

¹ Map site numbers refer to last two digits of site number from Table 1; e.g., 20T-010 is site 10 on map

Site #	AIMS Site #	Stream Name	Location	County	Latitude	Longitude	AUID
20T-001	WBU-18-0004	Maria Creek	N Old 41	Knox	38.77347	-87.4728	INB11I4_03
20T-003	WBU-18-0006	Cotton Branch	E Springtown Rd	Knox	38.80484	-87.4368	INB11I4_T1004
20T-004	WBU-18-0007	Maria Creek	N Perry Rd	Knox	38.81132	-87.4179	INB11I4_02
20T-005	WBU-18-0008	Maria Creek	N Risley Rd	Knox	38.82277	-87.3917	INB11I2_01
20T-006	WBU-18-0009	Tilley Ditch	E Pepmeir Rd	Knox	38.83516	-87.3632	INB11I2_T1004
20T-007	WBU-18-0010	Tributary of Maria Creek	Lane Rd	Knox	38.85491	-87.3343	INB11I2_T1001
20T-008	WBU-18-0011	Tributary of Maria Creek	E Lower Freelandville Rd	Knox	38.85826	-87.3601	INB11I2_T1002
20T-009	WBU-18-0013	Maria Creek	E Lower Freelandville Rd	Knox	38.85857	-87.3534	INB11I2_01
20T-010	WBU190-0001	Marsh Creek	CR 500 NE Rd	Knox	38.82846	-87.3999	INB11I3_05
20T-011	WBU-18-0012	Marsh Creek	E Hunley Rd	Knox	38.85412	-87.4006	INB11I3_04
20T-012	WBU-18-0015	Marsh Creek	E Moody Rd	Knox	38.89458	-87.4221	INB11I3_03
20T-013	WBU-18-0016	Marsh Creek	S CR 50 E	Sullivan	38.92285	-87.4038	INB11I3_03
20T-014	WBU-18-0017	Marsh Creek	S CR 5 SE	Sullivan	38.93554	-87.383	INB11I3_02
20T-015	WBU-18-0014	Tributary to Maria Creek	Freelandville Rd	Knox	38.88103	-87.3528	INB 11I1_T1004
20T-016	WBU190-0002	Maria Creek	CR 1050 N	Knox	38.88173	-87.3467	INB11I1_01
20T-017	WBU-18-0018	Tributary to Maria Creek	Lane Rd	Knox	38.87045	-87.334	INB11I1_T1005
20T-018	WBU-18-0019	Maria Creek	E CR 1050 S	Sullivan	38.92436	-87.3331	INB11I1_01
20T-019	WBU-18-0020	Maria Creek	E CR 975 S	Sullivan	38.93558	-87.3232	INB11I1_01

## Table 3. Sampling Locations for Watershed Characterization of Maria Creek (HUC 0512011118)

²20T-### gray shading of the Site # denotes that these are the selected pour points for this project (6 sites).

### B. Sampling Methods and Sample Handling

1. Water Chemistry Sampling

One team of two staff will collect water chemistry grab samples, record water chemistry field measurements, and record physical site descriptions on the IDEM OWQ Stream Sampling Field Data Sheet (Attachment 3). All water chemistry sampling will adhere to the Water Quality Surveys Section Field Procedure Manual Section 2.1 (IDEM 2002). Samples will be preserved as specified below in Table 4, and all applicable holding times will be followed.

Parameter	Preservative	Holding Times
Alkalinity (as CaCO ₃ )	Ice	14 days
Solids, Total Residue (TS)	lce	7 days
Solids, Nonfilterable Residue (TSS)	lce	7 days
Solids, Filterable Residue (TDS)	lce	7 days
Sulfate (Dissolved)	Ice	28 days
Chloride	Ice	28 days
Hardness (as CaCO ₃ )	HNO ₃	6 months
Nitrogen, as Ammonia	H ₂ SO ₄	28 days
Nitrogen, Kjeldahl (TKN)	H ₂ SO ₄	28 days
Nitrogen, Nitrate-nitrite	H ₂ SO ₄	28 days
Phosphorous (Applicable to all)	H ₂ SO ₄	28 days
Total Organic Carbon (TOC)	H ₂ SO ₄	28 days
Chemical Oxygen Demand	H ₂ SO ₄	28 days
Calcium	HNO ₃	6 months
Magnesium	HNO ₃	6 months

#### Table 4. Water Chemistry Sample Handling

#### 2. Bacteriological Sampling

The bacteriological sampling will be conducted by one team consisting of one or two staff. Samples will be processed in an IDEM fixed or mobile *E. coli* laboratory equipped with all materials and equipment necessary to perform the Colilert® Test Method (Standard Method 9223B), per Project Organization and Schedule (above) (IDEM 2019a). The expected time frame for bacteriological sampling will be April through October of 2020. Staff will collect the samples in a 120 mL presterilized wide-mouth container from the center of flow, if the stream is wadeable, or from the shoreline using a pole sampler, if the stream is not wadeable. This is subject to field staff determination

based on available PPE, turbidity, and other factors. However, streams waist deep or shallower are generally considered wadeable. All samples will be consistently labeled, cooled, and held at a temperature less than 10°C during transport. Samples will be preserved with 0.0008% Na₂S₂O₃ for CL₂. While still in the field and at the end of each sampling run, water samples will be processed and analyzed for *E. coli* within the sixhour holding time for collection and transportation, and the two-hour holding time for sample processing (IDEM 2019a).

The IDEM mobile *E. coli* laboratory facilitates *E. coli* testing by eliminating the necessity of transporting samples to distant contract laboratories within a six hour holding time. The IDEM mobile *E. coli* laboratory (van) provides a work space containing sample storage; supplies for Colilert® Quanti-tray testing; and all equipment needed for collecting, preparing, incubating, and analyzing results in the same manner as the IDEM fixed *E. coli* laboratory. All supplies will be obtained from IDEXX Laboratories, Inc., Westbrook, Maine.

3. Fish Community Measurements

The fish community sampling will be completed by teams of three to five staff. Sampling will be performed using various standardized electrofishing methodologies dependent upon the stream size and site accessibility. Fish assemblage assessments will be performed in a sampling reach of 15 times the average wetted width, with a minimum reach of 50 meters and a maximum reach of 500 meters (IDEM 2018c). An attempt will be made to sample all habitat types available within the sample reach to ensure adequate representation of the fish community present at the time of the sampling event. The list of possible electrofishers utilized include: the Smith-Root LR-24 or LR-20B Series backpack electrofishers; the Smith-Root model 1.5KVA electrofishing system; the Smith-Root model 2.5 Generator Powered Pulsator electrofisher, with RCB-6B junction box and rat-tail cathode cable; or Midwest Lake Electrofishing Systems (MLES) Infinity Control Box with MLES junction box and rat-tail cathode cable, assembled in a canoe (if parts of the stream are not wadeable, the system may require the use of a dropper boom array outfitted in a canoe or possibly a 12 foot Loweline™ boat); or for nonwadeable sites, the Smith-Root Type VI-A electrofisher assembled in a 16-foot Loweline[™] boat (IDEM 2018c).

Sample collections during high flow or turbid conditions will be avoided due to 1) low collection rates which result in non-representative samples and 2) safety considerations for the sampling team. Sample collection during late autumn will be avoided due to the cooling of water temperature, which may affect the responsiveness of some species to the electrical field. This lack of responsiveness can result in samples that are not representative of the streams' fish assemblage (IDEM 2018c).

Fish will be collected using dipnets with fiberglass handles and netting of 1/8 inch mesh bag. Fish collected in the sampling reach will be sorted by species into baskets or

buckets. Young-of-the-year fish less than 20 millimeters (mm) total length will not be retained in the community sample (IDEM 2018c).

For each field taxonomist (generally the crew leader), a complete set of fish vouchers will be retained for each new or different species encountered during the summer sampling season. Vouchers may consist of either preserved specimens or digital images. Prior to processing fish specimens and completion of the IDEM OWQ Fish Collection Data Sheet (Attachment 4), one to two individuals per new species encountered will be preserved in 3.7% formaldehyde solution to serve as representative fish vouchers, if the fish specimens can be positively identified and the individuals for preservation are small enough to fit in a 2000 mL jar. If however, the specimens are too large to preserve, a photo of key characteristics (e.g., fin shape, size, body coloration) will be taken for later examination (IDEM 2018c). Also, prior to sampling, 10% of the sites will be randomly selected for revisiting and a few representative individuals of all species found at the site will be preserved or photographed to serve as vouchers. Taxonomic characteristics for possible species encountered in the basin of interest will be reviewed prior to field work.

Fish specimens should also be preserved if positive identification cannot be made in the field (e.g., those co-occurring like the Striped and Common Shiners or are difficult to identify when immature); individuals that appear to be hybrids or have unusual anomalies; or dead specimens that are taxonomically valuable for undescribed taxa (e.g., Red Shiner or Jade Darter); life history studies; or research projects (IDEM 2018c).

Data will be recorded for nonpreserved fish on the IDEM OWQ Fish Collection Data Sheet (Attachment 4) consisting of the following: number of individuals; minimum and maximum total length in millimeters (mm); mass weight in grams (g); and number of individuals with deformities, eroded fins, lesions, tumors, and other anomalies (DELTs). Once the data is recorded, specimens will be released within the sampling reach from which they were collected, when possible. Data will be recorded for preserved fish specimens following taxonomic identification in the laboratory (IDEM 2018c).

#### 4. Macroinvertebrate Community Measurements

The macroinvertebrate community sampling may be conducted immediately following the fish community sampling event or on a different date by crews of two to three staff. Samples will be collected using a modification of the U.S. EPA Rapid Bioassessment Protocol multihabitat (MHAB) approach using a D-frame dip net with 500 µm mesh (Plafkin et al. 1989; Klemm et al. 1990; Barbour et al. 1999; IDEM 2019b). The IDEM MHAB approach (IDEM 2019b) is composed of a 1-minute "kick" sample within a riffle or run (collected by disturbing one square meter of stream bottom substrate in a riffle or run habitat and collecting the dislodged macroinvertebrates within the dip net) and a 50-meter "sweep" sample of all available habitats (collected by disturbing habitat such as

emergent vegetation, root wads, coarse particulate organic matter, depositional zones, logs, and sticks; and collecting the dislodged macroinvertebrates within the dip net). The 50 meter length of riparian corridor that is sampled at each site will be defined using a rangefinder or tape measure. If the stream is too deep to wade, a boat will be used to sample the 50 meter zone along the shoreline with the best available habitat. In addition, a 1-minute kick sample will not be collected if the stream is too deep to wade and there is no available shoreline to collect the sample. However, it is unlikely that the streams encountered during this watershed characterization will be too deep to collect the sample. The 1-minute "kick" and 50-meter "sweep" samples are combined in a bucket of water.

The combined sample will be elutriated through a U.S. Standard Number 35 (500  $\mu$ m) sieve a minimum of five times so that all rocks, gravel, sand, and large pieces of organic debris are removed from the sample. The remaining sample is then transferred from the sieve to a white plastic tray. The collector (while still on-site) will conduct a 15-minute pick of macroinvertebrates at a single organism rate endeavoring to pick for maximum organism diversity, and relative abundance through turning and examining the entire sample in the tray. The resulting picked sample will be preserved in 80% isopropyl alcohol, returned to the laboratory for identification at the lowest practical taxonomic level (usually genus or species level, if possible); and evaluated using the MHAB macroinvertebrate IBI. Before leaving the site, an IDEM OWQ Macroinvertebrate Header Form (IDEM 2019c, Attachment 5) will be completed for the sample.

5. Habitat Assessments

Habitat assessments will be completed immediately following macroinvertebrate and fish community sample collections at each site using a slightly modified version of the Ohio Environmental Protection Agency (OHEPA) QHEI, 2006 edition (Rankin 1995; OHEPA 2006). A separate IDEM OWQ Biological QHEI (Attachment 6) must be completed for these two sample types, since the sampling reach length may differ (i.e., 50 meters for macroinvertebrates and between 50 and 500 meters for fish). See IDEM 2019d for a description of the method used in completing the QHEI.

6. Field Parameter Measurements

Dissolved oxygen (DO), pH, water temperature, specific conductance, and DO percent saturation will be measured with a datasonde, during each sampling event regardless of the sample type collected. Measurement procedures and operation of the datasonde shall be performed according to the manufacturers' manuals (YSI 2017; YSI 2018) and Sections 2.10 – 2.13 of the Water Quality Surveys Section Field Procedure Manual (IDEM 2002). Turbidity will be measured with a Hach[™] turbidity kit and the meter number written in the comments under the field parameter measurements. If a Hach[™] turbidity kit is not available, the datasonde measurement for turbidity will be recorded and noted in the comments. During each sampling run, field observations from each site

and ambient weather conditions at the time of sampling will be noted and documented on IDEM Stream Sampling Field Data Sheets (Attachment 3).

### C. Analytical Methods

1. Laboratory Procedure for *E. coli* Measurements:

All waters sampled will be processed and analyzed for *E. coli* in the IDEM *E. coli* mobile laboratory or IDEM Shadeland laboratory, which is equipped with required materials and equipment necessary for the IdexxTM Colilert Test. The Colilert Test is a multiple-tube enzyme substrate standard method SM-9223B Enzyme Substrate Coliform Test Method (Clesceri et al., 2012). The *E. coli* test method and quantification limit are identified below in Table 5.

2. Nutrient and General Chemistry Parameters Measurements:

Analyses of nutrient and general chemistry parameters will be performed at TestAmerica Laboratories, in accordance with preapproved test methods and within the allotted time frames. The nutrient and general chemistry parameters, and respective test methods and quantification limits are identified below in Table 5.

Parameter	Method	Limits of Quantification	Units
E. coli	SM-9223B Enzyme Substrate Test	1.0	*MPN/100 mL
Alkalinity (as CaCO ₃ )	EPA 310.2	10.0	mg/L
Solids, Total Residue (TS)	SM 2540B	10.0	mg/L
Solids, Nonfilterable Residue (TSS)	SM 2540D	1.0	mg/L
Solids, Filterable Residue (TDS)	SM 2540C	10.0	mg/L
Sulfate (Dissolved)	EPA 300.0	0.05	mg/L
Chloride	EPA 300.0	0.06	mg/L
Hardness (as CaCO ₃ )	SM 2340B	1.41	mg/L
Nitrogen, as Ammonia	SM 4500NH3-D	0.10	mg/L
Nitrogen, Kjeldahl (TKN)	SM4500N(Org)-B	0.30	mg/L
Nitrogen, Nitrate-nitrite	SM4500NO3-F	0.10	mg/L
Phosphorous (Applicable to all)	EPA 365.1	0.05	mg/L
Total Organic Carbon (TOC)	SM 5310C	1.0	mg/L

#### Table 5. *E.coli*, Nutrient, and General Chemistry Parameters Test Methods⁴

Parameter	Method	Limits of Quantification	Units
Chemical Oxygen Demand	EPA 410.4	10.0	mg/L
Calcium	EPA 200.7	40	mg/L
Magnesium	EPA 200.7	100	mg/L

* Clesceri et al., 2012. 1 MPN = 1 CFU/100 mL ⁴ Methods accredited by EPA (State of Illinois, 2018)

3. Field Parameters Measurements:

The field measurements of DO, temperature, pH, conductivity, and turbidity will be taken each time a sample is collected. The field parameters, respective test methods, and sensitivity limits are identified below in Table 6. The datasonde should be located in the center of flow during sampling. The field staff member collecting the sample should wait for all readings to stabilize before recording the readings on the IDEM Stream Sampling Field Data Sheet (Attachment 3).

#### Table 6. Field Parameters Test Methods

Parameter	Method	Sensitivity Limit	Units
DO (Datasonde optical)	ASTM D888-09(C)	0.01	mg/L
DO (Winkler Titration)	SM 4500-OC ⁵	0.2	mg/L
DO % Saturation (Datasonde optical)	ASTM D888-09(C)	0.01	%
Turbidity (Datasonde)	SM2130B	0.02	NTU
Turbidity (Hach Turbidimeter)	EPA 180.1 ⁵	0.01	NTU
Specific Conductance (Datasonde)	SM 2510B	1.0	µS/cm
Temperature (Datasonde)	SM 2550B(2)	0.1	°C
Temperature (field meter)	SM 2550B(2) ⁵	0.1	°C
pH (Datasonde)	EPA 150.2	0.01	SU
pH (field meter)	SM 4500-HB⁵	0.01	SU

⁵ Method used for Field Calibration Verification

### D. Quality Control and Custody Requirements

Quality assurance protocols will follow part B5 of the Surface Water QAPP (IDEM 2017a).

1. Field Instrument Testing and Calibrations

The datasonde will be calibrated prior to each week's sampling (IDEM 2002). Calibration results and drift values will be recorded, maintained, stored, and archived in log books located in the calibration laboratories at the Shadeland facility. The drift value is the difference between two successive calibrations. Field parameter calibrations will conform to the procedures as described in the instrument users' manuals (YSI 2017; YSI 2018). The DO component of the calibration procedure will be conducted using the air calibration method (IDEM 2002, page 74). The unit will be field checked for accuracy once during the week by comparison with a Winkler DO test (IDEM 2002, page 64), Hach[™] turbidity, and an Oaktown Series 5 pH meter. Weekly calibration verification results will be recorded on the field calibrations portion of the IDEM OWQ Stream Sampling Field Data Sheets (Attachment 3) and entered into the AIMS II database. A Winkler DO test will also be conducted at sites where the DO concentration is 4.0 mg/L or less.

2. Field Measurement Data

In-situ water chemistry field data will be collected in the field using calibrated or standardized equipment and recorded on the IDEM OWQ Stream Sampling Field Data Sheet (Attachment 3). The same staff member will collect and record the data. Calculations may be done in the field or later at the office. Analytical results, which have limited QC checks, will be included in this category. Detection limits and ranges have been set for each analysis (Table 6). Quality control checks (such as duplicate measurements, measurements of a secondary standard, or measurements using a different test method or instrument) performed on field or laboratory data, are usable for estimating precision, accuracy, and completeness for the project, as described in the Surface Water QAPP (IDEM 2017a Section C1.1 on page 176 and Section A7.2 page 56).

3. Bacteriological Measurement Data

Analytical results, from an IDEM fixed or mobile *E. coli* laboratory, include QC check sample results from which precision, accuracy, and completeness can be determined for each batch of samples. Raw data will be archived by analytical batch for easy retrieval and review. Chain of custody procedures will be followed, including: time of collection, time of setup, time of reading the results, and time and method of disposal (IDEM 2002). The field staff member who collected the samples signs the chain of custody form upon delivery of samples to the laboratory. Any method deviations will be thoroughly documented in the raw data. All QA/QC samples will be tested according to the following guidelines:

Field Duplicate:	Field Duplicates will be collected at a frequency of one per batch or at least one for every 20 samples collected ( $\geq 5\%$ ).
Field Blank:	Field Blanks will be collected at a frequency of one per batch or at least one for every 20 samples collected (≥ 5%).
Laboratory Blank:	Laboratory Blanks (sterile laboratory water blanks) will be tested at a frequency of one per day.
Positive Control:	Each lot of media will be tested for performance using <i>E. coli</i> bacterial cultures.
Negative Controls:	Each lot of media will be tested for performance using non- <i>E. coli</i> and noncoliform bacterial cultures.

#### 4. Water Chemistry Measurement Data

Sample bottles and preservatives will be certified for purity by the manufacturer. Damaged sample bottles and preservatives are not used, and preservatives are not used past their stated expiration date. The purity of sample bottles and preservatives is checked via field blanks. Sample collection containers for each parameter, preservative, and holding time (Table 4) will adhere to U.S. EPA requirements. Field duplicates and matrix spike/matrix spike duplicates shall be collected at the rate of one per sample analysis set or one per every 20 samples, whichever is greater. Additionally, field blank samples will be taken at a rate of one set per sample analysis set or one per every 20 samples, whichever is greater. A chain of custody (COC) form created by the AIMS II database IDEM OWQ COC (Attachment 7) and an IDEM Water Sample Analysis Request form (Attachment 8) accompany each sample set through the analytical process. The field staff member who collected the samples signs the COC form upon delivery of samples to the laboratory. Additionally, a Test America COC form (Attachment 9) will accompany samples sent to the lab. Shipping labels will be created using Test America account numbers.

5. Fish Community Measurement Data

Fish community sampling revisits will be performed at a rate of 10 percent of the total fish community sites sampled, in this case, two in the watershed (IDEM 2018c). Revisit sampling will be performed with at least two weeks of recovery between the initial and revisit sampling events. The fish community revisit sampling and habitat assessment will be performed with either a partial or complete change in field team members (IDEM 2018c). The resulting IBI and QHEI total score between the initial visit and the revisit will be used to evaluate precision, as described in the QAPP for Biological Community and Habitat Measurements (IDEM 2019e). The IDEM OWQ COC form (Attachment 7) is used to track samples from the field to the laboratory. A field staff member from the crew signs the COC form after sampling is complete, and the samples and COC form are relinquished to a lab custodian to verify that the sampling information is accurate. All raw data are: 1) checked for completeness; 2) utilized to calculate derived data (e.g., total weight of all specimens of a taxon), which is entered into the AIMS II database; and 3) checked again for data entry errors.

6. Macroinvertebrate Community Measurement Data

Duplicate macroinvertebrate field samples will be collected at a rate of 10 percent of the total macroinvertebrate community sites sampled, in this case, two in the watershed. The macroinvertebrate community duplicate sample and corresponding habitat assessment will be performed by the same team member who performed the original sample, immediately after the initial sample is collected. The 50 meter section of stream and riffle area utilized for the duplicate sample are different from those used for the original sample but should feature as similar habitat types and availability as possible.

This will result in a precision evaluation based on a 10% duplicate of samples collected, as described in the QAPP for Biological Community and Habitat Measurements (IDEM 2019e).

The IDEM OWQ COC form (Attachment 7) is used to track samples from the field to the laboratory. A field staff member from the crew completes the OWQ COC form after sampling is complete. After completion of weekly field sampling activities, the OWQ COC form is used by the laboratory custodian to check in samples prior to long-term storage. Laboratory identifications and QA/QC of taxonomic work is maintained by the laboratory supervisor of the Probabilistic Monitoring Section of IDEM.

## **III. ASSESSMENT AND OVERSIGHT**

### A. Field and laboratory performance and system audits

Performance and system audits will be conducted to ensure good quality data. The field and laboratory performance checks include: precision measurements by relative percent difference of field and laboratory duplicate (IDEM 2017a, pp. 56, 61-63); accuracy measurements by percent of recovery of matrix spike and matrix spike duplicate samples analyzed in the laboratory (IDEM 2017a, pp. 58, 61-63); and completeness measurements by the percent of planned samples that are actually collected, analyzed, reported, and usable for the project (IDEM 2017a, page 58). Fish taxonomic identifications made by IDEM staff in the laboratory may be verified by regionally recognized non-IDEM freshwater fish taxonomists. Ten percent of macroinvertebrate samples (the initial samples taken at sites where duplicate samples were collected) will be sent off to Rithron Associates, Inc. (Missoula, MT) for verification by an outside taxonomist (IDEM 2019c).

Laboratory audits are performed at the beginning of a laboratory contract and at least once a year during the contract. The audit includes any or all of the operational quality control elements of the laboratory's quality assurance system. All applicable elements of this quality assurance project plan and the laboratory contract requirements are addressed including, but not limited to, sampling handling, sample analysis, record keeping, preventative maintenance, proficiency testing, personnel requirements, training, and workload. (IDEM 2017a, pp. 177—178).

Field audits will be conducted biannually by staff of the IDEM WAPB to ensure that sampling activities adhere to approved SOPs. Audits will be systematically conducted by WAPB staff to include all WAPB personnel that engage in field sampling activities. WAPB field staff involved with sample collection and preparation will be evaluated by staff trained in the associated sampling SOPs, and in the processes related to conducting an audit. Staff will produce an evaluation report documenting each audit for review by those field staff audited as well as WAPB management. Corrective actions will be communicated to, and implemented by, field staff as a result of the audit process. Quality assurance reports are submitted by the QA officer upon completion of the data validation of a dataset, to the program manager or WAPB branch chief. The QA manager, relevant section chief, project manager, any technical staff working on corrective actions, and quality assurance staff receive copies of the progress reports when new developments arise. The section chief, project officer, or QA officer is responsible for working with relevant staff members to develop corrective actions and notifying the QA manager of corrective action progress. Depending on the associated corrective actions, either the section chief or the QA officer approves the final corrective action (IDEM 2017a, page 179).

### **B. Data Quality Assessment Levels**

The samples and various types of data collected by this program will be intended to meet the quality assurance criteria and rated DQA Level 3, as described in the Surface Water QAPP (IDEM 2017a, page 182).

# **IV. DATA VALIDATION AND USABILITY**

Quality assurance reports to management, and data validation and usability are also important components of Indiana's Surface Water QAPP which ensures good quality data for this project. Quality assurance reports are submitted by the QA officer upon completion of the data validation of a dataset to the program manager or WAPB branch chief. This is done to ensure that problems arising during the sampling and analysis phases of the project are investigated and corrected (IDEM 2017a, page 179). As described in Section D of the Surface Water QAPP (IDEM 2017a), data are reduced (converted from raw analytical data into final results in proper reporting units); validated (qualified based on the performance of field and laboratory QC measures incorporated into the sampling and analysis procedures); and reported (described so as to completely document the calibration, analysis, QC measures, and calculations). These steps allow users to assess the data to ensure the project DQOs have been met.

### A. Quality Assurance, Data Qualifiers, and Flags

The various data qualifiers and flags will be used for quality assurance and validation of the data and are found on pages 184-185 of the Surface Water QAPP (IDEM 2017a).

### B. Data Usability

The environmental data collected and its usability will be qualified per each lab or field result obtained and classified into one or more of the four categories: Acceptable Data, Enforcement Capable Results, Estimated Data, and Rejected Data as described on page 184 of the Surface Water QAPP (IDEM 2017a).

### C. Information, Data, and Reports

Data collected in 2019-2020 will be recorded in the AIMS II database and presented in two compilation summaries. The first summary will be a general compilation of the watershed

field and water chemistry data prepared for use in the 2022 Indiana Integrated Report. The second summary will be in database report format containing biological results and habitat evaluations, which will be produced for inclusion in the Integrated Report as well as individual site folders. All site folders are maintained at the WAPB facility. All data and reports will be made available to public and private entities, which may find the data useful for municipal, industrial, agricultural, and recreational decision making processes (TMDL, NPDES permit modeling, watershed restoration projects, water quality criteria refinement, etc.,). This work plan will be uploaded into the virtual file cabinet, all field sheets will be stored in the AIMS II database, and results will be uploaded to U.S. EPA's Water Quality Portal via the Water Quality Exchange (formerly Storet), allowing the data to be shared with U.S. EPA and others. The Water Quality Exchange is a framework that allows states, tribes, and other data partners to submit and share water quality monitoring data via the web to the Water Quality Portal.

### D. Laboratory and Estimated Cost

Laboratory analysis and data reporting for this project will comply with the Surface Water QAPP (IDEM 2017a); Request for Proposals 16-074 (see IDEM 2016); the IDEM QMP (IDEM 2018d); and TestAmerica contract SCM # 19855. Analytical tests on general chemistry and nutrient parameters outlined in Table 5 will be performed by TestAmerica Laboratories in University Park, Illinois with a total estimated cost of \$28,500. IDEXX Laboratories, Inc., Westbrook, Maine supplies the bacteriological sampling supplies, with a total estimated cost of \$1,400. Bacteriological samples will be tested and analyzed by IDEM staff. All fish and macroinvertebrate samples will be verified by Rhithron Associates, Inc. in Missoula, Montana with a total estimated cost of \$440. The anticipated budget for laboratory cost for the project is \$30,340.

## E. Reference Manuals and Personnel Safety

Role	Required Training or Experience	Training References	Training Notes
All Staff that	- Basic First Aid and	- A minimum of 4 hours	-Staff lacking 4 hours of in-service
Participate in Field Activities	Cardio-Pulmonary Resuscitation (CPR)	of in-service training provided by WAPB (IDEM 2010c)	training or appropriate certification will be accompanied in the field at all times by WAPB staff meeting Health and Safety Training requirements
	- Personal Protective Equipment (PPE) Policy	- IDEM 2008	
			- When working on boundary waters as defined by Indiana Code (IC) 14-8-2-27 or between sunset and sunrise on any waters of the state, all personnel in the
	- Personal Flotation Devices	- February 29, 2000 WAPB internal memorandum regarding use of approved Personal Flotation Devices	watercraft must wear a high intensity whistle and Safety of Life at Sea (SOLAS) certified strobe light.

# Table 7. Personnel Safety and Reference Manuals

## REFERENCES

- *Document may be inspected at the Watershed Assessment and Planning Branch office, located at 2525 North Shadeland Avenue Suite 100, Indianapolis, Indiana.
- U.S. EPA 2002. <u>Guidance for Quality Assurance Project Plans</u> EPA QA/G-5, EPA/240R-02/009 U.S. EPA, Office of Environmental Information, Washington D.C.
- U.S. EPA 2006. <u>Guidance on Systematic Planning Using the Data Quality Objectives Process</u>. EPA QA/G-4. EPA/240/B-06/001. U.S. EPA, Office of Environmental Information, Washington D.C.
- U.S. EPA 1999. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. <u>Rapid</u> <u>Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic</u> <u>Macroinvertebrates and Fish, Second Edition</u>. EPA/841/B-99/002. U.S. EPA, Office of Water, Washington, D.C.
- Indiana Administrative Code, <u>Title 327 Water Pollution Control Division, Article 2. Water</u> <u>Quality Standards</u>
- IDEM 1992a, revision 1. Section 3, Quality Assurance Project Plan, Development of Biological Criteria (Fish) for the Ecoregions of Indiana. Biological Studies Section, Surveillance and Standards Branch, Office of Water Management, IDEM, Indianapolis, Indiana.*
- IDEM 1992b, revision 1. Section 2, Biological Studies Section Hazards Communications Manual (List of Contents). Biological Studies Section, Surveillance and Standards Branch, OWQ, IDEM, Indianapolis, Indiana.*
- IDEM 1997. Water Quality Surveys Section Laboratory and Field Hazard Communication Plan Supplement. IDEM 032/02/018/1998, Revised October 1998. Assessment Branch, IDEM, Indianapolis, Indiana.*
- IDEM 2002. <u>Water Quality Surveys Section Field Procedure Manual</u>, Assessment Branch, IDEM, Indianapolis, Indiana. IDEM.
- IDEM 2008. IDEM <u>Personal Protective Equipment Policy</u>, revised May 1 2008. A-059-OEA-08-P-R0. IDEM, Indianapolis, Indiana.
- IDEM 2010a. IDEM Health and Safety Training Policy, revised October 1 2010. A-030-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- IDEM 2010b. IDEM Injury and Illness Resulting from Occupational Exposure Policy, revised February 21, 2016. A-034-AW-16-P-R3. IDEM, Indianapolis, Indiana.
- IDEM 2010c. <u>Change in status of Water Assessment Branch staff in accordance with the</u> <u>Agency training policy</u>. State Form 4336. IDEM, Indianapolis, Indiana.

# **REFERENCES** (cont.)

- IDEM 2015. <u>Global Positioning System (GPS) Data Creation Technical Standard Operating</u> <u>Procedure</u>. B-001-OWQ-WAP-XXX-15-T-R0. OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2016. "State of Indiana Request for Proposals 16-74, Solicitation for: Laboratory Analytical Services", Indiana Department of Administration, Indianapolis, IN, February 26, 2016.*
- IDEM 2017a. <u>Quality Assurance Project Plan (QAPP) for Indiana Surface Waters</u>, (Rev. 4, Mar. 2017). B-001-OWQ-WAP-XX-17-Q-R4. OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2017b. AIMS II Database User Guide. Watershed Assessment and Planning Branch. Office of Water Quality, Indiana Department of Environmental Management. Indianapolis, Indiana.*
- IDEM 2018a. <u>Appendix I: Indiana's Approved 2018 303(d) List of Impaired Waters (Revised)</u>. OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2018b. <u>Appendix G: IDEM's 2018 Consolidated Assessment and Listing Methodology.</u> OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2018c, <u>Fish Community Field Collection Procedures</u>. B-009-OWQ-WAP-XXX-18-T-R0. OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2018d. <u>IDEM Quality Management Plan 2018</u>. IDEM, Indiana Government Center North, 100 N. Senate Ave., Indianapolis, Indiana, 46204.
- IDEM 2019a. <u>*E. coli* Field Sampling and Analysis</u>. B-013-OWQ-WAP-XXX-19-T-R0. OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2019b. <u>Multihabitat (MHAB) Macroinvertebrate Collection Procedure.</u> B-011-OWQ-WAP-XXX-19-T-R0. OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2019c. Procedures for Completing the Macroinvertebrate Header Field Data Sheet. B-010-OWQ-WAP-XXX-19-T-R0. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2019d. <u>Procedures for Completing the Qualitative Habitat Evaluation Index</u>. B-003-OWQ-WAP-XX-19-T-R1. OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- IDEM 2019e. Quality Assurance Project Plan (QAPP) for Biological Community and Habitat Measurements (Draft). Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.

# **REFERENCES** (cont.)

- OHEPA. 1999. <u>Ohio EPA Five-Year Surface Water Monitoring Strategy: 2000 2004</u>. Ohio EPA Technical Bulletin MAS/1999-7-2. Division of Surface Water, Lazarus Government Center, 211 S. Front Street, Columbus, Ohio 43215. Page 70.
- OHEPA. 2006. <u>Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat</u> <u>Evaluation Index (QHEI)</u>. OHIO EPA Technical Bulletin EAS/2006-06-1. Revised by the Midwest Biodiversity Institute for State of Ohio Environmental Protection Agency, Division of Surface Water, Ecological Assessment Section, Groveport, Ohio.
- OHEPA. 2012. 2011 Biological and Water Quality Study of Mill Creek and Tributaries, Hamilton County, Ohio. Technical Report MBI/2012-6-10. MSD Project Number 10180900. Prepared for: Metropolitan Sewer District of Greater Cincinnati, 1081 Woodrow Street, Cincinnati, OH 45204. Submitted by: Midwest Biodiversity Institute, P.O. Box 21561, Columbus, Ohio 43221-0561. Pages 40-1.
- State of Illinois Environmental Protection Agency. July 2018. Environmental Laboratory Accreditation.
- Clesceri, L.S., Greenburg, A.E., Eaton, A.D., 2012. SM-Standards Methods for the Examination of Water and Wastewater 22nd Edition. American Public Health Association.
- Klemm, D.J., P.A. Lewis, F. Fulk and J.M. Lazorchak. 1990. <u>Macroinvertebrate Field and</u> <u>Laboratory Methods for Evaluating the Biological Integrity of Surface Waters</u>. EPA/600/4-90/030. Environmental Monitoring Systems Laboratory, Monitoring Systems and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- Newhouse, S.A. 1998a. Field and laboratory operating procedures for use, handling and storage of chemicals in the laboratory. IDEM/32/03/007/1998. Biological Studies Section, Assessment Branch, Office of Water Management, IDEM, Indianapolis, Indiana.*
- Newhouse, S.A. 1998b. Field and laboratory operating procedures for use, handling and storage of solutions containing formaldehyde. IDEM/32/03/006/1998. Biological Studies Section, Assessment Branch, Office of Water Management, IDEM, Indianapolis, Indiana.*
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross and R.M. Hughes. 1989. <u>Rapid</u> <u>Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and</u> <u>Fish</u>. EPA/444/4-89/001. Assessment and Watershed Protection Division, U.S. Environmental Protection Agency, Washington, D.C.
- Rankin, E.T. 1995. Habitat Indices in Water Resource Quality Assessments. pp. 181-208, Chapter 13, Biological Assessment and Criteria: Tools for the Risk-based Planning and Decision Making, edited by Wayne S. Davis and Thomas P. Simon, Lewis Publishers, Boca Raton, Florida.*

## **REFERENCES** (cont.)

Simon, T.P. and R.L. Dufour. 2005. <u>Guide to Appropriate Metric Selection for Calculating the</u> <u>Index of Biotic Integrity (IBI) for Indiana Large and Great Rivers, Inland Lakes, and Great</u> <u>Lakes nearshore</u>. U.S. Department of the Interior, Fish and Wildlife Service, Bloomington Field Office, Bloomington, Indiana

YSI Incorporated. 2017, revision g. EXO User Manual, Yellow Springs, Ohio.

YSI Incorporated. 2018, revision f. ProDIGITAL User Manual, Yellow Springs, Ohio.

## **DISTRIBUTION LIST**

Name	Organization
Kristen Arnold	IDEM/OWQ/WAPB/Technical and Logistical Services Section Chief
Jody Arthur	IDEM/OWQ/WAPB/Technical E7
James Bailey	IDEM/OPS/Recycling Education and Quality Assurance/Quality
	Assurance
Tim Beckman	IDEM/OWQ/WAPB/Targeted Monitoring Section
Timothy Bowren	IDEM/OWQ/WAPB/Technical and Logistical Services Section
Josh Brosmer	IDEM/OWQ/WAPB/Watershed Planning and Restoration Section
Angie Brown	IDEM/OWQ/WAPB/Watershed Planning and Restoration Section
	Chief
Kevin Gaston	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Allie Gates	IDEM/OWQ/WAPB/Watershed Planning and Restoration Section
Paul McMurray	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Caleb Rennaker	IDEM/OWQ/WAPB/Watershed Planning and Restoration Section
Marylou Renshaw	IDEM/OWQ/WAPB/Branch Chief
Stacey Sobat	IDEM/OWQ/WAPB/Probabilistic Monitoring Section Chief
Cyndi Wagner	IDEM/OWQ/WAPB/Targeted Monitoring Section Chief

## **Electronic Distribution Only**

## ATTACHMENTS

# Attachment 1: Modified Geometric Design Steps for Watershed Characterization Studies Introduction

A relatively new design that has recently been implemented in Indiana is termed the Geometric Site Selection process. This design is employed within watersheds that correspond to the 12-14 digit HUC scale in order to fulfill multiple water quality management objectives, not just the conventional focus on status assessment. The design is employed at a spatial scale that is representative of the scale at which watershed management is generally being conducted.

Sites within the watershed are allocated based on a geometric progression of drainage areas starting with the area at the mouth of the main stem river or stream (pour point) and working "upwards" through the various tributaries to the primary headwaters. This approach allocates sampling sites in a semi-random fashion and according to the stratification of available stream and river sizes based on drainage area. The Geometric Site Selection process is then modified by adding a targeted selection of additional sampling sites that are used to focus on localized management issues such as point source discharges, habitat modifications, and other potential impacts within a watershed. These sites are then "snapped to bridges" to facilitate safe and easy access to the stream. This design also fosters data analysis that takes into consideration overlying natural and human caused influences within the streams of a watershed. The design has been particularly useful for watersheds that are targeted for TMDL development.

#### **Selection Process**

In ArcGIS, download from NHD Plus site (<u>http://www.horizon-systems.com/nhdplus/HSC-wthMS.php</u>) the following files for Region 5 (and then again for Region 7) and zip them into the appropriate file structure.

File Description	File Name (.zip***)	Format
Region 05, Version 01_01, Catchment Grid	NHDPlus05V01_01_Catgrid	ESRI Grid
Region 05, Version 01_01, Catchment Shapefile	NHDPlus05V01_01_Catshape	Shapefile
Region 05, Version 01_02, Catchment Flowline Attributes	NHDPlus05V01_02_Cat_Flowline_Attr	DBF
Region 05, Version 01_02, Elevation Unit a	NHDPlus05V01_02_Elev_Unit_a	ESRI Grid
Region 05, Version 01_02, Elevation Unit b	NHDPlus05V01_02_Elev_Unit_b	ESRI Grid
Region 05, Version 01_02, Elevation Unit c	NHDPlus05V01_02_Elev_Unit_c	ESRI Grid
Region 05, Version 01_01, Flow Accumulation and Flow Direction Unit a	NHDPlus05V01_01_FAC_FDR_Unit_a	ESRI Grid
Region 05, Version 01_01, Flow Accumulation and Flow Direction Unit b	NHDPlus05V01_01_FAC_FDR_Unit_b	ESRI Grid
Region 05, Version 01_01, Flow Accumulation and Flow Direction Unit c	NHDPlus05V01_01_FAC_FDR_Unit_c	ESRI Grid
Region 05, Version 01_02, National Hydrography Dataset	NHDPlus05V01_03_NHD	Shapefile and DBF
Region 05, Version 01_01, Stream Gage Events	NHDPlus05V01_01_StreamGageEvent	Shapefile
Region 05, Version 01_01, QAQC Sinks Spreadsheet	NHDPlus05V01_01_QAQC_Sinks	Excel Spreadsheet

Create a new point shapefile (or geodatabase featureclass) named Geometric Design within ArcCatalog with the same projection as the unzipped layers above.

Within an ArcMap project, add the following:

- nhdflowline layer
- Geometric Design layer
- catchment shapefile
- the FlowlineAttributesFlow table

Add the following fields to the nhdflowline layer:

- LENGTHMi (type: double, precision: 9, scale 4)
- DrainMi (type: double, precision: 9, scale 4)
- MinElev (type: double, precision: 9, scale 4)
- MaxElev (type: double, precision: 9, scale 4)
- Gradient (type: double, precision: 9, scale 4)

Add the following field to the GeometricDesign layer (use the add field-batch tool):

- Geometric (type: double, precision: 5, scale 2)
- Lat (type: double, precision: 8, scale 5)
- Long (type: double, precision: 8, scale 5)
- COMID (type: long, precision: 9)

Join the nhdflowline layer with the FlowlineAttributesFlow table based on the COMID field.

Use the field calculator within the nhdflowline attribute table, with the appropriate metric to imperial conversion to populate the following fields:

- LENGTHMi (from LENGTHKM kilometers to miles)
- DrainMia (from CumDrainage square kilometers to square miles (sq mi))
- MinElev (from MinElevSmo meters to feet)
- MaxElev (from MaxElevSmo meters to feet)

• Gradient ((MaxElev-MinElev)/LENGTHMI).

Unjoin the FlowlineAttributesFlow table.

Label the "nhdflowline" layer based new "LengthMi" field – note: this field shows the cumulative drainage at the *end* of the line segment, which is rarely more than 2-3 miles in between nodes.

Calculate the geometric break points (i.e., for a 500 sq mi watershed: 500, 250, 125, 62.5, 31, 15, 7, 4, 2).

It is recommended to change the symbology (Symbology: Show Quantities: Classification (Manual)) of the actual flowline to reflect the drainage. This will help identify when and where sites need to be allocated.

Start a new editing session, with the GeometricDesign layer as your target layer.

Add a new point within this layer to the pour point for the watershed (500 sq mi in this case).

Travel upstream through the main stem and "find" the next place on the stream where the river drainage brackets 250 sq mi. Use the catchment shapefile layer to identify more precisely the drainage value if needed.

Populate the "Geometric" field within the GeometricDesign layer accordingly to the identified drainage level, then change the symbology (Symbology: Categories: Unique Values: Geometric field) of this layer to reflect the drainage levels.

Proceed through the watershed (either around the outer portions or start with largest values and work in), adding points accordingly to each geometric level. Change the symbology to find areas or levels that were missed. Note – the drainage level must be exact. Use the catchment shapefile to subtract drainage areas from larger drainage areas until the exact drainage level is reached. It is ok to "skip" a geometric level if it is not exactly reached. Sometimes there are large tributaries whose contribution to the main stem skips a drainage level.

Populate the COMID (manually), and Lat/Long (right click on field and select calculate geometry - lat = xcoordinates and long = y-coordinates) accordingly for reference within the GeometricDesign Layer.

Once sites are selected in this fashion, they will need to be snapped to a bridge or access point.

Additional sites should be placed at pour points of subwatersheds (12-digit HUCs) to meet TMDL document requirements.

Once the initial sites are selected, the following features are taken into account to move or add sites:

- Permitted facilities
- Urban areas
- Historical sampling sites
- Assessment Unit IDs (AUID)
- External stakeholder information
- Resources maximum of 35 sites per project

After refining site selections, there may be additional sites added to ensure spatial representation of the project area.

Sites may be removed or changed after site reconnaissance if there are problems accessing the site or if sites are dry.

#### Notes regarding the NHD dataset:

All units are initially set to metric and need to be converted to imperial.

Within the nhdflowline layer, the GNIS_Name/ID refers to the whole river name and ID, while the COMID is a unique identifier for the particular segment.

There is not a value GNIS_Name/ID for every river, especially where primary streams and ditches are concerned.

Segments within the nhdflowline layer are based on linear miles between "nodes," which are broken up (typically) by tributary. Typically these lengths are less than 2-3 miles.

The cumulative drainage values in the NHD dataset have been compared against other and deemed "reasonable" (read – not statistically compared). Also note that the drainage is calculated through the model to be at the pour point of that segment.

The elevation values, however, are **not** reliable and require supervision. These values are calculated from the associated digital elevation model (DEM) and sometimes have null values for either the maximum or minimum elevation values. In addition, the length of the stream is not long enough (i.e. >1 mile) to calculate gradient. In either case, this associated value is helpful to identify contour changes against a USGS contour map. However, to note the calculated gradient from the NHD information has been observed to be within several tenths of mile compared to a manual calculation of gradient.

#### Important tables from NHD

- FlowlineAttributesFlow (found in: Region 05, Version 01_02, Catchment Flowline Attributes)
- Key fields: CumDrainag, Max ElevRaw, MinElevSmo,

#### Important Layers from NHD

- Region 05, Version 01_01, Catchment Shapefile
- Region 05, Version 01_02, National Hydrography Dataset

Attachment 2: IDEM OWQ Si	te Reconnaissance Form
---------------------------	------------------------

Site Number: Location Desc	npaon:		Stream:		County:	L
Г	Reconnaissa Recon Date	nce Data Collecte Crew I	ad Members	Lando First Name	wner/Contact Las	information T Name
Avg. Wiath (m)	Avg. Depth (m)	Max. Depth (m)	Nearest Town	Street A ddress	1.4	
Water Present?		Riffle/Run Present? D diment? Gau	Road/Public Access Possible?	City Telephone	E	State Z/p
			п	Pamphiler Distributed?	Please Call In Advance?	Results Requested?
			Ranng, Results, Comm	ients, and Planning		
Site Rating By T=easy, 10=di		Reconnaissan	ice Decision	Equipment Se	elected	Circle Equipment Needed
Access	Route	Pre-Recon Record in proce Approved Sile No. Landowner	sa oenled adoesa			Backpack Boat
Safery	Factor	No, Dry No, Stream chi No, Physical bi No, (mosurided	antiers			Tozebarge Longline Scanoe
Samplin	ig Effort	No. Unsafe due No. Silie impad	land e or not actessible I to traffic or location IEG by Dackwater			Seine Weighted Handline Waders Gill Net
Comments		No. Other				Chill Hot
Sketch of Stree	am & Access Roure	– Indicate Flow,	Direction, Obstacles, & La	nd Use (Use Back of Pag	ie, if Necessar	(Y

Sample	2	Sm		1		Sample I	Medium			Sa	mple Type		Duplic	ate Sam	pie #
tream Nai	me:			ų:				River	Mile:			Coun	ıy:		
te Descrip	-	pie Coll	ontore	1	Romaio	Collected	-	-	W	later		1		-	
survey rew Chief	1		3 4		Date	Time	Hydro	iab c	)epth	(Tt)	Water Fig (ct/sec		Flow Imated 7	Algae	? Aqua
Sam	ple Taker	12	1	Allque	ote	Wa	iter Flow T	уре	1	w	ater Appear	ance	-	anopy C	-
Yes No; Stream No; Owner	Dry N	-	Os C	la D	3 4 12 24 A8-Flow	Pool 1	Dry Run Eddy	Stage Floor	a (	Clear Murky Brown	Green Black Gray (Se	Other blo/3ewa		-20%   0-40%   0-80%	
Special Notes:			_				_			_					
Date	24-hr T	and the second second			Vater	Spec Cond	Turbidity	3. 54	at C	chiorine	Chioride	Chloro		Weathe	
(m/d/yy)	(hhomi	n) (m	10	Te	mp (°C)	(uohms/om)	(NTU)	100		(mg/l)	(mg/l)	(mg	(m)	SC W	WS
omments				1	-			1			-	-	-		1
omments	8			1		-									
ommente		_	-	-	-			-	-						-
omments		-		-	_			-		-	_			1	-
ommente				1				-	-	_	Weather Co	ie Defini	tions	4	4
		Mea	suremen Flaga	t = R	> Max. Estimat	Meter Measure Meter Measure ed (See Comm d (See Comm	ement nents)		SC Condi	tions	WD Wind Dire	ction	Wind S	/S trength	
ield Cal				-				1 Clear 2 Scate 3 Partly	ered	9 Snow 10 Sleet	00 North (0 de 09 East (90 de 18 South (180	grees)	1 Light 2 Mod./	Light	1<3 233- 346-
Date m/d/yy)	Time (hh:mm	) Initia		Ype	Meter	rations # Value	Units	4 Cloud 5 Mist 6 Fog 7 Show	N.		27 West (270)		3 Mode 4 Mod./ 5 Stron 6 Gale	rate Strong	461- 576- 6>8
-				-		-	1		_			_	_		
		Тур		iaty			Ē			-		1	n - 14		
	itives/E servative		rvative L	ot # I	Bottle Typ	e Bottle I	CN CN CN CN	Gene Nutri tais Meta Cyan G OII & xics Toxic	ents: H lis: HN lide: N Greas	aOH Re: H2SO4		1000P 500P 250P 1000G 500G	2000mL F 1000mL F 500mL P 250mL P 1000mL C 500mL G	Plastic, Na astic, Nar astic, Nar Blass, Na ass, Wide	strow M strow Mo row Mo row Mo row Mo
							VC Ph Se Gij Fo	A Volal st Pesti en Phen d Sedi / Giypi Merc 5 Chro	icides: nois: Hi ment: I hosate tury(16 mium\	anics: HC Ice 2804	HOB	125G 40GV 120PB 1000PF 500PF 60P 250T	250mL Gi 125mL Gi 40mL Gia 120ml Pia 1000mL Pi 500mL Pia 500mL Pia 500mL Te 500mL Te 125mL Te	ass, Wide ss Vial stic (Bac fastic, Cor astic, Cor stic filon filon	e Mouth terta Or oming F

## Attachment 3: IDEM OWQ Stream Sampling Field Data Sheet

#### Attachment 4: IDEM OWQ Fish Collection Data Sheet

IDEM	
OWQ-WATERSHED ASSESSMENT AND PLANNING BRANCH	

Event ID	Voucher jars	Unknown jars	Equipment	Page of
Voltage	Time fished (sec)	Distance fished (m)	Max. depth (m)	Avg. depth (m)
Avg. width (m)	Bridge in reach	Is reach representative	If no, why	

Museum data: Initials_____ ID date_____ Jar count_____ Fish Total_

Coding for Anomalies: D-deformities E-eroded fins L-lesions T-tumor M-multiple DELT anomalies O-other (A-anchor worm C-leeches W - swirled scales Y - popeye S - emaclated F - fungus P - parasites) H - heavy L - light (these codes may be combined with above codes)

TOTAL # OF FISH	(mass g)	WEIGHT (s)	(length mm)		8	ANON	ALIES	5	
	(110.55 6)		Min length	D	E	1	Ť	м	0
V P			Max length						
			Min length	D	E	t	τ	M	(
			Max length						
VP			Note to conta			-			
_			Min length	D	E	Ľ	T	M	(
			Max length				_		
V P			Min length	D	E	ı	т	M	
			Max length						
V P			10-47-005-07						
			Min length	D	E	L	τ	м	4
			Max length	_					
VP	1		1.0. 0	1		_			
			Min length	D	E	Ľ	т	M	(
1 1 1			Max length						
V P			1 P 1						

#### Attachment 5: IDEM OWQ Macroinvertebrate Header Form



## Office of Water Quality: Macroinvertebrate Header

L-Site		Stream Name		Locatio	n	County	Surveyor
Sample Date		<u>Macro# # Conta</u> e Quality Rejected	ainers	- British Brights	C Kick	□ Normal □ Duplicate □ Replicate _	
<u>Riparian Z</u>	one/Instre	am Features		Macro Sub Sam	ple (Field or	Lab):	
Watershed Ero	sion: V	Vatershed NPS Po	llution:	Macro Reach S	ampled (m):		
Heavy		No Evidence					
□ Moderate		Obvious Sources					
□ None		Some Potential Source	ies				
Stream Depth Riffle (m):	Stream Depth Run (m):	Stream Depth Pool (m):	 _ [	Distances Riffle-Riffle (m):	Distances Bend-Bend (	-	
Stream Width	(m): High V	Water Mark (m):	F	-			
Stream Type: Cold Warm		y (Est): □ Slightly Turbid □ Turbid					
🗆 Channelizati	on 🛛 🗆 Dam P	resent					
Predominant S Other	urrounding Lan	d Use: 🗆 Forest 🗆	Field/Pastu	ıre 🗆 Agricultural [	🗆 Residential 🛛	Commercial	Industrial

#### **Sediment**

Sediment Odors:  Normal Sewage Petroleum Chemical Anaerobic None C	Other
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Relic Shells Other	
Sediment Oils:  Absent  Moderate  Profuse  Slight	

□ Are the undersides of stones, which are not deeply embedded, black?

#### Substrate Components

(Note: Select from 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% for each inorganic/ organic substrate component)

	Inorgan	ic Substrate C	omponents (%	Diameter)	)		Org	anic Substr	ate Components (% 1	(ype)
Bedrock	Boulder	Cobble	Gravel	Sand	Silt	Clay	Detritus	Detritus	Muck/Mud	Marl(gray w/
Dedrock	(>10 in)	(2.5-10 in)	(0.1-2.5 in)	(gritty)	SIIC	(slick)	(sticks, wood)	(CPOM)	(black, fine FPOM)	shell fragments)

#### Water Quality

Water Odors: 
Normal 
Sewage 
Petroleum 
Chemical 
None Other
Water Surface Oils: 
Slick 
Sheen 
Glob 
Flocks 
None

IDEM 03/8/18

<b>Surveyor</b>	Sample Date	County	Macro Sa	ample Type	Habitat	La contra a series a	-
Jurveyor				ampie Type	Complete	QHEI Score:	1
SUBSTRATE	heck ONLY Two pr	edominant substra	ate TYPE BOXES				
i	nd check every typ	e present			Check ONE (Or		
BEST TYPE	PRESENT	OTHER T PREDOMINANT	PRESENT		IGIN	QUALITY	
BLDR/SLABS	P/G R/R 10]	- HAROPAN	P/G R/R		STONE[1]	S HEAVY [-2]	
BOULDER [9]		DETRITUS	S[3] 🗆 🗆	U WETL	ÂNDS [0]	L NORMAL[0]	Sul
COBBLE [8] GRAVEL [7]		□□ MUCK[2] □□ SILT[2]			OPAN [0] OSTONE [0]	' 🗆 FREE [1]	$\mathbf{r}$
SAND [6]					RAP[0]	EXTENSIVE [-2]	
BEDROOK [5]		tural substrates; ignore	e sludge from point-s		STRÍNE [0]	D MODERATE [-1]	
MBER OF BEST		more [2] less [0]			E[-1] FINES[-2]	NORMAL[0]	Ma
nments		Const Bush				E unit [1]	
	OVER Indicate pr					MAUNT	
	Moderate amounts oderate or greater		CARL MARK CONTRACT STREET	Contraction of the second s		AMOUNT Check ONE (Or 2 & ave	era
	ible, well developed					□ EXTENSIVE > 75% [	11
i.) UNDERCUT BAN	1128	POOLS >70	0cm [2] 0V	BOWS, BACKWA	TERS [1]	☐ MODERATE 25 - 75% ☐ SPARSE 5 - < 25% [3]	
OVERHANGING	VEGETATION[1]	ROOTWADS	S[1] AQ	UATIC MACROPH	-MTES [1]	□ NEARLY ABSENT < 5	
	LOWWATER)[1]	BOULDERS	[1]LO	GS OR WOODYD	BRIS [1]	Cover	$\mathbf{r}$
ROOTMATS [1]						Maximum 20	
nments	7.5.5.4 To 115					20	1.1
CHANNEL MI							
UNCITY	RPHOLOGY	heck ONE in each	category (Or 2 &	average)	OTAD	11 777	
UOSITY	DEVELO	DPMENT	CHANNEL	average) IZATION		ILITY HBI	
NUOSITY HIGH[4] MODERATE[3]		DPMENT LENT[7] [5]	CHANNELJ	D[4]	□ Hig □ Moi	H[3] DERATE[2] Channel	
NUOSITY High[4] Moderate[3] Low[2]	DEVELO	DPMENT LENT[7] [5] 3]_	CHANNELI NONE[6] RECOVERE	[ZATION 10 [4] NG [3]	☐ Hig ☐ Moi □ Lov	H[3] DERATE[2] Channel	
NUOSITY HIGH[4] MODERATE[3] LOW[2] NONE[1]		DPMENT LENT[7] [5] 3]_	CHANNELI NONE[6] RECOVERE	D[4]	☐ Hig ☐ Moi □ Lov	H[3] DERATE[2] Channel V[1] Maximum	
NUOSITY HIGH[4] MODERATE[3] LOW[2] NONE[1] mments	DEVELO EXCEL GOOD FAIR [ POOR ON AND RIPA	DPMENT LENT[7] [5] 3] [1] <i>RIAN ZONE</i> c	CHANNELI NONE[6] RECOVERE RECOVERE RECENT OF Check ONE in eac	IZATION ED [4] NG [3] RNORECOVERY h category for EAG	HIG     MOI     LOV [1]	H[3] DERATE[2] Channel V[1] Maximum 20	
NUOSITY HIGH [4] WODERATE[3] LOW [2] VONE [1] <u>mments</u> BANK EROSIA River right looking down	DEVELO DEVCEL GOOD FAIR [ POOR ON AND RIPA Istream L R RIPA	DPMENT LENT[7] [5] 3] [1] <i>RIAN ZONE</i> c ARIAN WIDT	CHANNELI NONE[6] RECOVERE RECOVERE RECENT OF Check ONE in each Check ONE in each	(ZATION DD [4] NG [3] RNORECOVERY h category for EAC D PLAIN QU	HIG     MOI     LOV [1] CH BANK (Or 2 p ALITY	H[3] DERATE[2] Channel V[1] Maximum 20 er bank & average) L R	
NUOSITY -IGH[4] MODERATE[3] _OW[2] NONE[1] <u>nments</u> BANK EROSION EROSION	DEVELO EXCEL GOOD FAIR POOR ON AND RIPA nstream L R RIP WID	DPMENT LENT[7] [5] 3] [1] <i>RIAN ZONE</i> C ARIAN WIDT E> 50m [4]	CHANNE[] RECOMERE RECOMERE RECOMERE RECENT OF Check ONE in ead Check ONE in ea	IZATION D [4] NG [3] RNORECOVERY h category for EAC D PLAIN QU/ ST, SWAMP [3]	HIG     MOL     MOL     LOV     LOV     CH BANK (Or 2 p     ALITY	H[3] DERATE[2] Channel V[1] Maximum 20 wer bank & average) L R CONSERVATION TILLA	
NUOSITY -IGH[4] MODERATE[3] -OW[2] NONE[1] nments SANK EROSION EROSION NONE/LITTLE	DEVELO EXCEL GOOD FAIR POOR ON AND RIPA refream RIP WIDO [3] MOD	DPMENT LENT[7] [5] 3] [1] <i>RIAN ZONE</i> c ARIAN WIDT	CHANNE[] NONE[6] RECOVERE RECOVERI RECOVERI RECENTOR Check ONE in each Check ONE i	IZATION DG [4] NG [3] RNORECOVERY h category for EAC D PLAIN QU/ ST, SWAMP [3] BOROLD FIELD [	HIG     MOL     MOL     COV     CH BANK (Or 2 p     ALITY     1 2	H[3] DERATE[2] Channel V[1] Maximum 20 er bank & average) L R	₩[
NUOSITY IGH[4] MODERATE[3] JONE[1] NONE[1] BANK EROSIA River right looking down EROSION NONE/LITTLE] MODERATE[2]	DEVELO EXCEL GOOD FAIR [ POOR ON AND RIPA NUTURE CON AND RIPA DEVELO FAIR [ POOR NARI MOD MOD MOD MOD	DPMENT LENT[7] [5] [1] <i>RIAN ZONE</i> c <b>ARIAN WIDT</b> E>50m [4] BRATE 10-50m [3 ROW5-10m [2] (NARROW[1]	CHANNE[] NONE[6] RECOVERE RECOVERE RECOVERI RECENT OF Check ONE in each Check ONE	E [4] NG [3] NORECOVERY h category for EAC D PLAIN QU ST, SWAMP [3] B OROLD FIELD [ ENTIAL, PARK, N D PASTURE [1]	HIG     MOL     M	H[3] DEFATE[2] Channel V[1] Maximum 20 Per bank & average) L R CONSERVATIONTILLA URBAN OR INDUSTRIA URBAN OR INDUSTRIA MINING (CONSTRUCT the predominant land use(s)	₩[
NUOSITY TIGH[4] 40DERATE[3] .OW[2] NONE[1] nments BANK EROSIA River right looking dow EROSION NONE/LITLE] MODERATE[2]	DEVELO EXCEL GOOD FAIR POOR ON AND RIPA I R RIP WID 3] WID MOD	DPMENT LENT[7] [5] [1] <i>RIAN ZONE</i> c <b>ARIAN WIDT</b> E>50m [4] BRATE 10-50m [3 ROW5-10m [2] (NARROW[1]	CHANNE[] NONE[6] RECOVERE RECOVERE RECOVERI RECENT OF Check ONE in each Check ONE	E [4] NG [3] NORECOVERY NORECOVERY D PLAIN QU ST, SWAMP [3] BOROLD FIELD [ ENTIAL, PARK, N	HIG     MOL     M	H[3] DERATE[2] Channel Maximum 20 Der bank & average) L R ONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING (CONSTRUCT ate predominant land use(s) 00m riparian. Riparian	₩[
NUOSITY -IGH[4] MODERATE[3] JONE[1] nments SANK EROSION EROSION NONE/LITTLE] MODERATE[2] HEAVY/SEVER	DEVELO EXCEL GOOD FAIR [ POOR ON AND RIPA POOR ON AND RIPA WIDO 3] WIDO 3] WIDO 3] WIDO 3] WIDO 3] NARS E[1] VERN NON	DPMENT LENT[7] [5] 3] [1] <b>RIAN ZONE</b> (1] <b>RIAN ZONE</b> <b>ARIAN WIDT</b> E> 50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0]	CHANNE[] RECOVERE RECOVERE RECOVERE RECOVERTO RECENTOR Check ONE in ead Check	E [4] NG [3] NORECOVERY h category for EAC D PLAIN QU ST, SWAMP [3] B OROLD FIELD [ ENTIAL, PARK, N D PASTURE [1]	HIG     MOL     M	H[3] DEFATE[2] Channel V[1] Maximum 20 Per bank & average) L R CONSERVATIONTILLA URBAN OR INDUSTRIA URBAN OR INDUSTRIA MINING (CONSTRUCT the predominant land use(s)	AL
NUOSITY IGH[4] MODERATE[3] JONE[1] MMENTS SANK EROSION EROSION NONE/LITTLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER	DEVELO EXCEL GOOD FAIR POOR ON AND RIPA TREAM RIP WID I R RIP WID I NAR E[1] VERN NON AND RIFFLE	DPMENT LENT[7] [5] [1] RIAN ZONE c ARIAN WIDT E>50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0]	CHANNE[] RECOVERE RECOVERE RECOVERTO RECENTOR Check ONE in ead Check ONE in ea	IZATION ED [4] NG [3] RNORECOVERY] h category for EAC D PLAIN QU, ST, SWAMP [3] B OR OLD FIELD [ ENTIAL, PARK, NI D PASTURE [1] PASTURE, ROWC	[1] CH BANK (Or 2 p ALITY 2] EWFIELD [1] ROP[0] past 1	H[3] DERATE[2] Channel Maximum 20 Her bank & average) L R CONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) 00m riparian. Riparian Maximum 10	
NUOSITY IGH[4] MODERATE[3] JONE[1] MONE[1] MONE[1] SANK EROSION EROSION NONE/LITTLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER	DEVELO EXCEL GOOD FAIR POOR ON AND RIPA refream R RIP WIDO 3] MOD MOD CAND RIFFLE TH CHAN	DPMENT LENT[7] [5] 3] [1] RIAN ZONE c ARIAN WIDT E>50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0] RUN QUALIT INEL WIDTH	CHANNELI NONE[6] RECOVERE RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVERI RECOVER	E [4] NG [3] NORECOVERY CORECOVERY D PLAIN QU, ST, SWAMP [3] BOROLD FIELD [ BOROLD FIELD [ BORITAL, PARK, N D PASTURE [1] PASTURE, ROWC	[1] CH BANK (Or 2 p ALITY 2] EWFIELD [1] ROP[0] past 1 ELOCITY	H[3] DERATE[2] Channel V[1] Maximum 20 Her bank & average) L R CONSERVATIONTILLA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA MINING /CONSTRUCT the predominant land use(s) 1 00m riparian. Riparian Maximum	
NUOSITY         IIGH[4]         WODERATE[3]         JOW [2]         NONE [1]         nments         BANK EROSION         EROSION         NONE/LITUE]         MODERATE[2]         HEAVY/SEVER         nments         POOL/GLIDE         XIMUM DEP         AXIMUM DEP         NOK (ONLY)         > 1m [6]	DEVELO DEVELO CONCEL CONCELO FAIR POOR DEVELO CONCELO FAIR POOR DEVELO FAIR POOR DEVELO FAIR FAIR POOR DEVELO FAIR POOR POOR DEVELO FAIR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR POOR PO	DPMENT LENT [7] [5] 3] [1] RIAN ZONE C ARIAN WIDT E>50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0] ROWS-10m [2] (NARROW[1] E[0] RUN QUALIT INEL WIDTH IE (0r 2 & average IDTH>RIFLEW	CHANNELI NONE[6] RECOVERI RECOVERI RECENT OF Check ONE in each Check ONE in each C	(ZATION E) [4] NG[3] RNORECOVERY A category for EAC D PLAIN QUANT ST, SWAMP [3] B OR OLD FIELD [ BORTIAL, PARK, NI D PASTURE [1] PASTURE, ROWC CURRENT VI Check ALL th FORRENTIAL [-1]	HIG     MOL     M	H[3] DEFATE[2] Channel Maximum 20 Per bank & average) L R OONSERVATIONTILLA URBAN OR INDUSTRUCT URBAN OR INDUSTRUCT IL Primarian Maximum 10 Recreation Poter (Check one and commer Primary Co	ntia nto onti
IUOSITY IIGH[4] ACOERATE[3] .CW[2] VONE[1] mments BANK EROSION NONE/LITLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER HEAVY/SEVER MODERATE[2] HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER	DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO	DPMENT LENT [7] [5] 3] [1] <i>RIAN ZONE</i> C <b>ARIAN WIDT</b> E> 50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0] <b>RUN QUALIT</b> INEL WIDTH E (07 2 & average IDTH>RIFLEW IDTH=RIFLEW	CHANNELJ NONE[6] RECOMERE RECOMERE RECENT OF Check ONE in each H L R FLOO FORES FORES FORES FORES FORES COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN	EXATION ED [4] NG [3] RNORECOVERY A category for EAC D PLAIN QUANT, SWAMP [3] BOROLD FIELD [ BOROLD FIELD [ BOROLD FIELD [ BOROLD FIELD [ PASTURE, ROWC CURRENT VI Check ALL th FORRENTIAL [-1] /ERY FAST [1]	HIG     MOL     M	H[3] DERATE[2] Channel Maximum 20 Per bank & average) L R CONSERVATIONTILLA CONSERVATIONTILLA URBAN OR INDUSTRUCT URBAN OR INDUSTRUCT te predominant land use(s) f 00m riparian. Riparian Maximum 101 Recreation Poter (Check one and commer Primary Co TIAL [-1] Secondary	ntia nto onti
IUOSITY IIGH[4] ACOERATE[3] OW[2] VONE[1] mments BANK EROSIA River right looking dow EROSION NONE/LITILE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SE	DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO	DPMENT LENT [7] [5] 3] [1] RIAN ZONE C ARIAN WIDT E>50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0] ROWS-10m [2] (NARROW[1] E[0] RUN QUALIT INEL WIDTH IE (0r 2 & average IDTH>RIFLEW	CHANNE[] NONE[6] RECOMBRI RECOMBRI RECOMBRI RECENT OF Check ONE in each H L R FLOO FORES CH RESID FORES CHANNEL RESID CHANNEL FORES COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN COPEN CO	(ZATION E) [4] NG[3] RNORECOMERY A category for EAC D PLAIN QUANT, SWAMP [3] B OR OLD FIELD [ ENTIAL, PARK, NI D PASTURE, ROWCO CURRENT VI Check ALL th FORRENTIAL [-1] ARY FAST [1]	HIG     MOL     M	H[3] DERATE[2] Channel Maximum 20 Her bank & average) L R CONSERVATIONTILLA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) f MINING /CONSTRUCT ate predominant land use(s) f MINING /CONSTRUCT te predominant land use(s) f Maximum 10 Recreation Poter (Check one and commer Primary Co TIAL [-1] Secondary TENT [-2] Pool/	ntia nto onti
IUOSITY IIGH[4] AODERATE[3] OW[2] NONE[1] mments BANK EROSIA BANK	DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO	DPMENT LENT [7] [5] 3] [1] <i>RIAN ZONE</i> C <b>ARIAN WIDT</b> E> 50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0] <b>RUN QUALIT</b> INEL WIDTH E (07 2 & average IDTH>RIFLEW IDTH=RIFLEW	CHANNE[] RECOVER RECOVER RECOVER RECENT OF Check ONE in ead Check ONE in ead	EXATION ED [4] NG [3] RNORECOVERY A category for EAC D PLAIN QUANT, SWAMP [3] BOROLD FIELD [ BOROLD FIELD [ BOROLD FIELD [ BOROLD FIELD [ PASTURE, ROWC CURRENT VI Check ALL th FORRENTIAL [-1] /ERY FAST [1]		H[3] DEFATE[2] Channel Maximum 20 Her bank & average) L R OONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) 00m riparian. Riparian Maximum 10 Recreation Poter (Check one and commer Primary Co TIAL [-1] Secondary TENT[-2] Pool/ ] Current J Current Maximum	ntia nto onta
NUOSITY IGH[4] WODERATE[3] OW[2] NONE[1] nments BANK EROSION EROSION River right looking dow EROSION NONE/LITLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] COL/GLIDE AXIMUM DEE AXIMUM DEE 0.02 - < 107 m[2] 0.2 - < 0.4m [1] 0.2 - < 0.4m [1] 0.4 - < 0.4m	DEVELO DEVCEL GOOD GOOD FAIR POOR POOR DV AND RIPA WID CAND RIFFLE VIEN NON CAND RIFFLE DV RIFFLE DV RIFFLE DV RON Check ON POOL W POOL W POOL W POOL W POOL W	DPMENT LENT [7] [5] 3] [1] RIAN ZONE C ARIAN WIDT E>50m [4] ERATE 10-50m [3 ROWS-10m [2] (NARROW[1] E[0] ROWS-10m [2] (NARROW[1] E[0] ROW QUALIT INEL WIDTH E (Or 2 & average IDTH > RIFLEW IDTH = RIFLEW IDTH < RIFLEW	CHANNELI NONE[6] RECOVERE RECOVERE RECENT OF Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each FORES Check ONE in each Check ONE	EZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QU/ ST, SWAMP [3] B OR OLD FIELD [ BNITIAL, PARK, NI D PASTURE, ROWC CURRENT VI Check ALL th FORRENTIAL [-1] FAST [1] MODERATE [1] rdicate for reach -		H[3] DEPATE[2] Channel W[1] Maximum 20 Wer bank & average) L R CONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT ate predominant land use(s) Maximum 101 Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT [-2] Pool/ ] Current	ntia nto onta
VUOSITY -IGH[4] WODERATE[3] LOW [2] VONE [1] mments BANK EROSION EROSION EROSION NONE/LITLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] COL/GLIDE AXIMUM DEF eck ONE (ONLYI) > 1m[6] 0.7 - < 1m[2] 0.2 - < 0.4m[1] 0.2 - < 0.4m[1] 0.2 - < 0.4m[1] 0.2 - < 0.4m[1] 0.2 - < 0.4m[1] 0.4 - < 0.7m[2] 0.2 - < 0.4m[1] 0.4 - < 0.7m[2] 0.2 - < 0.4m[1] 0.4	DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO	DPMENT LENT [7] [5] 3] [1] RIAN ZONE C ARIAN WIDT E>50m [4] ERATE 10-50m [3 ROWS-10m [2] (NARROW[1] E[0] ROWS-10m [2] (NARROW[1] E[0] ROW QUALIT INEL WIDTH E (Or 2 & average IDTH > RIFLEW IDTH = RIFLEW IDTH < RIFLEW	CHANNELI NONE[6] RECOVERE RECOVERE RECENT OF Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each FORES Check ONE in each Check ONE	IZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QU/ ST, SWAMP [3] B OR OLD FIELD [ BOR OLD FIELD [ BORSTURE [1] PASTURE ROWC CURRENT VI Check ALL th FORRENTIAL [-1] ARY FAST [1] MODERATE [1] Adicate for reach - t a population	HiG     MOL     M	H[3] DEFATE[2] Channel Maximum 20 Her bank & average) L R CONSERVATIONTILLA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA URBAN OR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) f MINING /CONSTRUCT ate predominant land use(s) f MINING /CONSTRUCT ate predominant land use(s) f Maximum 10 Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT [-2] Pool/ ] Current s. Maximum 12	
NUOSITY IIGH[4] WODERATE[3] .OW[2] NONE[1] <u>nments</u> BANK EROSION EROSION NONE/LITLE] MODERATE[2] HEAVY/SEVER NODERATE[2] HEAVY/SEVER NODERATE[2] HEAVY/SEVER NODERATE[2] HEAVY/SEVER NODERATE[2] 0.00000000000000000000000000000000000	DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO DEVELO	DPMENT LENT [7] [5] 3] [1] RIAN ZONE C ARIAN WIDT E>50m [4] ERATE 10-50m [3 ROW5-10m [2] (NARROW[1] E[0] RUN QUALIT INEL WIDTH E[07 2 & average IDTH>RIFLEW IDTH=RIFLEW IDTH=RIFLEW	CHANNELI NONE[6] RECOMERE RECOMERE RECENT OF Check ONE in each H L R FLOO FORES FORES SHRUE RESID FENCE CPEN PT ADTH[2] 1 ADTH[2] 1 T ADTH[0] F T T T T T T T T T T T T T	IZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QU/ ST, SWAMP [3] B OR OLD FIELD [ BOR OLD FIELD [ BORSTURE [1] PASTURE ROWC CURRENT VI Check ALL th FORRENTIAL [-1] ARY FAST [1] MODERATE [1] Adicate for reach - t a population	HIG     MOL     M	H[3] DERATE[2] Channel Maximum 20 Her bank & average) L R CONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT ate predominant land use(s) CONSERVATIONTILLA DERATION Att intervention (Check one and comment Primary Construct Check one and comment Primary Construct Check one and comment Primary Construct Comment Secondary TENT [-2] Pool/ J Current s. Maximum 12 NORIFFLE [metric: URBANOR INDUSTRIA	ntia nto contra
IUOSITY IIGH[4] ACOERATE[3] OW[2] VONE[1] mments BANK EROSIA River right looking dow EROSION NONE/LITTLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SE	DEVELO           EXCEL           EXCEL           GOOD           FAIR [           POOR             ON AND RIPA           Image: Second Control of Cont	DPMENT LENT[7] [5] 3] [1] <i>RIAN ZONE</i> C <b>ARIAN WIDT</b> E> 50m [4] ERATE 10-50m [3] ROW5-10m [2] (NARROW[1] E[0] <b>RUN QUALIT</b> INEL WIDTH E (07 2 & average IDTH> RIFLEW IDTH= RIFLEW IDTH= RIFLEW IDTH= RIFLEW IDTH= RIFLEW	CHANNE[] NONE[6] RECOMERE RECOMERE RECOMERE RECENT OF Check ONE in ead H L R FLOO FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FOR	EXATION ED [4] NG [3] RNORECOMERY] IN CRECOMERY] IN CRECOMERY] IN CRECOMERY] IN COMPLAIN QUA ST, SWAMP [3] BOROLD FIELD [ INTIAL, PARK, N ED PASTURE [1] PASTURE, ROWCO CURRENTIAL [-1] ABST [1] MODERATE [1] IN COMBATE [1] IN COMBATE [1] IN COMBATE [1] IN COMBATE [1] IN SUBSTRAT G, Cobble, Boulde	HIG     MOC     M	H[3] DERATE[2] Channel W[1] Maximum 20 Wer bank & average) L R CONSERVATIONTILLA CONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT Ate predominant land use(s) MAXIMUM 10 Recreation Poter (Check one and commer Primary Co TIAL [-1] Secondary TENT [-2] Pool/ ] Current s. MAXIMUM 12 NORIFFLE [metric NORIFFLE [metric	
IUOSITY IIGH[4] AODERATE[3] OW[2] NONE[1] mments BANK EROSION NONE/LITTLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER MODERATE[3] HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER HEAVY/SEVER	DEVELO           EXCEL           EXCEL           GOOD           FAIR [           POOR             ON AND RIPA           Image: Poor           Image: Poor      <	DPMENT LENT[7] [5] 3] [1] <i>RIAN ZONE</i> C <b>ARIAN WIDT</b> E> 50m [4] ERATE 10-50m [3] ROW5-10m [2] (NARROW[1] E[0] <b>RUN QUALIT</b> INEL WIDTH E (07 2 & average IDTH> RIFLEW IDTH= RIFLEW IDTH= RIFLEW IDTH= RIFLEW IDTH= RIFLEW	CHANNELD NONE[6] RECOVER RECOVER RECOVER RECENT OF Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE	IZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QU/ ST, SWAMP [3] B OR OLD FIELD [ BNTIAL, PARK, NI D PASTURE, ROWC CURRENT VI Check ALL th FORRENTIAL [-1] ARX FAST [1] MODERATE [1] MODERATE [1] Aticate for reach - t a population Check ONE ( IN SUBSTRAT SL. Coble, Boulde SLE (e.g., Large Gr	HIG     MOL     M	H[3] DEFATE[2] Channel Maximum 20 Her bank & average) L R CONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT ate predominant land use(s) MINING /CONSTRUCT ate predominant land use(s) MAXIMUM 101 Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT [-2] Pool/ ] Current s. MAXIMUM 12 NORIFFLE [metric: INORIFFLE [metric: NONE [2] LOW[1] Riffle/	
IUOSITY IIGH[4] ACOERATE[3] .CW[2] VONE[1] mments BANK EROSIA REROSION NONE/LITLE] MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA HEAVY/SEVERA HEAVY/SEVERATE[3] HEAV	DEVELO           EXCEL           EXCEL           GOOD           FAIR [           POOR             ON AND RIPA           Image: Poor           Image: Poor      <	DPMENT LENT[7] [5] 3] [1] <i>RIAN ZONE</i> C <b>ARIAN WIDT</b> E> 50m [4] ERATE 10-50m [3] ROW5-10m [2] (NARROW[1] E[0] <b>RUN QUALIT</b> INEL WIDTH E (07 2 & average IDTH> RIFLEW IDTH= RIFLEW IDTH= RIFLEW IDTH= RIFLEW IDTH= RIFLEW	CHANNELD NONE[6] RECOVER RECOVER RECOVER RECENT OF Check ONE in each Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each FORES Check ONE in each Check ONE in each FORES Check ONE in each Check ONE	EXATION ED [4] NG [3] RNORECOMERY] In category for EAC ED PLAIN QUA ST, SWAMP [3] BOROLD FIELD [ INTIAL, PARK, N ED PASTURE [1] PASTURE, ROWCO CURRENTIAL [-1] ABST [1] MODERATE [1] INDERATE [1] Indicate for reach Check ONE (1) Check ONE (1) CH	HIG     MOL     M	H[3] DEFATE[2] Channel V[1] Maximum 20 Per bank & average) R CONSERVATIONTILLA URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ MINING /CONSTRUCT ate predominant land use(s) 00m riparian. Riparian Maximum 10 Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT[-2] Pool/ ] Current s. Maximum 12 UNORIFFLE [metric: INORIFFLE [metric: INORIFFLE [metric: INORIFFLE [metric: INORIFFLE [Maximum] LOW[1] Riffle/ MODERATE[0] Rum EXTENSIVE [-1] Maximum	
NUOSITY IGH[4] MODERATE[3] OW[2] NONE[1] mments BANK EROSION River right looking down EROSION NONE/LITTLE] MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] HEAVY/SEVER MODERATE[2] COL/GLIDE AXIMUM DEF heck ONE (ONLY) > 1m[6] 0.7 - < 1m[4] 0.4 - < 0.7m[2] 0.2 - < 0.4m[1] < 0.2 m[0] [mm mments MODERATE[2] D.2 - < 0.7m[2] 0.2 - < 0.4m[1] < 0.2 m[0] [mm mments FFLE DEPTH SEST AREAS < 10 SEST AREAS < 5 comments	DEVELO DEVELO DEVELO CALOR IPA GOOD FAIR [ POOR NAND RIPA WID CAND RIFFLE/ WID CAND RIFFLE/ POOL W POOL W POOL W POOL W POOL W POOL W POOL W Check of POOL W POOL W Check of POOL W POOL W MOD Check of POOL W MOD Check of MOD Check of Check of	DPMENT LENT [7] [5] 3] [1] <i>RIAN ZONE</i> C <b>ARIAN WIDT</b> E>50m [4] ERATE 10-50m [3] ROW5-10m [2] (NARROW[1] E[0] <i>RUN QUALIT</i> INEL WIDTH E[07 2 & average IDTH>RIFLEW IDTH>RIFLEW IDTH>RIFLEW IDTH <riflew IDTH<riflew IDTH<riflew< td=""><td>CHANNE[] NONE[6] RECOMERE RECOMERE RECOMERE RECOMERT OF Check ONE in each F L R FLOO FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES</td><td>IZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QUANT, SWAMP [3] B OROLD FIELD [ PASTURE [1] PASTURE, ROWCE CURRENT VI Check ALL th TORRENTIAL [-1] ARY FAST [1] MODERATE [1] AST [1] MODERATE [1] MODERATE [1] MODERATE [1] AST [1] MODERATE [1] MODERATE [1] MODERATE [1] MODERATE [1] MODERATE [1] AST [1] MODERATE [1] MODERAT</td><td>HIG     MOC     M</td><td>H[3] DEFATE[2] Channel Maximum 20 Per bank &amp; average) R CONSERVATIONTILLA URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ MINING /CONSTRUCT ate predominant land use(s) 00m riparian. Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT[-2] Pool/ ] Current s. Maximum 12 UNORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORE[2] LCW[1] Rtiffe/ MCDEPATE[0] Rum EXTENSIVE [-1] Maximum 8</td><td>ntia nto contra contra</td></riflew<></riflew </riflew 	CHANNE[] NONE[6] RECOMERE RECOMERE RECOMERE RECOMERT OF Check ONE in each F L R FLOO FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES	IZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QUANT, SWAMP [3] B OROLD FIELD [ PASTURE [1] PASTURE, ROWCE CURRENT VI Check ALL th TORRENTIAL [-1] ARY FAST [1] MODERATE [1] AST [1] MODERATE [1] MODERATE [1] MODERATE [1] AST [1] MODERATE [1] MODERATE [1] MODERATE [1] MODERATE [1] MODERATE [1] AST [1] MODERATE [1] MODERAT	HIG     MOC     M	H[3] DEFATE[2] Channel Maximum 20 Per bank & average) R CONSERVATIONTILLA URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ URBAN OR INDUSTRI/ MINING /CONSTRUCT ate predominant land use(s) 00m riparian. Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT[-2] Pool/ ] Current s. Maximum 12 UNORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORIFFLE [metric: NORE[2] LCW[1] Rtiffe/ MCDEPATE[0] Rum EXTENSIVE [-1] Maximum 8	ntia nto contra
IUOSITY IIGH[4] ACOERATE[3] .CW[2] VONE[1] mments BANK EROSIA REROSION NONE/LITLE] MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[2] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA MODERATE[3] HEAVY/SEVERA HEAVY/SEVERA HEAVY/SEVERATE[3] HEAV	DEVELO           EXCEL           EXCEL           GOOD           FAIR [           POOR             ON AND RIPA           Image: Poor           Image: Poor      <	DPMENT LENT [7] [5] 3] [1] RIAN ZONE C ARIAN WIDT E>50m [4] ERATE 10-50m [3] ROW5-10m [2] (NARROW[1] E[0] ROW QUALIT INEL WIDTH E[07 2 & average IDTH>RIFLEW IDTH>RIFLEW IDTH>RIFLEW IDTH <riflew IDTH<riflew IDTH<riflew< td=""><td>CHANNE[] NONE[6] RECOMERE RECOMERE RECOMERE RECENT OF Check ONE in ead H L R FLOO FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FOR</td><td>IZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QU/ ST, SWAMP [3] B OR OLD FIELD [ BNTIAL, PARK, NI D PASTURE, ROWC CURRENT VI Check ALL th FORRENTIAL [-1] ARX FAST [1] MODERATE [1] MODERATE [1] Aticate for reach - t a population Check ONE ( IN SUBSTRAT SL. Coble, Boulde SLE (e.g., Large Gr</td><td>HIG     MOL     M</td><td>H[3] DERATE[2] Channel V[1] Maximum 20 Her bank &amp; average) L R CONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) f 00m riparian. Riparian Maximum 10 Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT [-2] Pool/ ] Current s. Maximum 12 NORIFFLE [metric: IFFLE/RUN EMBEDDE NONE[2] LOW[1] Riffle/ MODERATE[0] Run EXTENSIVE [-1] Maximum 8</td><td></td></riflew<></riflew </riflew 	CHANNE[] NONE[6] RECOMERE RECOMERE RECOMERE RECENT OF Check ONE in ead H L R FLOO FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FORES FOR	IZATION D [4] NG[3] RNORECOVERY A category for EAC D PLAIN QU/ ST, SWAMP [3] B OR OLD FIELD [ BNTIAL, PARK, NI D PASTURE, ROWC CURRENT VI Check ALL th FORRENTIAL [-1] ARX FAST [1] MODERATE [1] MODERATE [1] Aticate for reach - t a population Check ONE ( IN SUBSTRAT SL. Coble, Boulde SLE (e.g., Large Gr	HIG     MOL     M	H[3] DERATE[2] Channel V[1] Maximum 20 Her bank & average) L R CONSERVATIONTILLA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA URBANOR INDUSTRIA MINING /CONSTRUCT ate predominant land use(s) f 00m riparian. Riparian Maximum 10 Recreation Poter (Check one and commer Primary Co TIAL[-1] Secondary TENT [-2] Pool/ ] Current s. Maximum 12 NORIFFLE [metric: IFFLE/RUN EMBEDDE NONE[2] LOW[1] Riffle/ MODERATE[0] Run EXTENSIVE [-1] Maximum 8	

## Attachment 6: IDEM OWQ Biological Qualitative Habitat Evaluation Index (front)

## Attachment 6 (continued): IDEM OWQ Biological Qualitative Habitat Evaluation Index (back)

A-CANOP	Y	<b>B-AESTHETIC</b>	<u>s</u>		C-RECRE	ATION	D-MAINTENANCE	E-ISSUES
□ >85%-	Open	Nuisance algae	e 🗆 Oils	heen	Area	Depth	Public      Private	UWWIP CSO INPDES
□ 55%-<	85%	Invasive macro	ophytes 🗆 Tras	h/Litter	Pcol: □ > 100ft ²	□>3ft	Active Historic	□ Industry □ Urban
□ 30%-<	55%	🗆 Excess turbidit	y 🗆 Nuis	ance odor			Succession: Voung Old	Hardened Dirt&Grime
□ 10%-<	30%	Discoloration	Slud	ge deposits			Spray Islands Scoured	Contaminated Landfill
□ <10%-	Closed	🗆 Foam/Soum		s/SSOs/Outfalls			Snag: Removed Modified	BMPs: Construction Sectimer
							Leveed: 🗌 One sided 🗌 Both banks	Logging Imigation Cooling
Looking upstrea	im (> 10m, 3 rea	dings; $\leq$ 10m, 1 reading	in middle); Round	to the nearest w	hole percent		Relocated Cutoffs	Erosion: Bank Surface
	Right	Middle	Left	Total Average	je		Bedload: Moving Stable	🗆 False bank 🗆 Manure 🗆 Lagoo
% open	9/0	%	º/o	%			Armoured Slumps	□ Wash H₂O □ Tile □ H₂O Table
		· · · · · ·					Impounded      Desiccated	Mine: Acid Quarry
	× /	× /	× /				Flood control      Drainage	Flow: Natural Stagnant
	$\sim$	$\sim$	$\bigvee$					UWetland D Park D Golf
	$\wedge$	$\wedge$	$\wedge$					🗆 Lawn 🗆 Home
	1	/ \	/ \					Atmospheric deposition
								Agriculture Livestock

IDEM 02/28/2018

#### Attachment 7: IDEM OWQ Chain of Custody Form



Indiana Department of Environmental Management OWQ Chain of Custody Form Project:

OWQ Sample Set or Trip #:

I Certify that the sample(s) listed below was/were collected by me, or in my presence. Date:

ignature: ample Media (□_	Water, 🗆 Alga	e,⊡ Fist	, □ <b>M</b> a	cro, 🗆	Çyanob	acteria/	Microcy	știn, 🗆		ction:						
Lab Assigned	IDEM	ple		at .	M.	5.0	ml act)	m	mi	ml	ml	ml	Tu ss	Date and Ti	me Collected	One chec
Number / Event ID	Control Number	Sample Type	D	1000 ml	1000 ml G.N.M.	40 ml Vial	120 ml P (Bact)	2000 ml Nakgene	250 ml Nalgene	125 ml Glass	Date	Time	per bottle present			
						1										
		· · · · · ·		_	(	1										
					(											
					[ ]											
-																
		14 1														
P = Plastic M = MS/MSD	G = Glass B = Blank		V. = Na = Dupli	rrow Me cate	outh	Bact = R = R	Bacteri evisit	iologica	d Only	-	Should samples	s be iced?	Y N			

Carriers

Signature	Date	Time	Seals	Intact	Comments
Relinquished By:			~	N	
Received By:					
Relinquished By:					
Received By:		-		N	
Relinquished By:				<u>.</u>	
Received By:				N	
IDEM Storage Room #	and the second second	-	11.2	and the second second	

Lab Custodian

I certify that I have received the above sample(s), which has/have been recorded in the official record book. The same sample(s) will be in the custody of competent laboratory personnel at all times, or locked in a secured area.

Address:

Signature:

Date:

Time:

Lab:

Revision Date: 4/27/2016

#### Attachment 8: IDEM OWQ Water Sample Analysis Request Form



Indiana Department of Environmental Management Office of Water Quality Watershed Planning and Assessment Branch www.idem.IN.gov

Water Sample Analysis Request

Project Name: 2020 Maria Creek

Composite D Grab

DWQ Sample Set	19BLW	IDEM Sample Nos.	AB	
Crew Chief	Tim Beckman	Lab Sample Nos.		
Collection Date		Lab Delivery Date		

Anions and Physic Parameter	Test Method	Total	Dissolved		
Alkalinity	SM2320E	X **			
Total Solids	5M2540B	⊠ **			
Suspended Spiids	SM2540D	X #			
Dissolved Solids	SM2540C	100 m	×*		
Sulfate	300.0	17.**	X **		
Chloride	300.0	□ #*	×**		
Hardness (Calculated)	SM-2340B	20**	10 m		
Fluoride	300.0	~	<u> </u>		
1000000					
Priority Pollutant M	etals Water P	arameter	18		
Parameter	Test Method	Total	Dissolved		
Antimony	200,8				
Arsenic	200.8	0	0		
Beryllium	200,8		0		
Cadmium	200.5		0		
Chramium	200.7				
Copper	200 8		0		
Lead	200.5		0		
Mercury, Low Level	1631. Rev E	0	0		
Niokel	200,8		0		
Selenium	200.8				
Silver	200.8		<u> </u>		
Thallium	200.8	<u>п</u>			
Zinc	200.7				
Cations and Secon	dary Metals P	aramete	18		
Parameter	Test Method	Total	Dissolved		
Aluminum	200.7, 200.8	П			
Banum	200.8	Ū			
Boran	200.8		0		
Calcium	200.7, 200.8	DC 788	11		
Cobalt	200.8				
'lron	200.7				
Magnesium	200.7, 200.8	20 122			
Manganese	200.8		0		
Sodium	200.7				
Silics, Total Reactive	200.7				
Strontium	200 8	Π			

Send reports (Fed. Ex. or UPS) to Deliver reports to:

Tim Bowren - IDEM Bldg. 20 STE 100 2525 North Shadeland Ave. Indianapolis, IN 46219

Tim Bowren - IDEM Bldg, 20 STE 100 2525 North Shadeland Ave. Indianapolis, IN 46219

Parameter	Test Method	Total		
Priority Pollutants Oranochlorine Pesticides and PCBs	808			
Priority Pollutants: VOCs - Purgeable Organics	824			
Priority Pollutants Base/Neutral Extractables	625			
Priority Pollutents: Acid Extractables	625			
Phenolics, 4AAP	420.2			
Oll and Grease, Total	1684A			

Nutrient & Organic Water Chemistry Parameters Parameter Test Method Total Dissolved Ammonia Nitrogen SM4500NH3-G X П SM5210B CBODE Total Kieldahl  $\otimes$ SM4500N(Org. Nitrogen (TKN) Nitrate + Nitrite SM4500NO3-F Ξ Total Phosphorus SM4500P-E 8  $\otimes$ TOC SM 5310C Π X COD SM5220C SM4500CN-E Cyanide (Total) D **Oyanide** (Free) SM4500CN-I 0.* Cyanide (Amenable) SM4500CN-G Ο C SM4500S2-F Sulfide, Total

RFP 16-074	SCM # 19855
Contract Number	PO # 0020000771

30 day reporting time required.

Notes:

** = DO NOT RUN PARAMETER IF SAMPLE IDENTIFIED AS A BLANK ON THE CHAIN OF CUSTODY

* = RUN ONLY IF TOTAL CYANIDE IS DETECTED *** = Report Calcium, Magnesium as Total Hardness components

Testing Laboratory: Phone: 708.534.5200

Test America Alth Robin Kintz 2417 Bond Street University Park, IL 60484

Intercentional project Manager:       Intercentintercentional project Manager: <th< th=""><th>TestAmerica Chicago 2417 Bond Street</th><th></th><th colspan="14">Chain of Custody Record</th><th></th><th colspan="3">TestAmerica</th></th<>	TestAmerica Chicago 2417 Bond Street		Chain of Custody Record															TestAmerica				
Client Contact         Project Manager:         Site Contact:         Date:         COC No:         Cord         Cord <th></th> <th>Regu</th> <th>latory Pro</th> <th>ogram:</th> <th>DW</th> <th>NPDE</th> <th>s –</th> <th>RCR</th> <th>A [</th> <th>Othe</th> <th>г:</th> <th></th>		Regu	latory Pro	ogram:	DW	NPDE	s –	RCR	A [	Othe	г:											
Sample         Total Company Name have         Total Construct         Carrier         of         OCC           Chystemuc/Dp         Carrier         Carrier         of         OCC         Sampler           Chystemuc/Dp         Carrier         Carrier         of         OCC         Sampler           Chystemuc/Dp         Carrier         Carrier         Carrier         of         OCC           Chystemuc/Dp         Carrier	Client Contact															COC No:						
Address       Analysis Turnaround Time       Image: Construction of the construle of the construc			unugen				-								er:						of	COCs
Cardystand Low 2       Output determine Converting of the convertige of the conv	· ·		Analysis T	urnaround	l Time										T						Sampler:	
Sample Identification       Sample Samp			-			YS	11															
Dots) zorozo       FAX				rom Below			Î															I
Project Name:							$\sim$															
Site:							5															
Image: Section of the lab is to diagonal frame the sample       Image: Section of the lab is to diagonal frame the sample in the Comments & Comment							e (														Job / SDG No ·	
Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section				-			du /s															
Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section			I		1	1	Sai															
Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section of the lab is to dispose of the sample       Image: Section	Sample Identification			Type (C=Comp,	Matrix		Filtered														Sample Spec	ific Notes:
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Plammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seal No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:							Ħ		+		-	+	+	+	+	-	+	┿	+			
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seal No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:							Ш															
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:									_	_	_	_	+ +		-		_	_		_		
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:									_		_						_	_				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seal No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification:       Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Custody Seals Intact:       Yes       No       Custody Seal No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:														_		_						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seal No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:									_		-	-				_	_	_		_		
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:									_		_	_			-			_	+	_		
Possible Hazard Identification:       Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Custody Seals Intact:       Yes       No       Custody Seal No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:																						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)         Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Ves       No       Custody Seals No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5	i=NaOH; 6=	Other		_													Τ				
Non-Hazard       Flammable       Skin Irritant       Poison B       Unknown       Return to Client       Disposal by Lab       Archive for       Months         Special Instructions/QC Requirements & Comments:       Custody Seals Intact:       Yes       No       Custody Seal No.:       Cooler Temp. ( ^a C): Obs'd:       Corr'd:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:	Are any samples from a listed EPA Hazardous Waste? Please	List any EP	A Waste Co	odes for the	e sample	in the	S	ampl	e Disp	osal	(Afe	e ma	ıy be	asses	sed	f sar	nple	s are	retai	ined	l longer than 1 mon	th)
Special Instructions/QC Requirements & Comments:         Custody Seals Intact:       Yes       No       Custody Seal No.:       Cooler Temp. (°C): Obs'd:       Corr'd:       Therm ID No.:         Relinquished by:       Company:       Date/Time:       Received by:       Company:       Date/Time:		Poiso	n B	Unkn	iown			F	<u>eturn</u> te	o Clien				posal b	v Lab			Arc	hive fo	or	Months	
Relinquished by:         Company:         Date/Time:         Received by:         Company:         Date/Time:	Special Instructions/QC Requirements & Comments:																					
Relinquished by:     Company:     Date/Time:     Received by:     Company:     Date/Time:											T	(00)					l - !				There ID No.	
		,			Det: 7						ıemp	). (°C	: Ubs	d:						_		
Relinquished by:         Company:         Date/Time:         Received by:         Company:         Date/Time:	Reinquisned by:	Company	:		Date/T	ime:	R	eceiv	ed by:						Cor	npan	y:				Date/Time:	
	Relinquished by:	Company			Date/T	ime:	R	eceiv	ed by:						Company:				Date/Time:			
Relinquished by:         Company:         Date/Time:         Received in Laboratory by:         Company:         Date/Time:	Relinquished by:	Company	:		Date/T	ime:	R	eceiv	ed in l	_abor	atory	by:			Cor	npan	y:				Date/Time:	

## Attachment 9: Test America Chain of Custody Form

#### Attachment 10: Eurofins TestAmerica Chicago Laboratory Accreditation



Expiration Date: 4/30/2020 Issued On: 6/28/2019

#### Attachment 11: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

Certificate No.: 1002012019-2

### State of Illinois Environmental Protection Agency Awards the Certificate of Approval to:

Eurofins TestAmerica Chicago 2417 Bond Street University Park, IL 60484

#### Accreditation Start: 4/30/2018 Accreditation End: 4/30/2020

The Illinois Environmental Laboratory Accreditation Program encourages all clients and data users to verify the most current scope of accreditation for Eurofins TestAmerica Chicago.

	Primary AB
ield of Testing /Matrix: CWA (Non Potable Water)	
Method EPA 120.1	
Conductivity	IL.
Method EPA 160.4	
Residue-volatile	IL.
Method EPA 1664A Rev: 1	
Oil & Grease	IL.
Method EPA 1664B	12
Oil & Grease	6
	UL.
Method EPA 180.1 Rev: 2	
Turbidity	<u>)</u>
Method EPA 200.7 Rev: 4.4	
Aluminum	n.
Antimony	n_
Arsenic	IL.
Barium	IL.
Beryllium	JL.
Boron	IL.
Cadmium	IL_
Calcium	IL-
Chromium	IL.
Cobalt	JL.
Соррег	IL.
Iron	IL.
Lead	IL.
Magnesium	IL.
Manganese	IL.
Molybdenum	IL.
Nickel	IL.
Potassium	iL.
Selenium	iL,
Silica as SiO2	IL.
Silver	IL.
Sodium	IL.
Thallium	IL.
Tin	IL.
Titanium	IL.
Vanadium	IL.
Zinc	0-
Page 2 of 35	

## Attachment 12: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

Primary AB

	i thinking the
Field of Testing /Matrix: CWA (Non Potable Water)	
Method EPA 200.8 Rev: 5.4	
Aluminum	L.
Antimony	Ĩ.
Arsenic	IL.
Barium	L.
Beryllium	L.
Boron	Ĩ.
Cadmium	IL.
Calcium	Ĩ.
Chromium	11_
Cobalt	11
Copper	- IL
Iron	11_
Lead	- IL-
Magnesium	16
Manganese	IL.
Molybdenum	IL.
Nickel	iL.
Potassium	9L
Selenium	11
Silver	11
Sodium	11 IL.
Thallium	IL.
Tin	íL.
Titanium	IL.
Vanadium	L.
Zinc	íL.
Method EPA 218.6 Rev: 3.3	
Chromium VI	11_
Method EPA 245.1 Rev: 3	
Mercury	- IL
	112
lethod EPA 300.0 Rev: 2.1	
Bromide	1.
Chloride	- IL
Fluoride	<u>.</u>
Nitrate	<u>"</u>
Nitrate plus Nitrite as N	IL.
Nitrite	1.
Orthophosphate as P	IL.
Sulfate	IL.
lethod EPA 350.1 Rev: 2 Ammonia	iL.
Method EPA 353.2 Rev: 2	
Nitrate	Ĩ.
Nitrate plus Nitrite as N	L.
	12
Alethod EPA 420.4 Rev: 1	
Total phenolics	IL.
Aethod EPA 608	
4,4'-DDD	-IL

	Primary AB
eld of Testing /Matrix: CWA (Non Potable Water)	
4,4'-DDE	IL.
4,4'-DDT	L.
Aldrin	IL.
alpha-BHC (alpha-Hexachlorocyclohexane)	IL.
Aroclor-1016 (PCB-1016)	11_
Aroclor-1221 (PCB-1221)	IL
Aroclor-1232 (PCB-1232)	IL.
Aroclor-1242 (PCB-1242)	IL.
Aroclor-1248 (PCB-1248)	IL.
Aroclor-1254 (PCB-1254)	IL.
Aroclor-1260 (PCB-1260)	ĨĹ.
beta-BHC (beta-Hexachlorocyclohexane)	ĨĹ.
Chlordane (tech.)(N.O.S.)	IL.
delta-BHC	IL.
Dieldrin	IL.
Endosulfan I	
Endosulfan II	L
Endosulfan sulfate	IL.
Endrin	L.
Endrin aldehyde	L
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	IL.
Heptachlor	14
Heptachlor epoxide	IL.
Methoxychlor	IC.
Toxaphene (Chlorinated camphene)	- AL-C
ethod EPA 624	
1,1,1-Trichloroethane	IL.
1,1,2,2-Tetrachloroethane	- IL
1,1,2-Trichloroethane	IL.
1,1-Dichloroethane	IL.
1,1-Dichloroethylene	IL:
1,2-Dichlorobenzene (o-Dichlorobenzene)	IL.
1,2-Dichloroethane (Ethylene dichloride)	IL.
1,2-Dichloropropane	IL.
1,3-Dichlorobenzene	IL.
1,4-Dichlorobenzene	IL.
2-Chloroethyl vinyl ether	L.
Acrolein (Propenal)	L
Acrylonitrile	L.
Benzene	
Bromodichloromethane	IL,
	·
Bromoform	n_
Carbon tetrachloride	IL
Chlorobenzene	L.
Chlorodibromomethane	IL
Chloroethane (Ethyl chloride)	IL.
Chloroform	11_
cis-1,3-Dichloropropene	IL
Ethylbenzene	IL.
Methyl bromide (Bromomethane)	IL.
Methyl chloride (Chloromethane)	11_
Page 4 of 35	

## Attachment 13: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

## Attachment 14: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
ield of Testing /Matrix: CWA (Non Potable Water)	
Methyl tert-butyl ether (MTBE)	IL
Methylene chloride (Dichloromethane)	IL.
Tetrachloroethylene (Perchloroethylene)	IL.
Toluene	IL I
trans-1,2-Dichloroethylene	- IL.
trans-1,3-Dichloropropylene	IL
Trichloroethene (Trichloroethylene)	11_
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	IL.
Vinyl chloride	IL
Xylene (total)	IL.
Vethod EPA 625	
1,2,4-Trichlorobenzene	IL.
1,2-Dichlorobenzene (o-Dichlorobenzene)	IL.
1,3-Dichlorobenzene	IL.
1,4-Dichlorobenzene	IL.
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	IL.
2,4,5-Trichlorophenol	IL.
2,4,6-Trichlorophenol	IL.
2,4-Dichlorophenol	ĩL.
2,4-Dimethylphenol	πĹ.
2,4-Dinitrophenol	1
2,4-Dinitrotoluene (2,4-DNT)	íL.
2,6-Dinitrotoluene (2,6-DNT)	ĨL.
2-Chloronaphthalene	IL.
2-Chlorophenol	) 11_
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	iL.
2-Nitrophenol	iL.
3,3'-Dichlorobenzidine	iL.
4-Bromophenyl phenyl ether	12
4-Chloro-3-methylphenol	IL.
4-Chlorophenyl phenylether	, IL
4-Nitrophenol	IL.
Acenaphthene	IL.
Acenaphthylene	iL
Anthracene	IL.
Benzidine	i,
Benzo(a)anthracene	IL.
Benzo(a)pyrene	iL
Benzo(b)fluoranthene	12
Benzo(g,h,i)perylene	iL
Benzö(k)fluoranthene	L.
bis(2-Chloroethoxy)methane	
bis(2-Chloroethyl) ether	iL IL
bis(2-Ethylhexyl) phthalate (DEHP)	L
Butyl benzyl phthalate	L.
Chrysene	IL.
Dibenz(a,h) anthracene	IL.
Diethyl phthalate	IL
Dimethyl phthalate	IL
Di-n-butyl phthalate	L.
Di-n-octyl phthalate	IL.

	Primary AB
Field of Testing /Matrix. CWA (Non Potable Water)	
Fluoranthene	IL.
Fluorene	IL.
Hexachlorobenzene	IL.
Hexachlorobutadiene	IL.
Hexachlorocyclopentadiene	IL .
Hexachloroethane	IL.
Indeno(1,2,3-cd) pyrene	IL
Isophorone	IL.
Naphthalene	IL.
Nitrobenzene	1. 1.
n-Nitrosodimethylamine	
n-Nitrosodi-n-propylamine	IL.
n-Nitrosodiphenylamine	IL.
Pentachlorophenol	IL.
Phenanthrene	IL.
Phenol	IL
Pyrene	IL.
Method SM 2320 B-1997	
Alkalinity as CaCO3	IL
Method SM 2340 B-1997	
Hardness	IL.
Method SM 2510 B-1997	
Conductivity	IL.
Method SM 2540 B-1991 Rev: 18th ED	
Residue-total	IL.
	-
Method SM 2540 C-1997	
Residue-filterable (TDS)	IL.
Method SM 2540 D-1997	
Residue-nonfilterable (TSS)	IL.
Method SM 2540 E-1997	
Residue-volatile	IL.
	12
Method SM 2540 F-1997	
Residue-settleable	IL.
Method SM 3500-Cr B-2009	
Chromium VI	IL.
Method SM 4500-CI F-2000	
Total residual chlorine	
	IL.
Method SM 4500-CI G-2000	
Total residual chlorine	IL.
Method SM 4500-CI E-1997 Rev: 21st ED	
Chloride	11-
	100
Method SM 4500-CN E-1999	
Cyanide	IL.
Method SM 4500-CN G-1999	
Available Cyanide	Û_
Method SM 4500-F C-1997 Rev: 21st ED	
Fluoride	IL.

## Attachment 15: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix. CWA (Non Potable Water)	
Method SM 4500-H+ B-2000	
pH	- IL
Method SM 4500-NH3 G Rev: 21st ED	
Ammonia	IL
Total Kjeldahl Nitrogen (TKN)	- IL.
Method SM 4500-NO2 B-2000	
Nitrite	11.
Method SM 4500-NO3 F-2000	
Nitrate	IL.
Nitrate plus Nitrite as N	IL.
Method SM 4500-0 G-2001	
Oxygen, dissolved	IL.
Method SM 4500-P E-1999	
Orthophosphate as P	11_
Phosphorus	IL
Method SM 4500-S2 F-2000	
Sulfide	ΠĻ.
Method SM 4500-SO4 E-1997	
Sulfate	IL.
Method SM 5210 B-2001	
Biochemical oxygen demand	ĨL.
Carbonaceous BOD, CBOD	IL
Method SM 5220 C-1997 Rev: 21st ED	
Chemical oxygen demand	IL.
Method SM 5310 B-2000	
Total organic carbon	IL.
Method SM 5310 C-2000	
Total organic carbon	1L-

## Attachment 16: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix. CWA (Solid & Hazardous Material)	
Method EPA 120.1	
Conductivity	IL
Method EPA 160.4	
Residue-volatile	IL.
Method EPA 1664A Rev: 1	
Oil & Grease	IL.
Method EPA 1664B	
Oil & Grease	ΪL.
	IL I
Method EPA 200.7 Rev: 4.4	
Aluminum	IL.
Antimony	IL.
Arsenic Barium	IL.
	1L_ 1L_
Beryllium Boron	IL IL
Cadmium	IL.
Calcium	1L
Chromium	
Cobalt	IL.
Copper	L.
Iron	IL.
Lead	IL.
Magnesium	IL.
Manganese	Ĩ.
Molybdenum	i C
Nickel	ïL
Potassium	IL.
Selenium	IL.
Silica as SiO2	IL.
Silver	IL
Sodium	IL
Thallium	IL
Tin	IL
Titanium	IL
Vanadium	IL.
Zinc	IL .
Method EPA 350.1 Rev: 2	
Ammonia	IL.
Method EPA 353.2 Rev: 2	
Nitrate	IL.
Nitrate plus Nitrite as N	IL
Method EPA 420.4 Rev: 1	
Total phenolics	IL
	IL.
Method SM 2320 B-1997	
Alkalinity as CaCO3	IL.
Method SM 2510 B-1997	
Conductivity	IL.
Method SM 4500-CI E-1997 Rev: 21st ED	

## Attachment 17: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix: CWA (Solid & Hazardous Material) Chloride	И.,
Method SM 4500-CN E-1999	
Cyanide	11_
Method SM 4500-CN G-1999	
Available Cyanide	11_
Method SM 4500-F C-1997 Rev: 21st ED	
Fluoride	11_
Method SM 4500-NH3 G Rev: 21st ED	
Ammonia	11_
Total Kjeldahl Nitrogen (TKN)	jL
Method SM 4500-NO2 B-2000	
Nitrite	IL.
Method SM 4500-NO3 F-2000	
Nitrate	1L .
Nitrate plus Nitrite as N	IL.
Method SM 4500-P E-1999	
Orthophosphate as P	IL_
Phosphorus	IL.
Method SM 4500-S2 F-2000	
Sulfide	IL.
Method SM 5210 B-2001	
Biochemical oxygen demand	IL
Carbonaceous BOD, CBOD	IL.
Method SM 5220 C-1997 Rev: 21st ED	
Chemical oxygen demand	IL.
Method SM 5310 C-2000	
Total organic carbon	IL.

## Attachment 18: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix: RCRA (Non Potable Water)	
Method EPA 1010A	
Ignitability	IL.
Method EPA 1311 Rev: 0	
Toxicity Characteristic Leaching Procedure (TCLP)	IL.
Method EPA 1312 Rev: 0	
Synthetic Precipitation Leaching Procedure (SCLP)	IL.
Method EPA 6010B Rev: 2	
Aluminum	
Antimony	Ľ.
Arsenic	Ĩ.
Barium	IL.
Beryllium	IL.
Boron	IL.
Cadmium	IL.
Calcium	IL.
Chromium	IL.
Cobalt	IL.
Copper	IL.
Iron	IL.
Lead	IL.
Lithium	IL.
Magnesium	IL.
Manganese	IL.
Molybdenum	IL.
Nickel	L L
Potassium	1 (L.
Selenium	- IL.
Silica as SiO2	(L.)
Silver	IL.
Sodium	IL.
Strontium	IL.
Thallium	IL.
Tin	IL
Titanium	IL.
Vanadium	IL.
Zinc	IL.
Method EPA 6010C	
Aluminum	IL
Antimony	IL
Arsenic	IL
Barium	IL.
Beryllium	IL.
Boron	IL.
Cadmium	IL.
Calcium	IL.
Chromium	IL.
Cobalt	IL.
Copper	L
Iron	IL.
Lead	L.

	Primary AB
Field of Testing /Matrix: RCRA (Non Potable Water)	
Lithium	IL.
Magnesium	1 IL
Manganese	i L
Molybdenum	1 IL-
Nickel	IL.
Potassium	- IL
Selenium	12
Silica as SiO2	i lu
Silver	IL.
Sodium	IL.
Strontium	IL.
Thallium	ĨL.
Tin	IL.
Titanium	IL.
Vanadium	IL.
Zinc	IL.
Method EPA 6020A Rev: 1	
Aluminum	11_
Antimony	
Arsenic	iL IL
Barium	L.
Beryllium Boron	IL.
	12 11_
Cadmium	1L 1L
Calcium	
Chromium	12
Cobalt	
Copper	1L-
Iron	L.
Lead	IL.
Magnesium	IL
Manganese	IL.
Molybdenum	112
Nickel	IL.
Potassium	11
Selenium	IL.
Silver	IL.
Sodium	L
Thallium	IL.
Vanadium	IL.
Zinc	IL.
Method EPA 7196A Rev: 1 Chromium VI	IL
Method EPA 7199 Rev: 0	
Chromium VI	IL
Method EPA 7470A Rev: 1	
Mercury	IL.
Method EPA 8015B Rev: 2	
Diesel range organics (DRO)	íL.
Gasoline range organics (GRO)	Ľ.
Page 11 of 35	

## Attachment 20: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix: RCRA (Non Potable Water)	
Method EPA 8015C	
Diesel range organics (DRO)	IL.
Gasoline range organics (GRO)	IL.
Method EPA 8015D	
Diesel range organics (DRO)	IL.
Gasoline range organics (GRO)	IL
Method EPA 8081A Rev: 1	
4,4'-DDD	IL.
4,4'-DDE	IL.
4,4'-DDT	ĨL.
Alachlor	íL.
Aldrin	íL.
alpha-BHC (alpha-Hexachlorocyclohexane)	IL.
alpha-Chlordane, cis-Chlordane	IL.
Atrazine	IL.
beta-BHC (beta-Hexachlorocyclohexane)	1
Chlordane (tech.)(N.O.S.)	ĨL.
delta-BHC	IL.
Dieldrin	IL.
Endosulfan I	IL.
Endosulfan II	IL.
Endosulfan sulfate	IL.
Endrin	IL
Endrin aldehyde	IL.
Endrin ketone	ĨL.
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	IL.
gamma-Chlordane	IL.
Heptachlor	ĨĻ.
Heptachlor epoxide	- ÎL
Isodrin	IL.
Kepone	IL.
Methoxychlor	IL.
Simazine	IL.
Toxaphene (Chlorinated camphene)	
	,E
Method EPA 8081B	
4,4-DDD	IL.
4,4-DDE	IL.
4,4'-DDT	IL.
Alachlor	IL.
Aldrin	JL.
alpha-BHC (alpha-Hexachlorocyclohexane)	IL.
alpha-Chlordane, cis-Chlordane	IL.
Atrazine	IL.
beta-BHC (beta-Hexachlorocyclohexane)	IL.
Chlordane (tech.)(N.O.S.)	IL.
delta-BHC Dialatio	IL.
Dieldrin	UL
Endosulfan I	IL.
Endosulfan II Endosulfan sulfate	L.

## Attachment 21: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

## Attachment 22: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix: RCRA (Non Potable Water)	1. A.
Endrín	IL.
Endrin aldehyde	IL.
Endrin ketone	IL.
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	11
gamma-Chlordane	IL.
Heptachlor	IL.
Heptachlor epoxide	IL
Isodrin	IL.
Kepone	IL.
Methoxychlor	IL.
Simazine	IL
Toxaphene (Chlorinated camphene)	- IL
Method EPA 8082 Rev: 0	
Aroclor-1016 (PCB-1016)	IL
Aroclor-1221 (PCB-1221)	IL.
Aroclor-1232 (PCB-1232)	IL.
Aroclor-1242 (PCB-1242)	11_
Aroclor-1248 (PCB-1248)	IL.
Aroclor-1254 (PCB-1254)	IL
Aroclor-1260 (PCB-1260)	IL
Method EPA 8082A	
Aroclor-1016 (PCB-1016)	11_
Aroclor-1221 (PCB-1221)	IL.
Aroclor-1232 (PCB-1232)	IL.
Aroclor-1242 (PCB-1242)	IL.
Aroclor-1248 (PCB-1248)	IL.
Aroclor-1254 (PCB-1254)	14
Aroclor-1260 (PCB-1260)	11_
	ie.
Method EPA 8151A	
2,4,5-T	IL.
2,4-D	IL.
2,4-DB	IL
Dalapon	IL.
Dicamba	IL:
Dichloroprop (Dichlorprop)	IL.
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	IL
Pentachlorophenol	IL.
Picloram	IL.
Silvex (2,4,5-TP)	П.,
Method EPA 8260B	
1,1,1,2-Tetrachloroethane	IL.
1,1,1-Trichloroethane	IL
1,1,2,2-Tetrachloroethane	IL
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	IL
1,1,2-Trichloroethane	IL.
1,1-Dichloroethane	IL.
1,1-Dichloroethylene	IL.
1,1-Dichloropropene	IL.
1,2,3-Trichlorobenzene	IL.
1,2,3-Trichloropropane	IL.
Page 13 of 35	

	Primary AE
of Testing /Matrix: RCRA (Non Potable Water)	
1,2,4-Trichlorobenzene	IL.
1,2,4-Trimethylbenzene	IL.
1,2-Dibromo-3-chloropropane (DBCP)	IL.
1,2-Dibromoethane (EDB, Ethylene dibromide)	IL.
1,2-Dichlorobenzene (o-Dichlorobenzene)	IL.
1,2-Dichloroethane (Ethylene dichloride)	L.
1,2-Dichloropropane	IL.
1,3,5-Trichlorobenzene	IL.
1,3,5-Trimethylbenzene	IL.
1,3-Dichlorobenzene	IL.
1,3-Dichloropropane	IL.
1,4-Dichlorobenzene	IL.
1,4-Dioxane (1,4- Diethyleneoxide)	11.
1-Chlorohexane	IL.
2,2-Dichloropropane	IL.
2-Butanone (Methyl ethyl ketone, MEK)	IL.
2-Chloroethyl vinyl ether	- 1L
2-Chlorotoluene	11_
2-Hexanone	16
2-Methylnaphthalene	IL.
2-Nitropropane	IL.
4-Chlorotoluene	IL.
4-Isopropyltoluene (p-Cymene,p-Isopropyltoluene)	IL.
4-Methyl-2-pentanone (MIBK)	IL.
Acetone	11_
Acetonitrile	1L
Acrolein (Propenal)	IL.
Acrylonitrile	IL
Allyl chloride (3-Chloropropene)	IL.
Benzene	L.
Benzyl chloride	IL.
Bromobenzene	IL.
Bromochloromethane	L.
Bromodichloromethane	L.
Bromoform	L.
Carbon disulfide	IL.
Carbon tetrachloride	IL.
Chlorobenzene	IL.
Chlorodibromomethane	- IL-
Chloroethane (Ethyl chloride)	11
Chloroform	IL.
Chloroprene (2-Chloro-1,3-butadiene)	IL.
cis-1,2-Dichloroethylene	1L
cis-1,3-Dichloropropene	JL.
Dibromomethane (Methylene bromide)	JL.
Dichlorodifluoromethane (Freon-12)	IL.
Diethyl ether	IL.
Di-isopropylether (DIPE) (Isopropyl Ether)	IL
Ethanol	IL.
Ethyl acetate	11_
Ethyl methacrylate	11

	Primary AB
Field of Testing /Matrix: RCRA (Non Potable Water)	
Ethylbenzene	IL,
Hexachlorobutadiene	- 1L
lodomethane (Methyl iodide)	JL.
Isobutyl alcohol (2-Methyl-1-propanol)	IL.
Isopropylbenzene	IL.
m+p-xylene	IL.
Methacrylonitrile	IL.
Methyl bromide (Bromomethane)	IL
Methyl chloride (Chloromethane)	1L.
Methyl methacrylate	IL.
Methyl tert-butyl ether (MTBE)	<b>I</b>
Methylene chloride (Dichloromethane)	۱.
m-Xylene	<b>I</b>
Naphthalene	IL.
n-Butyl alcohol (1-Butanol, n-Butanol)	IL.
n-Butylbenzene	IL.
n-Propylbenzene	IĹ.
o-Xylene	IL.
Pentachloroethane	IL.
Propionitrile (Ethyl cyanide)	1L.
p-Xylene	IL.
sec-Butylbenzene	IL.
Styrene	- IL-
tert-Butyl alcohol	IL.
tert-Butylbenzene	iL.
Tetrachloroethylene (Perchloroethylene)	iL.
Tetrahydrofuran (THF)	iL
Toluene	iL.
trans-1,2-Dichloroethylene	IL.
trans-1,3-Dichloropropylene	12
	IL.
trans-1,4-Dichloro-2-butene	
Trichloroethene (Trichloroethylene)	IL.
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	L.
Vinyl acetate	IL.
Vinyl chloride	L.
Xylene (total)	IL.
Method EPA 8270C Rev: 3	
1,2,4,5-Tetrachlorobenzene	IL.
1,2,4-Trichlorobenzene	IL.
1,2-Dichlorobenzene (o-Dichlorobenzene)	IL.
1,2-Diphenylhydrazine	IL.
1,3,5-Trinitrobenzene (1,3,5-TNB)	IL.
1,3-Dichlorobenzene	IL.
1,3-Dinitrobenzene (1,3-DNB)	IL.
1,4-Dichlorobenzene	IL.
1,4-Dinitrobenzene	íL.
1,4-Dioxane (1,4- Diethyleneoxide)	IL.
1,4-Naphthoquinone	IL.
1,4-Phenylenediamine	L.
1-Chloronaphthalene	IL.
1-Methylnaphthalene	
i weu wi igui u igiere.	<u></u>

## Attachment 25: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
d of Testing /Matrix: RCRA (Non Potable Water)	
1-Naphthylamine	IL
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	IL
2,3,4,6-Tetrachlorophenol	IL.
2,4,5-Trichlorophenol	IL
2,4,6-Trichlorophenol	IL.
2,4-Dichlorophenol	IL.
2,4-Dimethylphenol	lL.
2,4-Dinitrophenol	1
2,4-Dinitrotoluene (2,4-DNT)	11_
2,6-Dichlorophenol	IL.
2,6-Dinitrotoluene (2,6-DNT)	IL.
2-Acetylaminofluorene	IL.
2-Chloronaphthalene	ĨL.
2-Chlorophenol	IL
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	IL
2-Methylaniline (o-Toluidine)	IL.
2-Methylnaphthalene	IL.
2-Methylphenol (o-Cresol)	IL.
2-Naphthylamine	íL.
2-Nitroaniline	IL.
2-Nitrophenol	IL.
2-Picoline (2-Methylpyridine)	IL
3,3'-Dichlorobenzidine	IL
3,3'-Dimethylbenzidine	IL
3-Methylcholanthrene	IL.
3-Methylphenol (m-Cresol)	IL.
3-Nitroaniline	IL.
4-Aminobiphenyl	IL
4-Bromophenyl phenyl ether	IL
4-Chloro-3-methylphenol	IL.
4-Chloroaniline	IL.
4-Chlorophenyl phenylether	IL.
4-Dimethyl aminoazobenzene	IL
4-Methylphenol (p-Cresol)	IL.
4-Nitroaniline	IL.
4-Nitrophenol	íĽ.
4-Nitroquinoline 1-oxide	IL.
5-Nitro-o-toluidine	IL.
7,12-Dimethylbenz(a) anthracene	IL.
a-a-Dimethylphenethylamine	IL.
Acenaphthene	11.
Acenaphthylene	IL.
Acetophenone	IL.
Aniline	L
Anthracene	L
Aramite	
	IL.
Benzidine	L.
Benzo(a)anthracene	IL.
Benzo(a)pyrene	IL.
Benzo(b)fluoranthene	IL.
Benzo(g,h,i)perylene	IL.

	Primary A
of Testing /Matrix: RCRA (Non Potable Water)	
Benzo(k)fluoranthene	IL.
Benzoic acid	IL.
Benzyl alcohol	IL.
bis(2-Chloroethoxy)methane	IL.
bis(2-Chloroethyl) ether	IL
bis(2-Ethylhexyl) phthalate (DEHP)	IL.
Butyl benzyl phthalate	íL.
Carbazole	IL.
Carbofuran (Furaden)	IL.
Chlorobenzilate	IL.
Chrysene	IL.
Diallate	IL.
Dibenz(a, j) acridine	IL.
Dibenz(a,h) anthracene	IL
Dibenzofuran	IL.
Diethyl phthalate	ĨĹ.
Dimethoate	IL.
Dimethyl phthalate	IL.
Di-n-butyl phthalate	IL.
Di-n-octyl phthalate	IĹ
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	
Diphenylamine	IL.
Ethyl methanesulfonate	IL.
Famphur	IL.
Fluoranthene	IL.
Fluorene	IL.
Hexachlorobenzene	IL.
Hexachlorobutadiene	IL.
Hexachlorocyclopentadiene	IL.
Hexachloroethane	IL
Hexachlorophene	IL
Hexachloropropene	IL.
Indeno(1,2,3-cd) pyrene	IL.
Isodrin	IL.
Isophorone	IL.
Isosafrole	IL.
Kepone	IL.
Methapyrilene	IL
Methyl methanesulfonate	IL.
Methyl parathion (Parathion, methyl)	- IL.
Naphthalene	IL.
Nitrobenzene	IL.
n-Nitrosodiethylamine	IL.
n-Nitrosodimethylamine	IL
n-Nitroso-di-n-butylamine	- IL
n-Nitrosodi-n-propylamine	IL
n-Nitrosodiphenylamine	IL.
n-Nitrosomethylethalamine	IL.
n-Nitrosomorpholine	1
n-Nitrosopiperidine	IL.
n-Nitrosopyrrolidine	IL.

## Attachment 26: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

## Attachment 27: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix: RCRA (Non Potable Water)	
o,o,o-Triethyl phosphorothioate	IL.
Parathion	IL.
Pentachlorobenzene	11_
Pentachloronitrobenzene	IL.
Pentachlorophenol	IL.
Phenacetin	IL.
Phenanthrene	IL.
Phenol	IL.
Phorate	IL.
p-Phenylenediamine	n_
Pronamide (Kerb)	IL.
Pyrene	IL.
Pyridine	IL.
Safrole	IL.
Thionazin (Zinophos)	IL.
Method EPA 8270D	
1,2,4,5-Tetrachlorobenzene	L.
1,2,4-Trichlorobenzene	IL.
1,2-Dichlorobenzene (o-Dichlorobenzene)	IL.
1,2-Diphenylhydrazine	L.
1,3,5-Trinitrobenzene (1,3,5-TNB)	IL IL
1,3-Dichlorobenzene	IL IL
	IL.
1,3-Dinitrobenzene (1,3-DNB)	
1,4-Dichlorobenzene	11
1,4-Dinitrobenzene	IL .
1,4-Dioxane (1,4-Diethyleneoxide)	IL.
1,4-Naphthoquinone	IL.
1,4-Phenylenediamine	IL.
1-Chloronaphthalene	)L
1-Methylnaphthalene	IL.
1-Naphthylamine	IL.
2,2-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	IL.
2,3,4,6-Tetrachlorophenol	1L.
2,4,5-Trichlorophenol	IL.
2,4,6-Trichlorophenol	IL.
2,4-Dichlorophenol	IL.
2,4-Dimethylphenol	IL.
2,4-Dinitrophenol	IL.
2,4-Dinitrotoluene (2,4-DNT)	IL.
2,6-Dichlorophenol	1L
2,6-Dinitrotoluene (2,6-DNT)	11_
2-Acetylaminofluorene	1L_
2-Chloronaphthalene	IL.
2-Chlorophenol	IL.
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	IL.
2-Methylaniline (o-Toluidine)	IL.
2-Methylnaphthalene	IL.
2-Methylphenol (o-Cresol)	IL.
2-Naphthylamine	IL.
2-Nitroaniline	IL.
2-Nitrophenol	IL.

Attachment 28: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)
------------------------------------------------------------------------------

	Primary A
of Testing /Matrix: RCRA (Non Potable Water)	
2-Picoline (2-Methylpyridine)	IL
3,3'-Dichlorobenzidine	IL.
3,3'-Dimethylbenzidine	IL
3-Methylcholanthrene	IL.
3-Methylphenol (m-Cresol)	IL.
3-Nitroaniline	IL.
4-Aminobiphenyl	IL.
4-Bromophenyl phenyl ether	IL.
4-Chloro-3-methylphenol	ïL.
4-Chloroaniline	IL.
4-Chlorophenyl phenylether	IL.
4-Dimethyl aminoazobenzene	IL -
4-Methylphenol (p-Cresol)	IL.
4-Nitroaniline	ĨL.
4-Nitrophenol	IL
4-Nitroquinoline 1-oxide	IL.
5-Nitro-o-toluidine	IL.
7,12-Dimethylbenz(a) anthracene	IL.
a-a-Dimethylphenethylamine	
Acenaphthene	1
Acenaphthylene	IL.
Acetophenone Aniline	IL.
	IL.
Anthracene	IL.
Aramite	IL.
Benzidine	IL.
Benzo(a)anthracene	IL-
Benzo(a)pyrene	L.
Benzo(b)fluoranthene	IL.
Benzo(g,h,i)perylene	- IL -
Benzo(k)fluoranthene	IL.
Benzoic acid	IL.
Benzyl alcohol	IL.
bis(2-Chloroethoxy)methane	11_
bis(2-Chloroethyl) ether	IL.
bis(2-Ethylhexyl) phthalate (DEHP)	IL.
Butyl benzyl phthalate	IL.
Carbazole	IL.
Carbofuran (Furaden)	IL.
Chlorobenzilate	IL I
Chrysene	IL.
Diallate	IL.
Dibenz(a, j) acridine	IL .
Dibenz(a,h) anthracene	Ĩ.
Dibenzofuran	IL.
Diethyl phthalate	IL.
Directly printate	IL.
Dimetholte Dimethyl phthalate	ic IL
Di-n-butyl phthalate	IL.
Di-n-octyl phthalate	IL.
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	

	Primary AB
d of Testing /Matrix: RCRA (Non Potable Water)	
Diphenylamine	IL
Ethyl methanesulfonate	IL_
Famphur	IL.
Fluoranthene	I. IL
Fluorene	IL S
Hexachlorobenzene	IL
Hexachlorobutadiene	( <b>IL</b> )
Hexachlorocyclopentadiene	IL.
Hexachloroethane	IL.
Hexachlorophene	IL.
Hexachloropropene	IL.
Indeno(1,2,3-cd) pyrene	IL.
Isodrin	IL.
Isophorone	IL.
Isosafrole	IL.
Kepone	IL.
Methapyrilene	IL.
Methyl methanesulfonate	ĨĹ.
Methyl parathion (Parathion, methyl)	IL.
Naphthalene	IL.
Nitrobenzene	IL.
n-Nitrosodiethylamine	Ĩ.
	IL.
n-Nitrosodimethylamine	
n-Nitroso-di-n-butylamine	IL.
n-Nitrosodi-n-propylamine	IL
n-Nitrosodiphenylamine	IL.
n-Nitrosomethylethalamine	L.
n-Nitrosomorpholine	IL.
n-Nitrosopiperidine	IL.
n-Nitrosopyrrolidine	IL.
o,o,o-Triethyl phosphorothioate	IL .
Parathion	IL.
Pentachlorobenzene	IL.
Pentachloronitrobenzene	IL.
Pentachlorophenol	IL.
Phenacetin	IL.
Phenanthrene	IL.
Phenol	IL.
Phorate	IL.
p-Phenylenediamine	IL.
Pronamide (Kerb)	16
Pyrene	IL.
Pyridine	IL.
Safrole	IL.
Thionazin (Zinophos)	ĨL.
hod EPA 9014 Rev: 0	
Cyanide	IL.
thod EPA 9020B Rev: 2	
Total organic halides (TOX)	1.
thod EPA 9034 Rev: 0	

## Attachment 29: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix: RCRA (Non Potable Water)	
Sulfide	iL.
Method EPA 9038 Rev: 0	
Sulfate	11_
Method EPA 9040B Rev: 2	
pH	IL.
Method EPA 9040C	
рн	IL.
Method EPA 9050A Rev: 1	
Conductivity	IL.
Method EPA 9056A	
Bromide	L.
Chloride	(L. 1
Fluoride	IL.
Nitrate	IL.
Nitrite	11
Sulfate	IL
Total Phosphate	IL.
Method EPA 9060A	
Total organic carbon	IL.
Method EPA 9066 Rev: 0	
Total phenolics	IL.
Method EPA 9071B	
Oil & Grease	11_
Method EPA 9095A	
Paint Filter Test	IL.
Method EPA 9095B	
Paint Filter Test	IL.
Method EPA 9251 Rev: 0	
Chloride	IL.

## Attachment 30: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

# Attachment 31: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
Field of Testing /Matrix: RCRA (Solid & Hazardous Material)	
Method EPA 1010A	
Ignitability	0
Method EPA 1311 Rev: 0	
Toxicity Characteristic Leaching Procedure (TCLP)	IL.
Method EPA 1312 Rev: 0	
Synthetic Precipitation Leaching Procedure (SCLP)	IL
Method EPA 6010B Rev: 2	
Aluminum	IL.
Antimony	
Arsenic	IL IL
Barium	IL.
Beryllium	IL IL
Boron Cadmium	it.
Calcium	IL.
Chromium	12 12
Cobalt	IL.
	L.
Copper Iron	ic.
Lead	IL.
Lithium	IL.
Magnesium	IL.
	iL
Manganese Molybdenum	IL.
Nickel	1L-
Potassium	IL.
Selenium	iL.
	IL.
Silica as SiO2 Silver	IL.
Sodium	IL.
Strontium	IL.
Thallium	12
Tin	IL.
Titanium	12 12
Vanadium	02- 11-
Zinc	IL.
	12
Method EPA 6010C	
Aluminum	<u>I</u>
Antimony	- IL-
Arsenic	IL.
Barium	IL.
Beryllium	IL.
Boron	IL.
Cadmium	IL.
Calcium	IL.
Chromium	112
Cobalt	IL .
Copper	L.
Iron	IL. IL
Lead	

	Primary AB
Field of Testing /Matrix: RCRA (Solid & Hazardous Material)	
Lithium	IL.
Magnesium	IL.
Manganese	IL.
Molybdenum	Q
Nickel	0_
Potassium	0_
Selenium	JL.
Silica as SIO2	IL.
Silver	IL.
Sodium	IL,
Strontium	IL.
Thallium	IL.
Tin	IL.
Titanium	IL.
Vanadium	IL.
Zinc	IL
Method EPA 7196A Rev: 1	
Chromium VI	ĨL.
Method EPA 7471B	
	- Alexandream
Mercury	JL.
Method EPA 8015B Rev: 2	
Diesel range organics (DRO)	IL.
Gasoline range organics (GRO)	1L.
Method EPA 8015C	
Diesel range organics (DRO)	IL.
Gasoline range organics (GRO)	IL.
Method EPA 8015D	
Diesel range organics (DRO)	IL.
Gasoline range organics (GRO)	il.
	10
Method EPA 8081A Rev: 1	
4,4'-DDD	IL.
4,4'-DDE	the <b>IL</b> the
4,4'-DDT	IL.
Alachlor	IL.
Aldrin	IL.
alpha-BHC (alpha-Hexachlorocyclohexane)	IL
alpha-Chlordane, cis-Chlordane	IL.
Atrazine	IL.
beta-BHC (beta-Hexachlorocyclohexane)	1L
Chlordane (tech.)(N.O.S.)	IL.
delta-BHC	IL
Dieldrin	IL.
Endosulfan I	0
Endosulfan II	IL.
Endosulfan sulfate	IL
Endrin	IL.
Endrin aldehyde	IL.
Endrin ketone	IL
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	1L
gamma-Chlordane	IL.
Page 23 of 35	

# Attachment 32: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AE
ield of Testing /Matrix: RCRA (Solid & Hazardous Material)	
Heptachlor	JL.
Heptachlor epoxide	IL.
Isodrin	IL.
Kepone	IL.
Methoxychlor	IL.
Simazine	IL.
Toxaphene (Chlorinated camphene)	IL.
Method EPA 8081B	
4.4'-DDD	JL
4.4'-DDE	IL.
4,4'-DDT	IL.
Alachlor	IL.
Aldrin	IL.
alpha-BHC (alpha-Hexachlorocyclohexane)	IL.
alpha-Chlordane, cis-Chlordane	IL.
Atrazine	IL.
beta-BHC (beta-Hexachlorocyclohexane)	IL.
Chlordane (tech.)(N.O.S.)	IL.
delta-BHC	11
Dieldrin	IL.
Endosulfan I	IL.
Endosulfan II	IL.
Endosulfan sulfate	IL.
A REAL PROPERTY AND	
	IL.
Endrin aldehyde	IL.
	IL.
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	IL.
gamma-Chlordane	IL.
Heptachlor	IL.
Heptachlor epoxide	IL.
Isodrin	IL.
Kepone	IL.
Methoxychlor	)L_
Simazine	IL.
Toxaphene (Chlorinated camphene)	IL
Method EPA 8082 Rev: 0	
Aroclor-1016 (PCB-1016)	IL,
Aroclor-1221 (PCB-1221)	IL.
Aroclor-1232 (PCB-1232)	IL.
Aroclor-1242 (PCB-1242)	IL.,
Aroclor-1248 (PCB-1248)	IL.
Aroclor-1254 (PCB-1254)	IL.
Aroclar-1260 (PCB-1260)	IL.
Method EPA 8082A	
Aroclor-1016 (PCB-1016)	IL.
Aroclor-1221 (PCB-1221)	11
Aroclor-1232 (PCB-1232)	11_
Aroclor-1242 (PCB-1242)	11_
Aroclor-1248 (PCB-1248)	, IL

# Attachment 33: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
ield of Testing /Matrix: RCRA (Solid & Hazardous Material)	
Aroclor-1260 (PCB-1260)	IL.
Nethod EPA 8151A	
2,4,5-T	IL.
2,4-D	1
2,4-DB	11
Dalapon	IL.
Dicamba	IL
Dichloroprop (Dichlorprop)	IL.)
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	IL
Pentachlorophenol	IL.
Picloram	IL.
Silvex (2,4,5-TP)	IL.
Aethod EPA 8260B	
1,1,1,2-Tetrachloroethane	11
1, 1, 1-Trichloroethane	iL.
1,1,2,2-Tetrachloroethane	1
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	)  L
1,1,2-Trichloroethane	12
1,1-Dichloroethane	L.
	IL.
1,1-Dichloroethylene	іс. І
1,1-Dichloropropene	12 11
1,2,3-Trichlorobenzene	
1,2,3-Trichloropropane	L
1,2,4-Trichlorobenzene	)L
1,2,4-Trimethylbenzene	11-
1,2-Dibromo-3-chloropropane (DBCP)	IL.
1,2-Dibromoethane (EDB, Ethylene dibromide)	IL.
1,2-Dichlorobenzene (o-Dichlorobenzene)	IL.
1,2-Dichloroethane (Ethylene dichloride)	IL
1,2-Dichloropropane	L
1,3,5-Trichlorobenzene	IL.
1,3,5-Trimethylbenzene	IL.
1,3-Dichlorobenzene	10
1,3-Dichloropropane	IL
1,4-Dichlorobenzene	IL.
1,4-Dioxane (1,4- Diethyleneoxide)	IL.
1-Chlorohexane	IL.
2,2-Dichloropropane	)L
2-Butanone (Methyl ethyl ketone, MEK)	IL.
2-Chloroethyl vinyl ether	IL.
2-Chlorotoluene	IL.
2-Hexanone	IL.
2-Methylnaphthalene	IL.
2-Nitropropane	IL.
4-Chlorotoluene	11
4-Isopropyltoluene (p-Cymene, p-Isopropyltoluene)	IL.
4-Methyl-2-pentanone (MIBK)	IL.
Acetone	IL.
Acetonitrile	IL.
A south is (Decembra)	IL.
Acrolein (Propenal)	

# Attachment 34: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

# Attachment 35: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

1L 1L 1L 1L 1L
IL IL
IL.
IL.
IL.
IL.
IL.
IL
IL.
IL.
IL
1L
TL.
IL.
IL.
IL.
IL
IL.
IL
IL.
IL
IL
IL.
IL.
IL.
IL.
IL IL
IL.

# Attachment 36: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
ield of Testing /Matrix: RCRA (Solid & Hazardous Material)	
trans-1,2-Dichloroethylene	IL.
trans-1,3-Dichloropropylene	IL.
trans-1,4-Dichloro-2-butene	IL.
Trichloroethene (Trichloroethylene)	IL.
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	IL.
Vinyl acetate	IL.
Vinyl chloride	IL.
Xylene (total)	11
Method EPA 8270C Rev: 3	
1,2,4,5-Tetrachlorobenzene	IL.
1,2,4-Trichlorobenzene	ĨL.
1,2-Dichlorobenzene (o-Dichlorobenzene)	IL.
1,2-Diphenylhydrazine	IL.
1,3,5-Trinitrobenzene (1,3,5-TNB)	īL.
1,3-Dichlorobenzene	IL.
1,3-Dinitrobenzene (1,3-DNB)	ĨL.
1,4-Dichlorobenzene	ĨĹ.
1,4-Dinitrobenzene	IL.
1,4-Dioxane (1,4- Diethyleneoxide)	IL.
1,4-Naphthoquinone	IL.
1,4-Phenylenediamine	IL.
1-Chloronaphthalene	íL.
1-Methylnaphthalene	IL.
1-Naphthylamine	IL.
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	iL.
2,3,4,6-Tetrachlorophenol	IL.
2,4,5-Trichlorophenol	IL.
2,4,6-Trichlorophenol	IL.
2,4-Dichlorophenol	IL.
	IL.
2,4-Dimethylphenol	
2,4-Dinitrophenol	1L
2,4-Dinitrotoluene (2,4-DNT)	IL.
2,6-Dichlorophenol	IL.
2,6-Dinitrotoluene (2,6-DNT)	IL.
2-Acetylaminofluorene	IL
2-Chloronaphthalene	IL
2-Chlorophenol	IL.
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	IL.
2-Methylaniline (o-Toluidine)	(L_
2-Methylnaphthalene	IL.
2-Methylphenol (o-Cresol)	IL.
2-Naphthylamine	IL.
2-Nitroaniline	IL.
2-Nitrophenol	IL.
2-Picoline (2-Methylpyridine)	IL.
3,3'-Dichlorobenzidine	IL.
3,3'-Dimethylbenzidine	JL.
3-Methylcholanthrene	IL.
3-Methylphenol (m-Cresol)	n_
3-Nitroaniline	íL.
4-Aminobiphenyl	IL.

## Attachment 37: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AE
d of Testing /Matrix: RCRA (Solid & Hazardous Material)	
4-Bromophenyl phenyl ether	IL.
4-Chloro-3-methylphenol	IL
4-Chloroaniline	IL.
4-Chlorophenyl phenylether	IL.
4-Dimethyl aminoazobenzene	IL.
4-Methylphenol (p-Cresol)	IL
4-Nitroaniline	IL
4-Nitrophenol	IL.
4-Nitroquinoline 1-oxide	11.
5-Nitro-o-toluidine	IL.
7,12-Dimethylbenz(a) anthracene	0
a-a-Dimethylphenethylamine	IL.
Acenaphthene	ĨL.
Acenaphthylene	IL.
Acetophenone	iL.
Aniline	IL.
Anthracene	IL.
Aramite	IL.
	IL.
Benzidine	L.
Benzo(a)anthracene	
Benzo(a)pyrene	<u>L</u>
Benzo(b)fluoranthene	IL
Benzo(g,h,i)perylene	IL.
Benzo(k)fluoranthene	IL.
Benzoic acid	IL.
Benzyl alcohol	IL.
bis(2-Chloroethoxy)methane	IL
bis(2-Chloroethyl) ether	π_
bis(2-Ethylhexyl) phthalate (DEHP)	0_
Butyl benzyl phthalate	IL.
Carbazole	IL.
Carbofuran (Furaden)	IL.
Chlorobenzilate	IL.
Chrysene	IL
Diallate	IL
Dibenz(a, j) acridine	IL.
Dibenz(a,h) anthracene	IL.
Dibenzofuran	n_
Diethyl phthalate	IL.
Dimethoate	IL.
Dimethyl phthalate	IL.
Di-n-butyl phthalate	IL.
Di-n-octyl phthalate	IL.
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	IL.
Diphenylamine	IL.
Ethyl methanesulfonate	IL D
Famphur	1L
Fluoranthene	IL.
Fluorene	IL.
Hexachlorobenzene	íL.
Hexachlorobutadiene	IL.

# Attachment 38: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
eld of Testing /Matrix: RCRA (Solid & Hazardous Material)	
Hexachlorocyclopentadiene	IL.
Hexachloroethane	IL.
Hexachlorophene	IL.
Hexachloropropene	L.
Indeno(1,2,3-cd) pyrene	IL
Isodrin	IL.
Isophorone	IL.
Isosafrole	IL.
Kepone	1L
Methapyrilene	11_
Methyl methanesulfonate	1
Methyl parathion (Parathion, methyl)	íL.
Naphthalene	ĨL.
Nitrobenzene	íL.
n-Nitrosodiethylamine	ii.
n-Nitrosodimethylamine	íL.
n-Nitroso-di-n-butylamine	ίĽ.
n-Nitrosodi-n-propylamine	i.
n-Nitrosodiphenylamine	IL.
n-Nitrosomethylethalamine	IL.
n-Nitrosomorpholine	IL.
n-Nitrosopiperidine	IL.
n-Nitrosopyrrolidine	iL
o,o,o-Triethyl phosphorothioate Parathion	
	jL.
Pentachlorobenzene	jL.
Pentachloronitrobenzene	IL.
Pentachlorophenol	JL.
Phenacetin	IL.
Phenanthrene	ΠĽ.
Phenol	IL
Phorate	IL.
p-Phenylenediamine	IL.
Pronamide (Kerb)	IL.
Pyrene	1
Pyridine	íL.
Safrole	IL.
Thionazin (Zinophos)	L.
ethod EPA 8270D	
1,2,4,5-Tetrachlorobenzene	1
1,2,4-Trichlorobenzene	1
1,2-Dichlorobenzene (o-Dichlorobenzene)	íL.
1,2-Diphenylhydrazine	Ű.
1,3,5-Trinitrobenzene (1,3,5-TNB)	ll.
1,3-Dichlorobenzene	1
1,3-Dinitrobenzene (1,3-DNB)	ii.
1,4-Dichlorobenzene	i L
1,4-Dinitrobenzene	
1,4-Dioxane (1,4- Diethyleneoxide)	IL IL
t start tit is en i een i diski i died i died i died i kielen i	
	- (Ú.
1,4-Naphthoquinone 1,4-Phenylenediamine	IL.

# Attachment 39: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

	Primary AB
d of Testing /Matrix: RCRA (Solid & Hazardous Material)	
1-Chloronaphthalene	1L.
1-Methylnaphthalene	11_
1-Naphthylamine	IL.
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	IL.
2,3,4,6-Tetrachlorophenol	IL.
2,4,5-Trichlorophenol	I I IL
2,4,6-Trichlorophenol	IL.
2,4-Dichlorophenol	IL.
2,4-Dimethylphenol	IL.
2,4-Dinitrophenol	RL.
2,4-Dinitrotoluene (2,4-DNT)	0
2,6-Dichlorophenol	114
2,6-Dinitrotaluene (2,6-DNT)	IL.
2-Acetylaminofluorene	IL.
2-Chloronaphthalene	IL.
2-Chlorophenol	IL.
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	IL.
2-Methylaniline (o-Toluidine)	IL.
2-Methylnaphthalene	IL.
2-Methylphenol (o-Cresol)	IL.
2-Naphthylamine	IL
2-Nitroaniline	- IL
2-Nitrophenol	IL
2-Picoline (2-Methylpyridine)	IL.
3,3'-Dichlorobenzidine	IL.
3,3'-Dimethylbenzidine	IL.
3-Methylcholanthrene	IL.
3-Methylphenol (m-Cresol)	IL.
3-Nitroaniline	IL.
4-Aminobiphenyl	íL-
4-Bromophenyl phenyl ether	1 I I E
4-Chloro-3-methylphenol	IL.
4-Chloroaniline	IL.
4-Chlorophenyl phenylether	IL.
4-Dimethyl aminoazobenzene	IL.
4-Methylphenol (p-Cresol)	11_
4-Nitroaniline	11_
4-Nitrophenol	IL.
4-Nitroquinoline 1-oxide	IL
5-Nitro-o-toluidine	IL.
7,12-Dimethylbenz(a) anthracene	IL.
a-a-Dimethylphenethylamine	IL.
Acenaphthene	IL.
Acenaphthylene	IL.
Acetophenone	IL.
Aniline	- IL-
Anthracene	IL.
Aramite	IL.
Benzidine	IL.
Benzo(a)anthracene	IL.
Benzo(a)pyrene	IL.
A CONTRACT OF A CO	

	Primary AB
of Testing /Matrix: RCRA (Solid & Hazardous Material)	
Benzo(b)fluoranthene	IL.
Benzo(g,h,i)perylene	IL.
Benzo(k)fluoranthene	IL:
Benzoic acid	IL.
Benzyl alcohol	IL.
bis(2-Chloroethoxy)methane	IL.
bis(2-Chloroethyl) ether	IL.
bis(2-Ethylhexyl) phthalate (DEHP)	n
Butyl benzyl phthalate	IL.
Carbazole	IL.
Carbofuran (Furaden)	IL.
Chlorobenzilate	IL.
Chrysene	ĨL.
Diallate	IL
Dibenz(a, j) acridine	IL.
Dibenz(a,h) anthracene	IL.
Dibenzofuran	IL.
Diethyl phthalate	IL.
Dimethoate	íL.
Dimethyl phthalate	IL-
Di-n-butyl phthalate	IL.
Di-n-octyl phthalate	IL
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	IL.
Diphenylamine	IL.
Ethyl methanesulfonate	i.
Famphur	IL
Fluoranthene	ĨL.
Fluorene	IL.
Hexachlorobenzene	IL.
Hexachlorobutadiene	IL.
Hexachlorocyclopentadiene	IL.
Hexachloroethane	IL.
Hexachlorophene	IL.
Hexachloropropene	IL IL
Indeno(1,2,3-cd) pyrene	IL.
Isodrin	
Isophorone	IL.
Isosafrole	IL.
Kepone	IL.
Methapyrilene	- IL
Methyl methanesulfonate	IL.
Methyl parathion (Parathion, methyl)	IL.
Naphthalene	<u>n</u> _
Nitrobenzene	IL.
n-Nitrosodiethylamine	L.
n-Nitrosodimethylamine	IL.
n-Nitroso-di-n-butylamine	IL.
n-Nitrosodi-n-propylamine	IL.
n-Nitrosodiphenylamine	1L
n-Nitrosomethylethalamine	IL.
n-Nitrosomorpholine	IL.

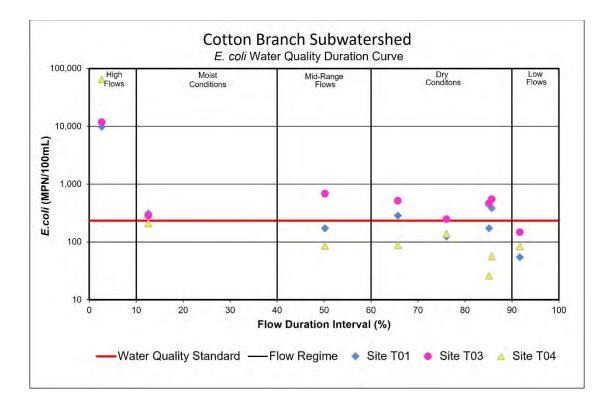
	Primary AB
Field of Testing /Matrix: RCRA (Solid & Hazardous Material)	
n-Nitrosopiperidine	JL.
n-Nitrosopyrrolidine	IL.
o,o,o-Triethyl phosphorothioate	IL.
Parathion	IL.
Pentachlorobenzene	IL.
Pentachloronitrobenzene	IL.
Pentachlorophenol	0_
Phenacetin	íL.
Phenanthrene	- IL
Phenol	íL.
Phorate	ĨL.
p-Phenylenediamine	IL
Pronamide (Kerb)	îL.
	IL IL
Pyrene	
Pyridine	IL .
Safrole	IL.
Thionazin (Zinophos)	<u>n_</u>
Method EPA 9014 Rev: 0	
Cyanide	11_
Method EPA 9020B Rev: 2	
Total organic halides (TOX)	IL.
Method EPA 9034 Rev: 0	
Sulfide	L
Method EPA 9045C Rev: 3	
рН	IL.
Method EPA 9045D	
На	IL.
Method EPA 9050A Rev: 1	
	17
Conductivity	IL.
Method EPA 9056A	
Bromide	IL.
Chloride	IL.
Fluoride	IL.
Nitrate	IL.
Nitrite	IL.
Sulfate	IL.
Total Phosphate	IL.
Method EPA 9060A	
Total organic carbon	IL
	ic.
Method EPA 9066 Rev: 0	
Total phenolics	- IL
Method EPA 9071B	
Oil & Grease	IL.
Method EPA 9095A	
	1
Paint Filter Test	ji.
Method EPA 9095B	
Paint Filter Test	lL_

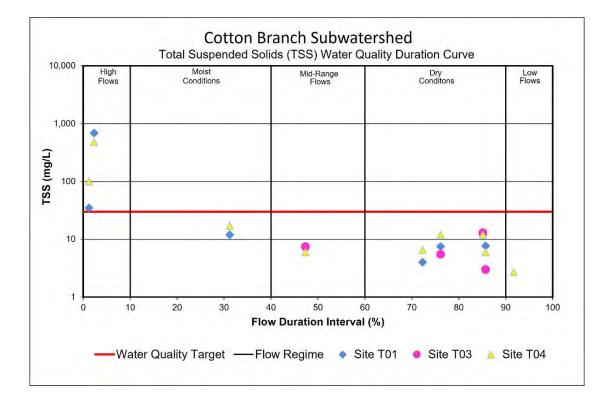
## Attachment 41: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

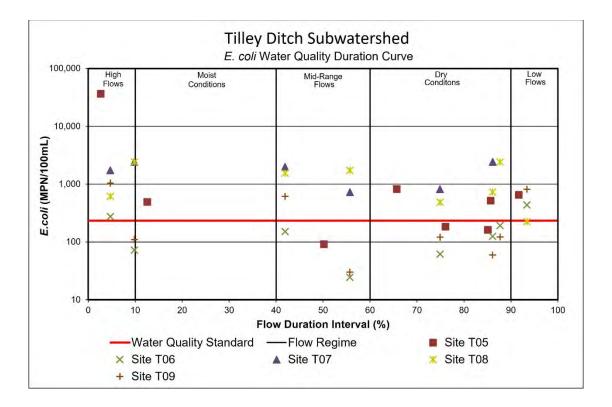
### Attachment 42: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)

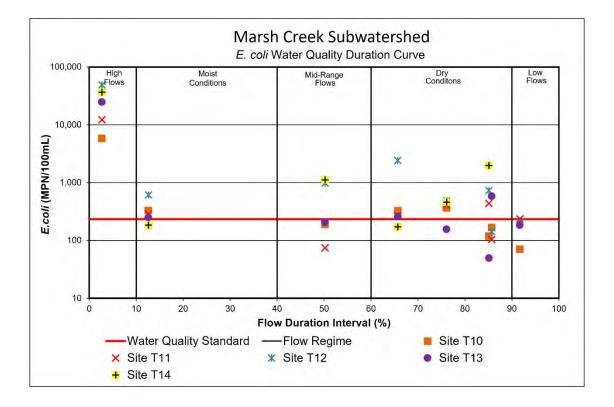
Field of Testing /Matrix: RCRA (Solid & Hazardous Material) Chloride

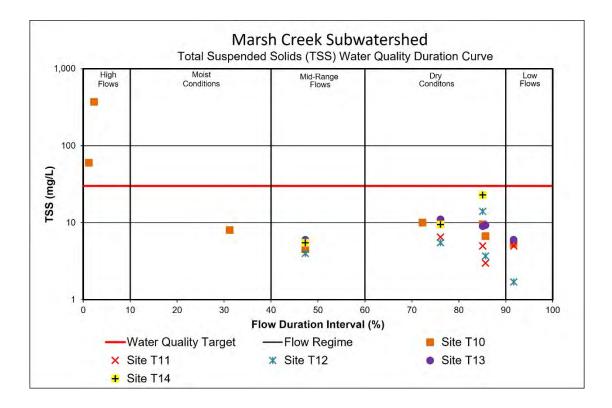
1L

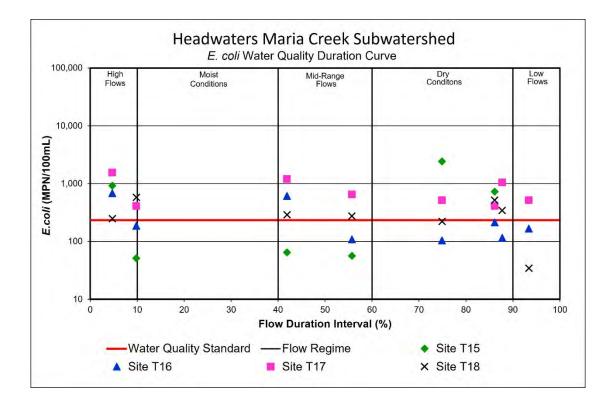

	Primary AB
ield of Testing /Matrix: SDWA (Potable Water)	
Method EPA 180.1	
Turbidity	04
Method EPA 200.7 Rev: 4,4	
Aluminum	IL.
Arsenic	IL.
Barium	IL.
Beryllium	IL.
Cadmium	ĨL.
Calcium	ĨL.
Chromium	ĨL.
Copper	IL.
Iron	ĨL.
Magnesium	IL.
Manganese	íL.
Nickel	i L
Silica as SiO2	L.
Silver	iL
Sodium	IL.
Zine	L.
Vethod EPA 200.8 Rev: 5.4	<u>, 1</u>
an an a' she an a she an a she a	IL.
Aluminum	
Antimony	(L
Arsenic	IL.
Barium	IL.
Beryllium	IL
Cadmium	IL.
Chromium	IL.
Copper	UL.
Lead	JL .
Manganese	IL.
Molybdenum	IL.
Nickel	IL.
Selenium	IL.
Silver	IL.
Thallium	IL.
Zinc	n.
Method EPA 245.1 Rev: 3	
Mercury	JL,
Method EPA 300.0 Rev: 2.1	
Chloride	11
Fluoride	JĽ.
Nitrate	IL.
Nitrite	JL.
Orthophosphate as P	IL.
Sulfate	IL.
Vethod EPA 353.2 Rev: 2	
Nitrate	
Nitrate plus Nitrite as N	IL. IL
Method SM 2320 B-1997 Rev: 20th ED	

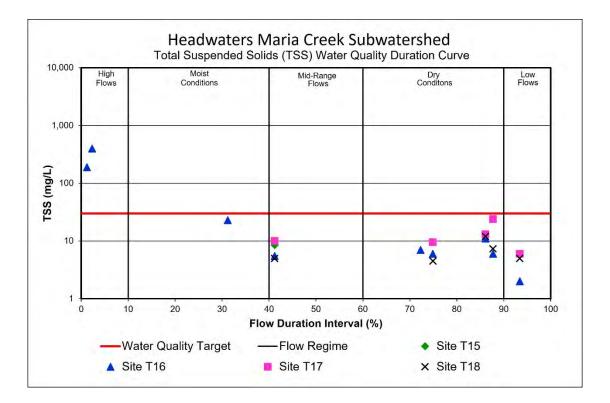

## Attachment 43: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)


field of Testing /Matrix: SDWA (Potable Water) Alkalinity as CaCO3 Method SM 2340 B-1997 Rev: 20th ED Hardness Method SM 2510 B-1997 Rev: 20th ED Conductivity Method SM 2540 C-1997 Rev: 20th ED Total dissolved solids Method SM 4500-CI F-1993 Rev: 20th ED Chlorine Method SM 4500-CN [®] E-1997 Rev: 20th ED Cyanide Method SM 4500-F [®] C-1997 Rev: 20th ED Fluoride	الـ الـ الـ الـ
Method SM 2340 B-1997 Rev: 20th ED Hardness Method SM 2510 B-1997 Rev: 20th ED Conductivity Method SM 2540 C-1997 Rev: 20th ED Total dissolved solids Method SM 4500-CI F-1993 Rev: 20th ED Chlorine Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	الـ الـ الـ
Hardness Method SM 2510 B-1997 Rev: 20th ED Conductivity Method SM 2540 C-1997 Rev: 20th ED Total dissolved solids Method SM 4500-CI F-1993 Rev: 20th ED Chlorine Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	1L 1L 1L
Method SM 2510 B-1997 Rev: 20th ED Conductivity Method SM 2540 C-1997 Rev: 20th ED Total dissolved solids Method SM 4500-CI F-1993 Rev: 20th ED Chlorine Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	1L 1L 1L
Conductivity Method SM 2540 C-1997 Rev: 20th ED Total dissolved solids Method SM 4500-Cl F-1993 Rev: 20th ED Chlorine Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	۱. ۱. ۱.
Method SM 2540 C-1997 Rev: 20th ED Total dissolved solids Method SM 4500-Cl F-1993 Rev: 20th ED Chlorine Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	۱. ۱. ۱.
Total dissolved solids Method SM 4500-Cl F-1993 Rev: 20th ED Chlorine Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	iL IL
Method SM 4500-Cl F-1993 Rev: 20th ED Chlorine Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	iL IL
Chlorine Method SM 4500-CN E-1997 Rev: 20th ED Cyanide Method SM 4500-F C-1997 Rev: 20th ED Fluoride	L
Method SM 4500-CN ⁻ E-1997 Rev: 20th ED Cyanide Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	L
Cyanide Method SM 4500-F  C-1997 Rev: 20th ED Fluoride	
Method SM 4500-F ⁻ C-1997 Rev: 20th ED Fluoride	
Fluoride	0
	-
Method SM 4500-H+ B-1996 Rev: 20th ED pH	n_
Method SM 4500-NO2 B-1993 Rev: 20th ED	
Nitrite	IL.
Method SM 4500-NO3 F-1997 Rev: 20th ED	
Nitrate	IL.
Method SM 4500-P E-1997 Rev: 20th ED	
Orthophosphate as P	IL.
Method SM 4500-SO4 E-1997 Rev: 20th ED	
Sulfate	ũ.
Method SM 5310 B Rev: 21st ED	
Total organic carbon	IL.
Method SM 5310 C Rev: 20th ED	
Dissolved organic carbon (DOC)	IL.
Total organic carbon End of Scope of Accreditation	L.


# Attachment 44: Eurofins TestAmerica Chicago Laboratory Accreditation (cont.)


## APPENDIX F. WATER QUALITY DURATION GRAPHS FOR THE MARIA CREEK WATERSHED TMDL














## APPENDIX G. NPDES EXECUTIVE SUMMARY

### Maria Creek Watershed: NPDES Executive Summary

This appendix summarizes the potential point sources of *E. coli* and TSS in the Maria Creek watershed, as regulated through the National Pollutant Discharge Elimination System (NPDES) Program. As authorized by the CWA, the NPDES permit program controls water pollution by regulating facilities that discharge pollutants into waters of the United States. Point sources with NPDES permits within the Maria Creek watershed include municipal wastewater treatment plants (WWTPs), a public water supply, surface and underground coal mining operations, and construction sites.

### **Overview of Facilities**

There are three municipal wastewater treatment plants (WWTPs) located within the Maria Creek watershed. Effluent from these facilities are potential point sources of *E. coli* and TSS. The Freelandville Regional Sewer District operates a minor municipal WWTP (IN0064513). The WWTP is a Class I, 0.088 MGD bio-mechanical treatment facility. The facility has one outfall (Outfall 001) that discharges to an unnamed tributary of Maria Creek. North Knox School Corporation operates a minor semi-public WWTP at North Knox High School (IN0041084). The WWTP is a Class I, 0.022 MGD extended aeration treatment facility. The facility has one outfall (Outfall 001) that discharges into Tilley Ditch. North Knox School Corporation also operates a minor semi-public WWTP at North Knox Intermediate School (IN0041092). The WWTP is a Class I, 0.005 MGD extended aeration treatment facility. The facility has one outfall (Outfall 001) that discharges into an unnamed tributary of Maria Creek.

There is one public water supply located within the Maria Creek watershed, Freelandville Water Association. Effluent from this facility is a potential point source of TSS. Wastewater discharges from Freelandville Water Association are regulated by an individual industrial wastewater permit (IN0059480). Freelandville Water Association has two outfalls (Outfalls 001 and 002) which discharge into an unnamed tributary that flows north into Tilley Ditch. The facility has an average discharge of approximately 0.022 MGD.

There are two surface mining operations located within the Maria Creek watershed, Bear Run Mine (ING040239) and Freelandville Mine (ING040030). Effluent from these facilities are potential point sources of TSS. Discharges from Bear Run Mine and Freelandville Mine are regulated by the coal mining general permit rule (327 IAC 15-7). Bear Run Mine currently has one active outfall (Outfall 068) that discharges within the Maria Creek watershed. Freelandville Mine currently has no permitted outfalls that discharge within the Maria Creek watershed. Therefore, Freelandville Mine will not receive a wasteload allocation for purposes of this TMDL report.

There are two underground mining facilities located within the Maria Creek watershed operated by Sunrise Coal LLC, Carlisle Mine and Oaktown Mine. Effluent from these facilities are potential point sources of TSS. Discharges from Carlisle Mine and Oaktown Mine are regulated by either the coal mining general permit rule or an individual NPDES permit. The discharges from Carlisle Mine, Outfalls 003 and 202 are regulated by the coal mining general permit rule (ING040199), and the discharge from Outfall 005 is regulated by an individual NPDES permit (IN0062791). The discharges from Oaktown Mine, Outfalls 002, 005, and 006 are regulated by the coal mining general permit rule (ING040222), and the discharge from Outfall 001 is regulated by an individual NPDES permit (IN0064629).

#### Wasteload Allocations (WLAs)

Allowable pollutant loads and associated allocations were calculated for each of the 12-digit HUC subwatersheds and associated assessment units in the Maria Creek watershed. WLAs are typically calculated based on the design flow or estimated flow of the facility and the TMDL target or applicable permit limit. Three municipal WWTPs and one public water supply were calculated following this method. However, coal mining operations within the Maria Creek watershed required additional consideration for WLA calculations. Pollutant concentrations used to calculate wasteloads from each facility are based on known technological limitations of the facilities.

Municipal WWTP permit effluent limits for *E. coli* and TSS were used to determine WLAs for each treatment plant. The effluent limit for TSS is set at the NPDES permit limit of 12 mg/L monthly average for the Freelandville Regional Sewer District. The effluent limit for TSS is set at the NPDES permit limit of 30 mg/L winter monthly average for the North Knox High School WWTP and North Knox Intermediate School WWTP. The effluent limit for *E. coli* is set at the 235 counts/100 mL single sample maximum component of the water quality standard for all three facilities. Average design flow was determined from information reported by the facility during the permitting process (Table 2). Compliance with current NPDES permit limits for each facility is consistent with the assumptions used to determine WLAs in the TMDL for protection of applicable water quality standards.

Freelandville Water Association's permit effluent limit for TSS is set at the NPDES per limit of 40 mg/L daily maximum. Average design flow was determined from information reported by the facility during the permitting process (Table 2). Compliance with current NPDES permit limits is consistent with the assumptions used to determine WLAs in the TMDL for protection of applicable water quality standards.

Discharges from the Bear Run Mine surface mine and Carlisle and Oaktown mine underground mine outfalls regulated through the general permit rule are believed to be primarily related to precipitation events. An estimated design flow is not available for these discharges. WLAs were therefore calculated by using an estimate of the surface impacts associated with each surface mine operation or underground mine outfall to determine run-off flow volumes, and existing permit limits were used to calculate allowable loadings. Surface impacts were estimated by delineating the disturbed surface area associated with each surface mine operation or underground mine outfall using the most recent aerial imagery available in ArcGIS and calculating the acreage of each area. To determine the WLA, the estimated surface impact acreage was divided by the total subwatershed acreage and multiplied by the corresponding flow values for the subwatershed to determine flow from the facility. Flow based WLAs were then calculated by multiplying the flow values by the target concentration of 70 mg/L daily maximum (Table 1).

Design flow estimates for discharges from underground mine outfalls regulated through individual NPDES permits were estimated based on the unique characteristics of each outfall and how each outfall is utilized by the facility. An analysis of the past two years of flow data for Carlisle Mine, Outfall 005 available from Discharge Monitoring Reports (DMRs) was completed to gain a better understanding of typical discharge from this outfall. Data over the past two years indicated flow was significantly influenced by precipitation events. The flow regime for each discharge event was determined, and the average discharge for each flow regime was calculated. The average discharge for each flow regime was

used as the estimated design flow to calculate the WLA for each flow regime. DMRs were also reviewed to determine typical TSS concentrations for discharge events from the past two years. It was determined that TSS concentrations were typically less than 35 mg/L. Therefore, the WLA for the Carlisle Mine, Outfall 005 was calculated using the NPDES permit limit of 35 mg/L monthly average as it is more representative of existing load conditions.

An analysis of the past two years of flow data for Oaktown Mine, Outfall 001 was also completed to gain an understanding of typical discharge from this outfall. Data over the past two years indicated that this outfall does not regularly discharge, and when the outfall does discharge it typically occurs during precipitation events. Due to the irregularity of the discharges from this outfall, the estimated design flow of 0.5 MGD as reported in the facility's permit was used as the estimated design flow to calculate the WLA. DMRs were also reviewed to determine typical TSS concentrations for discharge events from the past two years. It was determined that TSS concentrations were typically less than 35 mg/L. Therefore, the WLA for the Oaktown Mine, Outfall 001 was calculated using the NPDES permit limit of 35 mg/L monthly average as it is more representative of existing load conditions.

The WLA for each coal mining operation outfall will be achieved through compliance with the facility's NPDES general permit coverage or individual permit. The WLAs were estimated based upon consideration of TSS contributions from current operating conditions and current permit limits of each facility. IDEM's analyses of current operating conditions and flow and water quality discharge data from individual facilities indicate that WLAs in Table 1 and Table 2 can be achieved through compliance with each facility's existing NPDES general permit coverage (under 327 IAC 15-7) or individual permit. Therefore, IDEM believes that existing general and individual permit limits are suitable to attain the WLAs described in Table 1 and Table 2. This TMDL does not preclude new or modified mining activities that employ the 70 mg/L daily maximum and 35 mg/L monthly average for TSS under the general permit rule. New or modified discharges under individual permits will be addressed through the NPDES permit process and must follow the assumptions set forth in the TMDL.

Subwatershed	Facility Name	Permit Number	AUID	Receiving Stream	Estimated Surface Impacts (Acres)	High Flow Regime TSS WLA (Ibs/day)	Low Flow Regime TSS WLA (Ibs/day)	NPDES Permit TSS Limit
March Crook	Sunrise Coal Carlisle Mine	ING040199	INB11I3_02	Marsh Creek	283	991.98	18.11	70 mg/L daily max
Marsh Creek Sunrise Coal Oaktown Min		ING040222	INB11I3_04	Marsh Creek	122	428.57	7.83	70 mg/L daily max
Cotton Branch	Sunrise Coal Oaktown Mine	ING040222	INB11I4_T1001	Tributary of Maria Creek	20	69.26	0.55	70 mg/L daily max
Headwaters Maria Creek	Peabody Midwest Bear Run Mine	ING040239	INB11I1_T1002	Tributary of Maria Creek	2,123	7,249.75	56.90	70 mg/L daily max

Table 1: Individual WLAs for NPDES General Permit Coal Mining Facilities in the Maria Creek Watershed

Understanding Table 1: The WLA for each NPDES permitted facility will be achieved through compliance with the facility's NPDES general permit coverage.

Subwatershed	Facility Name	Permit Number	AUID	Receiving Stream	Flow Regime	Estimated Design Flow (MGD)	<i>E. coli</i> WLA (MPN/day)	NPDES Permit <i>E. coli</i> Limit	TSS WLA (Ibs/day)	NPDES Permit TSS Limit
Tilley Ditch	Freelandville Regional Sewer District	IN0064513	INB11I2_T1001	Tributary of Maria Creek	All	0.088	7.83E+08	235 MPN/100 mL Daily Max.	8.8*	12 mg/L* Monthly Avg.
Tilley Ditch	North Knox High School WWTP	IN0041084	INB11I2_T1004	Tilley Ditch	All	0.022	1.96E+08	235 MPN/100 mL Daily Max.	5.5*	30 mg/L* Monthly Avg.
Cotton Branch	North Knox Intermediate School WWTP	IN0041092	INB11I4_02	Tributary of Maria Creek	All	0.005	4.45E+07	235 MPN/100 mL Daily Max.	1.25	30 mg/L Monthly Avg.
Tilley Ditch	Freelandville Water Association	IN0059480	INB11I2_T1004	Tributary of Tilley Ditch	All	0.022	NA	NA	NA	40 mg/L* Daily Max.
					High	1.77			516.88	
				Tributary of	Moist	0.88			256.98	
Marsh Creek	Sunrise Coal Carlisle Mine	IN0062791	INB11I3_T1001	Marsh	Mid	0.88	NA	NA	256.98	35 mg/L Monthly Avg.
				Creek	Dry	0.66			192.74	
					Low	0.47			137.25	
Marsh Creek	Sunrise Coal Oaktown Mine	IN0064629	INB11I3_04	Marsh Creek	All	0.5	NA	NA	146.01	35 mg/L Monthly Avg.

Table 2: Individual WLAs for NPDES Individual Permit Municipal and Industrial Facilities in the Maria Creek Watershed

Understanding Table 2: The WLA for each NPDES permitted facility will be achieved through compliance with the facility's NPDES individual permit.

* A TSS TMDL was not developed for the Tilley Ditch subwatershed. The WLAs and TSS limits are referenced from current permit limits for reporting purposes only.

## APPENDIX H. GENERALIZED WATERSHED LOADING FUNCTION ENHANCED (GWLF-E) MODELING FOR THE MARIA CREEK WATERSHED

## Hydrologic / Water Quality Modeling for Maria Creek Watershed

### Part 1. Model Overview & Data Compilation

MapShed is an established midrange modeling tool first developed as the Generalized Watershed Loading Function Enhanced (GWLF-E) model by Haith and Shoemaker in 1987, and Haith et al. in 1992. The model was refined regularly by Evans, Corradini, and Lehning at Penn State University into an ArcView GIS-based model called AVGWLF (Evans et al., 2007); it has recently transitioned to the opensource MapWindow GIS and now is now called MapShed (Evans & Corradini, 2016).

The GWLF model is an aggregate distributed/lumped parameter watershed model that provides the ability to simulate runoff, sediment, and nutrient (nitrogen (N) and phosphorus (P)) loads from a watershed given variable-size source areas (e.g., agricultural, forested, and developed land). GWLF is considered to be a combined distributed/lumped parameter watershed model. For surface loading, it is distributed in the sense that it allows multiple land use/cover scenarios, but each area is assumed to be homogenous in regard to various attributes considered by the model. Additionally, the model does not spatially distribute the source areas, but simply aggregates the loads from each source area into a watershed total; in other words there is no spatial routing. For sub-surface loading, the model acts as a lumped parameter model using a water balance approach. No distinctly separate areas are considered for sub-surface flow contributions. Daily water balances are computed for an unsaturated zone as well as a saturated sub-surface zone, where infiltration is simply computed as the difference between precipitation and snowmelt minus surface runoff plus evapotranspiration.

With respect to the major processes simulated, GWLF models surface runoff using the Soil Conservation Service Curve Number, or SCS-CN, approach with daily weather (temperature and precipitation) inputs. Erosion and sediment yield are estimated using monthly erosion calculations based on the Universal Soil Loss Equation USLE algorithm (with monthly rainfall-runoff coefficients) and a monthly composite of KLSCP values for each source area (i.e., land cover/soil type combination). The KLSCP factors are variables used in the calculations to depict changes in soil loss erosion (K), the length slope factor (LS), the vegetation cover factor (C), and the conservation practices factor (P). A sediment delivery ratio based on watershed size and transport capacity, which is based on average daily runoff, is then applied to the calculated erosion to determine sediment yield for each source area. Evapotranspiration is determined using daily weather data and a cover factor dependent upon land use/cover type. Finally, a water balance is performed daily using supplied or computed precipitation, snowmelt, initial unsaturated zone storage, maximum available zone storage, and evapotranspiration values.

One of the major strengths of the GWLF model is the simplicity of estimating pollutant loads. However, as the model employs lumped sum average conditions within the watershed, it lacks a high level of localized accuracy and detail when compared to other models. Hydrology and loading estimates are limited to monthly and annual outputs, however run time can be accomplished quickly overall. Additionally, limitations of the model should be recognized in areas that exhibit high amounts of altered hydrology.

MapShed consists of three components. Note that "MapShed" refers both to the overall model (all three components), as well as the first of the three individual components. Each is a standalone executable file which can be independently run.

- MapShed, a MapWindow-based interface using GIS to generate model inputs, (executable: PrjMngr.exe);
- Generalized Watershed Loading Model (GWLF-E), the hydrology and nutrient loading model, (executable: GWLF-E.exe); and
- PRedICT, software to examine various best management practice (BMP) scenarios, (executable: PRedICT.exe)

For execution, the model requires two separate input files containing transport and weather-related data. The transport (transport.dat) file defines the necessary parameters for each source area to be considered (e.g., area size, curve number, etc.) as well as global parameters (e.g., initial storage, 14 sediment delivery ratio, etc.) that apply to all source areas. The weather (weather.dat) file contains daily average temperature and total precipitation values for each year simulated.

### Model My Watershed

The Model My Watershed online application was used to determine potential input parameter values for the Maria Creek watershed GWLF-E model when appropriate. Model My Watershed is part of the Stroud Water Research Center's WikiWatershed initiative. WikiWatershed is a web toolkit designed to support citizens, conservation practitioners, municipal decision-makers, researchers, educators, and students to collaboratively advance knowledge and stewardship of fresh water (Stroud Water Research 2017). The toolkit allows users to run a watershed multiyear model across various scales using the GWLF-E (MapShed) model. A 30-year simulation model was run using the application for the Maria Creek watershed. The input file (.gms) was exported and used for assistance in determining various parameter values for the final model.

### Part 2. GIS Based Derivation of Input Data

The use of GIS software for deriving input data for watershed simulation models such as GWLF is becoming fairly standard practice due to the inherent advantages of using GIS for manipulating spatial data. In this case, MapShed is used to parameterize input data for the GWLF-E model. In utilizing this interface, the user is prompted to load required GIS files and to provide other information related to various "non-spatial" model parameters (e.g., beginning and end of the growing season; the months during which manure is spread on agricultural land, etc.). This information is subsequently used to automatically derive values for required model input parameters, which are then written to the TRANSPRT.DAT and WEATHER.DAT input files needed to execute the GWLF-E model. Also accessed through the interface are Excel-formatted weather files containing daily temperature and precipitation information. Figure 1 and Table 1 lists GIS datasets and shapefiles used for the Maria Creek watershed calculations via MapShed and provide explanations of how they were used for development of the input files for the GWLF-E model.

Data Layers	Short Description	Required
Shape Files		
Weather stations	Weather station locations (points)	Yes
Point Sources	Point source discharge locations (points)	No
Water Extraction	Water withdrawal locations (points)	No
Basins	Basin boundary used for modeling (polygons)	Yes
Streams	Map of stream network (lines)	Yes
Unpaved Roads	Map of unpaved roads (lines)	No
Roads	Map of road network (lines)	No
Counties	County boundaries - for USLE data (polygons)	No
Septic Systems	Septic system numbers and types (polygons)	No
Soils	Contains various soil-related data (polygons)	Yes
Physiographic Provinces	Contains hydrologic parameter data (polygons)	No
Flow Lines	Flow lengths from sub-areas to watershed outlet	No
Grid Files		
Land Use/Cover	Map of land use/cover (16 classes)	Yes
Elevation	Elevation grid	Yes
Groundwater-N	Background estimate of N in mg/l	No
Soil-P	Estimate of soil P in mg/kg (total or soil test P)	No
Urban Areas	Map of urban area boundaries	No

Figure 1. Overview of GIS data layers used in MapShed

Source: MapShed User Guide (Evans and Corradini 2016)

Table 1: Description of GIS layer files used in developing input files for GWLF-E model for Maria Creek.

Data Layer	Short Description	File Type	File Name	Notes and Source
Weather	Weather station	Point	Weatherstation.shp	User created based on Midwestern Regional
Stations	locations			Climate Center location data
Weather	Weather station	CSV-files	Individually named	Midwestern Regional Climate Center
Directory	directory		by weather station	
Basins	Basin boundary	Polygon	BasinMaria.shp	Indiana Geographic Information Office
	used for modeling			
Streams	Map of stream	Line	Maria_NHD_poly.shp	National Hydrologic Dataset
	network			
Soils	Contains various	Polygon	Soils.shp	SSURGO modified with local data from USDA
	soil related data			Web Soil Survey
Land	Map of land	Grid	LU_ReclassD.tif	2019 Cropland Data Layer reclassified based
Use/Cover	use/cover			on MapShed user guide and modified for
				disturbed areas by user.
DEM	Elevation grid	Grid	DEM_301.tif	Indiana Geographic Information Office with
				30 meter resolution

The GIS portion of the model was run by selecting all available weather years, selecting May through September as the growing season, and leaving the default return flow of 0.4 (fraction of irrigation water estimated to return to surface/subsurface flow). The Maria Creek watershed was run first as an aggregate including all sub-basins. The aggregated model was used to calibrate flow to the observed data. The model was run again for all sub-basins individually. Calibrated parameter values from the aggregated model were transferred to each sub-basin model where appropriate. When the GIS portion of the model was completed, a .gms file for each sub-basin was generated, which was used by the GWLF-E section below.

### Part 3. GWLF-E Model Input Parameters

In the GWLF-E model, the nonpoint source load calculated is affected by terrain conditions such as amount of agricultural land, land slope, and inherent soil erodibility. It is also affected by farming practices utilized in the area. Various parameters are included in the model to account for these conditions and practices. Some of the more important parameters are summarized below:

- Areal extent of different land use/cover categories: This is calculated directly from a GIS layer of land use/cover.
- Curve number: This determines the amount of precipitation that infiltrates into the ground or enters surface water as runoff. It is based on specified combinations of land use/cover and hydrologic soil type and is calculated directly using digital land use/cover and soils layers.
- K factor: This factor relates to inherent soil erodibility and affects the amount of soil erosion taking place on a given unit of land.
- LS factor: This factor signifies the steepness and length of slopes in an area and directly affects the amount of soil erosion.
- C factor: This factor is related to the amount of vegetative cover in an area. In agricultural areas, the crops grown and the cultivation practices utilized largely control this factor. Values range from 0 to 1.0, with larger values indicating greater potential for erosion.
- P factor: This factor is directly related to the conservation practices utilized in agricultural areas. Values range from 0 to 1.0, with larger values indicating greater potential for erosion.
- Sediment delivery ratio: This parameter specifies the percentage of eroded sediment that is delivered to surface water and is empirically based on watershed size.
- Unsaturated available water-holding capacity: This relates to the amount of water that can be stored in the soil and affects runoff and infiltration. It is calculated using a digital soils layer.
- Other less important factors that can affect sediment loads in a watershed are also included in the model.

The above parameter descriptions were taken from the AVGWLF Version 7.1 Users Guide (Evans et al. 2007).

### Land Use/Land Cover

Digital land use/land cover (LULC) data for the Maria Creek watershed were obtained from the National Agricultural Statistics Service Cropland Data Layer (CDL). Land classes were reclassified to those which

best fit into the classes required by MapShed according to the user guide. The imagery was acquired in 2019. Table 2 summarizes the acreage in each land use category in the Maria Creek watershed.

Urban Land	Area (ha)	Percent of Total
Low Density Mixed	1,450	5.87
Medium Density Mixed	36	0.15
High Density Mixed	17	0.07
Disturbed	68	0.28
Total Urban	1,571	6.36
Rural Land		
Cropland	18,216	73.71
Forest	3,616	14.63
Hay/Pasture	1,289	5.22
Wetland	19	0.08
Turfgrass	1	<0.01
Total Rural	23,141	93.64
Grand Total	24,712	100

Table 2. Urban and rural land uses in the Maria Creek watershed.

### Rainfall and Runoff Input Data and Parameters

#### Meteorology:

Hydrology in GWLF is simulated by a water-balance calculation, based on daily observations of precipitation and temperature. A search was made of available Midwestern Regional Climate Center reporting stations. Based on this review, the most appropriate available meteorological data were determined to be from stations in Vincennes, IN (USC00129113) and Lawrenceville, IL (USW00013809). These stations supplied daily data on precipitation and minimum and maximum temperatures. Daily mean temperature weas estimated as the mean of the minimum and maximum values.

### Runoff Curve Numbers:

The direct runoff fraction of precipitation in GWLF is calculated using the curve number method from the SCS TR55 method literature based on land-use and soil hydrologic group (SCS 1986). Curve numbers vary from 25 for undisturbed woodland with good soils, to, in theory, 100, for impervious surfaces. The hydrologic soil group was determined from available soils data and curve numbers were calculated for each land use category/soil hydrologic group within MapShed.

### Evapotranspiration Cover Coefficients:

Within GWLF-E, potential evapotranspiration (PET) is computed using the method recommended by Hammon (1961). Details on this default method are presented in the original GWLF User's Manual (see Help folder located under the MapShed directory). In this simplified method, PET is a function of the number of daylight hours per day, the saturated water vapor pressure and the mean daily temperature on a given day. When the temperature is < 0, PET=0. The saturated water vapor pressure on a given day is a function of the mean daily temperature. With this method, ET coefficients are assigned by land use/cover type and are area-weighted to determine average values for each month of the year. Within GWLF-E, a smoothing algorithm is utilized to mimic the gradual rise and fall of ET due to changing

vegetation cover throughout the year. The percent ET was adjusted to 0.9 based on several calibration runs of the model.

### Soil Water Capacity:

Water stored in soil may evaporate, be transpired by plants, or percolate to ground water below the rooting zone. The amount of water that can be stored in soil (the soil water capacity) varies by soil type and rooting depth. Based on soil water capacities reported in the Model My Watershed model input file, a soil water capacity of 17.251 cm was used.

### Recession and Seepage Coefficients:

The GWLF model has three subsurface zones: a shallow unsaturated zone, a shallow saturated zone, and a deep aquifer zone. Behavior of the second two stores is controlled by a ground water recession and a deep seepage coefficient. The recession coefficient was set to 0.073 per day and the deep seepage coefficient to 0.05, based on results from the modelmywatershed.org model input file parameters and several calibration runs of the model.

### **Erosion Parameters**

GWLF simulates rural soil erosion using the Universal Soil Loss Equation (USLE). [Note: For land uses indicated as "Buildup-Washoff" or urban, solids loads are generated separately]. This method has been applied extensively, so parameter values are well established. It computes soil loss per unit area (sheet and rill erosion) at the field scale by

### A = R * K * LS * C * P

where, A = rate of soil loss per unit area, R = rainfall erosivity index, K = soil erodibility factor, LS = length-slope factor, C = cover and management factor, and P = support practice factor. Soil loss or erosion at the field scale is not equivalent to sediment yield, as substantial trapping may occur, particularly during overland flow or in first-order tributaries or impoundments. GWLF accounts for sediment yield by (1) computing transport capacity of overland flow, and (2) employing a sediment delivery ratio (DR) which accounts for losses to sediment redeposition.

### Rainfall Erosivity (RE):

Rainfall erosivity accounts for the impact of rainfall on the ground surface, which can make soil more susceptible to erosion and subsequent transport. Precipitation-induced erosion varies with rainfall intensity, which shows different average characteristics according to geographic region.

The erosivity coefficient (at) was assigned a value of 0.28 for the growing season and 0.13 for the dormant season, based on estimated erosivity coefficients provided in the Model My Watershed model input file and the GWLF user guide (Haith et al. 1992).

### Soil Erodibility (K) Factor:

The soil erodibility factor indicates the inherent erodibility of a given soil type and is a function of soil physical properties and slope. Soil erodibility factors were extracted from local data housed within USDAs Web Soil Survey tool. For each land use category, the K factors of the soil types underlying all

land of this category were area-averaged within MapShed to result in an overall K factor for the land use category.

Length-Slope (LS) Factor:

Length-slope (LS) factor is a function of overland runoff and slope and uses a NRCS equation for estimating the relationship between slope length and slope gradient for a given area derived from the DEM and stream layers within MapShed.

Cover and Management (C) and Practice (P) Factors:

Cropping Management (C) factor represents the effect of ground cover conditions, soil conditions, and general management practices on soil erosion. Erosion Control Practice (P) factors depict the effectiveness of various structural and non-structural control practices such as terracing and crop residue management in reducing soil erosion on cultivated land. Representative C values are based on default mean values within the U.S. based on field crops and slope characteristics. Practice (P) factors were set to 1, consistent with recommendations for non-agricultural land. Cropping (C) factors were adjusted based on reported values from the modelmywatershed.org input files for each sub-basin. The C values for cropland used for each sub-basin are reported in Table 3. These are representative values that may differ from actual C and P values based on local agricultural practices such as use of BMPs and crop rotations. If more accurate information on cropping practices is known during the model time period, users can edit this information to better reflect local conditions.

Table 3. Cropping (C) management factors used for cropland land uses for each sub-basin model.

Sub-basin	Cropping
	Management (C)
	factor
Marsh Creek	0.215
Tilley Ditch	0.21
HW Maria Creek	0.216
Cotton Branch	0.21

### Sediment Delivery Ratio:

A sediment delivery ratio is based on the premise that a certain percentage of the material eroded from the land surface (usually the heavier soil particles) is deposited prior to reaching nearby water bodies. Empirically, the amount that does reach the outlet of a given watershed (called sediment yield) has been related to watershed size. Following the procedure described in Vanoni (1975), sediment delivery ratios calculated using MapShed are based on the relationship:

SDR = 0.451(b^{-0.298})

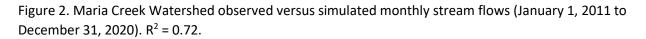
where: SDR = sediment delivery ratio, and

b = size of the watershed in square kilometers

The sediment delivery ratio for the entire Maria Creek watershed was calculated at 0.087.

### Point Sources:

Sediment loads from mining operations are captured in "disturbed" land uses. However, additional contributions from mining activities may be captured within other land uses due to the nature of activities and classifications from the original land use layer. Point source discharge throughout the Maria Creek watershed for all facilities was estimated at 0.6 MGD and was accounted for in the model inputs.


## Part 4. Calibration Results

The results of calibrating the GWLF-E model for the Maria Creek watershed are summarized in the following table and figures. Flow data specific to the Maria Creek watershed was not available. Therefore, a reference gage approach was used and adjusted based on the drainage area ratio. Flow data from USGS gage 03342500 on Busseron Creek near Carlisle, IN was used to calibrate the model. The results shown in Table 4 indicate that the simulated flow modeling period agrees well with observed stream flow data. The greatest errors occur in simulated fall volumes. In general, the hydrologic calibration appears adequate in that it reflects the total water yield, annual variability, and magnitude of individual storm events in the basin (Figures 2 and 3).

Table 4: Maria Creek Watershed Calibration Results for the Simulation Period January 2011 to December 2020. Units are shown in in/yr.

16.78	Total Observed In-stream flow:	15.85
5.23	Total of highest 10% flows:	5.00
4.32	Total of lowest 50% flows:	4.02
2.38	Observed Summer Flow Volume:	2.53
1.94	Observed Fall Flow Volume:	1.48
5.15	Observed Winter Flow Volume:	5.18
7.31	Observed Spring Flow Volume:	6.66
%	Recommended Criteria ¹	
5.87	10	
7.46	10	
4.60	15	
-5.93	30	
31.08	30	
-0.58	30	
9.76	30	
	5.23 4.32 2.38 1.94 5.15 7.31 % 5.87 7.46 4.60 -5.93 31.08 -0.58	5.23       Total of highest 10% flows:         4.32       Total of lowest 50% flows:         2.38       Observed Summer Flow Volume:         1.94       Observed Fall Flow Volume:         5.15       Observed Winter Flow Volume:         7.31       Observed Spring Flow Volume:         %       Recommended Criteria ¹ 5.87       10         7.46       10         4.60       15         -5.93       30         31.08       30         -0.58       30

¹Recommended criteria are from Lumb et al., 1994.



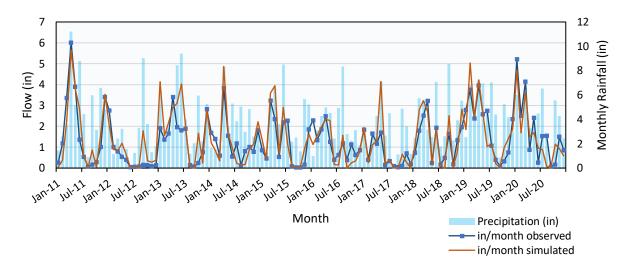
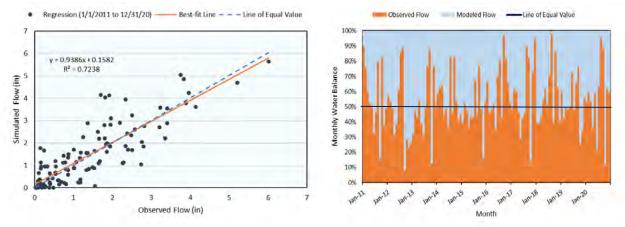
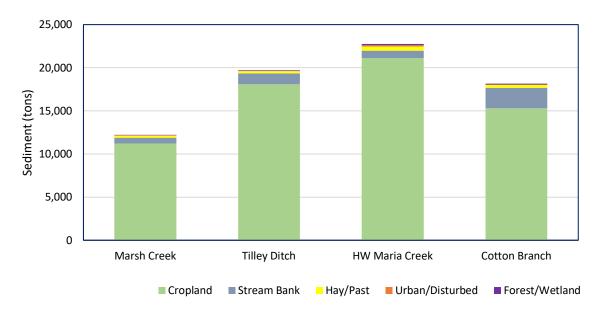




Figure 3. Time series hydrologic calibration results for Maria Creek Watershed (January 1, 2011 to December 2020)



### Part 5. Subwatershed Modeling Results


Modeling results indicate that cropland and stream banks contribute the greatest sediment loadings throughout the Maria Creek watershed. Cropland contributes the overwhelming majority of annual sediment comprising approximately 90% of the overall loading. Overall, Headwaters of Maria Creek subwatershed is contributing the greatest annual load on average to the Maria Creek watershed while Marsh Creek is contributing the least amount of loading. Although similar in land uses, Headwaters of Maria Creek contributes nearly twice the annual loading to the Maria Creek watershed as Marsh Creek. This may be due to the unique soil characteristics between the two subwatersheds. Soil erodibility (K) and length-slope (LS) factors are both on average lower in Marsh Creek for cropland land uses compared to Headwaters of Maria Creek. Results of the GWLF-E modeling for Maria Creek are

summarized in Table 5 and Figures 4 and 5 below. Source contributions of sediment should be considered when selecting best management practices (BMPs) which will result in the greatest load reductions overall. Results from the GWLF-E sediment modeling were calculated for informational purposes on source loadings and do not take place of the total maximum daily loads or reductions established within this document for the Maria Creek watershed.

	Source	Marsh Creek	Tilley Ditch	Headwaters Maria Creek	Cotton Branch	Maria Creek Watershed
	Cropland	11,230.4	18,093.2	21,107.0	15,308.0	65,738.4
	Stream Bank	657.2	1,255.0	858.5	2,370.4	5,141.1
Rural	Hay/Pasture	238.4	269.2	480.6	332.0	1,320.1
Ru	Forest	22.0	58.6	152.5	127.1	360.2
	Wetland	1.3	0.5	1.8	0.8	4.4
	Turfgrass	0.0	0.0	0.0	0.7	0.7
	Disturbed	25.0	4.3	127.1	1.2	157.6
	Low Density Mixed					
Ę	Urban	16.5	14.6	16.0	17.3	64.4
Urban	Medium Density Mixed					
	Urban	2.9	1.0	1.0	3.7	8.6
	High Density Mixed					
	Urban	1.4	0.5	1.6	0.5	4.0
	Total (tons)	12,195	19,697	22,746	18,162	72,799

Table 5. Average annual sediment loads (in tons) by source for subwatersheds in the Maria Creek watershed.

Figure 4. Average annual sediment loading from sources in each subwatershed (January 1, 2011 to December 31, 2020)



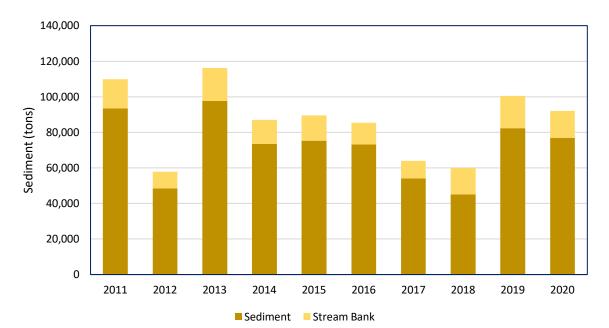



Figure 5. Modeled sediment loads (in tons) for the Maria Creek watershed from 2011 to 2020.

## Part 6. GWLF-E Model Inputs

Urban Land	Area (ha)	%ln		CNP			Month	Ket	Adjust	Day	Grow	Eros	Stream	Ground
LD Mixed	1450	0.15	92	74					%ET	Hours	Seas	Coef	Extract	Extract
MD Mixed	36	0.52	98	79			Jan	0.45	0.9	9.5	0	0.13	0.0	0.0
HD Mixed	17	0.87	98	79			Feb	0.49	0.9	10.5	0	0.13	0.0	0.0
LD Residential	0	0.0	0	0			Mar	0.51	0.9	11.8	0	0.13	0.0	0.0
MD Residential	0	0.0	0	0			Apr	0.52	0.9	13.1	0	0.13	0.0	0.0
HD Residential	0	0.0	0	0			May	0.77	0.9	14.2	1	0.28	0.0	0.0
							Jun	0.91	0.9	14.7	1	0.28	0.0	0.0
Rural Land	Area (ha)	CN	к	LS	С	Р	Jul	1.0	0.9	14.5	1	0.28	0.0	0.0
Hay/Pasture	1289	75	0.331	2.624	0.03	1.0	Aug	1.05	0.9	13.5	1	0.28	0.0	0.0
Cropland	18216	82	0.344	1.283	0.213	1.0	Sep	1.08	0.9	12.2	1	0.28	0.0	0.0
Forest	3616	73	0.366	4.279	0.002	1.0	Oct	0.85	0.9	10.9	0	0.13	0.0	0.0
Wetland	19	87	0.28	1.374	0.01	1.0	Nov	0.72	0.9	9.8	0	0.13	0.0	0.0
Disturbed	68	89	0.32	2.002	1.0	1.0	Dec	0.64	0.9	9.3	0	0.13	0.0	0.0
Turf/Golf	1	58	0.315	1.402	0.03	1.0		-	_	-		-		-
Open Land	0	0	0.0	0.0	0.0	0.0				4.7978E-	04 F	Values 0	-1	
Bare Rock	0	0	0.0	0.0	0.0	0.0		ent A		a second		GW Re	ecess Coe	ff 0.073
Sandy Areas	0	0	0.0	0.0	0.0	0.0		Adjus	tment Cap (cm)	1.	-	GW Se	epage Co	eff 0.05
Unpaved Road	0	0	0.0	0.0	0.0	0.0			Cap (cm) Ratio	0.08	_	% Tile	Drained (/	<b>\g]</b> 0.0

Figure 6. Transport file parameters for aggregated Maria Creek watershed GWLF-E model.

Figure 7. Transport file parameters for Marsh Creek subwatershed GWLF-E model.

Urban Land	Area (ha)	<b>%Im</b>		<b>CNP</b> 74			Month	Ket	Adjust %ET	Day Hours	Grow Seas	Eros Coef	Stream Extract	Ground Extract
LD Mixed	352	-		-			100	0.40	- 100	la r		la da	La a	
MD Mixed	12	0.52	_	79			Jan	0.43	0.9	9.5	0	0.13	0.0	0.0
HD Mixed	6	0.87	98	79			Feb	0.47	0.9	10.5	0	0.13	0.0	0.0
LD Residential	0	0.0	0	0			Mar	0.49	0.9	11.8	0	0.13	0.0	0.0
MD Residential	0	0.0	0	0			Apr	0.5	0.9	13.1	0	0.13	0.0	0.0
HD Residential	0	0.0	0	0			May	0.76	0.9	14.2	1	0.28	0.0	0.0
							Jun	0.91	0.9	14.7	1	0.28	0.0	0.0
Rural Land	Area (ha)	CN	к	LS	С	Р	Jul	1.0	0.9	14.5	1	0.28	0.0	0.0
Hay/Pasture	355	75	0.27	1.578	0.03	1.0	Aug	1.05	0.9	13.5	1	0.28	0.0	0.0
Cropland	4897	82	0.284	0.715	0.215	1.0	Sep	1.08	0.9	12.2	1	0.28	0.0	0.0
Forest	380	73	0.261	2.11	0.002	1.0	Oct	0.84	0.9	10.9	0	0.13	0.0	0.0
Wetland	4	87	0.253	2.456	0.01	1.0	Nov	0.71	0.9	9.8	0	0.13	0.0	0.0
Disturbed	15	89	0.333	1.19	0.08	1.0	Dec	0.63	0.9	9.3	0	0.13	0.0	0.0
Turf/Golf	0	0	0.0	0.0	0.0	0.0					*			
Open Land	0	0	0.0	0.0	0.0	0.0	1.000				-	Values 0	-1	
Bare Rock	0	0	0.0	0.0	0.0	0.0		ent A I		4.5467E	-04		ecess Coe	ff 0.07
Sandy Areas	0	0	0.0	0.0	0.0	0.0		Adjus		1.	100	GW Se	epage Co	eff 0.05
Unpaved Road	0	0	0.0	0.0	0.0	0.0			Cap (cm) Ratio	0.13	-	% Tile	Drained (/	<b>\g]</b> 0.0

0.1	2 98	74			Jan	0.43		-	-	-		
	-	1/X					0.9	9.5	0	0.13	0.0	0.0
	7 98	79			Feb	0.46	0.9	10.5	0	0.13	0.0	0.0
0.0		0			Mar	0.48	0.9	11.8	0	0.13	0.0	0.0
	-	-				proces.	-	1.0.00	-	_	-	0.0
	-	-				10000	-		1		-	0.0
150	15	10			Jun	0.9	0.9	14.7	1	0.28	0.0	0.0
ha) CN	к	LS	С	P	Jul	0.99	0.9	14.5	1	0.28	0.0	0.0
75	0.409	1.917	0.03	1.0	Aug	1.04	0.9	13.5	1	0.28	0.0	0.0
82	0.378	0.913	0.21	1.0	Sep	1.07	0.9	12.2	1	0.28	0.0	0.0
73	0.394	2.498	0.002	1.0	Oct	0.84	0.9	10.9	0	0.13	0.0	0.0
87	0.4	2.294	0.01	1.0	Nov	0.7	0.9	9.8	0	0.13	0.0	0.0
91	0.471	1.074	0.08	1.0	Dec	0.62	0.9	9.3	0	0.13	0.0	0.0
0	0.0	0.0	0.0	0.0					10			10-
0	0.0	0.0	0.0	0.0	Values 0 - 1							
0	0.0	0.0	0.0	0.0	Sed A Adjustment 1.0 GW Recess Coeff 0.0 Avail Water Cap (cm) 116257							ff 0.073
0	0.0	0.0	0.0	0.0								eff 0.05
0	0.0	0.0	0.0	0.0								<b>\g)</b> 0.0
	(ha) CN 75 82 73 87 91 0 0 0 0	D.0         D           0.0         0           0.0         0           0.0         0           75         0.409           82         0.378           73         0.394           87         0.4           91         0.471           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0	0.0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           75         0.409         1.917           82         0.378         0.913           73         0.394         2.498           87         0.4         2.294           91         0.471         1.074           0         0.0         0.0           0         0.0         0.0           0         0.0         0.0           0         0.0         0.0           0         0.0         0.0	0.0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           (ha)         CN         K         LS         C           75         0.409         1.917         0.03           82         0.378         0.913         0.21           73         0.394         2.498         0.002           87         0.4         2.294         0.01           91         0.471         1.074         0.08           0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0	0.0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           0.0         0         0         0           75         0.409         1.917         0.03         1.0           82         0.378         0.913         0.21         1.0           73         0.394         2.498         0.002         1.0           87         0.4         2.294         0.01         1.0           91         0.471         1.074         0.08         1.0           91         0.471         1.074         0.08         1.0           0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0 <td>0.0         0         0         0         0         Apr           0.0         0         0         0         0         May         Jun           (ha)         CN         K         LS         C         P         Jul           75         0.409         1.917         0.03         1.0         Aug           82         0.378         0.913         0.21         1.0         Sep           73         0.394         2.498         0.002         1.0         Oct           87         0.4         2.294         0.01         1.0         Nov           91         0.471         1.074         0.08         1.0         Dec           0         0.0         0.0         0.0         0.0         Sed M           0         0.0         0.0         0.0         Sed A           0         0.0         0.0         0.0         0.0         Aug</td> <td>0.0         0         0         0           0.0         0         0         0         May         0.75           Jun         0.9         Jun         0.9         Jun         0.9           (ha)         CN         K         LS         C         P         Jul         0.99           75         0.409         1.917         0.03         1.0         Sep         1.07           73         0.334         2.498         0.002         1.0         Oct         0.84           87         0.4         2.294         0.01         1.0         Dec         0.62           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         Avail Water  <td>0.0         0         0         0           0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<td>0.0         0         0         0           0.0         0         0         0         13.1           0.0         0         0         0         14.2           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jul         0.99         0.9         14.5           75         0.409         1.917         0.03         1.0           82         0.378         0.913         0.21         1.0         0.5ep         1.07         0.9         12.2           73         0.394         2.498         0.002         1.0         0.ct         0.84         0.9         10.9           87         0.4         2.294         0.01         1.0         Nov         0.7         0.9         3.8           91         0.471         1.074         0.08         1.0         Dec         0.62         0.9         3.3           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         &lt;</td><td>0.0         0         0           0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<td>0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td><td>0.0       0       0       0       0       0       0       0.0       0       0.13       0.0         0.0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td></td></td></td>	0.0         0         0         0         0         Apr           0.0         0         0         0         0         May         Jun           (ha)         CN         K         LS         C         P         Jul           75         0.409         1.917         0.03         1.0         Aug           82         0.378         0.913         0.21         1.0         Sep           73         0.394         2.498         0.002         1.0         Oct           87         0.4         2.294         0.01         1.0         Nov           91         0.471         1.074         0.08         1.0         Dec           0         0.0         0.0         0.0         0.0         Sed M           0         0.0         0.0         0.0         Sed A           0         0.0         0.0         0.0         0.0         Aug	0.0         0         0         0           0.0         0         0         0         May         0.75           Jun         0.9         Jun         0.9         Jun         0.9           (ha)         CN         K         LS         C         P         Jul         0.99           75         0.409         1.917         0.03         1.0         Sep         1.07           73         0.334         2.498         0.002         1.0         Oct         0.84           87         0.4         2.294         0.01         1.0         Dec         0.62           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         Avail Water <td>0.0         0         0         0           0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<td>0.0         0         0         0           0.0         0         0         0         13.1           0.0         0         0         0         14.2           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jul         0.99         0.9         14.5           75         0.409         1.917         0.03         1.0           82         0.378         0.913         0.21         1.0         0.5ep         1.07         0.9         12.2           73         0.394         2.498         0.002         1.0         0.ct         0.84         0.9         10.9           87         0.4         2.294         0.01         1.0         Nov         0.7         0.9         3.8           91         0.471         1.074         0.08         1.0         Dec         0.62         0.9         3.3           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         &lt;</td><td>0.0         0         0           0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<td>0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td><td>0.0       0       0       0       0       0       0       0.0       0       0.13       0.0         0.0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td></td></td>	0.0         0         0         0           0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>0.0         0         0         0           0.0         0         0         0         13.1           0.0         0         0         0         14.2           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jul         0.99         0.9         14.5           75         0.409         1.917         0.03         1.0           82         0.378         0.913         0.21         1.0         0.5ep         1.07         0.9         12.2           73         0.394         2.498         0.002         1.0         0.ct         0.84         0.9         10.9           87         0.4         2.294         0.01         1.0         Nov         0.7         0.9         3.8           91         0.471         1.074         0.08         1.0         Dec         0.62         0.9         3.3           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         &lt;</td> <td>0.0         0         0           0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<td>0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td><td>0.0       0       0       0       0       0       0       0.0       0       0.13       0.0         0.0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td></td>	0.0         0         0         0           0.0         0         0         0         13.1           0.0         0         0         0         14.2           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jun         0.9         0.9         14.7           Jul         0.99         0.9         14.5           75         0.409         1.917         0.03         1.0           82         0.378         0.913         0.21         1.0         0.5ep         1.07         0.9         12.2           73         0.394         2.498         0.002         1.0         0.ct         0.84         0.9         10.9           87         0.4         2.294         0.01         1.0         Nov         0.7         0.9         3.8           91         0.471         1.074         0.08         1.0         Dec         0.62         0.9         3.3           0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         <	0.0         0         0           0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>0.0       0       0       0       0       0       0       0.0       0       0.13       0.0         0.0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td>	0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	0.0       0       0       0       0       0       0       0.0       0       0.13       0.0         0.0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0.13       0.0         0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0

Figure 8. Transport file parameters for Tilley Ditch subwatershed GWLF-E model.

Figure 9. Transport file parameters for Headwaters Maria Creek subwatershed GWLF-E model.

Urban Land	Area (ha) 377	<b>%Im</b>	92 CNI	<b>CNP</b> 74			Month	Ket	Adjust %ET	Day Hours	Grow Seas	Eros Coef	Stream Extract	Ground Extract	
MD Mixed	5	0.52	98	79			Jan	0.46	0.9	9.5	0	0.13	0.0	0.0	
HD Mixed	8	0.87	98	79			Feb	0.5	0.9	10.5	0	0.13	0.0	0.0	
LD Residential	0	0.0	0	0			Mar	0.52	0.9	11.8	0	0.13	0.0	0.0	
MD Residential	0	0.0	0	0			Apr	0.53	0.9	13.1	0	0.13	0.0	0.0	
HD Residential	0	0.0	0	0			May	0.78	0.9	14.2	1	0.28	0.0	0.0	
							Jun	0.92	0.9	14.7	1	0.28	0.0	0.0	
Rural Land	Area (ha)	CN	к	LS	С	Р	Jul	1.0	0.9	14.5	1	0.28	0.0	0.0	
Hay/Pasture	424	75	0.363	2.27	0.03	1.0	Aug	1.05	0.9	13.5	1	0.28	0.0	0.0	
Cropland	4833	85	0.422	1.045	0.216	1.0	Sep	1.07	0.9	12.2	1	0.28	0.0	0.0	
Forest	1349	73	0.429	2.874	0.002	1.0	Oct	0.85	0.9	10.9	0	0.13	0.0	0.0	
Wetland	4	87	0.37	2.654	0.01	1.0	Nov	0.73	0.9	9.8	0	0.13	0.0	0.0	
Disturbed	49	85	0.296	2.389	0.08	1.0	Dec	0.65	0.9	9.3	0	0.13	0.0	0.0	
Turf/Golf	0	0	0.0	0.0	0.0	0.0		-		-	-	-	-	-	
Open Land	0	0	0.0	0.0	0.0	0.0	Sediment A Factor 4.8758E-04 Values 0 - 1								
Bare Rock	0	0	0.0	0.0	0.0	0.0	Sed A Adjustment 1.0 GW Recess Coeff 0.07							ff 0.073	
Sandy Areas	0	0	0.0	0.0	0.0	0.0								eff 0.05	
Unpaved Road	0	0	0.0	0.0	0.0	0.0								<b>\g]</b> 0.0	
	-	-	2010	0.0	-	0.0				- Andrew	23			average a	

Urban Land	Area (ha)	<b>%In</b>	-	<b>CNP</b>			Month	Ket	Adjust %ET	Day Hours	Grow Seas	Eros Coef	Stream Extract	Ground Extract	
MD Mixed	16	0.52	-	79			Jan	0.47	0.9	9.5	0	0.13	0.0	0.0	
HD Mixed	2	0.87		79			Feb	0.51	0.9	10.5	0	0.13	0.0	0.0	
LD Residential	0	0.0	0	0			Mar	0.53	0.9	11.8	0	0.13	0.0	0.0	
MD Residential	0	0.0	0	0			Apr	0.55	0.9	13.1	0	0.13	0.0	0.0	
HD Residential	0	0.0	0	0			May	0.78	0.9	14.2	1	0.28	0.0	0.0	
							Jun	0.92	0.9	14.7	1	0.28	0.0	0.0	
Rural Land	Area (ha)	CN	к	LS	С	P	Jul	1.0	0.9	14.5	1	0.28	0.0	0.0	
Hay/Pasture	297	63	0.302	2.57	0.03	1.0	Aug	1.05	0.9	13.5	1	0.28	0.0	0.0	
Cropland	3840	75	0.28	1.412	0.21	1.0	Sep	1.08	0.9	12.2	1	0.28	0.0	0.0	
Forest	1333	73	0.32	3.102	0.002	1.0	Oct	0.86	0.9	10.9	0	0.13	0.0	0.0	
Wetland	11	87	0.253	0.624	0.01	1.0	Nov	0.74	0.9	9.8	0	0.13	0.0	0.0	
Disturbed	2	85	0.208	0.718	0.08	1.0	Dec	0.66	0.9	9.3	0	0.13	0.0	0.0	
Turf/Golf	1	58	0.331	1.412	0.03	1.0				-		-			
Open Land	0	0	0.0	0.0	0.0	0.0				04 F	Values 0 - 1				
Bare Rock	0	0	0.0	0.0	0.0	0.0		Sediment A Factor 5.0155E-04						Recess Coeff 0.07.	
Sandy Areas	0	0	0.0	0.0	0.0	0.0	Sed A Adjustment 1.0 Avail Water Cap (cm) 17.231 GW Seepage Coeff							eff 0.05	
Unpaved Road	0	0	0.0	0.0	0.0	0.0			Ratio	3	% Tile Drained (Ag) 0.0				

Figure 10. Transport file parameters for Cotton Branch subwatershed GWLF-E model.

### References

Evans, B. M.; Lehning, D. W.; Corradini, K. J. for The Pennsylvania State University.2007. AVGWLF Version 7.1 Users Guide; University Park, PA, 2007.

Evans, B.M., & K.J. Corradini. 2016. MapShed Version 1.5 Users Guide. Penn State Institute of Energy and the Environment. Retrieved from: https://wikiwatershed.org/help/model-help/mapshed/

Haith, D.A. & L.L. Shoemaker. 1987. Generalized Watershed Loading Functions for Stream Flow Nutrients. Water Resources Bulletin, 23(3), pp. 471-478.

Haith, D.A., R. Mandel, and R.S. Wu. 1992. GWLF, Generalized Watershed Loading Functions, Version 2.0, User's Manual. Dept. of Agricultural & Biological Engineering, Cornell University, Ithaca, NY.

Hammon, W.R. 1961. Estimating the Potential Evapotranspiration. *Journal of the Hydraulics Division*, Proceedings of the American Society of Civil Engineers 87:107-120.

Lumb, A.M., R.B. McCammon, and J.L. Kittle, Jr. 1994. Users Manual for an Expert System (HSPEXP) for Calibration of the Hydrological Simulation Program-Fortran. U.S. Geologic Survey. Water-Resources Investigations Report 94-4168, Reston, VA, 1994.

SCS. 1986. Urban Hydrology for Small Watersheds. Technical Release No. 55 (second edition). Soil Conservation Service, U.S. Department of Agriculture, Washington, DC.

Stroud Water Research Center. 2017. Model My Watershed [Software]. Available from <u>https://wikiwatershed.org</u>

Vanoni, V.A. (Ed.). 1975. Sedimentation Engineering. American Society of Civil Engineers, New York, NY.