

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb Governor Brian C. Rockensuess Commissioner

То:	Interested Parties
Date:	July 2, 2024
From:	Jenny Acker, Chief Permits Branch Office of Air Quality
Source Name:	Reworld Indianapolis Incorporated
Permit Level:	TV Renewal
Permit Number:	097-47411-00123
Source Location:	2320 S Harding St Indianapolis, IN 46221
Type of Action Taken:	Permit Renewal

Notice of Decision: Approval - Effective Immediately

Please be advised that on behalf of the Commissioner of the Department of Environmental Management, I have issued a decision regarding the matter referenced above.

The final decision is available on the IDEM website at: <u>http://www.in.gov/apps/idem/caats/</u> To view the document, choose Search Option **by Permit Number**, then enter permit 47411. This search will also provide the application received date, **draft permit** public notice start and end date, **proposed permit** EPA review period start and end date, and **fina**l permit issuance date.

The final decision is also available via IDEM's Virtual File Cabinet (VFC). Please go to: https://www.in.gov/idem_and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

If you would like to request a paper copy of the permit document, please contact IDEM's Office of Records Management:

IDEM - Office of Records Management Indiana Government Center North, Room 1207 100 North Senate Avenue Indianapolis, IN 46204 Phone: (317) 232-8667 Fax: (317) 233-6647 Email: IDEMFILEROOM@idem.in.gov

Pursuant to IC 13-15-5-3, this permit is effective immediately, unless a petition for stay of effectiveness is filed and granted according to IC 13-15-6-3, and may be revoked or modified in accordance with the provisions of IC 13-15-7-1.

If you wish to challenge this decision, IC 4-21.5-3-7 and IC 13-15-6-1(b) or IC 13-15-6-1(a) require that you file a petition for administrative review. This petition may include a request for stay of effectiveness and must be submitted to the Indiana Office of Administrative Law Proceedings, 100 N. Senate Avenue Suite N802, Indianapolis, IN 46204.

For an **initial Title V Operating Permit**, a petition for administrative review must be submitted to the Office of Environmental Adjudication within **thirty (30)** days from the receipt of this notice provided under IC 13-15-5-3, pursuant to IC 13-15-6-1(b).

For a **Title V Operating Permit renewal**, a petition for administrative review must be submitted to the Office of Environmental Adjudication within **fifteen (15)** days from the receipt of this notice provided under IC 13-15-5-3, pursuant to IC 13-15-6-1(a).

The filing of a petition for administrative review is complete on the earliest of the following dates that apply to the filing:

- (1) the date the document is delivered to the Indiana Office of Administrative Law Proceedings (OALP); or
- (2) the date of the postmark on the envelope containing the document, if the document is mailed to OALP by U.S. mail; or
- (3) The date on which the document is deposited with a private carrier, as shown by receipt issued by the carrier, if the document is sent to the OALP by private carrier.

The petition must include facts demonstrating that you are either the applicant, a person aggrieved or adversely affected by the decision or otherwise entitled to review by law. Please identify the permit, decision, or other order for which you seek review by permit number, name of the applicant, location, date of this notice and all of the following:

- (1) the name and address of the person making the request;
- (2) the interest of the person making the request;
- (3) identification of any persons represented by the person making the request;
- (4) the reasons, with particularity, for the request;
- (5) the issues, with particularity, proposed for considerations at any hearing; and
- (6) identification of the terms and conditions which, in the judgment of the person making the request, would be appropriate in the case in question to satisfy the requirements of the law governing documents of the type issued by the Commissioner.

Pursuant to 326 IAC 2-7-18(d), any person may petition the U.S. EPA to object to the issuance of an initial Title V operating permit, permit renewal, or permit modification within sixty (60) days of the end of the forty-five (45) day EPA review period. Such an objection must be based only on issues that were raised with reasonable specificity during the public comment period, unless the petitioner demonstrates that it was impractible to raise such issues, or if the grounds for such objection arose after the comment period.

The EPA requests that you file title V petitions electronically through the Central Data Exchange. To do so, please go to: <u>https://cdx.epa.gov/</u>.

If you tried but you are unable to use the Central Data Exchange to file your petition, the EPA requests that you send your petition and associated attachments via email to: titleVpetitions@epa.gov.

If you have made every effort to electronically submit your petition but are simply unable to successfully do so, please submit a hardcopy of your petition to the following address:

US EPA Office of Air Quality Planning and Standards Air Quality Policy Division Operating Permits Group Leader 109 T.W. Alexander Dr. (C-504-01) Research Triangle Park, NC 27711

If you have technical questions regarding the enclosed documents, please contact the Office of Air Quality, Permits Branch at (317) 233-0178. Callers from within Indiana may call toll-free at 1-800-451-6027, ext. 3-0178.

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue · Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Brian C. Rockensuess Commissioner

Eric J. Holcomb Governor

Part 70 Operating Permit Renewal OFFICE OF AIR QUALITY

Reworld Indianapolis, Inc. 2320 S. Harding Street Indianapolis, Indiana 46221

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a violation of the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

	Operation Permit No.: T097-47411-00123	
	Master Agency Interest ID: 12552	
	Issued by:	Issuance Date: July 2, 2024
	Halim)	
	Madhurima D. Moulik, Ph.D., Section Chief Permits Branch	Expiration Date: July 2, 2029
)	Office of Air Quality	

TABLE OF CONTENTS

SECTIO	ON A	SOURCE SUMMARY
	A.1 A.2	General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)] Emission Units and Pollution Control Equipment Summary
	A.3	[326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)] Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]
	A.4 A.5	Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)] Part 70 Permit Applicability [326 IAC 2-7-2]
SECTIO	ON B	GENERAL CONDITIONS
	B.1 B.2	Definitions [326 IAC 2-7-1] Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]
	B.3 B.4	Term of Conditions [326 IAC 2-1.1-9.5] Enforceability [326 IAC 2-7-7] [IC 13-17-12]
	B.5 B.6	Severability [326 IAC 2-7-5(5)] Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
	B.0 B.7	Duty to Provide Information [326 IAC 2-7-5(6)(E)]
	B.8	Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]
	B.9	Annual Compliance Certification [326 IAC 2-7-6(5)]
	B.10	Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]
	B.11	Emergency Provisions [326 IAC 2-7-16]
	B.12	Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]
	B.13	Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]
	B.14	Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]
	B.15	Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
	B.16	Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]
	B.17	Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12] [40 CFR 72]
	B.18	Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]
	B.19	Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]
	B.20	Source Modification Requirement [326 IAC 2-7-10.5]
	B.21	Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
	B.22	Transfer of Ownership or Operational Control [326 IAC 2-7-11]
	B.23 B.24	Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)][326 IAC 2-1.1-7] Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314] [326 IAC 1-1-6]
SECTIO	DN C	SOURCE OPERATION CONDITIONS
		on Limitations and Standards [326 IAC 2-7-5(1)]
	C.1	Opacity [326 IAC 5-1]
	C.2	Open Burning [326 IAC 4-1] [IC 13-17-9]
	C.3	Incineration [326 IAC 4-2] [326 IAC 9-1-2]
	C.4	Fugitive Dust Emissions [326 IAC 6-4]
	C.5	Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
	C.6 C.7	Stack Height [326 IAC 1-7] Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]
		g Requirements [326 IAC 2-7-6(1)]
		iance Requirements [326 IAC 2-1.1-11]
	C.9	Compliance Requirements [326 IAC 2-1.1-11]

	Compl i C.10	iance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)] Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3- 8]	24
	C.11	Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]	
	Correc C.12 C.13 C.14 C.15	tive Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6] Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3] Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68] Response to Excursions or Exceedances [40 CFR 64] [326 IAC 3-8] [326 IAC 2-7-5] [326 IAC 2-7-6] Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]	25
		Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]	28
	C.16 C.17 C.18	Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6] General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [326 IAC 2-2][326 IAC 2-3] General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11]	
	[40 CFF	[326 IAC 2-2][326 IAC 2-3] R 64][326 IAC 3-8]	
	-	spheric Ozone Protection	32
	C.19	Compliance with 40 CFR 82 and 326 IAC 22-1	
SECTIO		EMISSIONS UNIT OPERATION CONDITIONS	
	D.1.1 D.1.2 D.1.3 D.1.4 D.1.5 D.1.6 D.1.7 D.1.8 D.1.9	on Limitations and Standards [326 IAC 2-7-5(1)] Particulate [326 IAC 6.5-1-2] Emission Limits [326 IAC 11-7-3] [326 IAC 12] [326 IAC 7-1.1] Fugitive Ash Limits [326 IAC 11-7-6] [40 CFR 60, Subpart Eb] Operating Practices [326 IAC 11-7-4] [40 CFR 60, Subpart Eb] Municipal Waste Combustor Operator Training and Certification Requirements [326 IAC 11-7-5] [40 CFR 60, Subpart Eb] Mass Emission Rates PSD BACT [326 IAC 2-2] Additional Special Requirements - Consent Decree Preventive Maintenance Plan [326 IAC 2-7-5(12)]	
	D.1.10 D.1.11 D.1.12 D.1.13 D.1.14 D.1.15	iance Determination Requirements [326 IAC 2-7-5(1)] Compliance and Performance Testing [326 IAC 11-7-7] [40 CFR 60, Subpart Eb] Operation of Equipment [326 IAC 2-7-6(6)] Mercury Emissions Control System [326 IAC 2-7-6(6)] Testing Requirements [326 IAC 2-1.1-11] Continuous Opacity Monitoring [326 IAC 3-5] [326 IAC 2-7-6(1), (6)] [40 CFR 60, Subpart Cb] Continuous Emission Monitoring [326 IAC 3-5] [326 IAC 2-7-6(1), (6)] [40 CFR 60, Subpart Cb] iance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]	
	D.1.16 D.1.17 D.1.18	Continuous Opacity Monitoring (COMS) Downtime Continuous Emissions Monitoring (CEMS) Equipment Downtime Parametric Monitoring [40 CFR 64] Broken or Failed Bag Detection	-
	D.1.20	I Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19] Reporting Requirements for Consent Decree Record Keeping Requirements for COMS [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]	45

	D.1.22	Record Keeping Requirements for CEMS and Baghouse [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]	
	D.1.23	Reporting Requirements	
	D.1.24	Reporting Requirements for CEMS [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]	
	D.1.25	Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 11- 7-8] [40 CFR 60, Subpart Eb]	
SECTIO	ON D.2	EMISSIONS UNIT OPERATION CONDITIONS	50
	Emissi	on Limitations and Standards [326 IAC 2-7-5(1)]5	50
		Cold Cleaner Degreaser Control Equipment and Operating Requirements [326 IAC 8-3-2]	
	D.2.2 D.2.3	Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8] Preventive Maintenance Plan [326 IAC 2-7-5(12)]	
	Record D.2.4	Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]5 Record Keeping Requirements	51
SECTIO	ON E.1	NSPS5	52
	New So	ource Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]5	52
	E.1.1	General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]	
	E.1.2	New Source Performance Standards for Stationary Compression Ignition Internal Combustion Engines NSPS [326 IAC 12] [40 CFR Part 60, Subpart IIII]	
SECTIC	DN E.2	NESHAP	53
	Nationa	al Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements	
	E.2.1	[326 IAC 2-7-5(1)]	;3
CERTIF		N5	54
EMERG	GENCY	DCCURRENCE REPORT	55
QUART		EVIATION AND COMPLIANCE MONITORING REPORT	5 7
Attach	ment A:	Fugitive Dust Control Plan	
Attachr	ment B:	40 CFR 60, Subpart Cb	
Attach	ment C:	40 CFR 60, Subpart IIII	
Attachr	ment D:	40 CFR 63, Subpart ZZZZ	

Attachment E: 40 CFR 60, Subpart Eb

SECTION A

SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.4 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary municipal solid waste combustion facility.

Source Address: General Source Phone Number: SIC Code:	2320 S. Harding Street, Indianapolis, Indiana 46221 (317) 532-6712 4953 (Refuse Systems)
County Location:	Marion
Source Location Status:	Attainment for all criteria pollutants
Source Status:	Part 70 Operating Permit Program
	Major Source, under PSD Rules
	Major Source, Section 112 of the Clean Air Act
	1 of 28 Source Categories

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices:

- (a) Three (3) mass burn waterwall municipal solid waste combustion units, constructed in 1988, identified as EU1, EU2, and EU3. Each unit is capable of burning municipal solid waste at a rate of 726 tons per day at 5500 Btu/lb. Each Combustor unit is equipped with two (2) 140 MMBtu per hour natural gas-fired burners used for start-up, shutdown, and flame stabilization.
 - (1) The flue gas from each combustion unit is controlled by:
 - (A) a spray dryer absorber with hydrated lime slurry controlling acid gas, identified as CE1A, CE2A, and CE3A;
 - (B) fabric filter bags controlling particulates, identified as CE1B, CE2B, and CE3B in parallel; exhausting to stack vents SV1, SV2, and SV3, with CEMS for NOx, CO, SO₂, O₂ and a COM for opacity;
 - (C) a Mercury Emissions Control System comprised of:
 - three (3) outlet hoppers for each combustion unit; three (3) surge bins, one for each combustion unit, each equipped with gravimetric feeders for controlling the carbon feed rate to each combustion unit, and
 - (ii) three (3) injection trains equipped with pneumatic conveying equipment to transport (blow) the carbon from the feeder to the flue gas duct of each combustion unit.

- (D) a Nitrogen Oxide Emission Control System utilizing one (1) selective non catalytic reduction (SNCR) system comprised of:
 - (i) one (1) 20,000 gallon, aqueous ammonia storage tank;
 - (ii) two (2) ammonia feed pumps to supply ammonia from the storage tank to the injection nozzle system; and
 - (iii) three (3) injection nozzle systems equipped with carrier blowers.
- (2) A Fugitive Ash Emission Control System utilizing one (1) dustmaster fly ash conditioning system comprised of:
 - (A) five (5) screw conveyors that convey ash from the three (3) scrubberbaghouse units to the ash storage silo;
 - (B) one (1) ash storage silo that batch feeds the fly ash into the dustmaster conditioning system; and
 - (C) one (1) dustmaster fly ash conditioning system that mixes water and fly ash to produce consistent moisture content that reduces fugitive dust.
- (3) Each combustor is equipped with a Liquid Direct Injection (LDI) System, including multiple nozzles for product dispersion. Additional components include two (2) 150,000 gallon mixing tanks and two (2) 12,500 gallon storage tanks.
- A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):

- (a) One (1) sand blaster, used for maintenance purposes only, constructed in 1988, with a maximum capacity of 292 pounds of abrasive per hour, using dust collector as control, and exhausting indoors.
- (b) Lime Silo equipped with a vent fabric filter for particulate control.

The facility includes two (2) alternative systems for lime handling:

- (A) Source will deliver lime slurry by tanker trucks directly into the holding tank prior to pumping to the spray dryer absorber.
- (B) One (1) portable hydrated lime slurry system, identified as T104 trailer, permitted in 2023, with a maximum capacity of 23,000 gallons of slurry, using dust collector as control, and exhausting to the atmosphere.
- (c) One (1) dry activated carbon storage silo associated with the Mercury Emissions Control System equipped with an integrated baghouse system with a maximum storage capacity of 3,000 cubic feet.
- (d) Vents from ash transport systems not operated at positive pressure.

(e) One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.

This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.

- (f) One (1) parts washer, constructed in 1988, with a maximum capacity of 40 gallons per month, uncontrolled, and exhausting to the indoors.
- (g) Paved and unpaved roads and parking lots with public access.

```
A.4 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]
This stationary source also includes the following insignificant activities, as defined in 326 IAC 2-7-1(21):
```

- (a) Space heaters powered by steam from the three (3) mass burn waterwall municipal solid waste combustion units, EU1, EU2, and EU3.
- (b) A laboratory as defined in 326 IAC 2-7-1(21)(D).
- (c) One (1) diesel dispensing facility, identified as Diesel Tank 1, constructed in 2008, with a 1,000 gallon tank, dispensing 60,000 gallons of diesel per year, uncontrolled, and exhausting to the outdoors.
- (d) Two (2) diesel dispensing facilities, identified as Diesel Tank 2 and Diesel Tank 3, constructed in 2009, each with a 300 gallon tank, with Diesel Tank 2 dispensing 5,000 gallons of diesel per year and the portable Diesel Tank 3, with secondary containment, dispensing 10,000 gallons of diesel per year, uncontrolled, and exhausting to the outdoors.
- (e) One (1) kerosene dispensing facility, identified as Kerosene Tank, constructed in 2012, with a portable 500 gallon tank, with secondary containment, dispensing 3,000 gallons of kerosene per year, uncontrolled, and exhausting to the outdoors.

A.5 Part 70 Permit Applicability [326 IAC 2-7-2] This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

- (a) It is a major source, as defined in 326 IAC 2-7-1(22);
- (b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 Applicability).
- (c) It is an affected source under Title IV (Acid Deposition Control) of the Clean Air Act, as defined in 326 IAC 2-7-1(3);

SECTION B

GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]

Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

The following are definitions of specific terms used in this ROP to supplement those provided by state and federal rules. Terms not otherwise defined are to be interpreted in a general, common knowledge sense.

MSW

Municipal solid waste and/or solid waste as defined by 40 CFR 60.51(b).

Emission Guideline(s)

All applicable portions of **40 CFR 60**, **Subpart Cb** – "Emissions Guidelines and Compliance Times For Large Municipal Waste Combustors That Are Constructed On Or Before September 20, 1994", and the portions of **40 CFR 60**, **Subpart Eb** – "Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or For Which Modification or Reconstruction is Commenced After June 19, 1996" referenced therein.

Startup (for purposes of Emission Guideline requirements):

The setting in operation of the affected facility for any purpose. (40 CFR 60.2)

The Emission Guideline standards do not apply during period of startup. The duration of startup periods is limited to 3 hours per occurrence. **(40 CFR 60.58b(a)(1))**

During periods of startup, shutdown, or malfunction, monitoring data shall be dismissed or excluded from compliance calculations, but shall be recorded and reported in accordance with the provisions of 40 CFR 60.59b(d)(7). **(40 CFR 60.58b(a)(1)(i))**

The startup period commences when the affected facility begins the continuous burning of municipal solid waste and does not include any warm-up period when the affected facility is combusting fossil fuel or other non-municipal solid waste fuel, and no municipal solid waste is being fed to the combustor. **(40 CFR 60.58b(a)(1))**

Continuous burning is the continuous, semi-continuous, or batch feeding of municipal solid waste for purposes of waste disposal, energy production, or providing heat to the combustion system in preparation for waste disposal or energy production. The use of municipal solid waste solely to provide thermal protection of the grate or hearth during the startup period when municipal solid waste is not being fed to the grate is not considered to be continuous burning. **(40 CFR 60.58b(a)(1)(ii))**

The period when no MSW is being fed to the grate and the boilers are being fired solely on natural gas is not part of the Emission Guideline startup period.

Shutdown (for purposes of Emission Guideline requirements):

The cessation of operation of an affected facility for any purpose. (40 CFR 60.2)

The Emission Guideline standards do not apply during periods of shutdown. The duration of the shutdown period is limited to 3 hours per occurrence, except as allowed by **40 CFR 60.58b(a)(1)(iii)**.

During periods of startup, shutdown, or malfunction, monitoring data shall be dismissed or excluded from compliance calculations, but shall be recorded and reported in accordance with the provisions of 40 CFR 60.59b(d)(7). **(40 CFR 60.58b(a)(1)(i))**

The shutdown period commences 30 minutes after the affected facility begins the shutdown process or procedure necessary to end the continuous burning of municipal solid waste as evidenced by the feed chute damper being closed.

The shutdown period ends and the affected facility is "off line" when the oxygen concentration in the flue gas is sustained at a value greater than or equal to 16%. Note, however, for SO₂ and NO_x, 40 CFR 60.58b(b)(8) allows a diluent cap of 14%. This option is available for definition of shutdown periods for these limits.

When the facility is "off line" it shall not be considered to be operating.

Malfunction (for purposes of Emission Guideline requirements):

"Malfunction" means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal, or usual manner. Failures that are caused in part by poor maintenance or careless operation are not malfunctions. **(40 CFR 60.2)**

Durations of malfunction periods are limited to 3 hours per occurrence, except if a malfunction is caused by a loss of boiler water level or a loss of combustion air control, then as provided in 40 CFR 60.58b(a)(1)(iii), for CO limits the malfunction period is extended to 15 hours per occurrence. During periods of startup, shutdown, or malfunction, monitoring data shall be dismissed or excluded from compliance calculations, but shall be recorded and reported in accordance with the provisions of 40 CFR 60.59b(d)(7). **(40 CFR 60.58b(a)(1)(i))**

For the purpose of compliance with CO emission limits, if a loss of boiler water level control (e.g. boiler waterwall tube failure) or a loss of combustion air control (e.g., loss of combustion air fan, induced draft fan, combustion grate bar failure) is determined to be a malfunction, the duration of the malfunction period is limited to 15 hours per occurrence. During such periods of malfunction, monitoring data shall be dismissed or excluded from compliance calculations, but shall be recorded and reported in accordance with the provisions of 40 CFR 60.59b(d)(7). **(40 CFR 60.58b(a)(1)(iii))**

During a loss of boiler water level control or loss of combustion air control malfunction period as specified in the previous paragraph, a diluent cap of 14 percent for oxygen or 5 percent for carbon dioxide may be used in the emissions calculations for sulfur dioxide and nitrogen oxides. **(40 CFR 60.58b(b)(8))**

CEM Data Point:

A valid CEM data point is produced when a CEM (except COM) completes a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. **(40 CFR 60.13(e)(2))**

One-Hour Average:

One-hour averages shall be computed from four or more data points equally spaced over each 1-hour period. (40 CFR 60.13(h))

At least two data points per hour shall be used to calculate each 1-hour average. **(40 CFR 60.58b)** [For example, **40 CFR 60.58b(e)**(7)(i)]

If at least two data points are not available to calculate a 1-hour average the period is not considered in determining compliance with a standard.

One-Hour period:

Any 60-minute period commencing on the hour. (40 CFR 60.2)

Block Average (General):

A block average is the period that starts on the hour and ends on the hour, and encompasses the same hours each day.

Partial Block Period (for block periods greater than one-hour):

A block period that does not have MSW continuously burning due to start up or shutdown or the unit being off line, or which has an exemption of data use due to startup, shutdown, or malfunction exclusion provisions under the Emission Guidelines. The exemption of data use under the Emission Guidelines may create a partial block period. Emission standards or limitations applicable to block periods are not applicable to partial block periods.

Block Average (for purposes of Emission Guideline requirements):

Four-hour block average or 4-hour block average means the average of all hourly emission concentrations when the affected facility is operating and combusting municipal solid waste measured over 4-hour periods of time from 12:00 midnight to 4 a.m., 4 a.m. to 8 a.m., 8 a.m. to 12:00 noon, 12:00 noon to 4 p.m., 4 p.m. to 8 p.m., and 8 p.m. to 12:00 midnight. **(40 CFR 60.51b)**

Twenty Four-hour block average or 24-hour block average means the average of all hourly emission concentrations when the affected facility is operating and combusting municipal solid waste measured over the 24 hour period of time from 12:00 midnight to the following 12:00 midnight. **(40 CFR 60.51b)**

Except for "geometric averages or geometric means", block averages shall be determined by dividing the sum of the hourly averages by the number of hours in a block. In the event there is no valid data (or there is only exempt data) for one of the hours in a block period, then a block average cannot be determined for that block period.

In the event that two valid data points cannot be determined for any one hour average, then this average is not valid for that block period, thus creating a "partial block period".

Daily Geometric Mean/Average

When a "24-hour daily geometric mean" [daily geometric average] is to be determined, this shall be done for a single 24 hour period each day, that being the 24 hour block period that runs from midnight to midnight.

24-hour daily arithmetic average

When a "24-hour daily arithmetic average" is to be determined, this shall be done for a single 24 hour period each day, that being the 24 hour block period that runs from midnight to midnight.

Good Combustion Practices (GCP)

As defined by U.S. EPA (1989), good combustion practices (GCP) for municipal waste

combustors are designed to prevent and control air pollutant emissions. GCP incorporates numeric limits for three specific combustor operating parameters: CO emissions, maximum operating load, and minimum temperature of flue gases at the PM control device. Each of these parameters is continuously monitored for each combustor.

Annual Basis for Testing

For the purposes of required emissions testing, an "annual basis" or "calendar year basis" means repeated testing no less than 9 calendar months and no more than 15 calendar months following the previous performance test, but completing five performance tests in each 5-year calendar period.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]

- (a) This permit, T097-47411-00123, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit or of permits issued pursuant to Title IV of the Clean Air Act and 326 IAC 21 (Acid Deposition Control).
- (b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.
- B.3 Term of Conditions [326 IAC 2-1.1-9.5]

Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

- (a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or
- (b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7] [IC 13-17-12]

Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)] The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

- B.6Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]This permit does not convey any property rights of any sort or any exclusive privilege.
- B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
 - (a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.

B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

- (a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:
 - (1) it contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and
 - (2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
- (b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.
- (c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source's compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than April 15 of each year to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5 Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

- (b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (c) The annual compliance certification report shall include the following:
 - (1) The appropriate identification of each term or condition of this permit that is the basis of the certification;
 - (2) The compliance status;
 - (3) Whether compliance was continuous or intermittent;

- (4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
- (5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

- (a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:
 - (1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;
 - (2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and
 - (3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

- (b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:
 - (1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;
 - (2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and
 - (3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee's control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

- (c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
- (d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.
- B.11 Emergency Provisions [326 IAC 2-7-16]
 - (a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation.
 - (b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:
 - (1) An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
 - (2) The permitted facility was at the time being properly operated;
 - (3) During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
 - (4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch) Facsimile Number: 317-233-6865

(5) For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

- (A) A description of the emergency;
- (B) Any steps taken to mitigate the emissions; and
- (C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (6) The Permittee immediately took all reasonable steps to correct the emergency.
- (c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.
- (d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.
- (e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.
- (f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.
- (g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

- (b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order.
- (c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.
- (d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:
 - (1) The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;
 - (2) The liability of the Permittee for any violation of applicable requirements prior to or at the time of this permit's issuance;
 - (3) The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and
 - (4) The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.
- (e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).
- (f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]
- (g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

- (a) All terms and conditions of permits established prior to T097-47411-00123 and issued pursuant to permitting programs approved into the state implementation plan have been either:
 - (1) incorporated as originally stated,
 - (2) revised under 326 IAC 2-7-10.5, or
 - (3) deleted under 326 IAC 2-7-10.5.
- (b) Provided that all terms and conditions are accurately reflected in this permit, all previous registrations and permits are superseded by this Part 70 operating permit, except for permits issued pursuant to Title IV of the Clean Air Act and 326 IAC 21 (Acid Deposition Control)

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source's existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).

- B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
 - (a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit.
 [326 IAC 2-7-5(6)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
 - (b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:
 - (1) That this permit contains a material mistake.
 - (2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
 - (3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]
 - (c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]
 - (d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management Permit Administration and Support Section, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

- (b) A timely renewal application is one that is:
 - (1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and
 - (2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (c) If the Permittee submits a timely and complete application for renewal of this permit, the source's failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.
- B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12] [40 CFR 72]
 - (a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.
 - (b) Pursuant to 326 IAC 2-7-11(b) and 326 IAC 2-7-12(a), administrative Part 70 operating permit amendments and permit modifications for purposes of the acid rain portion of a Part 70 permit shall be governed by regulations promulgated under Title IV of the Clean Air Act. [40 CFR 72]
 - (c) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management Permit Administration and Support Section, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (d) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]
- B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]
 - (a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.
 - (b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

- (a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:
 - (1) The changes are not modifications under any provision of Title I of the Clean Air Act;
 - (2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;
 - (3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);
 - (4) The Permittee notifies the:

Indiana Department of Environmental Management Permit Administration and Support Section, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5 Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J) 77 West Jackson Boulevard Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

- (b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:
 - (1) A brief description of the change within the source;
 - (2) The date on which the change will occur;
 - (3) Any change in emissions; and
 - (4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) Emission Trades [326 IAC 2-7-20(c)] The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).
- (d) Alternative Operating Scenarios [326 IAC 2-7-20(d)] The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ or U.S. EPA is required.
- (e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.
- (f) This condition does not apply to emission trades of SO₂ or NO_X under 326 IAC 21.

B.20 Source Modification Requirement [326 IAC 2-7-10.5] A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]

Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

- (a) Enter upon the Permittee's premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
- (b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;
- (c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;
- (d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and
- (e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]

(a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management Permit Administration and Support Section, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (d) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]
- B.23 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)][326 IAC 2-1.1-7]
 - (a) The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.
 - (b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.
 - (c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-8590 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314] [326 IAC 1-1-6] For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.

SECTION C

SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

- (a) Opacity shall not exceed an average of thirty percent (30%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.
- (b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.
- C.2 Open Burning [326 IAC 4-1] [IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.3 Incineration [326 IAC 4-2] [326 IAC 9-1-2]

The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

- C.4 Fugitive Dust Emissions [326 IAC 6-4] The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.
- C.5 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]

Pursuant to 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations), fugitive particulate matter emissions shall be controlled according to the attached plan as in Attachment A. The provisions of 326 IAC 6-5 are not federally enforceable.

C.6 Stack Height [326 IAC 1-7]

The Permittee shall comply with the applicable provisions of 326 IAC 1-7 (Stack Height Provisions), for all exhaust stacks through which a potential (before controls) of twenty-five (25) tons per year or more of particulate matter or sulfur dioxide is emitted. The provisions of 326 IAC 1-7-1(3), 326 IAC 1-7-2, 326 IAC 1-7-3(c) and (d), 326 IAC 1-7-4, and 326 IAC 1-7-5(a), (b), and (d) are not federally enforceable.

C.7 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

- (b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:
 - (1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or
 - (2) If there is a change in the following:
 - (A) Asbestos removal or demolition start date;
 - (B) Removal or demolition contractor; or
 - (C) Waste disposal site.
- (c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(c).
- (d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(d).

All required notifications shall be submitted to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (e) Procedures for Asbestos Emission Control The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.
- (f) Demolition and Renovation The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).
- (g) Indiana Licensed Asbestos Inspector The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos. The requirement to use an Indiana Licensed Asbestos inspector is not federally enforceable.

Testing Requirements [326 IAC 2-7-6(1)]

- C.8 Performance Testing [326 IAC 3-6]
 - (a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
- (c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.9 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

- C.10 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]
 - (a) For new units: Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.
 - (b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) For monitoring required by CAM, at all times, the Permittee shall maintain the monitoring, including but not limited to, maintaining necessary parts for routine repairs of the monitoring equipment.
- (d) For monitoring required by CAM, except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall conduct all monitoring in continuous operation (or shall collect data at all required intervals) at all times that the pollutant-specific emissions unit is operating. Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used for purposes of this part, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. The owner or operator shall use all the data collected during all other periods in assessing the operation of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

C.11 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

- (a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.
- (b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.12 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3] Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

- (a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.
- (b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.13 Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.14 Response to Excursions or Exceedances [40 CFR 64] [326 IAC 3-8] [326 IAC 2-7-5] [326 IAC 2-7-6]

- (I) Upon detecting an excursion where a response step is required by the D Section, or an exceedance of a limitation, not subject to CAM, in this permit:
 - (a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.
 - (b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:
 - (1) initial inspection and evaluation;
 - (2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or
 - (3) any necessary follow-up actions to return operation to normal or usual manner of operation.
 - (c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:
 - (1) monitoring results;
 - (2) review of operation and maintenance procedures and records; and/or
 - (3) inspection of the control device, associated capture system, and the process.
 - (d) Failure to take reasonable response steps shall be considered a deviation from the permit.
 - (e) The Permittee shall record the reasonable response steps taken.
- (II)

(a) CAM Response to excursions or exceedances.

(1) Upon detecting an excursion or exceedance, subject to CAM, the Permittee shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal without operator action (such as through response by a computerized distribution control system), or any necessary follow-up actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable.

- (2) Determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include but is not limited to, monitoring results, review of operation and maintenance procedures and records, and inspection of the control device, associated capture system, and the process.
- (b) If the Permittee identifies a failure to achieve compliance with an emission limitation, subject to CAM, or standard, subject to CAM, for which the approved monitoring did not provide an indication of an excursion or exceedance while providing valid data, or the results of compliance or performance testing document a need to modify the existing indicator ranges or designated conditions, the Permittee shall promptly notify the IDEM, OAQ and, if necessary, submit a proposed significant permit modification to this permit to address the necessary monitoring changes. Such a modification may include, but is not limited to, reestablishing indicator ranges or designated conditions, modifying the frequency of conducting monitoring and collecting data, or the monitoring of additional parameters.
- (c) Based on the results of a determination made under paragraph (II)(a)(2) of this condition, the EPA or IDEM, OAQ may require the Permittee to develop and implement a Quality Improvement Plan (QIP). The Permittee shall develop and implement a QIP if notified to in writing by the EPA or IDEM, OAQ.
- (d) Elements of a QIP: The Permittee shall maintain a written QIP, if required, and have it available for inspection. The plan shall conform to 40 CFR 64.8(b)(2).
- (e) If a QIP is required, the Permittee shall develop and implement a QIP as expeditiously as practicable and shall notify the IDEM, OAQ if the period for completing the improvements contained in the QIP exceeds 180 days from the date on which the need to implement the QIP was determined.
- (f) Following implementation of a QIP, upon any subsequent determination pursuant to paragraph (II)(a)(2) of this condition the EPA or the IDEM, OAQ may require that the Permittee make reasonable changes to the QIP if the QIP is found to have:
 - (1) Failed to address the cause of the control device performance problems; or
 - (2) Failed to provide adequate procedures for correcting control device performance problems as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions.
- (g) Implementation of a QIP shall not excuse the Permittee from compliance with any existing emission limitation or standard, or any existing monitoring, testing, reporting or recordkeeping requirement that may apply under federal, state, or local law, or any other applicable requirements under the Act.

(h) CAM recordkeeping requirements.

- (1) The Permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to paragraph (II)(c) of this condition and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under this condition (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). Section C General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.
- (2) Instead of paper records, the owner or operator may maintain records on alternative media, such as microfilm, computer files, magnetic tape disks, or microfiche, provided that the use of such alternative media allows for expeditious inspection and review, and does not conflict with other applicable recordkeeping requirements
- C.15 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]
 - (a) When the results of a stack test performed in conformance with Section C Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.
 - (b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.
 - (c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- C.16 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6] Pursuant to 326 IAC 2-6-3(b)(2), starting in 2005 and every three (3) years thereafter, the Permittee shall submit by July 1 an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:
 - (1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);
 - (2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

The statement must be submitted to:

Indiana Department of Environmental Management Technical Support and Modeling Section, Office of Air Quality 100 North Senate Avenue MC 61-50 IGCN 1003 Indianapolis, Indiana 46204-2251

The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.17 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6] [326 IAC 2-2][326 IAC 2-3]

- (a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:
 - (AA) All calibration and maintenance records.
 - (BB) All original strip chart recordings for continuous monitoring instrumentation.
 - (CC) Copies of all reports required by the Part 70 permit.
 - Records of required monitoring information include the following, where applicable:
 - (AA) The date, place, as defined in this permit, and time of sampling or measurements.
 - (BB) The dates analyses were performed.
 - (CC) The company or entity that performed the analyses.
 - (DD) The analytical techniques or methods used.
 - (EE) The results of such analyses.
 - (FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

- (b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.
- (c) If there is a reasonable possibility (as defined in 326 IAC 2-2-8 (b)(6)(A), 326 IAC 2-2-8 (b)(6)(B), 326 IAC 2-3-2 (I)(6)(A), and/or 326 IAC 2-3-2 (I)(6)(B)) that a "project" (as defined in 326 IAC 2-2-1(oo) and/or 326 IAC 2-3-1(jj)) at an existing emissions unit, other than projects at a source with a Plantwide Applicability Limitation (PAL), which is not part of a "major modification" (as defined in 326 IAC 2-2-1(dd) and/or 326 IAC 2-3-1(y)) may result in significant emissions increase and the Permittee elects to utilize the "projected actual emissions" (as defined in 326 IAC 2-2-1(pp) and/or 326 IAC 2-3-1(kk)), the Permittee shall comply with following:
 - Before beginning actual construction of the "project" (as defined in 326 IAC 2-2-1(oo) and/or 326 IAC 2-3-1(jj)) at an existing emissions unit, document and maintain the following records:
 - (A) A description of the project.

- (B) Identification of any emissions unit whose emissions of a regulated new source review pollutant could be affected by the project.
- (C) A description of the applicability test used to determine that the project is not a major modification for any regulated NSR pollutant, including:
 - (i) Baseline actual emissions;
 - (ii) Projected actual emissions;
 - (iii) Amount of emissions excluded under section 326 IAC 2-2-1(pp)(2)(A)(iii) and/or 326 IAC 2-3-1 (kk)(2)(A)(iii); and
 - (iv) An explanation for why the amount was excluded, and any netting calculations, if applicable.
- (d) If there is a reasonable possibility (as defined in 326 IAC 2-2-8 (b)(6)(A) and/or 326 IAC 2-3-2 (l)(6)(A)) that a "project" (as defined in 326 IAC 2-2-1(oo) and/or 326 IAC 2-3-1(jj)) at an existing emissions unit, other than projects at a source with a Plantwide Applicability Limitation (PAL), which is not part of a "major modification" (as defined in 326 IAC 2-2-1(dd) and/or 326 IAC 2-3-1(y)) may result in significant emissions increase and the Permittee elects to utilize the "projected actual emissions" (as defined in 326 IAC 2-2-1(pp) and/or 326 IAC 2-3-1(kk)), the Permittee shall comply with following:
 - Monitor the emissions of any regulated NSR pollutant that could increase as a result of the project and that is emitted by any existing emissions unit identified in (1)(B) above; and
 - (2) Calculate and maintain a record of the annual emissions, in tons per year on a calendar year basis, for a period of five (5) years following resumption of regular operations after the change, or for a period of ten (10) years following resumption of regular operations after the change if the project increases the design capacity of or the potential to emit that regulated NSR pollutant at the emissions unit.
- C.18 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [326 IAC 2-2][326 IAC 2-3] [40 CFR 64][326 IAC 3-8]
 - (a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

On and after the date by which the Permittee must use monitoring that meets the requirements of 40 CFR Part 64 and 326 IAC 3-8, the Permittee shall submit CAM reports to the IDEM, OAQ.

A report for monitoring under 40 CFR Part 64 and 326 IAC 3-8 shall include, at a minimum, the information required under paragraph (a) of this condition and the following information, as applicable:

- (1) Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken;
- (2) Summary information on the number, duration and cause (including unknown cause, if applicable) for monitor downtime incidents (other than downtime associated with zero and span or other daily calibration checks, if applicable); and
- (3) A description of the actions taken to implement a QIP during the reporting period as specified in Section C - Response to Excursions or Exceedances. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring.

The Permittee may combine the Quarterly Deviation and Compliance Monitoring Report and a report pursuant to 40 CFR 64 and 326 IAC 3-8.

(b) The address for report submittal is:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

- (c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.
- (d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit "calendar year" means the twelve (12) month period from January 1 to December 31 inclusive.
- (e) If the Permittee is required to comply with the recordkeeping provisions of (d) in Section C - General Record Keeping Requirements for any "project" (as defined in 326 IAC 2-2-1 (oo) and/or 326 IAC 2-3-1 (jj)) at an existing emissions unit, and the project meets the following criteria, then the Permittee shall submit a report to IDEM, OAQ:
 - (1) The annual emissions, in tons per year, from the project identified in (c)(1) in Section C- General Record Keeping Requirements exceed the baseline actual emissions, as documented and maintained under Section C- General Record Keeping Requirements (c)(1)(C)(i), by a significant amount, as defined in 326 IAC 2-2-1 (ww) and/or 326 IAC 2-3-1 (pp), for that regulated NSR pollutant, and
 - (2) The emissions differ from the preconstruction projection as documented and maintained under Section C - General Record Keeping Requirements (c)(1)(C)(ii).

- (f) The report for project at an existing emissions *unit* shall be submitted no later than sixty (60) days after the end of the year and contain the following:
 - (1) The name, address, and telephone number of the major stationary source.
 - (2) The annual emissions calculated in accordance with (d)(1) and (2) in Section C General Record Keeping Requirements.
 - (3) The emissions calculated under the actual-to-projected actual test stated in 326 IAC 2-2-2(d)(3) and/or 326 IAC 2-3-2(c)(3).
 - (4) Any other information that the Permittee wishes to include in this report such as an explanation as to why the emissions differ from the preconstruction projection.

Reports required in this part shall be submitted to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

(g) The Permittee shall make the information required to be documented and maintained in accordance with (c) in Section C- General Record Keeping Requirements available for review upon a request for inspection by IDEM, OAQ. The general public may request this information from the IDEM, OAQ under 326 IAC 17.1.

Stratospheric Ozone Protection

C.19 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(a)	Three (3) mass burn waterwall municipal solid waste combustion units, constructed in 1988, identified as EU1, EU2, and EU3. Each unit is capable of burning municipal solid waste at a rate of 726 tons per day at 5500 Btu/lb. Each Combustor unit is equipped with two (2) 140 MMBtu per hour natural gas-fired burners used for start-up, shutdown, and flame stabilization.				
	(1)	(1) The flue gas from each combustion unit is controlled by:			
		(A)	v dryer absorber with hydrated lime slurry controlling acid gas, identified A, CE2A, and CE3A;		
		(B)	in para	ilter bags controlling particulates, identified as CE1B, CE2B, and CE3B llel; exhausting to stack vents SV1, SV2, and SV3, with CEMS for NOx, D ₂ , O ₂ and a COM for opacity;	
		(C)	a Merc	ury Emissions Control System comprised of:	
			(i)	three (3) outlet hoppers for each combustion unit; three (3) surge bins, one for each combustion unit, each equipped with gravimetric feeders for controlling the carbon feed rate to each combustion unit, and	
			(ii)	three (3) injection trains equipped with pneumatic conveying equipment to transport (blow) the carbon from the feeder to the flue gas duct of each combustion unit.	
		(D)		gen Oxide Emission Control System utilizing one (1) selective non c reduction (SNCR) system comprised of:	
			(i)	one (1) 20,000 gallon, aqueous ammonia storage tank;	
			(ii)	two (2) ammonia feed pumps to supply ammonia from the storage tank to the injection nozzle system; and	
			(iii)	three (3) injection nozzle systems equipped with carrier blowers.	
	(2) A Fugitive Ash Emission Control System utilizing one (1) dustmaster fly conditioning system comprised of:				
		(A)		screw conveyors that convey ash from the three (3) scrubber- use units to the ash storage silo;	
(B)			one (1) ash storage silo that batch feeds the fly ash into the dustmaster conditioning system; and		
		(C)		dustmaster fly ash conditioning system that mixes water and fly ash to e consistent moisture content that reduces fugitive dust.	
	(3)	Each combustor is equipped with a Liquid Direct Injection (LDI) System, including multiple nozzles for product dispersion. Additional components include two (2) 150,000 gallon mixing tanks and two (2) 12,500 gallon storage tanks.			
Specifically R	egulated Insignificant Activities:				
----------------	--	--			
(a)	One (1) sand blaster, used for maintenance purposes only, constructed in 1988, with a maximum capacity of 292 pounds of abrasive per hour, using dust collector as control, and exhausting indoors.				
(b)	Lime Silo equipped with a vent fabric filter for particulate control.				
	The facility includes two (2) alternative systems for lime handling:				
	(A) Source will deliver lime slurry by tanker trucks directly into the holding tank prior to pumping to the spray dryer absorber.				
	(B) One (1) portable hydrated lime slurry system, identified as T104 trailer, permitted in 2023, with a maximum capacity of 23,000 gallons of slurry, using dust collector as control, and exhausting to the atmosphere.				
(c)	One (1) dry activated carbon storage silo associated with the Mercury Emissions Control System equipped with an integrated baghouse system with a maximum storage capacity of 3,000 cubic feet.				
(d)	Vents from ash transport systems not operated at positive pressure.				
(e)	One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.				
	This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.				
· ·	on describing the process contained in this emissions unit description box is descriptive d does not constitute enforceable conditions.)				

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.1.1 Particulate [326 IAC 6.5-1-2]

- (a) Pursuant to 326 IAC 6.5-1-2(b)(1)(A), particulate emissions from the municipal solid waste combustion units (EU1, EU2, and EU3) shall not exceed 0.18 grams per million calories (0.10 pounds per MMBtu).
- (b) Pursuant to 326 IAC 6.5-1-2(a), particulate matter (PM) emissions from the following facilities shall not exceed 0.03 grains per dry standard cubic foot (dscf):
 - (1) a Mercury Emissions Control System comprised of:
 - (A) three (3) outlet hoppers for each combustion unit; three (3) surge bins, one for each combustion unit, each equipped with gravimetric feeders for controlling the carbon feed rate to each combustion unit, and
 - (B) three (3) injection trains equipped with pneumatic conveying equipment to transport (blow) the carbon from the feeder to the flue gas duct of each combustion unit.
 - (2) A Fugitive Ash Emission Control System utilizing one (1) dustmaster fly ash conditioning system comprised of:

- (A) five (5) screw conveyors that convey ash from the three (3) scrubberbaghouse units to the ash storage silo;
- (B) one (1) ash storage silo that batch feeds the fly ash into the dustmaster conditioning system; and
- (C) one (1) dustmaster fly ash conditioning system that mixes water and fly ash to produce consistent moisture content that reduces fugitive dust.
- (3) One (1) sand blaster, used for maintenance purposes only, constructed in 1988, with a maximum capacity of 292 pounds of abrasive per hour, using dust collector as control, and exhausting indoors.
- (4) Lime Silo equipped with a vent fabric filter for particulate control.
- (5) One (1) dry activated carbon storage silo associated with the Mercury Emissions Control System equipped with an integrated baghouse system with a maximum storage capacity of 3,000 cubic feet.
- (6) Vents from ash transport systems not operated at positive pressure.
- (7) One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.

This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.

D.1.2 Emission Limits [326 IAC 11-7-3] [326 IAC 12] [326 IAC 7-1.1]

Pursuant to 326 IAC 11-7-3, the concentration of pollutants contained in the gases discharged to the atmosphere from each of the municipal solid waste combustor units (EU1, EU2, and EU3) shall not exceed the following limits:

- (a) Particulate Matter 25 milligrams per dry standard cubic meter (mg/dscm), corrected to seven percent (7%) oxygen.
- (b) Opacity 10% based on 6-minute average.
- (c) Cadmium 0.035 milligrams per dry standard cubic meter (mg/dscm), corrected to seven percent (7%) oxygen.
- (d) Lead 0.400 milligrams per dry standard cubic meter (mg/dscm), corrected to seven percent (7%) oxygen.
- (e) Mercury 0.050 milligrams per dry standard cubic meter (mg/dscm); or 15% of the potential mercury emissions concentration, corrected to seven percent (7%) oxygen, whichever concentration is less stringent.
- (f) Sulfur dioxide 29 parts per million by volume (ppmv); or 20% of the potential sulfur dioxide emission concentration, whichever concentration is less stringent, corrected to seven percent (7%) oxygen, dry basis, calculated as a 24-hour daily geometric mean.

- (g) Hydrogen chloride 29 parts per million by volume (ppmv); or 5% of the potential hydrogen chloride emissions concentration, corrected to seven percent (7%) oxygen, dry basis, whichever is less stringent.
- (h) Organic emissions (expressed as total mass dioxins/furans) 30 nanograms per dry standard cubic meter (ng/dscm) total mass, corrected to seven percent (7%) oxygen.
- (i) Nitrogen oxides 205 parts per million by volume (ppmv), corrected to seven percent (7%) oxygen, dry basis. Compliance may be based on the average daily NOx emissions.
- (j) Carbon monoxide 100 parts per million by volume (ppmv) measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to seven percent (7%) oxygen, dry basis, calculated as an arithmetic mean (based on a 4-hour block averaging time).

Compliance with the emission limit for nitrogen oxides in D.1.2(i) required under 40 CFR 60.33b(d) shall be determined based on the 24-hour daily arithmetic average of the hourly emission concentrations using continuous emission monitoring system outlet data. Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 in Appendix F of 40 CFR 60.

D.1.3 Fugitive Ash Limits [326 IAC 11-7-6] [40 CFR 60, Subpart Eb]

Pursuant to 326 IAC 11-7-6 and 40 CFR 60.55b, the Permittee shall comply with the following fugitive ash emission standards:

- (a) On and after the date on which the initial performance test is completed or is required to be completed under 40 CFR 60.8, the Permittee shall not cause to be discharged to the atmosphere visible emissions of combustion ash from an ash conveying system (including conveyor transfer points) in excess of 5 percent of the observation period (i.e., 9 minutes per 3-hour period), as determined by EPA Reference Method 22 observations as specified in 40 CFR 60.58b(k) [referenced in Condition D.1.10], except as provided in (b) and (c) of this condition.
- (b) The emission limit specified in (a) of this condition does not cover visible emissions discharged inside buildings or enclosures of ash conveying systems; however, the emission limit specified in (a) of this condition does cover visible emissions discharged to the atmosphere from buildings or enclosures of ash conveying systems.
- (c) The provisions of (a) of this condition do not apply during maintenance and repair of ash conveying systems.

D.1.4 Operating Practices [326 IAC 11-7-4] [40 CFR 60, Subpart Eb]

Pursuant to 326 IAC 11-7-4 and 40 CFR 60.53b(b) and (c), the Permittee shall comply with the following operating practices:

- (a) The Permittee shall not cause the facility to operate at a load level greater than 110 percent of the maximum demonstrated municipal waste combustor unit load as defined in 40 CFR 60.51b, except as specified in paragraphs (a)(1) and (a)(2) of this condition. The averaging time is specified under 40 CFR 60.58b(i) [as referenced in Condition D.1.10].
 - (1) During the annual dioxin/furan or mercury performance test and the two (2) weeks preceding the annual dioxin/furan or mercury performance test, no municipal waste combustor unit load limit is applicable if the provisions of paragraph (a)(2) of this condition are met.

- (2) The municipal waste combustor unit load limit may be waived in writing by the Administrator for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions. The municipal waste combustor unit load limit continues to apply, and remains enforceable, until and unless the Administrator grants the waiver.
- (b) The Permittee shall not cause the facility to operate at a temperature, measured at the particulate matter control device inlet, exceeding 17 °C above the maximum demonstrated particulate matter control device temperature as defined in 40 CFR 60.51b, except as specified in paragraphs (b)(1) and (b)(2) of this condition. The averaging time is specified under 40 CFR 60.58b(i) [as referenced in Condition D.1.10]. The requirements specified in this paragraph apply to each particulate matter control device utilized at the affected facility.
 - (1) During the annual dioxin/furan or mercury performance test and the two (2) weeks preceding the annual dioxin/furan or mercury performance test, no particulate matter control device temperature limitations are applicable if the provisions of paragraph (a)(2) of this condition are met.
 - (2) The particulate matter control device temperature limits may be waived in writing by the Administrator for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions. The temperature limits continue to apply, and remain enforceable, until and unless the Administrator grants the waiver.

D.1.5 Municipal Waste Combustor Operator Training and Certification Requirements [326 IAC 11-7-5] [40 CFR 60, Subpart Eb]

Pursuant to 326 IAC 11-7-5 and 40 CFR 60.54b, the Permittee shall comply with the following municipal waste combustor operator training and certification requirements:

- (a) Each chief facility operator and shift supervisor shall obtain and maintain a current provisional operator certification from either the American Society of Mechanical Engineers [QRO-1-1994 (incorporated by reference—see 40 CFR 60.17)] or a State certification program.
- (b) Each chief facility operator and shift supervisor shall have completed full certification or shall have scheduled a full certification exam with either the American Society of Mechanical Engineers [QRO-1-1994 (incorporated by reference—see 40 CFR 60.17)] or a State certification program.
- (c) The Permittee shall not allow the facility to be operated at any time unless one of the following persons is on duty and at the affected facility: A fully certified chief facility operator, a provisionally certified chief facility operator who is scheduled to take the full certification exam, a fully certified shift supervisor, or a provisionally certified shift supervisor who is scheduled to take the full certification exam.
 - If both the certified chief facility operator and certified shift supervisor are unavailable, a provisionally certified control room operator on site at the municipal waste combustion unit may fulfill the certified operator requirement.
 Depending on the length of time that a certified chief facility operator and certified shift supervisor are away, the owner or operator of the affected facility must meet one of three criteria:

- (i) When the certified chief facility operator and certified shift supervisor are both off site for 12 hours or less, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor.
- (ii) When the certified chief facility operator and certified shift supervisor are off site for more than 12 hours, but for two weeks or less, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor without notice to, or approval by, the Administrator. However, the owner or operator of the affected facility must record the period when the certified chief facility operator and certified shift supervisor are off site and include that information in the annual report as specified under Condition D.1.25.
- (iii) When the certified chief facility operator and certified shift supervisor are off site for more than two weeks, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor without approval by the Administrator. However, the owner or operator of the affected facility must take two actions:
 - (A) Notify the Administrator in writing. In the notice, state what caused the absence and what actions are being taken by the owner or operator of the facility to ensure that a certified chief facility operator or certified shift supervisor is on site as expeditiously as practicable.
 - (B) Submit a status report and corrective action summary to the Administrator every four weeks following the initial notification. If the Administrator provides notice that the status report or corrective action summary is disapproved, the municipal waste combustion unit may continue operation for 90 days, but then must cease operation. If corrective actions are taken in the 90day period such that the Administrator withdraws the disapproval, municipal waste combustion unit operation may continue.
- (2) A provisionally certified operator who is newly promoted or recently transferred to a shift supervisor position or a chief facility operator position at the municipal waste combustion unit may perform the duties of the certified chief facility operator or certified shift supervisor without notice to, or approval by, the Administrator for up to six months before taking the ASME QRO certification exam.
- (d) All chief facility operators, shift supervisors, and control room operators at affected facilities must have completed the EPA or State municipal waste combustor operator training course.
- (e) The Permittee shall develop and update on a yearly basis a site-specific operating manual that shall, at a minimum, address the elements of municipal waste combustor unit operation specified in paragraphs (e)(1) through (e)(11) of this condition.
 - (1) A summary of the applicable standards under 40 CFR 60, Subpart Eb;

- (2) A description of basic combustion theory applicable to a municipal waste combustor unit;
- (3) Procedures for receiving, handling, and feeding municipal solid waste;
- (4) Municipal waste combustor unit startup, shutdown, and malfunction procedures;
- (5) Procedures for maintaining proper combustion air supply levels;
- (6) Procedures for operating the municipal waste combustor unit within the standards established under 40 CFR 60, Subpart Eb;
- (7) Procedures for responding to periodic upset or off-specification conditions;
- (8) Procedures for minimizing particulate matter carryover;
- (9) Procedures for handling ash;
- (10) Procedures for monitoring municipal waste combustor unit emissions; and
- (11) Reporting and recordkeeping procedures.
- (f) The Permittee shall establish a training program to review the operating manual according to the schedule specified in paragraphs (f)(1) and (f)(2) of this condition with each person who has responsibilities affecting the operation of an affected facility including, but not limited to, chief facility operators, shift supervisors, control room operators, ash handlers, maintenance personnel, and crane/load handlers.
 - (1) Each person specified in paragraph (f) of this condition shall undergo initial training no later than the date prior to the day the person assumes responsibilities affecting municipal waste combustor unit operation.
 - (2) Annually, following the initial review required by paragraph (f)(1) of this condition.
- (g) The operating manual required by paragraph (e) of this condition shall be kept in a readily accessible location for all persons required to undergo training under paragraph (f) of this condition. The operating manual and records of training shall be available for inspection by the EPA or IDEM upon request.

D.1.6 Mass Emission Rates

Pursuant to Construction Permit, City of Indianapolis, issued March 25, 1986 and incorporated into Construction Permit PSD (49) 1602, issued April 23, 1986, the total nonmethane hydrocarbon (VOC) mass emission rate from EU1, EU2, and EU3 shall not exceed 3.30 pounds per hour per combustion unit and an annual emission rate of 14.45 tons per twelve (12) consecutive months while combusting only municipal waste.

D.1.7 PSD BACT [326 IAC 2-2]

Pursuant to 326 IAC 2-2-3 (PSD BACT), the Permittee shall comply with the following requirements:

- (a) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, nitrogen dioxide mass emission rate shall not exceed 151.2 pounds per hour per combustion unit and an annual emission rate of 662.25 tons per twelve (12) consecutive months while combusting only municipal waste.
- (b) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, carbon monoxide mass emission rate shall not exceed 45.4 pounds per hour per combustion unit and an annual emission rate of 198.85 tons per twelve (12) consecutive months while combusting only municipal waste.
- (c) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, lead mass emission rate, averaged over a three month period, shall not exceed 2.01 pounds per hour for the three (3) combustion units.

(d) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, mercury mass emission rate, averaged over all 24-hour rolling periods, shall not exceed a mass emission rate of 0.54 pounds per hour for the three (3) combustion units.

D.1.8 Additional Special Requirements - Consent Decree

If duplicate requirements are found between the incorporated sections of the Consent Decree filed January 12, 1993 and any other conditions of the Part 70 Operating Permit, the Permittee shall comply with the more stringent requirements. There are additional requirements specified from the Consent Decree filed January 12, 1993, Cause number 49F12-9110-OV-2155 that are carried over into the Part 70 Permit. The conditions not carried over from the Consent Decree were either satisfied or were not required by the consent decree to be incorporated into the Part 70 permit. These special requirements of the Consent Decree that are carried over into the Part 70 Permit are not federally enforceable and are as follows:

- (a) Operation and Maintenance Plan Pursuant to the Consent Decree filed January 12, 1993, for Cause number 49F12-9110-OV-2155, Section G, Paragraphs 1 and 5:
 - (1) Whenever a boiler tube failure, ash plug, broken grate bar, decrease in expected bag performance, or scrubber failure occurs, or a work practice causes any of the foregoing or is demonstrated to adversely impact the Facility's ability to meet the terms and conditions of the Permit, the Permittee shall reevaluate the applicable provisions of its O & M Plan required in D.1.8(a)(2) to determine if any changes in such provisions, including work practices, are required, and shall report to IDEM the results of the reevaluations noted below. The Permittee shall notify IDEM, OAQ in writing within thirty (30) days prior to implementing revisions to the O & M Plan.
 - (2) The Permittee shall combine all current operation and preventative maintenance plans, including the Baghouse/Scrubber Preventive Maintenance Plan, Boiler Operation and Maintenance Plan and the Maintenance Management System, into one plan to be described as the Operation and Maintenance Plan (O & M Plan), containing sections on (1) Maintenance Management System, (2) Auxiliary Burner, (3) Martin Stoker/Ash Discharger, (4) Waste Feed, (5) Boiler, and (6) Baghouse/Scrubber. Each section shall describe the applicable work practices to assure the proper operation of the applicable equipment and systems which may impact air emissions from the Facility and shall describe or reference related work orders for such equipment and systems included in the Prefix or equivalent system described in the Maintenance Management System section of the O & M Plan.
- (b) Sulfur Dioxide Pursuant to Consent Decree filed January 12, 1993, Cause number 49F12-9110-OV-2155, Section D, Paragraph 1, the Permittee shall keep the acid gas scrubber for each combustor in service whenever municipal solid waste is on the grate for that unit.
- (c) Substantive Provisions
 - (1) Baghouse

Pursuant to Consent Decree Section B, Paragraph 2, Cause number 49F12-9110-OV-2155, the Permittee shall not bypass the baghouse for a Unit while municipal solid waste is on the grate unless necessary to avoid an explosive or other dangerous situation which could result in structural or major damage to any equipment of the Facility impairing the use of such equipment, or injury to personnel working at or near the Facility. Structural or major damage to any equipment of the Facility does not include damage to or destruction of bags. The Permittee shall bear the burden of demonstrating the need for the bypass. Within ten (10) days of a bypass incident, the Permittee shall submit a written report to IDEM detailing the length of the bypass incident, the operating parameters at the time of the bypass, including but not limited to flue gas inlet temperature to the baghouse and differential pressure across the baghouse, and the conditions or reasons necessitating the bypass.

(2) Good Combustion Practices

Pursuant to Consent Decree Section B, Paragraph 3 Cause number 49F12-9110-OV-2155, because the furnace boiler tube thinning may be attributable to fireside corrosion stemming from acid gases and corrosive salts, providing a catalyst for boiler tube failure, Reworld Indianapolis, Inc. shall, within thirty (30) days after the effective date of this Consent Decree, conduct a review of the boiler operation to determine the optimum operation to reduce boiler tube thinning and to establish procedure to ensure that the optimum boiler operation can be consistently maintained. The following will be addressed in such review:

(A) Training Operating personnel have increased the number of furnace observations made at regularly scheduled intervals, as part of their normal "walkdowns". In addition, an operator/shift supervisor training program, geared toward optimum combustion control and stoker operation, will continue to be implemented.

D.1.9 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B- Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

- D.1.10 Compliance and Performance Testing [326 IAC 11-7-7] [40 CFR 60, Subpart Eb] Pursuant to 326 IAC 11-7-7, the Permittee shall comply with the following:
 - (a) Compliance and performance testing methods and procedures specified in 40 CFR 60, Subpart Eb (included as Attachment E to the operating permit), Section 60.58b, except as provided in subsections (b) through (c). All tests shall meet the requirements of 326 IAC 3-6.
 - (b) If all of the dioxin/furan compliance tests for all designated facilities over a two (2) year period indicate that the dioxin/furan emissions are less than or equal to fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen, the owner or operator of the plant may elect to conduct an annual dioxin/furan performance test for one (1) designated facility (unit) per year at the plant. At a minimum, a performance test for dioxin/furan emissions shall be conducted annually (no more than twelve (12) months following the previous performance test) for one (1) designated facility at the plant. Each year a different designated facility shall be tested. The designated facilities at the plant shall be tested in sequence, such as Unit 1 the first year, followed by Unit 2 the next year.
 - (c) If an annual performance test indicates an emission level for dioxin/furan greater than fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen, then performance tests shall be conducted annually on all designated facilities at the plant until all annual performance tests for all designated facilities at the plant over a

two (2) year period indicate a dioxin and furan emission level less than or equal to fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen.

(d) The owner or operator of a designated facility who elects to follow the performance testing schedule specified in subsection (b) shall follow the procedures specified in 40 CFR 60, Subpart Eb, Section 60.59b(g)(4), for reporting the election of this schedule to the department.

D.1.11 Operation of Equipment [326 IAC 2-7-6(6)]

The Permittee shall comply with the following requirements for each of the municipal solid waste combustor units (EU1, EU2, and EU3):

- (a) Based on data from the nitrogen oxides continuous emission monitoring systems (CEMS) for each of the municipal waste combustors, the selective noncatalytic reduction (SNCR) system for NOx control shall be in operation and control emissions from the municipal waste combustors as necessary in order to comply with Condition D.1.2(i).
- (b) In order to comply with Conditions D.1.2(f) and D.1.2(g), the Permittee shall operate the spray dryer absorber and the fabric filter prior to charging any MSW, during continuous combustion of MSW, and during shutdown until all MSW remaining on the grate is combusted.
- (c) In order to comply with Conditions D.1.2(b), D.1.2(f), D.1.2(j), D.1.7(b), and D.1.8(b), the Permittee shall operate continuous monitoring equipment for sulfur dioxide, oxygen, and carbon monoxide at the economizer outlet, and sulfur dioxide and opacity at the fabric filter outlet.
- (d) Pursuant to 326 IAC 2-7-6(6), primary combustion air shall be drawn from the tipping floor maintaining a negative air pressure in the building containing the tipping floor and receiving pit.
- (e) In order to comply with Conditions D.1.1(a), D.1.2(a) through D.1.2(d), the fabric filter for particulate matter, opacity, cadmium, and lead control shall be in operation and control emissions from the municipal waste combustors at all times when the facility is in operation.

D.1.12 Mercury Emissions Control System [326 IAC 2-7-6(6)]

The carbon injection system for mercury control shall be in operation and control emissions from the municipal waste combustors as necessary in order to comply with Condition D.1.2(e).

D.1.13 Testing Requirements [326 IAC 2-1.1-11]

To demonstrate compliance with Condition D.1.1(a) (326 IAC 6.5-1) and Condition D.1.2 (326 IAC 11-7-3), the Permittee shall perform PM, opacity, Cadmium, Lead, Mercury, Dioxin/Furan, and HCI testing as required by 326 IAC 11-7, and as specified in Condition D.1.10.

D.1.14 Continuous Opacity Monitoring [326 IAC 3-5] [326 IAC 2-7-6(1), (6)] [40 CFR 60, Subpart Cb]

- (a) Pursuant to 326 IAC 3-5 (Continuous Monitoring of Emissions), continuous monitoring systems for the municipal waste combustors shall be calibrated, maintained, and operated for measuring opacity at the fabric filter outlet, which meet all applicable performance specifications of 326 IAC 3-5-2.
- (b) All COMS shall meet the performance specifications of 40 CFR 60, Appendix B, Performance Specification No. 1, and are subject to monitor system certification requirements pursuant to 326 IAC 3-5-3.

- (c) Nothing in this permit shall excuse the Permittee from complying with the requirements to operate a continuous opacity monitoring system pursuant to 326 IAC 3-5 and 40 CFR 60, Subpart Cb.
- D.1.15 Continuous Emission Monitoring [326 IAC 3-5] [326 IAC 2-7-6(1), (6)] [40 CFR 60, Subpart Cb]
 - (a) Pursuant to 326 IAC 3-5 (Continuous Monitoring of Emissions), continuous emission monitoring systems for the municipal waste combustors shall be calibrated, maintained, and operated for measuring sulfur dioxide, carbon monoxide, and oxygen at the economizer outlet and nitrogen oxides, oxygen, and sulfur dioxide at the fabric filter outlet, which meet all applicable performance specifications of 326 IAC 3-5-2.
 - (b) All continuous emissions monitoring systems are subject to monitor system certification requirements pursuant to 326 IAC 3-5-3.
 - (c) Nothing in this condition shall excuse the Permittee from complying with the requirements to operate a continuous emission monitoring system pursuant to 326 IAC 3-5 and 40 CFR 60, Subpart Cb.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

D.1.16 Continuous Opacity Monitoring (COMS) Downtime

- (a) In the event that a breakdown of a COMS occurs, a record shall be made of the times and reasons of the breakdown and efforts made to correct the problem.
- (b) Whenever a COMS is malfunctioning or is down for maintenance or repairs for a period of twenty-four (24) hours or more and a backup COMS is not online within twenty-four (24) hours of shutdown or malfunction of the primary COMS, the Permittee shall provide a certified opacity reader, who may be an employee of the Permittee or an independent contractor, to self-monitor the emissions from the emission unit stack.
 - (1) Visible emission readings shall be performed in accordance with 40 CFR 60, Appendix A, Method 9, for a minimum of five (5) consecutive six (6) minute averaging periods beginning not more than twenty-four (24) hours after the start of the malfunction or down time.
 - (2) Method 9 opacity readings shall be repeated for a minimum of five (5) consecutive six (6) minute averaging periods at least twice per day during daylight operations, with at least four (4) hours between each set of readings, until a COMS is online.
 - (3) Method 9 readings may be discontinued once a COMS is online.
 - (4) Any opacity exceedances determined by Method 9 readings shall be reported with the Quarterly Opacity Exceedances Reports.

D.1.17 Continuous Emissions Monitoring (CEMS) Equipment Downtime

- (a) In the event that a breakdown of a sulfur dioxide, nitrogen oxides, carbon monoxide, or oxygen continuous emission monitoring system occurs, a record shall be made of the times and reasons of the breakdown and efforts made to correct the problem.
- (b) Whenever a sulfur dioxide, nitrogen oxides, carbon monoxide, or oxygen continuous emission monitor is malfunctioning or is down for calibration, maintenance, or repairs for a period of four (4) hours or more, supplemental or intermittent monitoring of the parameter shall be implemented as specified below until such time as the emission monitor system is back in operation.

- (1) In the event that a sulfur dioxide CEMS is down, the Permittee shall maintain slurry feed rate at which it was being fed prior to the CEMS going down and will record the slurry feed rate four (4) times an hour.
- (2) In the event that a nitrogen oxides CEMS is down, the Permittee shall maintain ammonia feed at the rate at which it was being fed prior to the CEMS going down and will record the ammonia feed rate four (4) times an hour.
- (3) In the event that a carbon monoxide CEMS is down, the Permittee shall monitor the oxygen percent four (4) times an hour and maintain the oxygen percent range from 5 to 11 percent. In addition, the four (4) hour average of the municipal waste combustor rooftop thermocouple temperatures must remain greater than or equal to 1155°F, except during combustor startup, shutdown, or malfunction.
- (4) In the event that an oxygen monitor failure occurs, the second oxygen monitor located at the stack outlet will be used as the backup analyzer immediately.

D.1.18 Parametric Monitoring [40 CFR 64]

The Permittee shall record the pressure drop across the baghouses used in conjunction with the municipal solid waste combustion units (EU1, EU2, and EU3), at least once per day when the municipal solid waste combustion units (EU1, EU2, and EU3) are in operation. When for any one reading, the pressure drop across the baghouses is outside the normal range the Permittee shall take a reasonable response. The normal range for this unit is a pressure drop between 6.5 and 14.5 inches of water unless a different upper-bound or lower-bound value for this range is determined during the latest stack test. Section C - Response to Excursions and Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. A pressure reading that is outside the above mentioned range is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.

The instrument used for determining the pressure shall comply with Section C - Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

D.1.19 Broken or Failed Bag Detection

- (a) For a single compartment baghouses controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).
- (b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the emissions unit. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse's pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.1.20 Reporting Requirements for Consent Decree
 - (a) Pursuant to Consent Decree filed January 12, 1993, Cause number 49F12-9110-OV-2155, Section F paragraphs 1 through 5 and paragraph 9:
 - (1) The Permittee shall submit the following information to IDEM in a monthly report:
 - (A) All permit exceedances
 - (B) Unit downtime as defined by 40 CFR 60, Subpart Cb
 - (C) CEMs downtime as defined by 40 CFR 60, Subpart Cb
 - (D) Highest outlet SO₂ concentration
 - (E) Highest outlet CO concentration
 - (F) Average feedwater flow rate, per unit (klb/day)
 - (G) Total export steam output (klb/day)
 - (H) Material charged, per unit (ton/day)
 - (2) In addition to the monthly report, for each instance of an exceedance of an emission limit in the Permits, the Permittee shall submit to IDEM the following:
 - (A) Monitoring data (raw, corrected and averaged values) for that pollutant and all other monitored pollutants and for flue gas temperature at the baghouse inlet, the time the use of natural gas in a Unit commenced and ended, steam flow, and oxygen extending before and after the exceedance for a period equal to the hours of averaging time for the particular pollutant; and
 - (B) Documentation indicating the hours when garbage was on the grate during the period of the exceedance, the causes of all emissions which occurred during the exceedance and the causes of all emissions which occurred during the exceedance and the actions taken to correct said excess emissions. Upon request, the Permittee shall submit to IDEM, as soon as practicable, any other data or information which is relevant to the exceedance.
 - (3) The Permittee shall submit a quarterly summary of SO₂ (lb/day) and CO (lb/day).
 - (4) The Permittee also shall submit Quarterly Quality Assurance Reports in accordance with 40 CFR 60, Part F, Section 5 and with the following instructions:
 - (A) Opacity
 - (i) Results of the quarter QA checks
 - (AA) optical alignment
 - (BB) manual calibration and zero checks

- (ii) Results for all performance tests, audits, and recalibrations performed during the quarter.
- (iii) Reference to, and where applicable for data validity purposes, control charts of zero and span drift.
- (iv) Reference to, and where applicable for data validity purposes, a listing of repairs, adjustments, or maintenance of monitors.
- (v) The cause and time period for bad data and for suspect data averages. (Format as in Part III)
- (vi) The percent valid data return (VDR)
- (B) Gaseous the data assessment report (DAR) must contain the following information:
 - (i) Identification and location of monitors.
 - (ii) Manufacturer and model number of each monitor
 - (iii) Assessment of continuous monitors data accuracy and data of assessment as determined by a RATA, RAA or CGA described in Section 5 of 40 CFR 60 Appendix F including the RA for the RATA, the A for the RAA or CGA, the RM results, the cylinder gases certified values, the CEMS responses accuracy, and calculations results as defined in Section 6 of 40 CFR 60 Appendix F.
- (5) The Permittee shall report to IDEM malfunctions of any facility or emission control equipment in accordance with 326 IAC 1-6-2 and malfunctions of any monitoring system in accordance with 326 IAC 3-5. Claims that exceedances due to malfunctions are not violations shall be made pursuant to 326 IAC 1-6-4, shall be made in writing and shall meet the definition under 326 IAC 1-2-39.

Compliance with Section B.11 - Emergency Provisions will satisfy the requirement of Condition D.1.18(a)(5).

(6) All data derived from the continuous emissions monitors and temperature monitors (other than the data submitted pursuant to paragraph 9 below) which the Permittee submits in a written report format to IDEM shall be quality assured pursuant to the approved quality assurance/quality control plan referenced in paragraph 8* below and attested as to its accuracy by the Facility and/or General Manager or Chief Engineer. All additional data which the Permittee submits in a written report format to IDEM shall be attested as to its accuracy by the Facility and/or General Manager or Chief Engineer.

Pursuant to Section B.8 - Certification and the Part 70 permit program, certification requirements for each submission are identified in the permit. General certification requirements are contained in Section B.8 - Certification.

(7) The Permittee shall submit the monthly report required by paragraph (1) above within fifteen (15) days from the last day of the reporting period provided however that if the report is due on a weekend or holiday, it shall be due on the following business day.

- (8) The Permittee shall designate in writing to IDEM the name of an employee at the Facility and a back up employee at the Facility, to act in the absence of the designated employee, to serve as a person who will provide IDEM with all requested information and data. The Permittee may designate a new or different employee at any time by providing written notice thereof to IDEM.
- (9) The Permittee shall transfer daily to IDEM via modems and compatible computer hardware owned, operated and maintained by IDEM, the Facility's continuously monitored raw data for the prior calendar day for all regulated pollutants, temperature, steam flow, carbon dioxide and oxygen. The Permittee shall obtain authorization from its software licensor to allow IDEM to use the software necessary for IDEM to collect and analyze the data and produce reports in the same format as the reports generated by the Permittee and submitted to IDEM. The Permittee further agrees it will provide one day of training for the employees of IDEM with respect to such software.
 - or

The Permittee alternatively shall give complete electronic access to IDEM via computer connection at any time. The connection shall give IDEM access to all monitoring data. This alternative requirement satisfies Condition D.1.18(a)(9).

The Consent Decree filed January 12, 1993, uses the word "Facility" to describe the source. "Facility" is sometimes interpreted as an individual emission unit or process, however in this case IDEM believes that the word "Facility" is synonymous with the word "Source"; therefore, any requirements of the "Facility" are requirements for the entire "Source", not requirements of an individual emission unit or process.

*Paragraph 8 is in reference to paragraph 8 of the Consent Decree and not paragraph (8) listed above.

D.1.21 Record Keeping Requirements for COMS [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]

- (a) To document the compliance status with Section C Opacity, D.1.2(b), and D.1.16, the Permittee shall maintain records in accordance with (1) through (4) below. Records shall be complete and sufficient to establish compliance with the limits in Section C - Opacity and D.1.2(b).
 - (1) Data and results from the most recent stack test.
 - (2) All continuous opacity monitoring data, pursuant to 326 IAC 3-5-6.
 - (3) The results of all Method 9 visible emission readings taken during any periods of COMS downtime.
 - (4) All fabric filter parametric monitoring readings.
- (b) Section C General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.

D.1.22 Record Keeping Requirements for CEMS and Baghouse [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]

- (a) The Permittee shall record the output of the continuous monitoring systems and shall perform the required record keeping pursuant to 326 IAC 3-5-6 and 326 IAC 3-5-7.
- (b) In order to document the compliance status with Condition D.1.11(a), the Permittee shall maintain continuous records of operation for each of the selective noncatalytic reduction

(SNCR) systems associated with the municipal waste combustors. The Permittee shall include in its records when any one or more of the SNCR systems were not in operation and the supporting continuous emission monitoring system (CEMS) data used in determining that operation of the SNCR was not necessary.

- (c) In order to document the compliance status with Condition D.1.12, the Permittee shall maintain daily records of operation for each of the carbon injection systems associated with the municipal waste combustors. The Permittee shall include in its daily records when any one or more of the carbon injection systems were not in operation and the supporting stack test data and/or municipal waste data used in determining that operation of the carbon injection systems was not necessary that day.
- (d) In order to document the compliance status with Condition D.1.17(a), in the event that a breakdown of the sulfur dioxide, nitrogen oxides, carbon monoxide, or oxygen continuous emission monitoring systems (CEMS) occurs, the Permittee shall maintain records of all CEMS malfunctions, out of control periods, calibration and adjustment activities, and repair or maintenance activities.
- (e) In order to document the compliance status with Condition D.1.17(b), whenever a sulfur dioxide, nitrogen oxides, carbon monoxide, or oxygen continuous emission monitor is malfunctioning or is down for calibration, maintenance, or repairs for a period of four (4) hours or more, the Permittee shall maintain the following records:
 - (1) In the event that a sulfur dioxide CEMS is down, the Permittee shall maintain slurry feed rate records pursuant to Condition D.1.17(b).
 - (2) In the event that a nitrogen oxides CEMS is down, the Permittee shall maintain ammonia feed records pursuant to Condition D.1.17(b).
 - (3) In the event that a carbon monoxide CEMS is down, the Permittee shall maintain oxygen records and waste combustor rooftop thermocouple temperature records pursuant to Condition D.1.17(b).
 - (4) In the event that a oxygen monitor failure, the Permittee shall maintain oxygen records using the second oxygen monitor pursuant to Condition D.1.17(b).
- (f) To document the compliance status with Condition D.1.18, the Permittee shall maintain daily records of the pressure drop across the baghouses controlling the municipal solid waste combustion units (EU1, EU2, and EU3). The Permittee shall include in its daily record when a pressure drop reading is not taken and the reason for the lack of a pressure drop reading (e.g., the process did not operate that day).
- (g) Section C General Record Keeping Requirements of this permit contains the Permittee's obligation with regard to the records required by this condition.

D.1.23 Reporting Requirements

A quarterly report of opacity exceedances shall be submitted to the address listed in Section C - General Reporting Requirements, of this permit, within thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(35).

- D.1.24 Reporting Requirements for CEMS [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]
 - (a) The Permittee shall prepare and submit to IDEM, OAQ a written report of the results of the calibration gas audits and relative accuracy test audits for each calendar quarter

within thirty (30) calendar days after the end of each quarter. The report must contain the information required by 326 IAC 3-5-5(e)(2).

The report submitted by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(35).

- (b) Pursuant to 326 IAC 3-5-7(5), reporting of continuous monitoring system instrument downtime, except for zero (0) and span checks, which shall be reported separately, shall include the following:
 - (1) date of downtime;
 - (2) time of commencement;
 - (3) duration of each downtime;
 - (4) reasons for each downtime; and
 - (5) nature of system repairs and adjustments.

The report submitted by the Permittee does require the certification by the "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) Section C General Reporting contains the Permittee's obligation with regard to the reporting required by this condition.
- D.1.25 Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 11-7-8] [40 CFR 60, Subpart Eb]

Pursuant to 326 IAC 11-7-8 and 40 CFR 60.59b, the Permittee shall comply with the following record keeping and reporting requirements:

- (a) The Permittee shall comply with the reporting and record keeping provisions of 40 CFR 60, Subpart Eb (included as Attachment E to the operating permit), Section 60.59b.
- (b) The following sitting requirements are not required under subsection (a):
 - (1) 40 CFR 60, Subpart Eb, Section 60.59b(a)
 - (2) 40 CFR 60, Subpart Eb, Section 60.59b(b)(5)
 - (3) 40 CFR 60, Subpart Eb, Section 60.59b(d)(11)
- (c) All report and record keeping shall meet the requirements of 326 IAC 3 when applicable.

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Specifically Regulated Insignificant Activity:

(f) One (1) parts washer, constructed in 1988, with a maximum capacity of 40 gallons per month, uncontrolled, and exhausting to the indoors.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

- D.2.1 Cold Cleaner Degreaser Control Equipment and Operating Requirements [326 IAC 8-3-2] Pursuant to 326 IAC 8-3-2 (Cold Cleaner Degreaser Control Equipment and Operating Requirements), the Permittee shall:
 - (a) Comply with the following control equipment and operating requirements:
 - (1) Equip the degreaser with a cover.
 - (2) Equip the degreaser with a device for draining cleaned parts.
 - (3) Close the degreaser cover whenever parts are not being handled in the degreaser.
 - (4) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases;
 - (5) Provide a permanent, conspicuous label that lists the operating requirements in subdivisions (3), (4), (6), and (7).
 - (6) Store waste solvent only in closed containers.
 - (7) Prohibit the disposal or transfer of waste solvent in a manner that would allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.
 - (b) Comply with the following additional control equipment and operating requirements:
 - (1) Equip the degreaser with one (1) of the following control devices if the solvent is heated to a temperature of greater than forty-eight and nine-tenths (48.9) degrees Celsius (one hundred twenty (120) degrees Fahrenheit):
 - (A) A freeboard that attains a freeboard ratio of seventy-five hundredths (0.75) or greater.
 - (B) A water cover when solvent used is insoluble in, and heavier than, water.
 - (C) A refrigerated chiller.
 - (D) Carbon adsorption.
 - (2) Ensure the degreaser cover is designed so that it can be easily operated with one (1) hand if the solvent is agitated or heated.
 - (3) If used, solvent spray must be:
 - (A) performed in an enclosed chamber, with or without venting; or

- (B) a solid, fluid stream applied at a pressure that does not cause excessive splashing.
- D.2.2 Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]

Pursuant to 326 IAC 8-3-8 (Material Requirements for Cold Cleaner Degreasers), the Permittee shall not operate a cold cleaning degreaser with a solvent that has a VOC composite partial vapor pressure that exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

D.2.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for this facility and their control devices. Section B-Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

- D.2.4 Record Keeping Requirements
 - (a) To document the compliance status with Condition D.2.2, the Permittee shall maintain the following records for each purchase of solvent used in the cold cleaner degreasing operations. These records must be retained on-site or accessible electronically for the most recent three (3) year period and shall be reasonably accessible for an additional two (2) year period.
 - (1) The name and address of the solvent supplier.
 - (2) The date of purchase (or invoice/bill dates of contract servicer indicating service date).
 - (3) The type of solvent purchased.
 - (4) The total volume of the solvent purchased.
 - (5) The true vapor pressure of the solvent measured in millimeters of mercury at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).
 - (b) Section C General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

SECTION E.1

NSPS

Specifically Regulated Insignificant Activity:

(e) One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.

This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

- E.1.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]
 - Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart IIII.
 - (b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

E.1.2 New Source Performance Standards for Stationary Compression Ignition Internal Combustion Engines NSPS [326 IAC 12] [40 CFR Part 60, Subpart IIII]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart IIII (included as Attachment C to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

- (1) 40 CFR 60.4200(a)(2)(ii), (a)(4)
- (2) 40 CFR 60.4205(c)
- (3) 40 CFR 60.4206
- (4) 40 CFR 60.4207(b)
- (5) 40 CFR 60.4211(a), (c), (f)(1), (f)(2)(i), (f)(3)(i), (g)(2)
- (6) 40 CFR 60.4214(b), (d)
- (7) 40 CFR 60.4218
- (8) 40 CFR 60.4219
- (9) Table 4
- (10) Table 5
- (11) Table 8

SECTION E.2

NESHAP

Specifically Regulated Insignificant Activity:

(e) One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.

This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

E.2.1 National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart ZZZZ (included as Attachment D to the operating permit), which are incorporated by reference as 326 IAC 20-82, for the emission unit(s) listed above:

- (1) 40 CFR 63.6580
- (2) 40 CFR 63.6585(a), (b)
- (3) 40 CFR 63.6590(a)(2)(ii), (c)(7)
- (4) 40 CFR 63.6595(a)(5)
- (5) 40 CFR 63.6665
- (6) 40 CFR 63.6670
- (7) 40 CFR 63.6675

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH PART 70 OPERATING PERMIT CERTIFICATION

	Reworld Indianapolis, Inc. 2320 S. Harding Street, Indianapolis, Indiana 46221
Part 70 Permit No.:	T097-47411-00123

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.		
Please check what document is being certified:		
Annual Compliance Certification Letter		
Test Result (specify)		
Report (specify)		
Notification (specify)		
□ Affidavit (specify)		
□ Other (specify)		

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.		
Signature:		
Printed Name:		
Title/Position:		
Phone:		
Date:		

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251 Phone: (317) 233-0178 Fax: (317) 233-6865

PART 70 OPERATING PERMIT EMERGENCY OCCURRENCE REPORT

Source Name:	Reworld Indianapolis, Inc.
Source Address:	2320 S. Harding Street, Indianapolis, Indiana 46221
Part 70 Permit No.:	T097-47411-00123

This form consists of 2 pages

Page 1 of 2

□ This is an emergency as defined in 326 IAC 2-7-1(12)

- The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
- The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency:

Describe the cause of the Emergency:

If any of the following are not applicable, mark N/A

Date/Time Emergency started:		
Date/Time Emergency was corrected:		
Was the facility being properly operated at the time of the emergency? Y N		
Type of Pollutants Emitted: TSP, PM-10, SO ₂ , VOC, NO _x , CO, Pb, other:		
Estimated amount of pollutant(s) emitted during emergency:		
Describe the steps taken to mitigate the problem:		
Describe the corrective actions/response steps taken:		
Describe the measures taken to minimize emissions:		
If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:		
Form Completed by:		

Title / Position: _____

Date: _____

Phone:_____

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF AIR QUALITY COMPLIANCE AND ENFORCEMENT BRANCH PART 70 OPERATING PERMIT QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT

Source Name: Source Address: Part 70 Permit No.:	Reworld Indianapolis, In 2320 S. Harding Street, T097-47411-00123	c. Indianapolis, Indiana 46221			
Months:	to	Year:			
		Page 1 of 2			
This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C-General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".					
□ NO DEVIATIONS OCCURRED THIS REPORTING PERIOD.					
THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD					
Permit Requirement (sp	ecify permit condition #)				
Date of Deviation:		Duration of Deviation:			
Number of Deviations:					
Probable Cause of Deviation:					
Response Steps Taken:					
Permit Requirement (specify permit condition #)					
Date of Deviation:		Duration of Deviation:			
Number of Deviations:					
Probable Cause of Deviation:					
Response Steps Taken:					

Page 2 of 2

Permit Requirement (specify permit condition #)					
Date of Deviation:	Duration of Deviation:				
Number of Deviations:					
Probable Cause of Deviation:					
Response Steps Taken:					
Permit Requirement (specify permit condition #)					
Date of Deviation:	Duration of Deviation:				
Number of Deviations:					
Probable Cause of Deviation:					
Response Steps Taken:					
Permit Requirement (specify permit condition #)					
Date of Deviation:	Duration of Deviation:				
Number of Deviations:					
Probable Cause of Deviation:					
Response Steps Taken:					
Form Completed by:					
Title / Position:					
Date:					
Phone:					

Attachment A

Part 70 Operating Permit No: T097-47411-00123

Fugitive Dust Control Plan

Fugitive particulate matter emissions from paved roads and parking lots shall be controlled by the following methods:

- 1. Except during periods of inclement weather, roadways and other paved areas throughout the facility site shall be daily cleaned with a mechanical sweeper. Particular attention shall be paid to the entrance and the exit roadways at the ash handling building. Mechanical sweeping shall also be focused on high traffic areas.
- 2. Manual sweeping and vacuuming, if necessary, of any localized spills of solid material shall be conducted to minimize buildup of material on facility roadways.
- 3. Dust control in the main building of the "Energy-from-Waste" (EfW) facility shall be achieved by drawing boiler combustion air from tipping floor area. The combustion air fans inlet ducts are located near the refuse pit roof, in the area above the refuse hoppers. This allows airborne dust to be carried into the combustion process along with combustion air and gas system.

Attachment B

Part 70 Operating Permit No: T097-47411-00123

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart Cb—Emissions Guidelines and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20, 1994

Source: 60 FR 65415, Dec. 19, 1995, unless otherwise noted.

§ 60.30b Scope and delegation of authority.

(a) This subpart contains emission guidelines and compliance schedules for the control of certain designated pollutants from certain municipal waste combustors in accordance with section 111(d) and section 129 of the Clean Air Act and subpart B of this part. The provisions in these emission guidelines apply instead of the provisions of § 60.24(f) of subpart B of this part.

- (b) The following authorities are retained by EPA:
- (1) Approval of exemption claims in § 60.32b(b)(1), (d), (e), (f)(1), (i)(1);
- (2) Approval of a nitrogen oxides trading program under § 60.33b(d)(2);
- (3) Approval of major alternatives to test methods;
- (4) Approval of major alternatives to monitoring;
- (5) Waiver of recordkeeping; and
- (6) Performance test and data reduction waivers under § 608(b).

[71 FR 27332, May 10, 2006]

§ 60.31b Definitions.

Terms used but not defined in this subpart have the meaning given them in the Clean Air Act and subparts A, B, and Eb of this part.

EPA means the Administrator of the U.S. EPA or employee of the U.S. EPA who is delegated to perform the specified task.

Municipal waste combustor plant means one or more designated facilities (as defined in § 60.32b) at the same location.

Semi-suspension refuse-derived fuel-fired combustor/wet refuse-derived fuel process conversion means a combustion unit that was converted from a wet refuse-derived fuel process to a dry refuse-derived fuel process, and because of constraints in the design of the system, includes a low furnace height (less than 60 feet between the grate and the roof) and a high waste capacity-to-undergrate air zone ratio (greater than 300 tons of waste per day (tpd) fuel per each undergrate air zone).

Spreader stoker fixed floor refuse-derived fuel-fired combustor/100 percent coal capable means a spreader stoker type combustor with a fixed floor grate design that typically fires 100 percent refuse-derived fuel but is equipped to burn 100 percent coal instead of refuse-derived fuel to fulfill 100 percent steam or energy demand.

[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45119, 45125, Aug. 25, 1997; 71 FR 27332, May 10, 2006]

§ 60.32b Designated facilities.

(a) The designated facility to which these guidelines apply is each municipal waste combustor unit with a combustion capacity greater than 250 tons per day of municipal solid waste for which construction was commenced on or before September 20, 1994.

(b) Any municipal waste combustion unit that is capable of combusting more than 250 tons per day of municipal solid waste and is subject to a federally enforceable permit limiting the maximum amount of municipal solid waste that may be combusted in the unit to less than or equal to 11 tons per day is not subject to this subpart if the owner or operator:

(1) Notifies EPA of an exemption claim,

(2) Provides a copy of the federally enforceable permit that limits the firing of municipal solid waste to less than 11 tons per day, and

(3) Keeps records of the amount of municipal solid waste fired on a daily basis.

(c) Physical or operational changes made to an existing municipal waste combustor unit primarily for the purpose of complying with emission guidelines under this subpart are not considered in determining whether the unit is a modified or reconstructed facility under subpart Ea or subpart Eb of this part.

(d) A qualifying small power production facility, as defined in section 3(17)(C) of the Federal Power Act (16 U.S.C. 796(17)(C)), that burns homogeneous waste (such as automotive tires or used oil, but not including refuse-derived fuel) for the production of electric energy is not subject to this subpart if the owner or operator of the facility notifies EPA of this exemption and provides data documenting that the facility qualifies for this exemption.

(e) A qualifying cogeneration facility, as defined in section 3(18)(B) of the Federal Power Act (16 U.S.C. 796(18)(B)), that burns homogeneous waste (such as automotive tires or used oil, but not including refuse-derived fuel) for the production of electric energy and steam or forms of useful energy (such as heat) that are used for industrial, commercial, heating, or cooling purposes, is not subject to this subpart if the owner or operator of the facility notifies EPA of this exemption and provides data documenting that the facility qualifies for this exemption.

(f) Any unit combusting a single-item waste stream of tires is not subject to this subpart if the owner or operator of the unit:

(1) Notifies EPA of an exemption claim, and

(2) Provides data documenting that the unit qualifies for this exemption.

(g) Any unit required to have a permit under section 3005 of the Solid Waste Disposal Act is not subject to this subpart.

(h) Any materials recovery facility (including primary or secondary smelters) that combusts waste for the primary purpose of recovering metals is not subject to this subpart.

(i) Any cofired combustor, as defined under § 60.51b of subpart Eb of this part, that meets the capacity specifications in paragraph (a) of this section is not subject to this subpart if the owner or operator of the cofired combustor:

(1) Notifies EPA of an exemption claim,

(2) Provides a copy of the federally enforceable permit (specified in the definition of cofired combustor in this section), and

(3) Keeps a record on a calendar quarter basis of the weight of municipal solid waste combusted at the cofired combustor and the weight of all other fuels combusted at the cofired combustor.

(j) Air curtain incinerators, as defined under § 60.51b of subpart Eb of this part, that meet the capacity specifications in paragraph (a) of this section, and that combust a fuel stream composed of 100 percent yard waste are exempt from all provisions of this subpart except the opacity standard under § 60.37b, the testing procedures under § 60.38b, and the reporting and recordkeeping provisions under § 60.39b.

(k) Air curtain incinerators that meet the capacity specifications in paragraph (a) of this section and that combust municipal solid waste other than yard waste are subject to all provisions of this subpart.

(I) Pyrolysis/combustion units that are an integrated part of a plastics/rubber recycling unit (as defined in § 60.51b) are not subject to this subpart if the owner or operator of the plastics/rubber recycling unit keeps records of the weight of plastics, rubber, and/or rubber tires processed on a calendar quarter basis; the weight of chemical plant feedstocks and petroleum refinery feedstocks produced and marketed on a calendar quarter basis; and the name and address of the purchaser of the feedstocks. The combustion of gasoline, diesel fuel, jet fuel, fuel oils, residual oil, refinery gas, petroleum coke, liquified petroleum gas, propane, or butane produced by chemical plants or petroleum refineries that use feedstocks produced by plastics/rubber recycling units are not subject to this subpart.

(m) Cement kilns firing municipal solid waste are not subject to this subpart.

(n) Any affected facility meeting the applicability requirements under this section is not subject to subpart E of this part.

[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45119, 45125, Aug. 25, 1997; 71 FR 27332, May 10, 2006]

§ 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

(a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section.

(1) For approval, a State plan shall include emission limits for particulate matter and opacity at least as protective as the emission limits for particulate matter and opacity specified in paragraphs (a)(1)(i) through (a)(1)(iii) of this section.

(i) Before April 28, 2009, the emission limit for particulate matter contained in the gases discharged to the atmosphere from a designated facility is 27 milligrams per dry standard cubic meter, corrected to 7 percent oxygen. On and after April 28, 2009, the emission limit for particulate matter contained in the

gases discharged to the atmosphere from a designated facility is 25 milligrams per dry standard cubic meter, corrected to 7 percent oxygen.

(ii) [Reserved]

(iii) The emission limit for opacity exhibited by the gases discharged to the atmosphere from a designated facility is 10 percent (6-minute average).

(2) For approval, a State plan shall include emission limits for cadmium at least as protective as the emission limits for cadmium specified in paragraphs (a)(2)(i) through (a)(2)(iv) of this section.

(i) Before April 28, 2009, the emission limit for cadmium contained in the gases discharged to the atmosphere from a designated facility is 40 micrograms per dry standard cubic meter, corrected to 7 percent oxygen. On and after April 28, 2009, the emission limit for cadmium contained in the gases discharged to the atmosphere from a designated facility is 35 micrograms per dry standard cubic meter, corrected to 7 percent oxygen.

(ii) [Reserved]

(3) For approval, a State plan shall include emission limits for mercury at least as protective as the emission limits specified in this paragraph. Before April 28, 2009, the emission limit for mercury contained in the gases discharged to the atmosphere from a designated facility is 80 micrograms per dry standard cubic meter or 15 percent of the potential mercury emission concentration (85-percent reduction by weight), corrected to 7 percent oxygen, whichever is less stringent. On and after April 28, 2009, the emission limit for mercury contained in the gases discharged to the atmosphere from a designated facility is 50 micrograms per dry standard cubic meter or 15 percent of the potential mercury emission limit for mercury contained in the gases discharged to the atmosphere from a designated facility is 50 micrograms per dry standard cubic meter or 15 percent of the potential mercury emission concentration (85-percent reduction by weight), corrected to 7 percent oxygen, whichever is less stringent.

(4) For approval, a State plan shall include an emission limit for lead at least as protective as the emission limit for lead specified in this paragraph. Before April 28, 2009, the emission limit for lead contained in the gases discharged to the atmosphere from a designated facility is 440 micrograms per dry standard cubic meter, corrected to 7 percent oxygen. On and after April 28, 2009, the emission limit for lead contained in the gases discharged to the atmosphere from a designated facility is 400 micrograms per dry standard cubic meter, corrected to 7 percent oxygen.

(b) The emission limits for municipal waste combustor acid gases, expressed as sulfur dioxide and hydrogen chloride, are specified in paragraphs (b)(1) and (b)(2) of this section.

(1) For approval, a State plan shall include emission limits for sulfur dioxide at least as protective as the emission limits for sulfur dioxide specified in paragraphs (b)(1)(i) and (b)(1)(i) of this section.

(i) The emission limit for sulfur dioxide contained in the gases discharged to the atmosphere from a designated facility is 31 parts per million by volume or 25 percent of the potential sulfur dioxide emission concentration (75-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent. Compliance with this emission limit is based on a 24-hour daily geometric mean.

(ii) [Reserved]

(2) For approval, a State plan shall include emission limits for hydrogen chloride at least as protective as the emission limits for hydrogen chloride specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section.

(i) The emission limit for hydrogen chloride contained in the gases discharged to the atmosphere from a designated facility is 31 parts per million by volume or 5 percent of the potential hydrogen chloride emission concentration (95-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent.

(ii) [Reserved]

(3) For approval, a State plan shall be submitted by August 25, 1998 and shall include emission limits for sulfur dioxide and hydrogen chloride at least as protective as the emission limits specified in paragraphs (b)(3)(i) and (b)(3)(ii) of this section.

(i) The emission limit for sulfur dioxide contained in the gases discharged to the atmosphere from a designated facility is 29 parts per million by volume or 25 percent of the potential sulfur dioxide emission concentration (75-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent. Compliance with this emission limit is based on a 24-hour daily geometric mean.

(ii) The emission limit for hydrogen chloride contained in the gases discharged to the atmosphere from a designated facility is 29 parts per million by volume or 5 percent of the potential hydrogen chloride emission concentration (95-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent.

(c) The emission limits for municipal waste combustor organics, expressed as total mass dioxin/furan, are specified in paragraphs (c)(1) and (c)(2) of this section.

(1) For approval, a State plan shall include an emission limit for dioxin/furan contained in the gases discharged to the atmosphere from a designated facility at least as protective as the emission limit for dioxin/furan specified in paragraphs (c)(1)(i), (c)(1)(i), and (c)(1)(ii) of this section, as applicable.

(i) Before April 28, 2009, the emission limit for designated facilities that employ an electrostatic precipitator-based emission control system is 60 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen.

(ii) On and after April 28, 2009, the emission limit for designated facilities that employ an electrostatic precipitator-based emission control system is 35 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen.

(iii) The emission limit for designated facilities that do not employ an electrostatic precipitator-based emission control system is 30 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen.

(d) For approval, a State plan shall include emission limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of this subpart for designated facilities. table 1 provides emission limits for the nitrogen oxides concentration level for each type of designated facility.

(1) A State plan may allow nitrogen oxides emissions averaging as specified in paragraphs (d)(1)(i) through (d)(1)(v) of this section.

(i) The owner or operator of a municipal waste combustor plant may elect to implement a nitrogen oxides emissions averaging plan for the designated facilities that are located at that plant and that are subject to subpart Cb, except as specified in paragraphs (d)(1)(i)(A) and (d)(1)(i)(B) of this section.

(A) Municipal waste combustor units subject to subpart Ea or Eb cannot be included in the emissions averaging plan.

(B) Mass burn refractory municipal waste combustor units and other municipal waste combustor technologies not listed in paragraph (d)(1)(iii) of this section may not be included in the emissions averaging plan.

(ii) The designated facilities included in the nitrogen oxides emissions averaging plan must be identified in the initial compliance report specified in § 60.59b(f) or in the annual report specified in § 60.59b(g), as applicable, prior to implementing the averaging plan. The designated facilities being included in the averaging plan may be redesignated each calendar year. Partial year redesignation is allowable with State approval.

(iii) To implement the emissions averaging plan, the average daily (24-hour) nitrogen oxides emission concentration level for gases discharged from the designated facilities being included in the emissions averaging plan must be no greater than the levels specified in table 2 of this subpart. table 2 provides emission limits for the nitrogen oxides concentration level for each type of designated facility.

(iv) Under the emissions averaging plan, the average daily nitrogen oxides emissions specified in paragraph (d)(1)(iii) of this section shall be calculated using equation (1). Designated facilities that are offline shall not be included in calculating the average daily nitrogen oxides emission level.

$$NO_{X_{M \to \star}} = \frac{\sum_{i=1}^{k} (NO_{X_i})(S_i)}{\sum_{i=1}^{k} (S_i)}$$
(1)

where:

 $NO_{x_{24-hr}}$ =24-hr daily average nitrogen oxides emission concentration level for the emissions averaging plan (parts per million by volume corrected to 7 percent oxygen).

 $NO_{x \mapsto r}$ =24-hr daily average nitrogen oxides emission concentration level for designated facility i (parts per million by volume, corrected to 7 percent oxygen), calculated according to the procedures in § 60.58b(h) of this subpart.

S_i =maximum demonstrated municipal waste combustor unit load for designated facility i (pounds per hour steam or feedwater flow as determined in the most recent dioxin/furan performance test).

h=total number of designated facilities being included in the daily emissions average.

(v) For any day in which any designated facility included in the emissions averaging plan is offline, the owner or operator of the municipal waste combustor plant must demonstrate compliance according to either paragraph (d)(1)(v)(A) of this section or both paragraphs (d)(1)(v)(B) and (d)(1)(v)(C) of this section.

(A) Compliance with the applicable limits specified in table 2 of this subpart shall be demonstrated using the averaging procedure specified in paragraph (d)(1)(iv) of this section for the designated facilities that are online.

(B) For each of the designated facilities included in the emissions averaging plan, the nitrogen oxides emissions on a daily average basis shall be calculated and shall be equal to or less than the maximum daily nitrogen oxides emission level achieved by that designated facility on any of the days during which the emissions averaging plan was achieved with all designated facilities online during the most recent

calendar quarter. The requirements of this paragraph do not apply during the first quarter of operation under the emissions averaging plan.

(C) The average nitrogen oxides emissions (kilograms per day) calculated according to paragraph (d)(1)(v)(C)(2) of this section shall not exceed the average nitrogen oxides emissions (kilograms per day) calculated according to paragraph (d)(1)(v)(C)(2) of this section.

(1) For all days during which the emissions averaging plan was implemented and achieved and during which all designated facilities were online, the average nitrogen oxides emissions shall be calculated. The average nitrogen oxides emissions (kilograms per day) shall be calculated on a calendar year basis according to paragraphs (d)(1)(v)(C)(1)(i) through (d)(1)(v)(C)(1)(ii) of this section.

(*i*) For each designated facility included in the emissions averaging plan, the daily amount of nitrogen oxides emitted (kilograms per day) shall be calculated based on the hourly nitrogen oxides data required under § 60.38b(a) and specified under § 60.58b(h)(5) of subpart Eb of this part, the flue gas flow rate determined using table 19-1 of EPA Reference Method 19 or a State-approved method, and the hourly average steam or feedwater flow rate.

(*ii*) The daily total nitrogen oxides emissions shall be calculated as the sum of the daily nitrogen oxides emissions from each designated facility calculated under paragraph (d)(1)(v)(C)(1)(i) of this section.

(*iii*) The average nitrogen oxides emissions (kilograms per day) on a calendar year basis shall be calculated as the sum of all daily total nitrogen oxides emissions calculated under paragraph (d)(1)(v)(C)(1)(i)) of this section divided by the number of calendar days for which a daily total was calculated.

(2) For all days during which one or more of the designated facilities under the emissions averaging plan was offline, the average nitrogen oxides emissions shall be calculated. The average nitrogen oxides emissions (kilograms per day) shall be calculated on a calendar year basis according to paragraphs (d)(1)(v)(C)(2)(i) through (d)(1)(v)(C)(2)(i) of this section.

(*i*) For each designated facility included in the emissions averaging plan, the daily amount of nitrogen oxides emitted (kilograms per day) shall be calculated based on the hourly nitrogen oxides data required under § 60.38b(a) and specified under § 60.58b(h)(5) of subpart Eb of this part, the flue gas flow rate determined using table 19-1 of EPA Reference Method 19 or a State-approved method, and the hourly average steam or feedwater flow rate.

(*ii*) The daily total nitrogen oxides emissions shall be calculated as the sum of the daily nitrogen oxides emissions from each designated facility calculated under paragraph (d)(1)(v)(C)(2)(i) of this section.

(*iii*) The average nitrogen oxides emissions (kilograms per day) on a calendar year basis shall be calculated as the sum of all daily total nitrogen oxides emissions calculated under paragraph (d)(1)(v)(C)(2)(*ii*) of this section divided by the number of calendar days for which a daily total was calculated.

(2) A State plan may establish a program to allow owners or operators of municipal waste combustor plants to engage in trading of nitrogen oxides emission credits. A trading program must be approved by EPA before implementation.

(3) For approval, a State plan shall include emission limits for nitrogen oxides from fluidized bed combustors at least as protective as the emission limits listed in paragraphs (d)(3)(i) and (d)(3)(i) of this section.

(i) The emission limit for nitrogen oxides contained in the gases discharged to the atmosphere from a designated facility that is a fluidized bed combustor is 180 parts per million by volume, corrected to 7 percent oxygen.

(ii) If a State plan allows nitrogen oxides emissions averaging as specified in paragraphs (d)(1)(i) through (d)(1)(v) of this section, the emission limit for nitrogen oxides contained in the gases discharged to the atmosphere from a designated facility that is a fluidized bed combustor is 165 parts per million by volume, corrected to 7 percent oxygen.

[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45119, 45125, Aug. 25, 1997; 71 FR 27333, May 10, 2006]

§ 60.34b Emission guidelines for municipal waste combustor operating practices.

(a) For approval, a State plan shall include emission limits for carbon monoxide at least as protective as the emission limits for carbon monoxide listed in table 3 of this subpart. table 3 provides emission limits for the carbon monoxide concentration level for each type of designated facility.

(b) For approval, a State plan shall include requirements for municipal waste combustor operating practices at least as protective as those requirements listed in § 60.53b(b) and (c) of subpart Eb of this part.

[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, 45125, Aug. 25, 1997; 69 FR 42121, July 14, 2004; 71 FR 27333, May 10, 2006]

§ 60.35b Emission guidelines for municipal waste combustor operator training and certification.

For approval, a State plan shall include requirements for designated facilities for municipal waste combustor operator training and certification at least as protective as those requirements listed in § 60.54b of subpart Eb of this part. The State plan shall require compliance with these requirements according to the schedule specified in § 60.39b(c)(4).

[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, Aug. 25, 1997]

§ 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions.

For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions at least as protective as those requirements listed in § 60.55b of subpart Eb of this part.

§ 60.37b Emission guidelines for air curtain incinerators.

For approval, a State plan shall include emission limits for opacity for air curtain incinerators at least as protective as those listed in § 60.56b of subpart Eb of this part.

§ 60.38b Compliance and performance testing.

(a) For approval, a State plan shall include the performance testing methods listed in § 60.58b of subpart Eb of this part, as applicable, except as provided for under § 60.24(b)(2) of subpart B of this part and paragraphs (b) and (c) of this section.

(b) For approval, a State plan shall include for designated facilities the alternative performance testing schedule for dioxins/furans specified in § 60.58b(g)(5)(iii) of subpart Eb of this part, as applicable, for those designated facilities that achieve a dioxin/furan emission level less than or equal to 15 nanograms per dry standard cubic meter total mass, corrected to 7 percent oxygen.

(c) [Reserved]

[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, Aug. 25, 1997]

§ 60.39b Reporting and recordkeeping guidelines and compliance schedules.

(a) For approval, a State plan shall include the reporting and recordkeeping provisions listed in § 60.59b of subpart Eb of this part, as applicable, except for the siting requirements under § 60.59b(a), (b)(5), and (d)(11) of subpart Eb of this part.

(b) Except as provided in paragraph (e) of this section, not later than December 19, 1996, each State in which a designated facility is located shall submit to EPA a plan to implement and enforce all provisions of this subpart except the revised April 28, 2009 emission limits in § 60.33b(a), (c), and (d). Not later than April 28, 2007, each State in which a designated facility is located shall submit to EPA a plan to implement and enforce all provisions of this subpart, as amended on May 10, 2006. The submittal schedule specified in this paragraph is in accordance with section 129(b)(2) of the Clean Air Act and applies instead of the schedule provided in § 60.23(a)(1) of subpart B of this part.

(c) For approval, a State plan that is submitted prior to May 10, 2006 shall include the compliance schedules specified in paragraphs (c)(1) through (c)(5) of this section.

(1) A State plan shall allow designated facilities to comply with all requirements of a State plan (or close) within 1 year after approval of the State plan, except as provided by paragraph (c)(1)(i) and (c)(1)(i) of this section.

(i) A State plan that allows designated facilities more than 1 year but less than 3 years following the date of issuance of a revised construction or operation permit, if a permit modification is required, or more than 1 year but less than 3 years following approval of the State plan, if a permit modification is not required, shall include measurable and enforceable incremental steps of progress toward compliance. Suggested measurable and enforceable activities are specified in paragraphs (c)(1)(i)(A) through (c)(1)(i)(J) of this section.

(A) Date for obtaining services of an architectural and engineering firm regarding the air pollution control device(s);

(B) Date for obtaining design drawings of the air pollution control device(s);

(C) Date for submittal of permit modifications, if necessary;

(D) Date for submittal of the final control plan to the Administrator. [§ 60.21 (h)(1) of subpart B of this part.];

- (E) Date for ordering the air pollution control device(s);
- (F) Date for obtaining the major components of the air pollution control device(s);
- (G) Date for initiation of site preparation for installation of the air pollution control device(s);
- (H) Date for initiation of installation of the air pollution control device(s);
- (I) Date for initial startup of the air pollution control device(s); and

(J) Date for initial performance test(s) of the air pollution control device(s).

(ii) A State plan that allows designated facilities more than 1 year but up to 3 years after State plan approval to close shall require a closure agreement. The closure agreement must include the date of plant closure.

(2) If the State plan requirements for a designated facility include a compliance schedule longer than 1 year after approval of the State plan in accordance with paragraph (c)(1)(i) or (c)(1)(ii) of this section, the State plan submittal (for approval) shall include performance test results for dioxin/furan emissions for each designated facility that has a compliance schedule longer than 1 year following the approval of the State plan, and the performance test results shall have been conducted during or after 1990. The performance test shall be conducted according to the procedures in § 60.38b.

(3) [Reserved]

(4) A State plan shall require compliance with the municipal waste combustor operator training and certification requirements under § 60.35b according to the schedule specified in paragraphs (c)(4)(i) through (c)(4)(iii) of this section.

(i) [Reserved]

(ii) For designated facilities, the State plan shall require compliance with the municipal waste combustor operator training and certification requirements specified under § 60.54b (a) through (c) of subpart Eb of this part by the date 6 months after the date of startup or 12 months after State plan approval, whichever is later.

(iii) For designated facilities, the State plan shall require compliance with the requirements specified in § 60.54b (d), (f), and (g) of subpart Eb of this part no later than 6 months after startup or 12 months after State plan approval, whichever is later.

(A) The requirement specified in § 60.54b(d) of subpart Eb of this part does not apply to chief facility operators, shift supervisors, and control room operators who have obtained full certification from the American Society of Mechanical Engineers on or before the date of State plan approval.

(B) The owner or operator of a designated facility may request that the Administrator waive the requirement specified in § 60.54b(d) of subpart Eb of this part for chief facility operators, shift supervisors, and control room operators who have obtained provisional certification from the American Society of Mechanical Engineers on or before the initial date of State plan approval.

(C) The initial training requirements specified in § 60.54b(f)(1) of subpart Eb of this part shall be completed no later than the date specified in paragraph (c)(4)(iii)(C)(1), (c)(4)(iii)(C)(2), or (c)(4)(iii)(C)(3), of this section whichever is later.

(1) The date 6 months after the date of startup of the affected facility;

(2) Twelve months after State plan approval; or

(3) The date prior to the day when the person assumes responsibilities affecting municipal waste combustor unit operation.

(5) A State plan shall require all designated facilities for which construction, modification, or reconstruction is commenced after June 26, 1987 to comply with the emission limit for mercury specified in § 60.33b(a)(3) and the emission limit for dioxins/furans specified in § 60.33b(c)(1) within 1 year
following issuance of a revised construction or operation permit, if a permit modification is required, or within 1 year following approval of the State plan, whichever is later.

(d) In the event no plan for implementing the emission guidelines is approved by EPA, all designated facilities meeting the applicability requirements under § 60.32b shall be in compliance with all of the guidelines, except those specified under § 60.33b (a)(4), (b)(3), and (d)(3), no later than December 19, 2000.

(e) Not later than August 25, 1998, each State in which a designated facility is operating shall submit to EPA a plan to implement and enforce all provisions of this subpart specified in § 60.33b(b)(3) and (d)(3) and the emission limit in paragraph (a)(4) that applies before April 28, 2009.

(f) In the event no plan for implementing the emission guidelines is approved by EPA, all designated facilities meeting the applicability requirements under § 60.32b shall be in compliance with all of the guidelines, including those specified under § 60.33b (a)(4), (b)(3), and (d)(3), no later than August 26, 2002.

(g) For approval, a revised State plan submitted not later than April 28, 2007 in accordance with paragraph (b) of this section, shall include compliance schedules for meeting the revised April 28, 2009 emission limits in § 60.33b(a), (c), and (d) and the revised testing provisions in § 60.38b(b).

(1) Compliance with the revised April 28, 2009 emission limits is required as expeditiously as practicable, but no later than April 28, 2009, except as provided in paragraph (g)(2) of this section.

(2) The owner or operator of an affected facility who is planning an extensive emission control system upgrade may petition the Administrator for a longer compliance schedule and must demonstrate to the satisfaction of the Administrator the need for the additional time. If approved, the schedule may exceed the schedule in paragraph (g)(1) of this section, but cannot exceed May 10, 2011.

(h) In the event no plan for implementing the emission guidelines is approved by EPA, all designated facilities meeting the applicability requirements under § 60.32b shall be in compliance with all of the guidelines, including the revised April 28, 2009 emission limits in § 60.33b(a), (b), (c), (d), and § 60.34b(a), and the revised testing provisions in § 60.38b(b), no later than May 10, 2011.

[60 FR 65415, Dec. 19, 1995, as amended at 62 FR 45120, 45125, Aug. 25, 1997; 71 FR 27333, May 10, 2006]

Table 1 to Subpart C b of Part 60—Nitrogen Oxides Guidelines for Designated Facilities

Municipal waste combustor technology	Before April 28, 2009, nitrogen oxides emission limit (parts per million by volume) ^a	On and after April 28, 2009, nitrogen oxides emission limit (parts per million by volume) ^a
Mass burn waterwall	205	205.
Mass burn rotary waterwall	250	210.
Refuse-derived fuel combustor	250	250.
Fluidized bed combustor	180	180.
Mass burn refractory combustors	No limit	No limit.

^a Corrected to 7 percent oxygen, dry basis.

[71 FR 27334, May 10, 2006]

Table 2 to Subpart C b of Part 60—Nitrogen Oxides Limits for Existing Designated Facilities Included in an Emissions Averaging Plan at a Municipal Waste Combustor Plant ^b

Municipal waste combustor	limit (parts per million by	On and after April 28, 2009, nitrogen oxides emission limit (parts per million by volume) ^a
Mass burn waterwall	185	185
Mass burn rotary waterwall	220	190
Refuse-derived fuel combustor	230	230
Fluidized bed combustor	165	165

^a Mass burn refractory municipal waste combustors and other MWC technologies not listed above may not be included in an emissions averaging plan.

^b Corrected to 7 percent oxygen, dry basis.

[71 FR 27334, May 10, 2006]

Municipal waste combustor technology	Carbon monoxide emissions levels (parts per million by volume) ^a	Averaging time (hrs) ^b
Mass burn waterwall	100	4
Mass burn refractory	100	4
Mass burn rotary refractory	100	24
Mass burn rotary waterwall	250	24
Modular starved air	50	4
Modular excess air	50	4
Refuse-derived fuel stoker	200	24
Fluidized bed, mixed fuel (wood/refuse-derived fuel)	200	^c 24
Bubbling fluidized bed combustor	100	4
Circulating fluidized bed combustor	100	4
Pulverized coal/refuse-derived fuel mixed fuel-fired combustor	150	4
Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor	200	24
Semi-suspension refuse-derived fuel-fired combustor/wet refuse-derived fuel process conversion	250	° 24
Spreader stoker fixed floor refuse-derived fuel- fired combustor/100 percent coal capable	250	° 24

Table 3 to Subpart C b of Part 60—Municipal Waste Combustor Operating Guidelines

^a Measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to 7 percent oxygen, dry basis. Calculated as an arithmetic average.

^b Averaging times are 4-hour or 24-hour block averages.

^c 24-hour block average, geometric mean.

[71 FR 27334, May 10, 2006]

Attachment C

Part 70 Operating Permit No: T097-47411-00123

[Downloaded from the eCFR on March 29, 2023]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart IIII—Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

Source: 71 FR 39172, July 11, 2006, unless otherwise noted.

What This Subpart Covers

§ 60.4200 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE) and other persons as specified in paragraphs (a)(1) through (4) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

(1) Manufacturers of stationary CI ICE with a displacement of less than 30 liters per cylinder where the model year is:

- (i) 2007 or later, for engines that are not fire pump engines;
- (ii) The model year listed in Table 3 to this subpart or later model year, for fire pump engines.

(2) Owners and operators of stationary CI ICE that commence construction after July 11, 2005, where the stationary CI ICE are:

(i) Manufactured after April 1, 2006, and are not fire pump engines, or

(ii) Manufactured as a certified National Fire Protection Association (NFPA) fire pump engine after July 1, 2006.

(3) Owners and operators of any stationary CI ICE that are modified or reconstructed after July 11, 2005 and any person that modifies or reconstructs any stationary CI ICE after July 11, 2005.

(4) The provisions of § 60.4208 of this subpart are applicable to all owners and operators of stationary CI ICE that commence construction after July 11, 2005.

(b) The provisions of this subpart are not applicable to stationary CI ICE being tested at a stationary CI ICE test cell/stand.

(c) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart applicable to area sources.

(d) Stationary CI ICE may be eligible for exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C, except that owners and operators, as well as manufacturers, may be eligible to request an exemption for national security.

(e) Owners and operators of facilities with CI ICE that are acting as temporary replacement units and that are located at a stationary source for less than 1 year and that have been properly certified as meeting the standards that would be applicable to such engine under the appropriate nonroad engine provisions, are not required to meet any other provisions under this subpart with regard to such engines.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37967, June 28, 2011; 86 FR 34357, June 29, 2021]

Emission Standards for Manufacturers

§ 60.4201 What emission standards must I meet for non-emergency engines if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later nonemergency stationary CI ICE with a maximum engine power less than or equal to 2,237 kilowatt (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 1039.101, 1039.102, 1039.104, 1039.105, 1039.107, and 1039.115 and 40 CFR part 1039, appendix I, as applicable, for all pollutants, for the same model year and maximum engine power.

(b) Stationary CI internal combustion engine manufacturers must certify their 2007 through 2010 model year nonemergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.

(c) Stationary CI internal combustion engine manufacturers must certify their 2011 model year and later nonemergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same maximum engine power.

(d) Stationary CI internal combustion engine manufacturers must certify the following non-emergency stationary CI ICE to the appropriate Tier 2 emission standards for new marine CI engines as described in 40 CFR part 1042, appendix I, for all pollutants, for the same displacement and rated power:

(1) Their 2007 model year through 2012 non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder;

(2) Their 2013 model year non-emergency stationary CI ICE with a maximum engine power greater than or equal to 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and

(3) Their 2013 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.

(e) Stationary CI internal combustion engine manufacturers must certify the following non-emergency stationary CI ICE to the certification emission standards and other requirements for new marine CI engines in 40 CFR 1042.101, 40 CFR 1042.107, 40 CFR 1042.110, 40 CFR 1042.115, 40 CFR 1042.120, and 40 CFR 1042.145, as applicable, for all pollutants, for the same displacement and maximum engine power:

(1) Their 2013 model year non-emergency stationary CI ICE with a maximum engine power less than 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and

(2) Their 2014 model year and later non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder.

(f) Notwithstanding the requirements in paragraphs (a) through (c) of this section, stationary non-emergency CI ICE identified in paragraphs (a) and (c) of this section may be certified to the provisions of 40 CFR part 1042 for commercial engines that are applicable for the engine's model year, displacement, power density, and maximum engine power if the engines will be used solely in either or both of the following locations:

- (1) Remote areas of Alaska; and
- (2) Marine offshore installations.

(g) Notwithstanding the requirements in paragraphs (a) through (f) of this section, stationary CI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (e) of this section that are applicable to the model year, maximum engine power, and displacement of the reconstructed stationary CI ICE.

(h) Stationary CI ICE certified to the standards in 40 CFR part 1039 and equipped with auxiliary emission control devices (AECDs) as specified in 40 CFR 1039.665 must meet the Tier 1 certification emission standards for new nonroad CI engines in 40 CFR part 1039, appendix I, while the AECD is activated during a qualified emergency situation. A qualified emergency situation is defined in 40 CFR 1039.665. When the qualified emergency situation has ended and the AECD is deactivated, the engine must resume meeting the otherwise applicable emission standard specified in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37967, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34357, June 29, 2021]

§ 60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (a)(1) through (2) of this section.

(1) For engines with a maximum engine power less than 37 KW (50 HP):

(i) The Tier 2 emission standards for new nonroad CI engines for the appropriate rated power as described in 40 CFR part 1039, appendix I, for all pollutants and the smoke standards as specified in 40 CFR 1039.105 for model year 2007 engines; and

(ii) The certification emission standards for new nonroad CI engines in 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.115, and table 2 to this subpart, for 2008 model year and later engines.

(2) For engines with a rated power greater than or equal to 37 KW (50 HP), the Tier 2 or Tier 3 emission standards for new nonroad CI engines for the same rated power as described in 40 CFR part 1039, appendix I, for all pollutants and the smoke standards as specified in 40 CFR 1039.105 beginning in model year 2007.

(b) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (b)(1) through (2) of this section.

(1) For 2007 through 2010 model years, the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.

(2) For 2011 model year and later, the Tier 2 emission standards as described in 40 CFR part 1039, appendix I, for all pollutants and the smoke standards as specified in 40 CFR 1039.105.

(c) [Reserved]

(d) Beginning with the model years in table 3 to this subpart, stationary CI internal combustion engine manufacturers must certify their fire pump stationary CI ICE to the emission standards in table 4 to this subpart, for all pollutants, for the same model year and NFPA nameplate power.

(e) Stationary CI internal combustion engine manufacturers must certify the following emergency stationary CI ICE that are not fire pump engines to the appropriate Tier 2 emission standards for new marine CI engines as described in 40 CFR part 1042, appendix I, for all pollutants, for the same displacement and rated power:

(1) Their 2007 model year through 2012 emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder;

(2) Their 2013 model year and later emergency stationary CI ICE with a maximum engine power greater than or equal to 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder;

(3) Their 2013 model year emergency stationary CI ICE with a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder; and

(4) Their 2014 model year and later emergency stationary CI ICE with a maximum engine power greater than or equal to 2,000 KW (2,682 HP) and a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.

(f) Stationary CI internal combustion engine manufacturers must certify the following emergency stationary CI ICE to the certification emission standards and other requirements applicable to Tier 3 new marine CI engines in 40 CFR 1042.101, 40 CFR 1042.107, 40 CFR 1042.115, 40 CFR 1042.120, and 40 CFR 1042.145, for all pollutants, for the same displacement and maximum engine power:

(1) Their 2013 model year and later emergency stationary CI ICE with a maximum engine power less than 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and

(2) Their 2014 model year and later emergency stationary CI ICE with a maximum engine power less than 2,000 KW (2,682 HP) and a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.

(g) Notwithstanding the requirements in paragraphs (a) through (d) of this section, stationary emergency CI ICE identified in paragraphs (a) and (c) of this section may be certified to the provisions of 40 CFR part 1042 for commercial engines that are applicable for the engine's model year, displacement, power density, and maximum engine power if the engines will be used solely in either or both of the locations identified in paragraphs (g)(1) and (2) of this section. Engines that would be subject to the Tier 4 standards in 40 CFR part 1042 that are used solely in either or both of the location may instead continue to be certified to the previous tier of standards in 40 CFR part 1042. The previous tier is Tier 3 in most cases; however, the previous tier is Tier 2 if there are no Tier 3 standards specified for engines of a certain size or power rating.

- (1) Remote areas of Alaska; and
- (2) Marine offshore installations.

(h) Notwithstanding the requirements in paragraphs (a) through (f) of this section, stationary CI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (f) of this

section that are applicable to the model year, maximum engine power and displacement of the reconstructed emergency stationary CLICE.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37968, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34358, June 29, 2021; 88 FR 4471, Jan. 24, 2023]

§ 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines?

Engines manufactured by stationary CI internal combustion engine manufacturers must meet the emission standards as required in §§ 60.4201 and 60.4202 during the certified emissions life of the engines.

[76 FR 37968, June 28, 2011]

Emission Standards for Owners and Operators

§ 60.4204 What emission standards must I meet for non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of less than 10 liters per cylinder must comply with the emission standards in table 1 to this subpart. Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder must comply with the Tier 1 emission standards in 40 CFR part 1042, appendix I.

(b) Owners and operators of 2007 model year and later non-emergency stationary CI ICE with a displacement of less than 30 liters per cylinder must comply with the emission standards for new CI engines in § 60.4201 for their 2007 model year and later stationary CI ICE, as applicable.

(c) Owners and operators of non-emergency stationary CI engines with a displacement of greater than or equal to 30 liters per cylinder must meet the following requirements:

(1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 17.0 grams per kilowatt-hour (g/KW-hr) (12.7 grams per horsepower-hr (g/HP-hr)) when maximum engine speed is less than 130 revolutions per minute (rpm);

(ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and

(iii) 9.8 g/KW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.

(2) For engines installed on or after January 1, 2012 and before January 1, 2016, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and

(iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.

(3) For engines installed on or after January 1, 2016, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 3.4 g/KW-hr (2.5 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $9.0 \cdot n^{-0.20}$ g/KW-hr (6.7 $\cdot n^{-0.20}$ g/HP-hr) where n (maximum engine speed) is 130 or more but less than 2,000 rpm; and

(iii) 2.0 g/KW-hr (1.5 g/HP-hr) where maximum engine speed is greater than or equal to 2,000 rpm.

(4) Reduce particulate matter (PM) emissions by 60 percent or more, or limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.15 g/KW-hr (0.11 g/HP-hr).

(d) Owners and operators of non-emergency stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests in-use must meet the not-to-exceed (NTE) standards as indicated in § 60.4212.

(e) Owners and operators of any modified or reconstructed non-emergency stationary CI ICE subject to this subpart must meet the emission standards applicable to the model year, maximum engine power, and displacement of the modified or reconstructed non-emergency stationary CI ICE that are specified in paragraphs (a) through (d) of this section.

(f) Owners and operators of stationary CI ICE certified to the standards in 40 CFR part 1039 and equipped with AECDs as specified in 40 CFR 1039.665 must meet the Tier 1 certification emission standards for new nonroad CI engines in 40 CFR part 1039, appendix I, while the AECD is activated during a qualified emergency situation. A qualified emergency situation is defined in 40 CFR 1039.665. When the qualified emergency situation has ended and the AECD is deactivated, the engine must resume meeting the otherwise applicable emission standard specified in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37968, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34358, June 29, 2021]

§ 60.4205 What emission standards must I meet for emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of pre-2007 model year emergency stationary CI ICE with a displacement of less than 10 liters per cylinder that are not fire pump engines must comply with the emission standards in Table 1 to this subpart. Owners and operators of pre-2007 model year emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that are not fire pump engines must comply with the Tier 1 emission standards in 40 CFR part 1042, appendix I.

(b) Owners and operators of 2007 model year and later emergency stationary CI ICE with a displacement of less than 30 liters per cylinder that are not fire pump engines must comply with the emission standards for new nonroad CI engines in § 60.4202, for all pollutants, for the same model year and maximum engine power for their 2007 model year and later emergency stationary CI ICE.

(c) Owners and operators of fire pump engines with a displacement of less than 30 liters per cylinder must comply with the emission standards in table 4 to this subpart, for all pollutants.

(d) Owners and operators of emergency stationary CI engines with a displacement of greater than or equal to 30 liters per cylinder must meet the requirements in this section.

(1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 17.0 g/KW-hr (12.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and

(iii) 9.8 g/kW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.

(2) For engines installed on or after January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and

(iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.

(3) Limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.40 g/KW-hr (0.30 g/HP-hr).

(e) Owners and operators of emergency stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests in-use must meet the NTE standards as indicated in § 60.4212.

(f) Owners and operators of any modified or reconstructed emergency stationary CI ICE subject to this subpart must meet the emission standards applicable to the model year, maximum engine power, and displacement of the modified or reconstructed CI ICE that are specified in paragraphs (a) through (e) of this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011; 86 FR 34358, June 29, 2021]

§ 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine?

Owners and operators of stationary CI ICE must operate and maintain stationary CI ICE that achieve the emission standards as required in §§ 60.4204 and 60.4205 over the entire life of the engine.

[76 FR 37969, June 28, 2011]

Fuel Requirements for Owners and Operators

§ 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion engine subject to this subpart?

(a) [Reserved]

(b) Beginning October 1, 2010, owners and operators of stationary CI ICE subject to this subpart with a displacement of less than 30 liters per cylinder that use diesel fuel must use diesel fuel that meets the requirements of 40 CFR 1090.305 for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to October 1, 2010, may be used until depleted.

(c) [Reserved]

(d) Beginning June 1, 2012, owners and operators of stationary CI ICE subject to this subpart with a displacement of greater than or equal to 30 liters per cylinder must use diesel fuel that meets a maximum per-gallon sulfur content of 1,000 parts per million (ppm).

(e) Stationary CI ICE that have a national security exemption under § 60.4200(d) are also exempt from the fuel requirements in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011; 78 FR 6695, Jan. 30, 2013; 85 FR 78463, Dec. 4, 2020]

Other Requirements for Owners and Operators

§ 60.4208 What is the deadline for importing or installing stationary CI ICE produced in previous model years?

(a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the applicable requirements for 2007 model year engines.

(b) After December 31, 2009, owners and operators may not install stationary CI ICE with a maximum engine power of less than 19 KW (25 HP) (excluding fire pump engines) that do not meet the applicable requirements for 2008 model year engines.

(c) After December 31, 2014, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 19 KW (25 HP) and less than 56 KW (75 HP) that do not meet the applicable requirements for 2013 model year non-emergency engines.

(d) After December 31, 2013, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 56 KW (75 HP) and less than 130 KW (175 HP) that do not meet the applicable requirements for 2012 model year non-emergency engines.

(e) After December 31, 2012, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 130 KW (175 HP), including those above 560 KW (750 HP), that do not meet the applicable requirements for 2011 model year non-emergency engines.

(f) After December 31, 2016, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 560 KW (750 HP) that do not meet the applicable requirements for 2015 model year non-emergency engines.

(g) After December 31, 2018, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power greater than or equal to 600 KW (804 HP) and less than 2,000 KW (2,680 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that do not meet the applicable requirements for 2017 model year non-emergency engines.

(h) In addition to the requirements specified in §§ 60.4201, 60.4202, 60.4204, and 60.4205, it is prohibited to import stationary CI ICE with a displacement of less than 30 liters per cylinder that do not meet the applicable requirements specified in paragraphs (a) through (g) of this section after the dates specified in paragraphs (a) through (g) of this section.

(i) The requirements of this section do not apply to owners or operators of stationary CI ICE that have been modified, reconstructed, and do not apply to engines that were removed from one existing location and reinstalled at a new location.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011]

§ 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine?

If you are an owner or operator, you must meet the monitoring requirements of this section. In addition, you must also meet the monitoring requirements specified in § 60.4211.

(a) If you are an owner or operator of an emergency stationary CI internal combustion engine that does not meet the standards applicable to non-emergency engines, you must install a non-resettable hour meter prior to startup of the engine.

(b) If you are an owner or operator of a stationary CI internal combustion engine equipped with a diesel particulate filter to comply with the emission standards in § 60.4204, the diesel particulate filter must be installed with a

backpressure monitor that notifies the owner or operator when the high backpressure limit of the engine is approached.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011]

Compliance Requirements

§ 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of less than 10 liters per cylinder to the emission standards specified in §§ 60.4201(a) through (c) and 60.4202(a), (b), and (d) using the certification procedures required in 40 CFR part 1039, subpart C, and must test their engines as specified in 40 CFR part 1039. For the purposes of this subpart, engines certified to the standards in Table 1 to this subpart shall be subject to the same certification procedures required for engines certified to the standards in Table 1 to this subpart shall be subject to the same certification procedures required for engines certified to the standards in Table 4 to this subpart shall be subject to the same certification procedures required for engines certified to the Tier 1 standards in 40 CFR part 1039, appendix I. For the purposes of this subpart, engines certified to the standards in Table 4 to this subpart shall be subject to the same certification procedures required for engines certified to the Tier 1 standards in 40 CFR part 1039, appendix I, except that engines with NFPA nameplate power of less than 37 KW (50 HP) certified to model year 2011 or later standards shall be subject to the same requirements as engines certified to the standards in 40 CFR part 1039.

(b) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder to the emission standards specified in §§ 60.4201(d) and (e) and 60.4202(e) and (f) using the certification procedures required in 40 CFR part 1042, subpart C, and must test their engines as specified in 40 CFR part 1042.

(c) Stationary CI internal combustion engine manufacturers must meet the requirements of 40 CFR 1039.120, 1039.125, 1039.130, and 1039.135 and 40 CFR part 1068 for engines that are certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine manufacturers must meet the corresponding provisions of 40 CFR part 1042 for engines that would be covered by that part if they were nonroad (including marine) engines. Labels on such engines must refer to stationary engines, rather than or in addition to nonroad or marine engines, as appropriate. Stationary CI internal combustion engine manufacturers must label their engines according to paragraphs (c)(1) through (3) of this section.

(1) Stationary CI internal combustion engines manufactured from January 1, 2006 to March 31, 2006 (January 1, 2006 to June 30, 2006 for fire pump engines), other than those that are part of certified engine families under the nonroad CI engine regulations, must be labeled according to 40 CFR 1039.20.

(2) Stationary CI internal combustion engines manufactured from April 1, 2006 to December 31, 2006 (or, for fire pump engines, July 1, 2006 to December 31 of the year preceding the year listed in table 3 to this subpart) must be labeled according to paragraphs (c)(2)(i) through (iii) of this section:

(i) Stationary CI internal combustion engines that are part of certified engine families under the nonroad regulations must meet the labeling requirements for nonroad CI engines, but do not have to meet the labeling requirements in 40 CFR 1039.20.

(ii) Stationary CI internal combustion engines that meet Tier 1 requirements (or requirements for fire pumps) under this subpart, but do not meet the requirements applicable to nonroad CI engines must be labeled according to 40 CFR 1039.20. The engine manufacturer may add language to the label clarifying that the engine meets Tier 1 requirements (or requirements for fire pumps) of this subpart.

(iii) Stationary CI internal combustion engines manufactured after April 1, 2006 that do not meet Tier 1 requirements of this subpart, or fire pumps engines manufactured after July 1, 2006 that do not meet the requirements for fire pumps under this subpart, may not be used in the U.S. If any such engines are manufactured in the U.S. after April 1, 2006 (July 1, 2006 for fire pump engines), they must be exported or must be brought into compliance with the appropriate standards prior to initial operation. The export provisions of 40 CFR 1068.230 would apply to engines for export and the manufacturers must label such engines according to 40 CFR 1068.230.

(3) Stationary CI internal combustion engines manufactured after January 1, 2007 (for fire pump engines, after January 1 of the year listed in table 3 to this subpart, as applicable) must be labeled according to paragraphs (c)(3)(i) through (iii) of this section.

(i) Stationary CI internal combustion engines that meet the requirements of this subpart and the corresponding requirements for nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in 40 CFR part 1039 or 1042, as appropriate.

(ii) Stationary CI internal combustion engines that meet the requirements of this subpart, but are not certified to the standards applicable to nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in 40 CFR part 1039 or 1042, as appropriate, but the words "stationary" must be included instead of "nonroad" or "marine" on the label. In addition, such engines must be labeled according to 40 CFR 1039.20.

(iii) Stationary CI internal combustion engines that do not meet the requirements of this subpart must be labeled according to 40 CFR 1068.230 and must be exported under the provisions of 40 CFR 1068.230.

(d) An engine manufacturer certifying an engine family or families to standards under this subpart that are identical to standards applicable under 40 CFR part 1039 or 1042 for that model year may certify any such family that contains both nonroad (including marine) and stationary engines as a single engine family and/or may include any such family containing stationary engines in the averaging, banking, and trading provisions applicable for such engines under those parts.

(e) Manufacturers of engine families discussed in paragraph (d) of this section may meet the labeling requirements referred to in paragraph (c) of this section for stationary CI ICE by either adding a separate label containing the information required in paragraph (c) of this section or by adding the words "and stationary" after the word "nonroad" or "marine," as appropriate, to the label.

(f) Starting with the model years shown in table 5 to this subpart, stationary CI internal combustion engine manufacturers must add a permanent label stating that the engine is for stationary emergency use only to each new emergency stationary CI internal combustion engine greater than or equal to 19 KW (25 HP) that meets all the emission standards for emergency engines in § 60.4202 but does not meet all the emission standards for non-emergency engines in § 60.4201. The label must be added according to the labeling requirements specified in 40 CFR 1039.135(b). Engine manufacturers must specify in the owner's manual that operation of emergency engines is limited to emergency operations and required maintenance and testing.

(g) Manufacturers of fire pump engines may use the test cycle in table 6 to this subpart for testing fire pump engines and may test at the NFPA certified nameplate HP, provided that the engine is labeled as "Fire Pump Applications Only".

(h) Engine manufacturers, including importers, may introduce into commerce uncertified engines or engines certified to earlier standards that were manufactured before the new or changed standards took effect until inventories are depleted, as long as such engines are part of normal inventory. For example, if the engine manufacturers' normal industry practice is to keep on hand a one-month supply of engines based on its projected sales, and a new tier of standards starts to apply for the 2009 model year, the engine manufacturer may manufacture engines based on the normal inventory requirements late in the 2008 model year, and sell those engines for installation. The engine manufacturer may not circumvent the provisions of § 60.4201 or § 60.4202 by stockpiling engines that are built before new or changed standards take effect. Stockpiling of such engines beyond normal industry practice is a violation of this subpart.

(i) The replacement engine provisions of 40 CFR 1068.240 are applicable to stationary CI engines replacing existing equipment that is less than 15 years old.

(j) Stationary CI ICE manufacturers may equip their stationary CI internal combustion engines certified to the emission standards in 40 CFR part 1039 with AECDs for qualified emergency situations according to the requirements of 40 CFR 1039.665. Manufacturers of stationary CI ICE equipped with AECDs as allowed by 40 CFR 1039.665 must meet all the requirements in 40 CFR 1039.665 that apply to manufacturers. Manufacturers must document that the engine complies with the Tier 1 standard in 40 CFR part 1039, appendix I, when the AECD is activated. Manufacturers must provide any relevant testing, engineering analysis, or other information in

sufficient detail to support such statement when applying for certification (including amending an existing certificate) of an engine equipped with an AECD as allowed by 40 CFR 1039.665.

(k) Manufacturers of any size may certify their emergency stationary CI internal combustion engines under this section using assigned deterioration factors established by EPA, consistent with 40 CFR 1039.240 and 1042.240.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34358, June 29, 2021]

§ 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine?

(a) If you are an owner or operator and must comply with the emission standards specified in this subpart, you must do all of the following, except as permitted under paragraph (g) of this section:

(1) Operate and maintain the stationary CI internal combustion engine and control device according to the manufacturer's emission-related written instructions;

(2) Change only those emission-related settings that are permitted by the manufacturer; and

(3) Meet the requirements of 40 CFR part 1068, as they apply to you.

(b) If you are an owner or operator of a pre-2007 model year stationary Cl internal combustion engine and must comply with the emission standards specified in § 60.4204(a) or § 60.4205(a), or if you are an owner or operator of a Cl fire pump engine that is manufactured prior to the model years in table 3 to this subpart and must comply with the emission standards specified in § 60.4205(c), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) through (5) of this section.

(1) Purchasing an engine certified to emission standards for the same model year and maximum engine power as described in 40 CFR parts 1039 and 1042, as applicable. The engine must be installed and configured according to the manufacturer's specifications.

(2) Keeping records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.

(3) Keeping records of engine manufacturer data indicating compliance with the standards.

(4) Keeping records of control device vendor data indicating compliance with the standards.

(5) Conducting an initial performance test to demonstrate compliance with the emission standards according to the requirements specified in § 60.4212, as applicable.

(c) If you are an owner or operator of a 2007 model year and later stationary CI internal combustion engine and must comply with the emission standards specified in § 60.4204(b) or § 60.4205(b), or if you are an owner or operator of a CI fire pump engine that is manufactured during or after the model year that applies to your fire pump engine power rating in table 3 to this subpart and must comply with the emission standards specified in § 60.4205(c), you must comply by purchasing an engine certified to the emission standards in § 60.4204(b), or § 60.4205(c), or (c), as applicable, for the same model year and maximum (or in the case of fire pumps, NFPA nameplate) engine power. The engine must be installed and configured according to the manufacturer's emission-related specifications, except as permitted in paragraph (g) of this section.

(d) If you are an owner or operator and must comply with the emission standards specified in § 60.4204(c) or § 60.4205(d), you must demonstrate compliance according to the requirements specified in paragraphs (d)(1) through (3) of this section.

(1) Conducting an initial performance test to demonstrate initial compliance with the emission standards as specified in § 60.4213.

(2) Establishing operating parameters to be monitored continuously to ensure the stationary internal combustion engine continues to meet the emission standards. The owner or operator must petition the Administrator for approval of operating parameters to be monitored continuously. The petition must include the information described in paragraphs (d)(2)(i) through (v) of this section.

(i) Identification of the specific parameters you propose to monitor continuously;

(ii) A discussion of the relationship between these parameters and NO_X and PM emissions, identifying how the emissions of these pollutants change with changes in these parameters, and how limitations on these parameters will serve to limit NO_X and PM emissions;

(iii) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(iv) A discussion identifying the methods and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(v) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(3) For non-emergency engines with a displacement of greater than or equal to 30 liters per cylinder, conducting annual performance tests to demonstrate continuous compliance with the emission standards as specified in § 60.4213.

(e) If you are an owner or operator of a modified or reconstructed stationary CI internal combustion engine and must comply with the emission standards specified in § 60.4204(e) or § 60.4205(f), you must demonstrate compliance according to one of the methods specified in paragraphs (e)(1) or (2) of this section.

(1) Purchasing, or otherwise owning or operating, an engine certified to the emission standards in § 60.4204(e) or § 60.4205(f), as applicable.

(2) Conducting a performance test to demonstrate initial compliance with the emission standards according to the requirements specified in § 60.4212 or § 60.4213, as appropriate. The test must be conducted within 60 days after the engine commences operation after the modification or reconstruction.

(f) If you own or operate an emergency stationary ICE, you must operate the emergency stationary ICE according to the requirements in paragraphs (f)(1) through (3) of this section. In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (3), is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (3), the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary ICE in emergency situations.

(2) You may operate your emergency stationary ICE for the purpose specified in paragraph (f)(2)(i) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph (f)(3) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).

(i) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the

owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.

(ii)-(iii) [Reserved]

(3) Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing provided in paragraph (f)(2) of this section. Except as provided in paragraph (f)(3)(i) of this section, the 50 hours per calendar year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.

(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

(ii) [Reserved]

(g) If you do not install, configure, operate, and maintain your engine and control device according to the manufacturer's emission-related written instructions, or you change emission-related settings in a way that is not permitted by the manufacturer, you must demonstrate compliance as follows:

(1) If you are an owner or operator of a stationary CI internal combustion engine with maximum engine power less than 100 HP, you must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, if you do not install and configure the engine and control device according to the manufacturer's emission-related written instructions, or you change the emission-related settings in a way that is not permitted by the manufacturer, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of such action.

(2) If you are an owner or operator of a stationary CI internal combustion engine greater than or equal to 100 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of startup, or within 1 year after an engine and control device is no longer installed, configured, operated, and maintained in accordance with the manufacturer's emission-related written instructions, or within 1 year after you change emission-related settings in a way that is not permitted by the manufacturer.

(3) If you are an owner or operator of a stationary CI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain

and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of startup, or within 1 year after an engine and control device is no longer installed, configured, operated, and maintained in accordance with the manufacturer's emission-related written instructions, or within 1 year after you change emission-related settings in a way that is not permitted by the manufacturer. You must conduct subsequent performance testing every 8,760 hours of engine operation or 3 years, whichever comes first, thereafter to demonstrate compliance with the applicable emission standards.

(h) The requirements for operators and prohibited acts specified in 40 CFR 1039.665 apply to owners or operators of stationary CI ICE equipped with AECDs for qualified emergency situations as allowed by 40 CFR 1039.665.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37970, June 28, 2011; 78 FR 6695, Jan. 30, 2013; 81 FR 44219, July 7, 2016; 86 FR 34359, June 29, 2021; 87 FR 48605, Aug. 10, 2022]

Testing Requirements for Owners and Operators

§ 60.4212 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of less than 30 liters per cylinder?

Owners and operators of stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests pursuant to this subpart must do so according to paragraphs (a) through (e) of this section.

(a) The performance test must be conducted according to the in-use testing procedures in 40 CFR part 1039, subpart F, for stationary CI ICE with a displacement of less than 10 liters per cylinder, and according to 40 CFR part 1042, subpart F, for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder. Alternatively, stationary CI ICE that are complying with Tier 2 or Tier 3 emission standards as described in 40 CFR part 1039, appendix I, or with Tier 2 emission standards as described in 40 CFR part 1042, appendix I, may follow the testing procedures specified in § 60.4213, as appropriate.

(b) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR part 1039 must not exceed the not-to-exceed (NTE) standards for the same model year and maximum engine power as required in 40 CFR 1039.101(e) and 40 CFR 1039.102(g)(1), except as specified in 40 CFR 1039.104(d). This requirement starts when NTE requirements take effect for nonroad diesel engines under 40 CFR part 1039.

(c) Exhaust emissions from stationary CI ICE subject to Tier 2 or Tier 3 emission standards as described in 40 CFR part 1039, appendix I, or Tier 2 emission standards as described in 40 CFR part 1042, appendix I, must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard, determined from the following equation:

NTE requirement for each pollutant = $(1.25) \times (STD)$ (Eq. 1)

Where:

STD = The standard specified for that pollutant in 40 CFR part 1039 or 1042, as applicable.

(d) Exhaust emissions from stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in § 60.4204(a), § 60.4205(a), or § 60.4205(c) must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard in § 60.4204(a), § 60.4205(a), or § 60.4205(c), determined from the equation in paragraph (c) of this section.

Where:

STD = The standard specified for that pollutant in § 60.4204(a), § 60.4205(a), or § 60.4205(c).

Alternatively, stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in § 60.4204(a), § 60.4205(a), or § 60.4205(c) may follow the testing procedures specified in § 60.4213, as appropriate.

(e) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR part 1042 must not exceed the NTE standards for the same model year and maximum engine power as required in 40 CFR 1042.101(c).

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011; 86 FR 34359, June 29, 2021]

§ 60.4213 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of greater than or equal to 30 liters per cylinder?

Owners and operators of stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder must conduct performance tests according to paragraphs (a) through (f) of this section.

(a) Each performance test must be conducted according to the requirements in § 60.8 and under the specific conditions that this subpart specifies in table 7. The test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load.

(b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in § 60.8(c).

(c) You must conduct three separate test runs for each performance test required in this section, as specified in § 60.8(f). Each test run must last at least 1 hour.

(d) To determine compliance with the percent reduction requirement, you must follow the requirements as specified in paragraphs (d)(1) through (3) of this section.

(1) You must use Equation 2 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_i - C_o}{C_i} \times 100 = R \qquad (Eq. 2)$$

Where:

 C_i = concentration of NO_X or PM at the control device inlet,

 C_o = concentration of NO_X or PM at the control device outlet, and

R = percent reduction of NO_X or PM emissions.

(2) You must normalize the NO_X or PM concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen (O₂) using Equation 3 of this section, or an equivalent percent carbon dioxide (CO₂) using the procedures described in paragraph (d)(3) of this section.

$$C_{adj} = C_d \frac{5.9}{20.9 - \% O_2}$$
 (Eq. 3)

Where:

C_{adj} = Calculated NO_X or PM concentration adjusted to 15 percent O₂.

C_d = Measured concentration of NO_X or PM, uncorrected.

5.9 = 20.9 percent O₂-15 percent O₂, the defined O₂ correction value, percent.

 $%O_2$ = Measured O_2 concentration, dry basis, percent.

(3) If pollutant concentrations are to be corrected to 15 percent O_2 and CO_2 concentration is measured in lieu of O_2 concentration measurement, a CO_2 correction factor is needed. Calculate the CO_2 correction factor as described in paragraphs (d)(3)(i) through (iii) of this section.

(i) Calculate the fuel-specific F_0 value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

$$F_{o} = \frac{0.209_{F_{d}}}{F_{c}}$$
 (Eq. 4)

Where:

 F_{o} = Fuel factor based on the ratio of O_{2} volume to the ultimate CO_{2} volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is O_2 , percent/100.

 F_d = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

 F_c = Ratio of the volume of CO₂ produced to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent O₂, as follows:

$$X_{CO_2} = \frac{5.9}{F_0}$$
 (Eq. 5)

Where:

 X_{CO2} = CO₂ correction factor, percent.

5.9 = 20.9 percent O₂-15 percent O₂, the defined O₂ correction value, percent.

(iii) Calculate the NO_X and PM gas concentrations adjusted to 15 percent O₂ using CO₂ as follows:

$$C_{adj} = C_d \frac{X_{CO_2}}{\% CO_2}$$
 (Eq. 6)

Where:

Cadj = Calculated NO_X or PM concentration adjusted to 15 percent O₂.

C_d = Measured concentration of NO_X or PM, uncorrected.

 $%CO_2$ = Measured CO₂ concentration, dry basis, percent.

(e) To determine compliance with the NO_X mass per unit output emission limitation, convert the concentration of NO_X in the engine exhaust using Equation 7 of this section:

$$ER = \frac{C_d \times 1.912 \times 10^{-3} \times Q \times T}{KW-hour}$$
(Eq. 7)

Where:

ER = Emission rate in grams per KW-hour.

C_d = Measured NO_X concentration in ppm.

 1.912×10^{-3} = Conversion constant for ppm NO_X to grams per standard cubic meter at 25 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Brake work of the engine, in KW-hour.

(f) To determine compliance with the PM mass per unit output emission limitation, convert the concentration of PM in the engine exhaust using Equation 8 of this section:

$$ER = \frac{C_{adj} \times Q \times T}{KW-hour} \qquad (Eq. 8)$$

Where:

ER = Emission rate in grams per KW-hour.

C_{adj} = Calculated PM concentration in grams per standard cubic meter.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Energy output of the engine, in KW.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011]

Notification, Reports, and Records for Owners and Operators

§ 60.4214 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of non-emergency stationary CI ICE that are greater than 2,237 KW (3,000 HP), or have a displacement of greater than or equal to 10 liters per cylinder, or are pre-2007 model year engines that are greater than 130 KW (175 HP) and not certified, must meet the requirements of paragraphs (a)(1) and (2) of this section.

(1) Submit an initial notification as required in § 60.7(a)(1). The notification must include the information in paragraphs (a)(1)(i) through (v) of this section.

(i) Name and address of the owner or operator;

(ii) The address of the affected source;

(iii) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;

(iv) Emission control equipment; and

(v) Fuel used.

(2) Keep records of the information in paragraphs (a)(2)(i) through (iv) of this section.

(i) All notifications submitted to comply with this subpart and all documentation supporting any notification.

(ii) Maintenance conducted on the engine.

(iii) If the stationary CI internal combustion is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards.

(iv) If the stationary CI internal combustion is not a certified engine, documentation that the engine meets the emission standards.

(b) If the stationary CI internal combustion engine is an emergency stationary internal combustion engine, the owner or operator is not required to submit an initial notification. Starting with the model years in table 5 to this subpart, if the emergency engine does not meet the standards applicable to non-emergency engines in the applicable model year, the owner or operator must keep records of the operation of the engine in emergency and non-emergency service that are recorded through the non-resettable hour meter. The owner must record the time of operation of the engine and the reason the engine was in operation during that time.

(c) If the stationary CI internal combustion engine is equipped with a diesel particulate filter, the owner or operator must keep records of any corrective action taken after the backpressure monitor has notified the owner or operator that the high backpressure limit of the engine is approached.

(d) If you own or operate an emergency stationary CI ICE with a maximum engine power more than 100 HP that operates for the purpose specified in § 60.4211(f)(3)(i), you must submit an annual report according to the requirements in paragraphs (d)(1) through (3) of this section.

- (1) The report must contain the following information:
 - (i) Company name and address where the engine is located.
 - (ii) Date of the report and beginning and ending dates of the reporting period.
 - (iii) Engine site rating and model year.
 - (iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
 - (v)-(vi) [Reserved]

(vii) Hours spent for operation for the purposes specified in § 60.4211(f)(3)(i), including the date, start time, and end time for engine operation for the purposes specified in § 60.4211(f)(3)(i). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (*www.epa.gov/cdx*). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 60.4.

(e) Owners or operators of stationary CI ICE equipped with AECDs pursuant to the requirements of 40 CFR 1039.665 must report the use of AECDs as required by 40 CFR 1039.665(e).

[71 FR 39172, July 11, 2006, as amended at 78 FR 6696, Jan. 30, 2013; 81 FR 44219, July 7, 2016; 87 FR 48606, Aug. 10, 2022]

Special Requirements

§ 60.4215 What requirements must I meet for engines used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands?

(a) Stationary CI ICE with a displacement of less than 30 liters per cylinder that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are required to meet the applicable emission standards in §§ 60.4202 and 60.4205.

(b) Stationary CLICE that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are not required to meet the fuel requirements in § 60.4207.

(c) Stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are required to meet the following emission standards:

(1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 17.0 g/KW-hr (12.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and

(iii) 9.8 g/KW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.

(2) For engines installed on or after January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and

(iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.

(3) Limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.40 g/KW-hr (0.30 g/HP-hr).

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011]

§ 60.4216 What requirements must I meet for engines used in Alaska?

(a) Prior to December 1, 2010, owners and operators of stationary CI ICE with a displacement of less than 30 liters per cylinder located in areas of Alaska not accessible by the FAHS should refer to 40 CFR part 69 to determine the diesel fuel requirements applicable to such engines.

(b) Except as indicated in paragraph (c) of this section, manufacturers, owners and operators of stationary CI ICE with a displacement of less than 10 liters per cylinder located in remote areas of Alaska may meet the requirements of this subpart by manufacturing and installing engines meeting the Tier 2 or Tier 3 emission standards described in 40 CFR part 1042 for the same model year, displacement, and maximum engine power, as appropriate, rather than the otherwise applicable requirements of 40 CFR part 1039, as indicated in §§ 60.4201(f) and 60.4202(g).

(c) Manufacturers, owners, and operators of stationary CI ICE that are located in remote areas of Alaska may choose to meet the applicable emission standards for emergency engines in §§ 60.4202 and 60.4205, and not those for non-emergency engines in §§ 60.4201 and 60.4204, except that for 2014 model year and later nonemergency CI ICE, the owner or operator of any such engine must have that engine certified as meeting at least the Tier 3 PM standards identified in appendix I of 40 CFR part 1039 or in 40 CFR 1042.101.

(d) The provisions of § 60.4207 do not apply to owners and operators of pre-2014 model year stationary CI ICE subject to this subpart that are located in remote areas of Alaska.

(e) The provisions of § 60.4208(a) do not apply to owners and operators of stationary CI ICE subject to this subpart that are located in areas of Alaska not accessible by the FAHS until after December 31, 2009.

(f) The provisions of this section and § 60.4207 do not prevent owners and operators of stationary CI ICE subject to this subpart that are located in remote areas of Alaska from using fuels mixed with used lubricating oil, in volumes of up to 1.75 percent of the total fuel. The sulfur content of the used lubricating oil must be less than 200 parts per million. The used lubricating oil must meet the on-specification levels and properties for used oil in 40 CFR 279.11.

[76 FR 37971, June 28, 2011, as amended at 81 FR 44219, July 7, 2016; 86 FR 34359, June 29, 2021]

§ 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels?

Owners and operators of stationary CI ICE that do not use diesel fuel may petition the Administrator for approval of alternative emission standards, if they can demonstrate that they use a fuel that is not the fuel on which the manufacturer of the engine certified the engine and that the engine cannot meet the applicable standards required in § 60.4204 or § 60.4205 using such fuels and that use of such fuel is appropriate and reasonably necessary, considering cost, energy, technical feasibility, human health and environmental, and other factors, for the operation of the engine.

[76 FR 37972, June 28, 2011]

General Provisions

§ 60.4218 What General Provisions and confidential information provisions apply to me?

(a) Table 8 to this subpart shows which parts of the General Provisions in §§ 60.1 through 60.19 apply to you.

(b) The provisions of 40 CFR 1068.10 and 1068.11 apply for engine manufacturers. For others, the general confidential business information (CBI) provisions apply as described in 40 CFR part 2.

[88 FR 4471, Jan. 24, 2023]

Definitions

§ 60.4219 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the CAA and in subpart A of this part.

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Certified emissions life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for certified emissions life for stationary CI ICE with a displacement of less than 10 liters per cylinder are given in 40 CFR 1039.101(g). The values for certified emissions life for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder are given in 40 CFR 1042.101(e).

Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), and any ancillary components and sub-components comprising any simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion turbine portion of any cogeneration cycle combustion system, or the combustion turbine portion of any combined cycle steam/electric generating system.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Date of manufacture means one of the following things:

(1) For freshly manufactured engines and modified engines, date of manufacture means the date the engine is originally produced.

(2) For reconstructed engines, date of manufacture means the date the engine was originally produced, except as specified in paragraph (3) of this definition.

(3) Reconstructed engines are assigned a new date of manufacture if the fixed capital cost of the new and refurbished components exceeds 75 percent of the fixed capital cost of a comparable entirely new facility. An engine that is produced from a previously used engine block does not retain the date of manufacture of the engine in which the engine block was previously used if the engine is produced using all new components except for the engine block. In these cases, the date of manufacture is the date of reconstruction or the date the new engine is produced.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is number 2 distillate oil.

Diesel particulate filter means an emission control technology that reduces PM emissions by trapping the particles in a flow filter substrate and periodically removes the collected particles by either physical action or by oxidizing (burning off) the particles in a process called regeneration.

Emergency stationary internal combustion engine means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary ICE must comply with the requirements specified in § 60.4211(f) in order to be considered emergency stationary ICE. If the engine does not comply with the requirements specified in § 60.4211(f), then it is not considered to be an emergency stationary ICE under this subpart.

(1) The stationary ICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc.

(2) The stationary ICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in § 60.4211(f).

(3) The stationary ICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in § 60.4211(f)(3)(i).

Engine manufacturer means the manufacturer of the engine. See the definition of "manufacturer" in this section.

Fire pump engine means an emergency stationary internal combustion engine certified to NFPA requirements that is used to provide power to pump water for fire suppression or protection.

Freshly manufactured engine means an engine that has not been placed into service. An engine becomes freshly manufactured when it is originally produced.

Installed means the engine is placed and secured at the location where it is intended to be operated.

Manufacturer has the meaning given in section 216(1) of the Act. In general, this term includes any person who manufactures a stationary engine for sale in the United States or otherwise introduces a new stationary engine into commerce in the United States. This includes importers who import stationary engines for sale or resale.

Maximum engine power means maximum engine power as defined in 40 CFR 1039.801.

Model year means the calendar year in which an engine is manufactured (see "date of manufacture"), except as follows:

(1) Model year means the annual new model production period of the engine manufacturer in which an engine is manufactured (see "date of manufacture"), if the annual new model production period is different than the calendar year and includes January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year.

(2) For an engine that is converted to a stationary engine after being placed into service as a nonroad or other non-stationary engine, model year means the calendar year or new model production period in which the engine was manufactured (see "date of manufacture").

Other internal combustion engine means any internal combustion engine, except combustion turbines, which is not a reciprocating internal combustion engine or rotary internal combustion engine.

Reciprocating internal combustion engine means any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work.

Remote areas of Alaska means areas of Alaska that meet either paragraph (1) or (2) of this definition.

(1) Areas of Alaska that are not accessible by the Federal Aid Highway System (FAHS).

(2) Areas of Alaska that meet all of the following criteria:

(i) The only connection to the FAHS is through the Alaska Marine Highway System, or the stationary CI ICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.

(ii) At least 10 percent of the power generated by the stationary CI ICE on an annual basis is used for residential purposes.

(iii) The generating capacity of the source is less than 12 megawatts, or the stationary CI ICE is used exclusively for backup power for renewable energy.

Rotary internal combustion engine means any internal combustion engine which uses rotary motion to convert heat energy into mechanical work.

Spark ignition means relating to a gasoline, natural gas, or liquefied petroleum gas fueled engine or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary internal combustion engine means any internal combustion engine, except combustion turbines, that converts heat energy into mechanical work and is not mobile. Stationary ICE differ from mobile ICE in that a stationary internal combustion engine is not a nonroad engine as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), and is not used to propel a motor vehicle, aircraft, or a vehicle used solely for competition. Stationary ICE include reciprocating ICE, rotary ICE, and other ICE, except combustion turbines.

Subpart means 40 CFR part 60, subpart IIII.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37972, June 28, 2011; 78 FR 6696, Jan. 30, 2013; 81 FR 44219, July 7, 2016; 86 FR 34360, June 29, 2021; 87 FR 48606, Aug. 10, 2022]

Table 1 to Subpart IIII of Part 60—Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of <10 Liters per Cylinder and 2007-2010 Model Year Engines >2,237 KW (3,000 HP) and With a Displacement of <10 Liters per Cylinder

[As stated in §§60.4201(b), 60.4202(b), 60.4204(a), and 60.4205(a), you must comply with the following emission standards]

	Emission standards for stationary pre-2007 model year engines with a displacement of <10 liters per cylinder and 2007-2010 model year engines >2,237 KW (3,000 HP) and with displacement of <10 liters per cylinder in g/KW-hr (g/HP-hr)					
Maximum engine power	NMHC + NOx	нс	NOx	со	PM	
KW<8 (HP<11)	10.5 (7.8)			8.0 (6.0)	1.0 (0.75)	
8≤KW<19 (11≤HP<25)	9.5 (7.1)			6.6 (4.9)	0.80 (0.60)	
19≤KW<37 (25≤HP<50)	9.5 (7.1)			5.5 (4.1)	0.80 (0.60)	
37≤KW<56 (50≤HP<75)			9.2 (6.9)			
56≤KW<75 (75≤HP<100)			9.2 (6.9)			
75≤KW<130 (100≤HP<175)			9.2 (6.9)			
130≤KW<225 (175≤HP<300)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	
225≤KW<450 (300≤HP<600)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	
450≤KW≤560 (600≤HP≤750)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	
KW>560 (HP>750)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	

Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later Emergency StationaryCI ICE <37 KW (50 HP) With a Displacement of <10 Liters per Cylinder</td>

[As stated in §60.4202(a)(1), you must comply with the following emission standards]

	Emission standards for 2008 model year and later emergency stationary CI ICE <37 K HP) with a displacement of <10 liters per cylinder in g/KW-hr (g/HP-hr)				
Engine power	Model year(s)	NOx + NMHC	со	РМ	
KW<8 (HP<11)	2008 +	7.5 (5.6)	8.0 (6.0)	0.40 (0.30)	
8≤KW<19 (11≤HP<25)	2008 +	7.5 (5.6)	6.6 (4.9)	0.40 (0.30)	
19≤KW<37 (25≤HP<50)	2008 +	7.5 (5.6)	5.5 (4.1)	0.30 (0.22)	

Table 3 to Subpart IIII of Part 60—Certification Requirements for Stationary Fire Pump Engines

As stated in §60.4202(d), you must certify new stationary fire pump engines beginning with the following model years:

Engine power	Starting model year engine manufacturers must certify new stationary fire pump engines according to §60.4202(d) ¹
KW<75 (HP<100)	2011
75≤KW<130 (100≤HP<175)	2010
130≤KW≤560 (175≤HP≤750)	2009
KW>560 (HP>750)	2008

¹Manufacturers of fire pump stationary CI ICE with a maximum engine power greater than or equal to 37 kW (50 HP) and less than 450 KW (600 HP) and a rated speed of greater than 2,650 revolutions per minute (rpm) are not required to certify such engines until three model years following the model year indicated in this Table 3 for engines in the applicable engine power category.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37972, June 28, 2011]

Table 4 to Subpart IIII of Part 60—Emission Standards for Stationary Fire Pump Engines

[As stated in §§60.4202(d) and 60.4205(c), you must comply with the following emission standards for stationary fire pump engines]

Maximum engine power	Model year(s)	NMHC + NO _X	со	РМ
KW<8 (HP<11)	2010 and earlier	10.5 (7.8)	8.0 (6.0)	1.0 (0.75)
	2011 +	7.5 (5.6)		0.40 (0.30)
8≤KW<19 (11≤HP<25)	2010 and earlier	9.5 (7.1)	6.6 (4.9)	0.80 (0.60)
	2011 +	7.5 (5.6)		0.40 (0.30)
19≤KW<37 (25≤HP<50)	2010 and earlier	9.5 (7.1)	5.5 (4.1)	0.80 (0.60)
	2011 +	7.5 (5.6)		0.30 (0.22)
37≤KW<56 (50≤HP<75)	2010 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2011 + ¹	4.7 (3.5)		0.40 (0.30)
56≤KW<75 (75≤HP<100)	2010 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2011 + ¹	4.7 (3.5)		0.40 (0.30)
75≤KW<130 (100≤HP<175)	2009 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2010 + ²	4.0 (3.0)		0.30 (0.22)
130≤KW<225 (175≤HP<300)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)

40 CFR 60, Subpart IIII Attachment C

Maximum engine power	Model year(s)	NMHC + NO _X	со	РМ
	2009 + ³	4.0 (3.0)		0.20 (0.15)
225≤KW<450 (300≤HP<600)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009 + ³	4.0 (3.0)		0.20 (0.15)
450≤KW≤560 (600≤HP≤750)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009 +	4.0 (3.0)		0.20 (0.15)
KW>560 (HP>750)	2007 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2008 +	6.4 (4.8)		0.20 (0.15)

¹For model years 2011-2013, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 revolutions per minute (rpm) may comply with the emission limitations for 2010 model year engines.

²For model years 2010-2012, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2009 model year engines.

³In model years 2009-2011, manufacturers of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2008 model year engines.

Table 5 to Subpart IIII of Part 60—Labeling and Recordkeeping Requirements for New Stationary Emergency Engines

[You must comply with the labeling requirements in §60.4210(f) and the recordkeeping requirements in §60.4214(b) for new emergency stationary CI ICE beginning in the following model years:]

Engine power	Starting model year
19≤KW<56 (25≤HP<75)	2013
56≤KW<130 (75≤HP<175)	2012
KW≥130 (HP≥175)	2011

Table 6 to Subpart IIII of Part 60—Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

[As stated in §60.4210(g), manufacturers of fire pump engines may use the following test cycle for testing fire pump engines:]

Mode No.	Engine speed ¹		Weighting factors
1	Rated	100	0.30
2	Rated	75	0.50
3	Rated	50	0.20

¹Engine speed: ±2 percent of point.

 2 Torque: NFPA certified nameplate HP for 100 percent point. All points should be ±2 percent of engine percent load value.

Table 7 to Subpart IIII of Part 60—Requirements for Performance Tests for Stationary CI ICE With a Displacement of ≥30 Liters per Cylinder

As stated in §60.4213, you must comply with the following requirements for performance tests for stationary CI ICE with a displacement of ≥30 liters per cylinder:

Each	Complying with the requirement to	You must	Using	According to the following requirements
1. Stationary CI internal combustion engine with a displacement of ≥ 30 liters per cylinder	a. Reduce NO _X emissions by 90 percent or more;	i. Select the sampling port location and number/location of traverse points at the inlet and outlet of the control device;		(a) For NO _X , O ₂ , and moisture measurement, ducts \leq 6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and \leq 12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter <i>and</i> the sampling port location meets the two and half- diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Measure O ₂ at the inlet and outlet of the control device;	· · · ·	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for NO _X concentration.
			ČFR part 60, appendix A-3,	(c) Measurements to determine moisture content must be made at the same time as the measurements for NO _X concentration.
			40 CFR part 60, appendix A-4,	(d) NO _X concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

Each	Complying with the requirement to	You must	Using	According to the following requirements
	b. Limit the concentration of NO _x in the stationary CI internal combustion engine exhaust.	i. Select the sampling port location and number/location of traverse points at the exhaust of the stationary internal combustion engine;		(a) For NO _X , O ₂ , and moisture measurement, ducts <6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and <12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter <i>and</i> the sampling port location meets the two and half- diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Determine the O ₂ concentration of the stationary internal combustion engine exhaust at the sampling port location;	(1) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurement for NO _X concentration.
		iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(2) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 (incorporated by reference, see §60.17)	(c) Measurements to determine moisture content must be made at the same time as the measurement for NO _x concentration.
		iv. Measure NO _X at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device.	40 CFR part 60, appendix A-4, Method 320 of 40 CFR part 63, appendix A, or	(d) NO _X concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
	c. Reduce PM emissions by 60 percent or more	i. Select the sampling port location and the number of traverse points;		(a) Sampling sites must be located at the inlet and outlet of the control device.

Each	Complying with the requirement to	You must	Using	According to the following requirements
inlet and out		ii. Measure O ₂ at the inlet and outlet of the control device;	(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for PM concentration.
		iii. If necessary, measure moisture content at the inlet and outlet of the control device; and	(3) Method 4 of 40 CFR part 60, appendix A-3	(c) Measurements to determine and moisture content must be made at the same time as the measurements for PM concentration.
	inlet and outlet of the		(4) Method 5 of 40 CFR part 60, appendix A-3	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
	d. Limit the concentration of PM in the stationary CI internal combustion engine exhaust	i. Select the sampling port location and the number of traverse points;		(a) If using a control device, the sampling site must be located at the outlet of the control device.
		ii. Determine the O ₂ concentration of the stationary internal combustion engine exhaust at the sampling port location;		(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for PM concentration.
	iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and		(3) Method 4 of 40 CFR part 60, appendix A-3	(c) Measurements to determine moisture content must be made at the same time as the measurements for PM concentration.
iv. Measure PM at the exhaust of the stationary internal combustion engine.		(4) Method 5 of 40 CFR part 60, appendix A-3	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.	

[79 FR 11251, Feb. 27, 2014]

Table 8 to Subpart IIII of Part 60—Applicability of General Provisions to Subpart IIII

[As stated in 300.4216, you must comply with the following applicable General Provisions.]	[As stated in §60.4218, you must comply v	vith the following applicable General Provisions:]
--	---	--

General Provisions citation	Subject of citation	Applies to subpart	Explanation
§60.1	General applicability of the General Provisions	Yes	
§60.2	Definitions	Yes	Additional terms defined in §60.4219.
§60.3	Units and abbreviations	Yes	
§60.4	Address	Yes	
§60.5	Determination of construction or modification	Yes	
§60.6	Review of plans	Yes	
§60.7	Notification and Recordkeeping	Yes	Except that §60.7 only applies as specified in §60.4214(a).
§60.8	Performance tests	Yes	Except that §60.8 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder and engines that are not certified.
§60.9	Availability of information	Yes	
§60.10	State Authority	Yes	
§60.11	Compliance with standards and maintenance requirements	No	Requirements are specified in subpart IIII.
§60.12	Circumvention	Yes	
§60.13	Monitoring requirements	Yes	Except that §60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder.
§60.14	Modification	Yes	
§60.15	Reconstruction	Yes	
§60.16	Priority list	Yes	
§60.17	Incorporations by reference	Yes	
§60.18	General control device requirements	No	
§60.19	General notification and reporting requirements	Yes	

Attachment D

Part 70 Operating Permit No: T097-47411-00123

[Downloaded from the eCFR on June 1, 2023]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 63—NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

SOURCE: 69 FR 33506, June 15, 2004, unless otherwise noted.

What This Subpart Covers

§ 63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§ 63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

(b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.

(c) An area source of HAP emissions is a source that is not a major source.

(d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.

(f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in § 63.6675, which includes operating according to the provisions specified in § 63.6640(f).

(1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate for the purpose specified in § 63.6640(f)(4)(ii).

(2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate for the purpose specified in § 63.6640(f)(4)(ii).

(3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate for the purpose specified in § 63.6640(f)(4)(ii).

[69 FR 33506, June 15, 2004, as amended at 73 FR 3603, Jan. 18, 2008; 78 FR 6700, Jan. 30, 2013; 87 FR 48607, Aug. 10, 2022]

§ 63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) *Affected source*. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) Existing stationary RICE.

(i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.

(ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.

(2) New stationary RICE.

(i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(3) Reconstructed stationary RICE.

(i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after June 12, 2006.

(b) Stationary RICE subject to limited requirements.

(1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of § 63.6645(f).

(i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of § 63.6645(f) and the requirements of §§ 63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.

(3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:

(i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(c) *Stationary RICE subject to Regulations under 40 CFR Part 60.* An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

(1) A new or reconstructed stationary RICE located at an area source;

(2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;
(4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9674, Mar. 3, 2010; 75 FR 37733, June 30, 2010; 75 FR 51588, Aug. 20, 2010; 78 FR 6700, Jan. 30, 2013; 87 FR 48607, Aug. 10, 2022]

§ 63.6595 When do I have to comply with this subpart?

(a) Affected sources.

(1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.

(2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004.

(3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(b) **Area sources that become major sources.** If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.

(1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.

(2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.

(c) If you own or operate an affected source, you must meet the applicable notification requirements in § 63.6645 and in 40 CFR part 63, subpart A.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 78 FR 6701, Jan. 30, 2013]

Emission and Operating Limitations

§ 63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.

(b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

(c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.

(d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010]

§ 63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010]

§ 63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]

§ 63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.

(b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart.

(1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).

(2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.

(i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.

(ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.

(iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.

(c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:

(1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in § 63.6625(i) in order to extend the specified oil change requirement.

(2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.

(d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system requirements in § 63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in § 63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.

(e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40 CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart IIII instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.

(f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in § 63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in § 63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in § 63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation.

[75 FR 9675, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6701, Jan. 30, 2013]

§ 63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

(a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 1090.305 for nonroad diesel fuel.

(b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates for the purpose specified in § 63.6640(f)(4)(ii), you must use diesel fuel that meets the requirements in 40 CFR 1090.305 for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(c) [Reserved]

(d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either § 63.6603(b)(1) or § 63.6603(b)(2), or are on offshore vessels that meet § 63.6603(c) are exempt from the requirements of this section.

[78 FR 6702, Jan. 30, 2013, as amended at 85 FR 78463, Dec. 4, 2020; 87 FR 48607, Aug. 10, 2022]

General Compliance Requirements

§ 63.6605 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.

(b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

[75 FR 9675, Mar. 3, 2010, as amended at 78 FR 6702, Jan. 30, 2013]

Testing and Initial Compliance Requirements

§ 63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions in § 63.7(a)(2).

(b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to § 63.7(a)(2)(ix).

(c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to § 63.7(a)(2)(ix).

(d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

(5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§ 63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions in § 63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

[75 FR 9676, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§ 63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.

(1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.

(3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(c) [Reserved]

(d) You must conduct three separate test runs for each performance test required in this section, as specified in § 63.7(e)(3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.

(e)

(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_i - C_o}{C_i} \times 100 = R \quad (Eq. 1)$$

Where:

Ci = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,

 C_o = concentration of CO, THC, or formaldehyde at the control device outlet, and

R = percent reduction of CO, THC, or formaldehyde emissions.

(2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO₂). If pollutant concentrations are to be corrected to 15 percent oxygen and CO₂ concentration is measured in lieu of oxygen concentration measurement, a CO₂ correction factor is needed. Calculate the CO₂ correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific F_{\circ} value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

$$F_{O} = \frac{0.209 \ F_{d}}{F_{C}}$$
 (Eq. 2)

Where:

 F_{o} = Fuel factor based on the ratio of oxygen volume to the ultimate CO₂ volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is oxygen, percent/100.

 F_d = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

 F_c = Ratio of the volume of CO₂ produced to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu)

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent O₂, as follows:

$$X_{CO2} = \frac{5.9}{F_O}$$
 (Eq. 3)

Where:

 $X_{CO2} = CO_2$ correction factor, percent.

5.9 = 20.9 percent O₂ - 15 percent O₂, the defined O₂ correction value, percent.

(iii) Calculate the CO, THC, and formal dehyde gas concentrations adjusted to 15 percent O_2 using CO_2 as follows:

$$C_{adj} = C_d \frac{X_{CO2}}{%CO_2} \quad (Eq. 4)$$

Where:

C_{adj} = Calculated concentration of CO, THC, or formaldehyde adjusted to 15 percent O₂.

C_d = Measured concentration of CO, THC, or formaldehyde, uncorrected.

 $X_{CO2} = CO_2$ correction factor, percent.

%CO₂ = Measured CO₂ concentration measured, dry basis, percent.

(f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.

(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

(1) Identification of the specific parameters you propose to use as operating limitations;

(2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

(3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.

(1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (*e.g.*, operator adjustment, automatic controller adjustment, etc.) or unintentionally (*e.g.*, wear and tear, error, etc.) on a routine basis or over time;

(2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;

(3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;

(4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;

(5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;

(6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and

(7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.

(i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9676, Mar. 3, 2010; 78 FR 6702, Jan. 30, 2013]

§ 63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O_2 or CO_2 according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.

(1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.

(2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in § 63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

(3) As specified in § 63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

(4) The CEMS data must be reduced as specified in § 63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.

(1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in § 63.8(d). As specified in § 63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.

(i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;

(ii) Sampling interface (*e.g.*, thermocouple) location such that the monitoring system will provide representative measurements;

(iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;

(iv) Ongoing operation and maintenance procedures in accordance with provisions in § 63.8(c)(1)(ii) and (c)(3); and

(v) Ongoing reporting and recordkeeping procedures in accordance with provisions in § 63.10(c), (e)(1), and (e)(2)(i).

(2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.

(3) The CPMS must collect data at least once every 15 minutes (see also § 63.6635).

(4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.

(5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.

(6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.

(e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:

(1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

(2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;

(3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;

(4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;

(5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;

(6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.

(7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and

(10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.

(f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.

(g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either § 63.6603(b)(1) or § 63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet § 63.6603(c) do not have to meet the requirements of this paragraph (g).

(1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or

(2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.

(h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.

(i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not

exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6703, Jan. 30, 2013]

§ 63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.

(b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.

(c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in § 63.6645.

(d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.

(e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

(1) The compliance demonstration must consist of at least three test runs.

(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O_2 using one of the O_2 measurement methods specified in Table 4 of this subpart. Measurements to determine O_2 concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O_2 emissions simultaneously at the inlet and outlet of the control device.

[69 FR 33506, June 15, 2004, as amended at 78 FR 6704, Jan. 30, 2013]

Continuous Compliance Requirements

§ 63.6635 How do I monitor and collect data to demonstrate continuous compliance?

(a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.

(b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§ 63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.

(b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in § 63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.

(c) The annual compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

(1) The compliance demonstration must consist of at least one test run.

(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O_2 using one of the O_2 measurement methods specified in Table 4 of this subpart. Measurements to determine O_2 concentration must be made at the same time as the measurements for CO or THC concentration. (6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O₂ emissions simultaneously at the inlet and outlet of the control device.

(7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs, catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.

(d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).

(e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of the requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.

(f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4), is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4), the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary RICE in emergency situations.

(2) You may operate your emergency stationary RICE for the purpose specified in paragraph (f)(2)(i) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).

(i) Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.

(ii)-(iii) [Reserved]

(3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing provided in paragraph (f)(2) of this

section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.

(ii) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.

(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6704, Jan. 30, 2013; 87 FR 48607, Aug. 10, 2022]

Notifications, Reports, and Records

§ 63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following;

(1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

(2) An existing stationary RICE located at an area source of HAP emissions.

(3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.

(5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.

(b) As specified in § 63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004, or no later than 120 days after the source becomes subject to this subpart, whichever is later.

(c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(d) As specified in § 63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008, or no later than 120 days after the source becomes subject to this subpart, whichever is later.

(e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with § 63.6590(b), your notification should include the information in § 63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).

(g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in § 63.7(b)(1).

(h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to § 63.9(h)(2)(ii).

(1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.

(2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to § 63.10(d)(2).

(i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in § 63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in § 63.6603(d) and identifying the state or local regulation that the engine is subject to.

[73 FR 3606, Jan. 18, 2008, as amended at 75 FR 9677, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6705, Jan. 30, 2013; 85 FR 73912, Nov. 19, 2020]

§ 63.6650 What reports must I submit and when?

(a) You must submit each report in Table 7 of this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under § 63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.

(1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in § 63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in § 63.6595.

(2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in § 63.6595.

(3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6 (a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.

(6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in § 63.6595 and ending on December 31.

(7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in § 63.6595.

(8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.

(9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.

(c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.

(1) Company name and address.

(2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.

(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a

description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with § 63.6605(b), including actions taken to correct a malfunction.

(5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.

(6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in § 63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

(d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.

(1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.

(2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.

(e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.

(1) The date and time that each malfunction started and stopped.

(2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out-of-control, including the information in § 63.8(c)(8).

(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.

(5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.

(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.

(7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.

(8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.

(9) A brief description of the stationary RICE.

(10) A brief description of the CMS.

(11) The date of the latest CMS certification or audit.

(12) A description of any changes in CMS, processes, or controls since the last reporting period.

(f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6 (a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority.

(g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section.

(1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.

- (2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.
- (3) Any problems or errors suspected with the meters.

(h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates for the purpose specified in § 63.6640(f)(4)(ii), you must submit an annual report according to the requirements in paragraphs (h)(1) through (3) of this section.

- (1) The report must contain the following information:
 - (i) Company name and address where the engine is located.
 - (ii) Date of the report and beginning and ending dates of the reporting period.
 - (iii) Engine site rating and model year.

(iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

(v)-(vi) {Reserved]

(vii) Hours spent for operation for the purpose specified in § 63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in § 63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(viii) If there were no deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.

(ix) If there were deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data

Exchange (CDX) (*www.epa.gov/cdx*). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 63.13.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9677, Mar. 3, 2010; 78 FR 6705, Jan. 30, 2013; 87 FR 48607, Aug. 10, 2022]

§ 63.6655 What records must I keep?

(a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in § 63.10(b)(2)(xiv).

(2) Records of the occurrence and duration of each malfunction of operation (*i.e.*, process equipment) or the air pollution control and monitoring equipment.

(3) Records of performance tests and performance evaluations as required in § 63.10(b)(2)(viii).

(4) Records of all required maintenance performed on the air pollution control and monitoring equipment.

(5) Records of actions taken during periods of malfunction to minimize emissions in accordance with § 63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.

(b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.

(1) Records described in § 63.10(b)(2)(vi) through (xi).

(2) Previous (i.e., superseded) versions of the performance evaluation plan as required in § 63.8(d)(3).

(3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in § 63.8(f)(6)(i), if applicable.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.

(d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.

(e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE;

(1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.

(2) An existing stationary emergency RICE.

(3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.

(f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purpose specified in § 63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.

(1) An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.

(2) An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 78 FR 6706, Jan. 30, 2013; 87 FR 48607, Aug. 10, 2022]

§ 63.6660 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review according to § 63.10(b)(1).

(b) As specified in § 63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to § 63.10(b)(1).

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010]

Other Requirements and Information

§ 63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§ 63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]

§ 63.6670 Who implements and enforces this subpart?

(a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(c) The authorities that will not be delegated to State, local, or tribal agencies are:

(1) Approval of alternatives to the non-opacity emission limitations and operating limitations in § 63.6600 under § 63.6(g).

(2) Approval of major alternatives to test methods under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90.

(3) Approval of major alternatives to monitoring under § 63.8(f) and as defined in § 63.90.

(4) Approval of major alternatives to recordkeeping and reporting under § 63.10(f) and as defined in § 63.90.

(5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in § 63.6610(b).

§ 63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(I)(5) (incorporated by reference, see § 63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101-549, 104 Stat. 2399).

Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

(1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or

(3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.

(4) Fails to satisfy the general duty to minimize emissions established by § 63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (*e.g.* biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO₂.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in § 63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in § 63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

(1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.

(2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in § 63.6640(f).

(3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in § 63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes "rich" glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The "lean" glycol is then recycled.

Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in § 63.2, except that:

(1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;

(2) For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in § 63.1271 of subpart HHH of this part, shall not be aggregated;

(3) For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and

(4) Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in § 63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NO_X) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NO_X, CO, and volatile organic compounds (VOC) into CO₂, nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (*i.e.*, remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in § 63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to § 63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to § 63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C₃H₈.

Remote stationary RICE means stationary RICE meeting any of the following criteria:

(1) Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.

(2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.

(i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.

(ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.

(iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

(3) Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NO_X (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3607, Jan. 18, 2008; 75 FR 9679, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 76 FR 12867, Mar. 9, 2011; 78 FR 6706, Jan. 30, 2013; 87 FR 48608, Aug. 10, 2022]

Table 1a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each	You must meet the following emission limitation, except during periods of startup	During periods of startup you must...
1. 4SRB stationary RICE		Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ¹
	b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9679, Mar. 3, 2010, as amended at 75 FR 51592, Aug. 20, 2010]

Table 1b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each	You must meet the following operating limitation, except during periods of startup
1. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂ and using NSCR;	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.1
2. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or	Comply with any operating limitations approved by the Administrator.
existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O_2 and not using NSCR.	

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]

Table 2a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

For each	You must meet the following emission limitation, except during periods of startup	During periods of startup you must...
stationary	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O ₂ . If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ¹
2. 4SLB stationary RICE	a. Reduce CO emissions by 93 percent or more; or	

For each	You must meet the following emission limitation, except during periods of startup	During periods of startup you must...
	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O ₂	
3. CI stationary RICE	a. Reduce CO emissions by 70 percent or more; or	
	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O_2	

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE \geq 250 HP located at a major source of HAP emissions; and existing CI stationary RICE \geq 500 HP:

For each...	You must meet the following operating limitation, except during periods of startup
1. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst.	
2. Existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test; and
	b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F. ¹
3. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and not using an oxidation catalyst; and	Comply with any operating limitations approved by the Administrator.

For each	You must meet the following operating limitation, except during periods of startup
New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; and	
existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst.	

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6707, Jan. 30, 2013]

Table 2c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE \leq 500 HP located at a major source of HAP emissions:

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must...
black start stationary CI RICE ¹	first. ² b. Inspect air cleaner every	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ³

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must...
2. Non-Emergency, non-black start stationary CI RICE <100 HP	a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first. ² b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	
3. Non-Emergency, non-black start Cl stationary RICE 100≤HP≤300 HP	Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O ₂ .	
4. Non-Emergency, non-black start CI stationary RICE 300 <hp≤500< td=""><td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more.</td><td></td></hp≤500<>	a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O ₂ ; or b. Reduce CO emissions by 70 percent or more.	
5. Non-Emergency, non-black start stationary CI RICE >500 HP	a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O ₂ ; or b. Reduce CO emissions by 70 percent or more.	
6. Emergency stationary SI RICE and black start stationary SI RICE. ¹	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	
7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE	 a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;² b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; 	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must...
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. ³	
8. Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP	 a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;² b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; 	
	c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary. ³	
9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500	Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O ₂ .	
10. Non-emergency, non-black start 4SLB stationary RICE 100≤HP≤500	Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd or less at 15 percent O ₂ .	
11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500	Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O ₂ .	
12. Non-emergency, non-black start stationary RICE 100≤HP≤500 which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O ₂ .	

¹If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

²Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

³Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]

Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

For each...	You must meet the following requirement, except during periods of startup	During periods of startup you must
1. Non-Emergency, non-black start CI stationary RICE ≤300 HP	every 1,000 hours of operation or annually, whichever comes first; ¹ b. Inspect air cleaner every	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.
2. Non-Emergency, non-black start CI stationary RICE 300 <hp≤500< td=""><td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or</td><td></td></hp≤500<>	a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O ₂ ; or	
	b. Reduce CO emissions by 70 percent or more.	
3. Non-Emergency, non-black start CI stationary RICE >500 HP	a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O ₂ ; or	
	b. Reduce CO emissions by 70 percent or more.	
4. Emergency stationary CI RICE and black start stationary CI RICE. ²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ¹	
	 b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and 	
	c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year. ²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ¹ ; b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	
6. Non-emergency, non-black start 2SLB stationary RICE	a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.	
7. Non-emergency, non-black start 4SLB stationary RICE ≤500 HP	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
8. Non-emergency, non-black start 4SLB remote stationary RICE >500 HP	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	
9. Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.	
10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
11. Non-emergency, non-black start 4SRB remote stationary RICE >500 HP	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	
12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Install NSCR to reduce HAP emissions from the stationary RICE.	
13. Non-emergency, non-black start stationary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹ b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	
You must meet the following requirement, except during periods of startup	During periods of startup you must · · ·	
---	---	
c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.		

¹Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

²If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

[78 FR 6709, Jan. 30, 2013]

Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests

As stated in §§63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

For each...	Complying with the requirement to	You must
1. New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or reconstructed CI stationary RICE >500 HP located at major sources	Reduce CO emissions and not using a CEMS	Conduct subsequent performance tests semiannually. ¹
2. 4SRB stationary RICE ≥5,000 HP located at major sources	Reduce formaldehyde emissions	Conduct subsequent performance tests semiannually. ¹
3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources	Limit the concentration of formaldehyde in the stationary RICE exhaust	performance tests
4. Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE	emissions and not using	Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.
5. Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE	emissions and not using	Conduct subsequent performance tests every 8,760 hours or 5 years, whichever comes first.

¹After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6711, Jan. 30, 2013]

Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in §§ 63.6610, 63.6611, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

For each . 	Complying with the requirement to	You must	Using	According to the following requirements
1. 2SLB, 4SLB, and CI stationary RICE	a. Reduce CO emissions	i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and		(a) For CO, O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter <i>and</i> the sampling port location meets the two and half- diameter criterion of section 11.1.1 of method 1 of 40 CFR part 60, appendix A–1, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to section 8.1.2 of method 7E of 40 CFR part 60, appendix A–4.
		ii. Measure the O ₂ at the inlet and outlet of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A–2, or ASTM D6522–00 (Reapproved 2005) ¹³ (heated probe not necessary)	(b) Measurements to determine O_2 must be made at the same time as the measurements for CO concentration.
		iii. Measure the CO at the inlet and the outlet of the control device; and	(2) ASTM D6522–00 (Reapproved 2005) ¹²³ (heated probe not necessary) or method 10 of 40 CFR part 60, appendix A–4	(c) The CO concentration must be at 15 percent O ₂ , dry basis.
		iv. Measure moisture content at the inlet and outlet of the control device as needed to determine CO and O ₂ concentrations on a dry basis	(3) Method 4 of 40 CFR part 60, appendix A–3, or method 320 of 40 CFR part 63, appendix A, or ASTM D6348–03 ¹³	(d) Measurements to determine moisture content must be made at the same time and location as the measurements for CO concentration.

For each .	Complying with the requirement			According to the following requirements
	to	You must	Using	•
2. 4SRB stationary RICE	a. Reduce formaldehyde or THC emissions	i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and		(a) For formaldehyde, THC, O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (`3-point long line'). If the duct is >12 inches in diameter <i>and</i> the sampling port location meets the two and half- diameter criterion of section 11.1.1 of method 1 of 40 CFR part 60, appendix A, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to section 8.1.2 of method 7E of 40 CFR part 60, appendix A.
		ii. Measure O ₂ at the inlet and outlet of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A–2, or ASTM D6522–00 (Reapproved 2005) ¹³ (heated probe not necessary)	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.
		iii. Measure moisture content at the inlet and outlet of the control device as needed to determine formaldehyde or THC and O ₂ concentrations on a dry basis; and	(2) Method 4 of 40 CFR part 60, appendix A–3, or method 320 of 40 CFR part 63, appendix A, or ASTM D6348–03 ¹³	(c) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or THC concentration.
		iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formaldehyde at the inlet and the outlet of the control device	(3) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348–03, ¹³ provided in ASTM D6348–03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130	(d) Formaldehyde concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

For each . 	Complying with the requirement to	You must	Using	According to the following requirements
		v. If demonstrating compliance with the THC percent reduction requirement, measure THC at the inlet and the outlet of the control device	(4) (1) Method 25A, reported as propane, of 40 CFR part 60, appendix A–7	(e) THC concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
3. Stationary RICE	a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust	i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary RICE; and		(a) For formaldehyde, CO, O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (`3-point long line'). If the duct is >12 inches in diameter <i>and</i> the sampling port location meets the two and half- diameter criterion of section 11.1.1 of method 1 of 40 CFR part 60, appendix A, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to section 8.1.2 of method 7E of 40 CFR part 60, appendix A. If using a control device, the sampling site must be located at the outlet of the control device.
		ii. Determine the O ₂ concentration of the stationary RICE exhaust at the sampling port location; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A–2, or ASTM D6522–00 (Reapproved 2005) ¹³ (heated probe not necessary)	(b) Measurements to determine O_2 concentration must be made at the same time and location as the measurements for formaldehyde or CO concentration.
		iii. Measure moisture content of the stationary RICE exhaust at the sampling port location as needed to determine formaldehyde or CO and O ₂ concentrations on a dry basis; and	(2) Method 4 of 40 CFR part 60, appendix A–3, or method 320 of 40 CFR part 63, appendix A, or ASTM D6348–03 ¹³	(c) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or CO concentration.

For each .	Complying with the requirement to	You must	Using	According to the following requirements
		iv. Measure formaldehyde at the exhaust of the stationary RICE; or	(3) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348–03, ¹³ provided in ASTM D6348–03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130	(d) Formaldehyde concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
		v. Measure CO at the exhaust of the stationary RICE	(4) Method 10 of 40 CFR part 60, appendix A–4, ASTM D6522–00 (2005), ¹³ method 320 of 40 CFR part 63, appendix A, or ASTM D6348–03 ¹³	(e) CO concentration must be at 15 percent O_2 , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

¹ You may also use methods 3A and 10 as options to ASTM–D6522–00 (2005).

² You may obtain a copy of ASTM–D6348–03 from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

³ Incorporated by reference, see § 63.14.

[88 FR 18413, Mar. 29, 2023]

Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

As stated in §§63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

For each		You have demonstrated initial compliance if
1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non- emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non- emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-	emissions and using oxidation catalyst, and using a CPMS	 i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

For each	Complying with the requirement to	You have demonstrated initial compliance if
2. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS	i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non- emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non- emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions and not using oxidation catalyst	i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.
4. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, and not using oxidation catalyst	i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.
5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non- emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non- emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions, and using a CEMS	i. You have installed a CEMS to continuously monitor CO and either O ₂ or CO ₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in §63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
		iii. The average reduction of CO calculated using §63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4- hour period.

For each	Complying with the requirement to	You have demonstrated initial compliance if
6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, and using a CEMS	i. You have installed a CEMS to continuously monitor CO and either O_2 or CO_2 at the outlet of the oxidation catalyst according to the requirements in §63.6625(a); and
		ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
		iii. The average concentration of CO calculated using §63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period.
7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and using NSCR	i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and not using NSCR	i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and
		ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.

For each	Complying with the requirement to	You have demonstrated initial compliance if
9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR	i. The average formaldehyde concentration, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	concentration of formaldehyde in the stationary RICE	i. The average formaldehyde concentration, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.
11. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300 <hp≤500 an="" area="" at="" hap<="" located="" of="" source="" td=""><td>emissions</td><td>i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.</td></hp≤500>	emissions	i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.
12. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300 <hp≤500 an="" area="" at="" hap<="" located="" of="" source="" td=""><td>concentration of formaldehyde or CO in the stationary RICE exhaust</td><td>i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.</td></hp≤500>	concentration of formaldehyde or CO in the stationary RICE exhaust	i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.
13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	catalyst	i. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O ₂ ;
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.

For each		You have demonstrated initial compliance if
14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install NSCR	i. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ , or the average reduction of emissions of THC is 30 percent or more;
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.

[78 FR 6712, Jan. 30, 2013]

Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, and Other Requirements

As stated in §63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

For each	Complying with the requirement to	You must demonstrate continuous compliance by
1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP	oxidation catalyst, and using a CPMS	 i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved^a; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP	a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS	 i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved^a; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non- emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, new or reconstructed non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS	 i. Collecting the monitoring data according to §63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to §63.6620; and ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and
		iii. Conducting an annual RATA of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B, as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.
4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and using NSCR	i. Collecting the catalyst inlet temperature data according to §63.6625(b); and
		ii. Reducing these data to 4-hour rolling averages; and
		iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and not using NSCR	i. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
		ii. Reducing these data to 4-hour rolling averages; and
		iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

For each...	Complying with the requirement to	You must demonstrate continuous compliance by
6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP	a. Reduce formaldehyde emissions	Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent. ^a
7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non- emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR	i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit ^a ; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non- emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR	i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit ^a ; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
9. Existing emergency and black start stationary RICE ≤500 HP located at a major source of HAP, existing non-emergency stationary RICE <100 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency stationary CI RICE ≤300 HP located at an area source of HAP, existing non- emergency 2SLB stationary RICE located at an area source of HAP, existing non- emergency 2SLB stationary RICE located at an area source of HAP, existing non- emergency 2SLB stationary RICE located at an area source of HAP, existing non- emergency SI RICE located at an area source of HAP which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, existing non- emergency 4SLB and 4SRB stationary RICE ≤500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate 24 hours or less per calendar year, and existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are remote stationary RICE	a. Work or Management practices	i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.
10. Existing stationary CI RICE >500 HP that are not limited use stationary RICE	a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst	i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE	a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst	i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

For each...	Complying with the requirement to	You must demonstrate continuous compliance by
		ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
12. Existing limited use CI stationary RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst	i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
13. Existing limited use CI stationary RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and not using an oxidation catalyst	i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
		iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install an oxidation catalyst	i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O ₂ ; and either ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.
15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install NSCR	i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ , or the average reduction of emissions of THC is 30 percent or more; and either ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than or equal to 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F.

^aAfter you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6715, Jan. 30, 2013]

Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports

As stated in §63.6650,	vou must comply with	the following re	auirements for reports:

For each...	You must submit a 	The report must contain...	You must submit the report...
1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non- emergency, non-black start stationary CI RICE >300 HP located at an area source of HAP; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non- emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	Compliance report	a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in	i. Semiannually according to the requirements in §63.6650(b)(1)-(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in §63.6650(b)(6)-(9) for engines that are limited use stationary RICE subject to numerical emission limitations.
		b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in §63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out- of-control, as specified in §63.8(c)(7), the information in §63.6650(e); or	i. Semiannually according to the requirements in §63.6650(b).
		c. If you had a malfunction during the reporting period, the information in §63.6650(c)(4).	i. Semiannually according to the requirements in §63.6650(b).
2. New or reconstructed non- emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	Report	a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and	i. Annually, according to the requirements in §63.6650.
		 b. The operating limits provided in your federally enforceable permit, and any deviations from these limits; and 	i. See item 2.a.i.
		c. Any problems or errors suspected with the meters.	i. See item 2.a.i.
3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Compliance report	compliance demonstration, if conducted during the reporting period.	i. Semiannually according to the requirements in §63.6650(b)(1)-(5).

For each...	You must submit a 	You must submit the report
4. Emergency stationary RICE that operate for the purposes specified in § 63.6640(f)(4)(ii)		i. annually according to the requirements in §63.6650(h)(2)-(3).

[87 FR 48608, Aug. 10, 2022]

Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in §63.6665, you must comply with the following applicable general provisions.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§63.1	General applicability of the General Provisions	Yes.	
§63.2	Definitions	Yes	Additional terms defined in §63.6675.
§63.3	Units and abbreviations	Yes.	
§63.4	Prohibited activities and circumvention	Yes.	
§63.5	Construction and reconstruction	Yes.	
§63.6(a)	Applicability	Yes.	
§63.6(b)(1)-(4)	Compliance dates for new and reconstructed sources	Yes.	
§63.6(b)(5)	Notification	Yes.	
§63.6(b)(6)	[Reserved]		
§63.6(b)(7)	Compliance dates for new and reconstructed area sources that become major sources	Yes.	
§63.6(c)(1)-(2)	Compliance dates for existing sources	Yes.	
§63.6(c)(3)-(4)	[Reserved]		
§63.6(c)(5)	Compliance dates for existing area sources that become major sources	Yes.	
§63.6(d)	[Reserved]		
§63.6(e)	Operation and maintenance	No.	
§63.6(f)(1)	Applicability of standards	No.	
§63.6(f)(2)	Methods for determining compliance	Yes.	
§63.6(f)(3)	Finding of compliance	Yes.	
§63.6(g)(1)-(3)	Use of alternate standard	Yes.	
§63.6(h)	Opacity and visible emission standards	No	Subpart ZZZZ does not contain opacity or visible emission standards.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§63.6(i)	Compliance extension procedures and criteria	Yes.	
§63.6(j)	Presidential compliance exemption	Yes.	
§63.7(a)(1)-(2)	Performance test dates	Yes	Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.
§63.7(a)(3)	CAA section 114 authority	Yes.	
§63.7(b)(1)	Notification of performance test	Yes	Except that §63.7(b)(1) only applies as specified in §63.6645.
§63.7(b)(2)	Notification of rescheduling	Yes	Except that §63.7(b)(2) only applies as specified in §63.6645.
§63.7(c)	Quality assurance/test plan	Yes	Except that §63.7(c) only applies as specified in §63.6645.
§63.7(d)	Testing facilities	Yes.	
§63.7(e)(1)	Conditions for conducting performance tests	No.	Subpart ZZZZ specifies conditions for conducting performance tests at §63.6620.
§63.7(e)(2)	Conduct of performance tests and reduction of data	Yes	Subpart ZZZZ specifies test methods at §63.6620.
§63.7(e)(3)	Test run duration	Yes.	
§63.7(e)(4)	Administrator may require other testing under section 114 of the CAA	Yes.	
§63.7(f)	Alternative test method provisions	Yes.	
§63.7(g)	Performance test data analysis, recordkeeping, and reporting	Yes.	
§63.7(h)	Waiver of tests	Yes.	
§63.8(a)(1)	Applicability of monitoring requirements	Yes	Subpart ZZZZ contains specific requirements for monitoring at §63.6625.
§63.8(a)(2)	Performance specifications	Yes.	
§63.8(a)(3)	[Reserved]		
§63.8(a)(4)	Monitoring for control devices	No.	
§63.8(b)(1)	Monitoring	Yes.	
§63.8(b)(2)-(3)	Multiple effluents and multiple monitoring systems	Yes.	
§63.8(c)(1)	Monitoring system operation and maintenance	Yes.	
§63.8(c)(1)(i)	Routine and predictable SSM	No	
§63.8(c)(1)(ii)	SSM not in Startup Shutdown Malfunction Plan	Yes.	

General provisions citation	Subject of citation	Applies to subpart	Explanation
§63.8(c)(1)(iii)	Compliance with operation and maintenance requirements	No	
§63.8(c)(2)-(3)	Monitoring system installation	Yes.	
§63.8(c)(4)	Continuous monitoring system (CMS) requirements	Yes	Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).
§63.8(c)(5)	COMS minimum procedures	No	Subpart ZZZZ does not require COMS.
§63.8(c)(6)-(8)	CMS requirements	Yes	Except that subpart ZZZZ does not require COMS.
§63.8(d)	CMS quality control	Yes.	
§63.8(e)	CMS performance evaluation	Yes	Except for §63.8(e)(5)(ii), which applies to COMS.
		Except that §63.8(e) only applies as specified in §63.6645.	
§63.8(f)(1)-(5)	Alternative monitoring method	Yes	Except that §63.8(f)(4) only applies as specified in §63.6645.
§63.8(f)(6)	Alternative to relative accuracy test	Yes	Except that §63.8(f)(6) only applies as specified in §63.6645.
§63.8(g)	Data reduction	Yes	Except that provisions for COMS are not applicable. Averaging periods for demonstrating compliance are specified at §§63.6635 and 63.6640.
§63.9(a)	Applicability and State delegation of notification requirements	Yes.	
§63.9(b)(1)-(5)	Initial notifications	Yes	Except that §63.9(b)(3) is reserved.
		Except that §63.9(b) only applies as specified in §63.6645.	
§63.9(c)	Request for compliance extension	Yes	Except that §63.9(c) only applies as specified in §63.6645.
§63.9(d)	Notification of special compliance requirements for new sources	Yes	Except that §63.9(d) only applies as specified in §63.6645.
§63.9(e)	Notification of performance test	Yes	Except that §63.9(e) only applies as specified in §63.6645.
§63.9(f)	Notification of visible emission (VE)/opacity test	No	Subpart ZZZ does not contain opacity or VE standards.
§63.9(g)(1)	Notification of performance evaluation	Yes	Except that §63.9(g) only applies as specified in §63.6645.
§63.9(g)(2)	Notification of use of COMS data	No	Subpart ZZZZ does not contain opacity or VE standards.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§63.9(g)(3)	Notification that criterion for alternative to RATA is exceeded	Yes	If alternative is in use.
		Except that §63.9(g) only applies as specified in §63.6645.	
§63.9(h)(1)-(6)	Notification of compliance status	Yes	Except that notifications for sources using a CEMS are due 30 days after completion of performance evaluations. §63.9(h)(4) is reserved.
			Except that §63.9(h) only applies as specified in §63.6645.
§63.9(i)	Adjustment of submittal deadlines	Yes.	
§63.9(j)	Change in previous information	Yes.	
§63.9(k)	Electronic reporting procedures	Yes	Only as specified in §63.9(j).
§63.10(a)	Administrative provisions for recordkeeping/reporting	Yes.	
§63.10(b)(1)	Record retention	Yes	Except that the most recent 2 years of data do not have to be retained on site.
§63.10(b)(2)(i)-(v)	Records related to SSM	No.	
§63.10(b)(2)(vi)- (xi)	Records	Yes.	
§63.10(b)(2)(xii)	Record when under waiver	Yes.	
§63.10(b)(2)(xiii)	Records when using alternative to RATA	Yes	For CO standard if using RATA alternative.
§63.10(b)(2)(xiv)	Records of supporting documentation	Yes.	
§63.10(b)(3)	Records of applicability determination	Yes.	
§63.10(c)	Additional records for sources using CEMS	Yes	Except that §63.10(c)(2)-(4) and (9) are reserved.
§63.10(d)(1)	General reporting requirements	Yes.	
§63.10(d)(2)	Report of performance test results	Yes.	
§63.10(d)(3)	Reporting opacity or VE observations	No	Subpart ZZZZ does not contain opacity or VE standards.
§63.10(d)(4)	Progress reports	Yes.	
§63.10(d)(5)	Startup, shutdown, and malfunction reports	No.	
§63.10(e)(1) and (2)(i)	Additional CMS Reports	Yes.	
§63.10(e)(2)(ii)	COMS-related report	No	Subpart ZZZZ does not require COMS.

General provisions			
citation	Subject of citation	Applies to subpart	Explanation
§63.10(e)(3)	Excess emission and parameter exceedances reports	Yes.	Except that §63.10(e)(3)(i) (C) is reserved.
§63.10(e)(4)	Reporting COMS data	No	Subpart ZZZZ does not require COMS.
§63.10(f)	Waiver for recordkeeping/reporting	Yes.	
§63.11	Flares	No.	
§63.12	State authority and delegations	Yes.	
§63.13	Addresses	Yes.	
§63.14	Incorporation by reference	Yes.	
§63.15	Availability of information	Yes.	

[75 FR 9688, Mar. 3, 2010, as amended at 78 FR 6720, Jan. 30, 2013; 85 FR 73912, Nov. 19, 2020]

Appendix A to Subpart ZZZZ of Part 63—Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

1.0 SCOPE AND APPLICATION. WHAT IS THIS PROTOCOL?

This protocol is a procedure for using portable electrochemical (EC) cells for measuring carbon monoxide (CO) and oxygen (O₂) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O₂).

Analyte	CAS No.	Sensitivity
Carbon monoxide (CO)		Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.
Oxygen (O ₂)	7782-44- 7	

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O₂, or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 SUMMARY OF PROTOCOL

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and O_2 gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor supplied measurement systems (e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).

3.0 DEFINITIONS

3.1 Measurement System. The total equipment required for the measurement of CO and O₂ concentrations. The measurement system consists of the following major subsystems:

3.1.1 Data Recorder. A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.

3.1.2 Electrochemical (EC) Cell. A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.

3.1.3 Interference Gas Scrubber. A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.

3.1.4 Moisture Removal System. Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.

3.1.5 Sample Interface. The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.

3.2 Nominal Range. The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.

3.3 Calibration Gas. A vendor certified concentration of a specific analyte in an appropriate balance gas.

3.4 Zero Calibration Error. The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.

3.5 Up-Scale Calibration Error. The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.

3.6 Interference Check. A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.

3.7 *Repeatability Check.* A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.

3.8 Sample Flow Rate. The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.

3.9 Sampling Run. A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O₂ and moisture in the electrolyte reserve and provides a mechanism to degas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre- sampling calibrations; stack gas sampling; post-sampling calibration checks; and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.

3.10 Sampling Day. A time not to exceed twelve hours from the time of the pre-sampling calibration to the postsampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.

3.11 Pre-Sampling Calibration/Post-Sampling Calibration Check. The protocols executed at the beginning and end of each sampling day to bracket measurement readings with controlled performance checks.

3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 INTERFERENCES.

When present in sufficient concentrations, NO and NO₂ are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 SAFETY. [RESERVED]

6.0 EQUIPMENT AND SUPPLIES.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below.

6.2 Measurement System Components.

6.2.1 Sample Probe. A single extraction-point probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.

6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.

6.2.3 Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.

6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.

6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used to adjust and maintain the sample flow rate through the analyzer as prescribed.

6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.10 EC cell. A device containing one or more EC cells to determine the CO and O₂ concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.

6.2.11 Data Recorder. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O_2 ; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the analyzer responses.

6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.

7.0 REAGENTS AND STANDARDS. WHAT CALIBRATION GASES ARE NEEDED?

7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O_2 . Use CO calibration gases with labeled concentration values certified by the manufacturer to be within ±5 percent of the label value. Dry ambient air (20.9 percent O_2) is acceptable for calibration of the O_2 cell. If needed, any lower percentage O_2 calibration gas must be a mixture of O_2 in nitrogen.

7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.

7.1.2 Up-Scale O₂ Calibration Gas Concentration.

Select an O_2 gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O_2 . When the average exhaust gas O_2 readings are above 6 percent, you may use dry ambient air (20.9 percent O_2) for the up-scale O_2 calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO₂).

8.0 SAMPLE COLLECTION AND ANALYSIS

8.1 Selection of Sampling Sites.

8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct that the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the "sample conditioning phase" once per minute until constant readings are obtained. Then begin the "measurement data phase" and record readings every 15 seconds for at least two minutes (or eight readings), or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of consistent value have been obtained. For each run use the "measurement data phase" readings to calculate the average stack gas CO and O₂ concentrations.

8.3 EC Cell Rate. Maintain the EC cell sample flow rate so that it does not vary by more than ± 10 percent throughout the pre-sampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that does not affect the gas concentration readings by more than ± 3 percent, as instructed by the EC cell manufacturer.

9.0 QUALITY CONTROL (RESERVED)

10.0 CALIBRATION AND STANDARDIZATION

10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells; however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer's recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.

10.1.1 Zero Calibration. For both the O_2 and CO cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.

10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to ± 3 percent of the up-scale gas value or ± 1 ppm, whichever is less restrictive, for the CO channel and less than or equal to ± 0.3 percent O₂ for the O₂ channel.

10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this "sample conditioning phase" once per minute until readings are constant for at least two minutes. Then begin the "measurement data phase" and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).

10.1.4 Up-Scale Calibration Error. The mean of the difference of the "measurement data phase" readings from the reported standard gas value must be less than or equal to ± 5 percent or ± 1 ppm for CO or ± 0.5 percent O₂, whichever is less restrictive, respectively. The maximum allowable deviation from the mean measured value of any single "measurement data phase" reading must be less than or equal to ± 2 percent or ± 1 ppm for CO or ± 0.5 percent O₂, whichever is less restrictive, respectively.

10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks

40 CFR 63, Subpart ZZZZ Attachment D

using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all postsampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 ANALYTICAL PROCEDURE

The analytical procedure is fully discussed in Section 8.

12.0 CALCULATIONS AND DATA ANALYSIS

Determine the CO and O_2 concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the "measurement data phase".

13.0 PROTOCOL PERFORMANCE

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the "measurement data phase". The maximum allowable deviation from the mean for each of the individual readings is ±2 percent, or ±1 ppm, whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.

Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than ± 2 percent *or* ± 1 ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed).

13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO₂ gas standards that are generally recognized as representative of diesel-fueled engine NO and NO₂ emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.

13.2.1 Interference Response. The combined NO and NO₂ interference response should be less than or equal to ± 5 percent of the up-scale CO calibration gas concentration.

13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.

13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.

13.3.2 Repeatability Check Calculations. Determine the highest and lowest average "measurement data phase" CO concentrations from the four repeatability check runs and record the results on Figure 1 or a similar form. The absolute value of the difference between the maximum and minimum average values recorded must not vary more than ±3 percent or ±1 ppm of the up-scale gas value, whichever is less restrictive.

14.0 POLLUTION PREVENTION (RESERVED)

15.0 WASTE MANAGEMENT (RESERVED)

16.0 ALTERNATIVE PROCEDURES (RESERVED)

17.0 REFERENCES

(1) "Development of an Electrochemical Cell Emission Analyzer Test Protocol", Topical Report, Phil Juneau, Emission Monitoring, Inc., July 1997.

(2) "Determination of Nitrogen Oxides, Carbon Monoxide, and Oxygen Emissions from Natural Gas-Fired Engines, Boilers, and Process Heaters Using Portable Analyzers", EMC Conditional Test Protocol 30 (CTM-30), Gas Research Institute Protocol GRI-96/0008, Revision 7, October 13, 1997.

(3) "ICAC Test Protocol for Periodic Monitoring", EMC Conditional Test Protocol 34 (CTM-034), The Institute of Clean Air Companies, September 8, 1999.

(4) "Code of Federal Regulations", Protection of Environment, 40 CFR, Part 60, Appendix A, Methods 1-4; 10.

TABLE 1: APPENDIX A—SAMPLING RUN DATA.

Facility Engine I.D						Date	e						
Run Type:	(_)			((_)				(_)			(_)	
(X)	Pre-Sample Calibration			onS	Stack Gas Sample				Post-Sample Cal. Check			Repeatability Check	
Run #	1	1	2	2	3	3	4	4	Time	Scrul OK	b.	Flow- Rate	
Gas	O ₂	со	O ₂	со	O ₂	со	O ₂	со					
Sample Cond. Phase													
"													
"													
n													
"													
Measurement Data Phase													
"													
11													
"													
"													
"													
"													

40 CFR 63, Subpart ZZZZ Attachment D

Facility	Engine I.D.				Date						
"											
"											
"											
Mean				-							
Intern											
Refresh Phase											
"											
"											
"											
"											

[78 FR 6721, Jan. 30, 2013]

Attachment E

Part 70 Operating Permit No: T097-47411-00123

[Downloaded from the eCFR on May 20, 2024]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart Eb—Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which Modification or Reconstruction is Commenced After June 19, 1996

Source: 60 FR 65419, December 19, 1995, unless otherwise noted.

§ 60.50b Applicability and delegation of authority.

(a) The affected facility to which this subpart applies is each municipal waste combustor unit with a combustion capacity greater than 250 tons per day of municipal solid waste for which construction, modification, or reconstruction is commenced after September 20, 1994.

(b) Any waste combustion unit that is capable of combusting more than 250 tons per day of municipal solid waste and is subject to a federally enforceable permit limiting the maximum amount of municipal solid waste that may be combusted in the unit to less than or equal to 11 tons per day is not subject to this subpart if the owner or operator:

(1) Notifies EPA of an exemption claim;

(2) Provides a copy of the federally enforceable permit that limits the firing of municipal solid waste to less than 11 tons per day; and

(3) Keeps records of the amount of municipal solid waste fired on a daily basis.

(c) An affected facility to which this subpart applies is not subject to subpart E or Ea of this part.

(d) Physical or operational changes made to an existing municipal waste combustor unit primarily for the purpose of complying with emission guidelines under subpart Cb are not considered a modification or reconstruction and do not result in an existing municipal waste combustor unit becoming subject to this subpart.

(e) A qualifying small power production facility, as defined in section 3(17)(C) of the Federal Power Act (16 U.S.C. 796(17)(C)), that burns homogeneous waste (such as automotive tires or used oil, but not including refuse-derived fuel) for the production of electric energy is not subject to this subpart if the owner or operator of the facility notifies EPA of this exemption and provides data documenting that the facility qualifies for this exemption.

(f) A qualifying cogeneration facility, as defined in section 3(18)(B) of the Federal Power Act (16 U.S.C. 796(18)(B)), that burns homogeneous waste (such as automotive tires or used oil, but not including refuse-derived fuel) for the production of electric energy and steam or forms of useful energy (such as heat) that are used for industrial, commercial, heating, or cooling purposes, is not subject to this subpart if the owner or operator of the facility notifies EPA of this exemption and provides data documenting that the facility qualifies for this exemption.

(g) Any unit combusting a single-item waste stream of tires is not subject to this subpart if the owner or operator of the unit:

(1) Notifies EPA of an exemption claim; and

(2) [Reserved]

(3) Provides data documenting that the unit qualifies for this exemption.

(h) Any unit required to have a permit under section 3005 of the Solid Waste Disposal Act is not subject to this subpart.

(i) Any materials recovery facility (including primary or secondary smelters) that combusts waste for the primary purpose of recovering metals is not subject to this subpart.

(j) Any cofired combustor, as defined under § 60.51b, that meets the capacity specifications in paragraph (a) of this section is not subject to this subpart if the owner or operator of the cofired combustor:

(1) Notifies EPA of an exemption claim;

(2) Provides a copy of the federally enforceable permit (specified in the definition of cofired combustor in this section); and

(3) Keeps a record on a calendar quarter basis of the weight of municipal solid waste combusted at the cofired combustor and the weight of all other fuels combusted at the cofired combustor.

(k) Air curtain incinerators, as defined under § 60.51b, located at a plant that meet the capacity specifications in paragraph (a) of this section and that combust a fuel stream composed of 100 percent yard waste are exempt from all provisions of this subpart except the opacity limit under § 60.56b, the testing procedures under § 60.58b(I), and the reporting and recordkeeping provisions under § 60.59b (e) and (i).

(I) Air curtain incinerators located at plants that meet the capacity specifications in paragraph (a) of this section combusting municipal solid waste other than yard waste are subject to all provisions of this subpart.

(m) Pyrolysis/combustion units that are an integrated part of a plastics/rubber recycling unit (as defined in § 60.51b) are not subject to this subpart if the owner or operator of the plastics/rubber recycling unit keeps records of the weight of plastics, rubber, and/or rubber tires processed on a calendar quarter basis; the weight of chemical plant feedstocks and petroleum refinery feedstocks produced and marketed on a calendar quarter basis; and the name and address of the purchaser of the feedstocks. The combustion of gasoline, diesel fuel, jet fuel, fuel oils, residual oil, refinery gas, petroleum coke, liquified petroleum gas, propane, or butane produced by chemical plants or petroleum refineries that use feedstocks produced by plastics/rubber recycling units are not subject to this subpart.

(n) The following authorities are retained by the Administrator of the U.S. EPA and are not transferred to a State:

(1) Approval of exemption claims in paragraphs (b), (e), (f), (g) and (j) of this section;

(2) Enforceability under Federal law of all Federally enforceable, as defined in § 60.51b, limitations and conditions;

(3) Determination of compliance with the siting requirements as specified in § 60.57b(a);

(4) Acceptance of relationship between carbon monoxide and oxygen as part of initial and annual performance tests as specified in § 60.58b(b)(7);

(5) Approval of other monitoring systems used to obtain emissions data when data is not obtained by CEMS as specified in § 60.58b(e)(14), (h)(12), (i)(11), and (n)(14), and (p)(11);

(6) Approval of a site-specific monitoring plan for the continuous emission monitoring system specified in "60.58b(n)(13) and (o) of this section or the continuous automated sampling system specified in § 60.58b(p)(10) and (q) of this section;

- (7) Approval of major alternatives to test methods;
- (8) Approval of major alternatives to monitoring;
- (9) Waiver of recordkeeping; and
- (10) Performance test and data reduction waivers under "608(b).
- (o) This subpart shall become effective June 19, 1996.
- (p) Cement kilns firing municipal solid waste are not subject to this subpart.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45120, 45125, Aug. 25, 1997; 71 FR 27335, May 10, 2006]

§ 60.51b Definitions.

Administrator means:

(1) For approved and effective State Section 111(d)/129 plans, the Director of the State air pollution control agency, or employee of the State air pollution control agency that is delegated the authority to perform the specified task;

(2) For Federal Section 111(d)/129 plans, the Administrator of the EPA, an employee of the EPA, the Director of the State air pollution control agency, or employee of the State air pollution control agency to whom the authority has been delegated by the Administrator of the EPA to perform the specified task; and

(3) For NSPS, the Administrator of the EPA, an employee of the EPA, the Director of the State air pollution control agency, or employee of the State air pollution control agency to whom the authority has been delegated by the Administrator of the EPA to perform the specified task.

Air curtain incinerator means an incinerator that operates by forcefully projecting a curtain of air across an open chamber or pit in which burning occurs. Incinerators of this type can be constructed above or below ground and with or without refractory walls and floor.

Batch municipal waste combustor means a municipal waste combustor unit designed so that it cannot combust municipal solid waste continuously 24 hours per day because the design does not allow waste to be fed to the unit or ash to be removed while combustion is occurring.

Bubbling fluidized bed combustor means a fluidized bed combustor in which the majority of the bed material remains in a fluidized state in the primary combustion zone.

Calendar quarter means a consecutive 3-month period (nonoverlapping) beginning on January 1, April 1, July 1, and October 1.

Calendar year means the period including 365 days starting January 1 and ending on December 31.

Chief facility operator means the person in direct charge and control of the operation of a municipal waste combustor and who is responsible for daily onsite supervision, technical direction, management, and overall performance of the facility.

Circulating fluidized bed combustor means a fluidized bed combustor in which the majority of the fluidized bed material is carried out of the primary combustion zone and is transported back to the primary zone through a recirculation loop.

Clean wood means untreated wood or untreated wood products including clean untreated lumber, tree stumps (whole or chipped), and tree limbs (whole or chipped). Clean wood does not include yard waste, which is defined elsewhere in this section, or construction, renovation, and demolition wastes (including but not limited to railroad ties and telephone poles), which are exempt from the definition of municipal solid waste in this section.

Cofired combustor means a unit combusting municipal solid waste with nonmunicipal solid waste fuel (e.g., coal, industrial process waste) and subject to a federally enforceable permit limiting the unit to combusting a fuel feed stream, 30 percent or less of the weight of which is comprised, in aggregate, of municipal solid waste as measured on a calendar quarter basis.

Continuous automated sampling system means the total equipment and procedures for automated sample collection and sample recovery/analysis to determine a pollutant concentration or emission rate by collecting a single or multiple integrated sample(s) of the pollutant (or diluent gas) for subsequent on-or off-site analysis; integrated sample(s) collected are representative of the emissions for the sample time as specified by the applicable requirement.

Continuous emission monitoring system means a monitoring system for continuously measuring the emissions of a pollutant from an affected facility.

Dioxin/furan means tetra- through octa- chlorinated dibenzo-p-dioxins and dibenzofurans.

EPA means the Administrator of the U.S. EPA or employee of the U.S. EPA who is delegated to perform the specified task.

Federally enforceable means all limitations and conditions that are enforceable by EPA including the requirements of 40 CFR part 60, 40 CFR part 61, and 40 CFR part 63, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 40 CFR 51.24.

First calendar half means the period starting on January 1 and ending on June 30 in any year.

Four-hour block average or 4-hour block average means the average of all hourly emission concentrations when the affected facility is operating and combusting municipal solid waste measured over 4-hour periods of time from 12:00 midnight to 4 a.m., 4 a.m. to 8 a.m., 8 a.m. to 12:00 noon, 12:00 noon to 4 p.m., 4 p.m. to 8 p.m., and 8 p.m. to 12:00 midnight.

Mass burn refractory municipal waste combustor means a field-erected combustor that combusts municipal solid waste in a refractory wall furnace. Unless otherwise specified, this includes combustors with a cylindrical rotary refractory wall furnace.

Mass burn rotary waterwall municipal waste combustor means a field-erected combustor that combusts municipal solid waste in a cylindrical rotary waterwall furnace or on a tumbling-tile grate.

Mass burn waterwall municipal waste combustor means a field-erected combustor that combusts municipal solid waste in a waterwall furnace.

Materials separation plan means a plan that identifies both a goal and an approach to separate certain components of municipal solid waste for a given service area in order to make the separated materials available for recycling. A materials separation plan may include elements such as dropoff facilities, buy-back or deposit-return incentives, curbside pickup programs, or centralized mechanical separation systems. A materials separation plan may include different goals or approaches for different subareas in the service area, and may include no materials separation activities for certain subareas or, if warranted, an entire service area.

Maximum demonstrated municipal waste combustor unit load means the highest 4-hour arithmetic average municipal waste combustor unit load achieved during four consecutive hours during the most recent dioxin/furan performance test demonstrating compliance with the applicable limit for municipal waste combustor organics specified under § 60.52b(c).

Maximum demonstrated particulate matter control device temperature means the highest 4-hour arithmetic average flue gas temperature measured at the particulate matter control device inlet during four consecutive hours during the most recent dioxin/furan performance test demonstrating compliance with the applicable limit for municipal waste combustor organics specified under § 60.52b(c).

Modification or modified municipal waste combustor unit means a municipal waste combustor unit to which changes have been made after June 19, 1996 if the cumulative cost of the changes, over the life of the unit, exceed 50 percent of the original cost of construction and installation of the unit (not including the cost of any land purchased in connection with such construction or installation) updated to current costs; or any physical change in the municipal waste combustor unit or change in the method of operation of the municipal waste combustor unit increases the amount of any air pollutant emitted by the unit for which standards have been established under section 129 or section 111. Increases in the amount of any air pollutant emitted by the municipal waste combustor unit are determined at 100-percent physical load capability and downstream of all air pollution control devices, with no consideration given for load restrictions based on permits or other nonphysical operational restrictions.

Modular excess-air municipal waste combustor means a combustor that combusts municipal solid waste and that is not field-erected and has multiple combustion chambers, all of which are designed to operate at conditions with combustion air amounts in excess of theoretical air requirements.

Modular starved-air municipal waste combustor means a combustor that combusts municipal solid waste and that is not field-erected and has multiple combustion chambers in which the primary combustion chamber is designed to operate at substoichiometric conditions.

Municipal solid waste or municipal-type solid waste or *MSW* means household, commercial/retail, and/or institutional waste. Household waste includes material discarded by single and multiple residential dwellings, hotels, motels, and other similar permanent or temporary housing establishments or facilities. Commercial/retail waste includes material discarded by stores, offices, restaurants, warehouses, nonmanufacturing activities at industrial facilities, and other similar establishments or facilities. Institutional waste includes material discarded by hospitals, material discarded by nonmanufacturing activities at prisons and government facilities, and material discarded by other similar establishments or facilities. Household, commercial/retail, and institutional waste does not include used oil; sewage sludge; wood pallets; construction, renovation, and demolition wastes (which includes but is not limited to railroad ties and telephone poles); clean wood; industrial process or manufacturing wastes; medical waste; or motor vehicles (including motor vehicle parts or vehicle fluff). Household, commercial/retail, and institutional wastes include:

- (1) Yard waste;
- (2) Refuse-derived fuel; and

(3) Motor vehicle maintenance materials limited to vehicle batteries and tires except as specified in § 60.50b(g).

Municipal waste combustor, MWC, or municipal waste combustor unit:

(1) Means any setting or equipment that combusts solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected incinerators (with or without heat recovery), modular incinerators (starved-air or excess-air), boilers (i.e., steam generating units), furnaces (whether suspension-fired, grate-fired, mass-fired, air curtain incinerators, or fluidized bed-fired), and pyrolysis/combustion units. Municipal waste combustors do not include pyrolysis/combustion units located at a plastics/rubber recycling unit (as specified in § 60.50b(m)). Municipal waste combustors do not include cement kilns firing municipal solid waste (as specified in § 60.50b(p)). Municipal waste combustors do not include internal combustion engines, gas turbines, or other combustion devices that combust landfill gases collected by landfill gas collection systems.

(2) The boundaries of a municipal solid waste combustor are defined as follows. The municipal waste combustor unit includes, but is not limited to, the municipal solid waste fuel feed system, grate system, flue gas system, bottom ash system, and the combustor water system. The municipal waste combustor boundary starts at the municipal solid waste pit or hopper and extends through:

(i) The combustor flue gas system, which ends immediately following the heat recovery equipment or, if there is no heat recovery equipment, immediately following the combustion chamber,

(ii) The combustor bottom ash system, which ends at the truck loading station or similar ash handling equipment that transfer the ash to final disposal, including all ash handling systems that are connected to the bottom ash handling system; and

(iii) The combustor water system, which starts at the feed water pump and ends at the piping exiting the steam drum or superheater.

(3) The municipal waste combustor unit does not include air pollution control equipment, the stack, water treatment equipment, or the turbine-generator set.

Municipal waste combustor acid gases means all acid gases emitted in the exhaust gases from municipal waste combustor units including, but not limited to, sulfur dioxide and hydrogen chloride gases.

Municipal waste combustor metals means metals and metal compounds emitted in the exhaust gases from municipal waste combustor units.

Municipal waste combustor organics means organic compounds emitted in the exhaust gases from municipal waste combustor units and includes tetra-through octa- chlorinated dibenzo-p-dioxins and dibenzofurans.

Municipal waste combustor plant means one or more affected facilities (as defined in § 60.50b) at the same location.

Municipal waste combustor unit capacity means the maximum charging rate of a municipal waste combustor unit expressed in tons per day of municipal solid waste combusted, calculated according to the procedures under § 60.58b(j). Section 60.58b(j) includes procedures for determining municipal waste combustor unit capacity for continuous and batch feed municipal waste combustors.

Municipal waste combustor unit load means the steam load of the municipal waste combustor unit measured as specified in § 60.58b(i)(6).

Particulate matter means total particulate matter emitted from municipal waste combustor units as measured by EPA Reference Method 5 (see § 60.58b(c)).

Plastics/rubber recycling unit means an integrated processing unit where plastics, rubber, and/or rubber tires are the only feed materials (incidental contaminants may be included in the feed materials) and they are processed into a chemical plant feedstock or petroleum refinery feedstock, where the feedstock is marketed to and used by a chemical plant or petroleum refinery as input feedstock. The combined weight of the chemical plant feedstock and petroleum refinery feedstock, rubber recycling unit on a calendar quarter basis shall be more than 70 percent of the combined weight of the plastics, rubber, and rubber tires processed by the plastics/rubber recycling unit on a calendar quarter basis. The plastics, rubber, and/or rubber tire feed materials to the plastics/rubber recycling unit may originate from the separation or diversion of plastics, rubber, or rubber tires from MSW or industrial solid waste, and may include manufacturing scraps, trimmings, and off-specification plastics, rubber, and rubber tire discards. The plastics, rubber, and rubber tire feed materials to the plastics/rubber scycling unit may contain incidental contaminants (e.g., paper labels on plastic bottles, metal rings on plastic bottle caps, etc.).

Potential hydrogen chloride emission concentration means the hydrogen chloride emission concentration that would occur from combustion of municipal solid waste in the absence of any emission controls for municipal waste combustor acid gases.

Potential mercury emission concentration means the mercury emission concentration that would occur from combustion of municipal solid waste in the absence of any mercury emissions control.

Potential sulfur dioxide emissions means the sulfur dioxide emission concentration that would occur from combustion of municipal solid waste in the absence of any emission controls for municipal waste combustor acid gases.

Pulverized coal/refuse-derived fuel mixed fuel-fired combustor means a combustor that fires coal and refusederived fuel simultaneously, in which pulverized coal is introduced into an air stream that carries the coal to the combustion chamber of the unit where it is fired in suspension. This includes both conventional pulverized coal and micropulverized coal.

Pyrolysis/combustion unit means a unit that produces gases, liquids, or solids through the heating of municipal solid waste, and the gases, liquids, or solids produced are combusted and emissions vented to the atmosphere.

Reconstruction means rebuilding a municipal waste combustor unit for which the reconstruction commenced after June 19, 1996, and the cumulative costs of the construction over the life of the unit exceed 50 percent of the original cost of construction and installation of the unit (not including any cost of land purchased in connection with such construction or installation) updated to current costs (current dollars).

Refractory unit or refractory wall furnace means a combustion unit having no energy recovery (e.g., via a waterwall) in the furnace (i.e., radiant heat transfer section) of the combustor.

Refuse-derived fuel means a type of municipal solid waste produced by processing municipal solid waste through shredding and size classification. This includes all classes of refuse-derived fuel including low-density fluff refuse-derived fuel through densified refuse-derived fuel and pelletized refuse-derived fuel.

Refuse-derived fuel stoker means a steam generating unit that combusts refuse-derived fuel in a semisuspension firing mode using air-fed distributors.

Same location means the same or contiguous property that is under common ownership or control including properties that are separated only by a street, road, highway, or other public right-of-way. Common ownership or control includes properties that are owned, leased, or operated by the same entity, parent entity, subsidiary, subdivision, or any combination thereof including any municipality or other governmental unit, or any quasi-governmental authority (e.g., a public utility district or regional waste disposal authority).

Second calendar half means the period starting July 1 and ending on December 31 in any year.

Shift supervisor means the person who is in direct charge and control of the operation of a municipal waste combustor and who is responsible for onsite supervision, technical direction, management, and overall performance of the facility during an assigned shift.

Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor means a combustor that fires coal and refuse-derived fuel simultaneously, in which coal is introduced to the combustion zone by a mechanism that throws the fuel onto a grate from above. Combustion takes place both in suspension and on the grate.

Standard conditions means a temperature of 20 °C and a pressure of 101.3 kilopascals.

Total mass dioxin/furan or total mass means the total mass of tetra- through octa- chlorinated dibenzo-p-dioxins and dibenzofurans, as determined using EPA Reference Method 23 and the procedures specified under § 60.58b(g).

Tumbling-tile means a grate tile hinged at one end and attached to a ram at the other end. When the ram extends, the grate tile rotates around the hinged end.

Twenty-four hour daily average or 24-hour daily average means either the arithmetic mean or geometric mean (as specified) of all hourly emission concentrations when the affected facility is operating and combusting municipal solid waste measured over a 24-hour period between 12:00 midnight and the following midnight.

Untreated lumber means wood or wood products that have been cut or shaped and include wet, air-dried, and kiln-dried wood products. Untreated lumber does not include wood products that have been painted, pigment-stained, or "pressure-treated." Pressure-treating compounds include, but are not limited to, chromate copper arsenate, pentachlorophenol, and creosote.

Waterwall furnace means a combustion unit having energy (heat) recovery in the furnace (i.e., radiant heat transfer section) of the combustor.

Yard waste means grass, grass clippings, bushes, shrubs, and clippings from bushes and shrubs that are generated by residential, commercial/retail, institutional, and/or industrial sources as part of maintenance activities associated with yards or other private or public lands. Yard waste does not include construction, renovation, and demolition wastes, which are exempt from the definition of municipal solid waste in this section. Yard waste does not include clean wood, which is exempt from the definition of municipal solid waste in this section.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45121, 45126, Aug. 25, 1997; 66 FR 36476, July 12, 2001; 71 FR 27335, May 10, 2006]

§ 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

(a) The limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(5) of this section.

(1) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain particulate matter in excess of the limits specified in paragraph (a)(1)(i) or (a)(1)(ii) of this section.

(i) For affected facilities that commenced construction, modification, or reconstruction after September 20, 1994, and on or before December 19, 2005, the emission limit is 24 milligrams per dry standard cubic meter, corrected to 7 percent oxygen.

(ii) For affected facilities that commenced construction, modification, or reconstruction after December 19, 2005, the emission limit is 20 milligrams per dry standard cubic meter, corrected to 7 percent oxygen.

(2) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 10 percent opacity (6-minute average).

(3) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain cadmium in excess of the limits specified in paragraph (a)(3)(i) or (a)(3)(ii) of this section.

(i) For affected facilities that commenced construction, modification, or reconstruction after September 20, 1994, and on or before December 19, 2005, the emission limit is 20 micrograms per dry standard cubic meter, corrected to 7 percent oxygen.

(ii) For affected facilities that commenced construction, modification, or reconstruction after December 19, 2005, the emission limit is 10 micrograms per dry standard cubic meter, corrected to 7 percent oxygen.

(4) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from the affected facility any gases that contain lead in excess of the limits specified in paragraph (a)(4)(i) or (a)(4)(i) of this section.

(i) For affected facilities that commenced construction, modification, or reconstruction after September 20, 1994, and on or before December 19, 2005, the emission limit is 200 micrograms per dry standard cubic meter, corrected to 7 percent oxygen.

(ii) For affected facilities that commenced construction, modification, or reconstruction after December 19, 2005, the emission limit is 140 micrograms per dry standard cubic meter, corrected to 7 percent oxygen.

(5) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from the affected facility any gases that contain mercury in excess of the limits specified in paragraph (a)(5)(i) or (a)(5)(ii) of this section.

(i) For affected facilities that commenced construction, modification, or reconstruction after September 20, 1994 and on or before December 19, 2005, the emission limit is 80 micrograms per dry standard cubic meter or 15 percent of the potential mercury emission concentration (85-percent reduction by weight), corrected to 7 percent oxygen, whichever is less stringent.

(ii) For affected facilities that commenced construction, modification, or reconstruction after December 19, 2005, the emission limit is 50 micrograms per dry standard cubic meter, or 15 percent of the potential mercury emission concentration (85-percent reduction by weight), corrected to 7 percent oxygen, whichever is less stringent.

(b) The limits for municipal waste combustor acid gases are specified in paragraphs (b)(1) and (b)(2) of this section.

(1) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain sulfur dioxide in excess of 30 parts per million by volume or 20 percent of the potential sulfur dioxide emission concentration (80-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent. The averaging time is specified under § 60.58b(e).

(2) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain hydrogen chloride in excess of 25 parts per million by volume or 5 percent of the potential hydrogen chloride emission concentration (95-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent.

(c) The limits for municipal waste combustor organics are specified in paragraphs (c)(1) and (c)(2) of this section.

(1) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility for which construction, modification or reconstruction commences on or before November 20, 1997 shall cause to be discharged into the atmosphere from that affected facility any gases that contain dioxin/furan emissions that exceed 30 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen, for the first 3 years following the date of initial startup, no owner or operator shall cause to be discharged into the atmosphere from that affected facility any gases that contain dioxin/furan emissions that exceed 30 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen, for the first 3 years following the date of initial startup, no owner or operator shall cause to be discharged into the atmosphere from that affected facility any gases that contain dioxin/furan total mass emissions that exceed 13 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen.

(2) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility for which construction, modification, or reconstruction commences after November 20, 1997 shall cause to be discharged into the atmosphere from that affected facility any gases that contain dioxin/furan total mass emissions that exceed 13 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen.

(d) The limits for nitrogen oxides are specified in paragraphs (d)(1) and (d)(2) of this section.
(1) During the first year of operation after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain nitrogen oxides in excess of 180 parts per million by volume, corrected to 7 percent oxygen (dry basis). The averaging time is specified under § 60.58b(h).

(2) After the first year of operation following the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain nitrogen oxides in excess of 150 parts per million by volume, corrected to 7 percent oxygen (dry basis). The averaging time is specified under § 60.58b(h).

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45121, 45126, Aug. 25, 1997; 71 FR 27336, May 10, 2006]

§ 60.53b Standards for municipal waste combustor operating practices.

(a) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain carbon monoxide in excess of the emission limits specified in table 1 of this subpart.

Municipal waste combustor technology	Carbon monoxide emission limit (parts per million by volume) ^a	Averaging time (hours) ^b
Mass burn waterwall	100	4
Mass burn refractory	100	4
Mass burn rotary waterwall	100	24
Modular starved air	50	4
Modular excess air	50	4
Refuse-derived fuel stoker	150	24
Bubbling fluidized bed combustor	100	4
Circulating fluidized bed combustor	100	4
Pulverized coal/refuse-derived fuel mixed fuel-fired combustor	150	4
Spreader stoker coal/refuse- derived fuel mixed fuel-fired combustor	150	24

Table 1—Municipal Waste Combustor Operating Standards

^a Measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to 7 percent oxygen (dry basis). The averaging times are specified in greater detail in § 60.58b(i).

^b Averaging times are 4-hour or 24-hour block averages.

(b) No owner or operator of an affected facility shall cause such facility to operate at a load level greater than 110 percent of the maximum demonstrated municipal waste combustor unit load as defined in § 60.51b, except as specified in paragraphs (b)(1) and (b)(2) of this section. The averaging time is specified under § 60.58b(i).

(1) During the annual dioxin/furan or mercury performance test and the 2 weeks preceding the annual dioxin/furan or mercury performance test, no municipal waste combustor unit load limit is applicable if the provisions of paragraph (b)(2) of this section are met.

(2) The municipal waste combustor unit load limit may be waived in writing by the Administrator for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions. The municipal waste combustor unit load limit continues to apply, and remains enforceable, until and unless the Administrator grants the waiver.

(c) No owner or operator of an affected facility shall cause such facility to operate at a temperature, measured at the particulate matter control device inlet, exceeding 17 °C above the maximum demonstrated particulate matter control device temperature as defined in § 60.51b, except as specified in paragraphs (c)(1) and (c)(2) of this section. The averaging time is specified under § 60.58b(i). The requirements specified in this paragraph apply to each particulate matter control device utilized at the affected facility.

(1) During the annual dioxin/furan or mercury performance test and the 2 weeks preceding the annual dioxin/furan or mercury performance test, no particulate matter control device temperature limitations are applicable if the provisions of paragraph (b)(2) of this section are met.

(2) The particulate matter control device temperature limits may be waived in writing by the Administrator for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions. The temperature limits continue to apply, and remain enforceable, until and unless the Administrator grants the waiver.

(d) Paragraph (m)(2) of § 60.58b addresses treatment of activated carbon injection rate during dioxin/furan or mercury testing.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997; 71 FR 27336, May 10, 2006]

§ 60.54b Standards for municipal waste combustor operator training and certification.

(a) No later than the date 6 months after the date of startup of an affected facility or on December 19, 1996, whichever is later, each chief facility operator and shift supervisor shall obtain and maintain a current provisional operator certification from either the American Society of Mechanical Engineers [QRO-1-1994 (incorporated by reference—see § 60.17 of subpart A of this part)] or a State certification program.

(b) Not later than the date 6 months after the date of startup of an affected facility or on December 19, 1996, whichever is later, each chief facility operator and shift supervisor shall have completed full certification or shall have scheduled a full certification exam with either the American Society of Mechanical Engineers [QRO-1-1994 (incorporated by reference—see § 60.17 of subpart A of this part)] or a State certification program.

(c) No owner or operator of an affected facility shall allow the facility to be operated at any time unless one of the following persons is on duty and at the affected facility: A fully certified chief facility operator, a provisionally certified chief facility operator who is scheduled to take the full certification exam according to the schedule specified in paragraph (b) of this section, a fully certified shift supervisor, or a provisionally certified shift supervisor who is scheduled to take the full certification exam according to the schedule specified shift supervisor who is scheduled to take the full certification exam according to the schedule specified in paragraph (b) of this section.

(1) The requirement specified in paragraph (c) of this section shall take effect 6 months after the date of startup of the affected facility or on December 19, 1996, whichever is later.

(2) If both the certified chief facility operator and certified shift supervisor are unavailable, a provisionally certified control room operator on site at the municipal waste combustion unit may fulfill the certified operator requirement. Depending on the length of time that a certified chief facility operator and certified shift supervisor are away, the owner or operator of the affected facility must meet one of three criteria:

(i) When the certified chief facility operator and certified shift supervisor are both off site for 12 hours or less, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor.

(ii) When the certified chief facility operator and certified shift supervisor are off site for more than 12 hours, but for two weeks or less, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor without notice to, or approval by, the Administrator. However, the owner or operator of the affected facility must record the period when the certified chief facility operator are off site and include that information in the annual report as specified under § 60.59b(g)(5).

(iii) When the certified chief facility operator and certified shift supervisor are off site for more than two weeks, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor without approval by the Administrator. However, the owner or operator of the affected facility must take two actions:

(A) Notify the Administrator in writing. In the notice, state what caused the absence and what actions are being taken by the owner or operator of the facility to ensure that a certified chief facility operator or certified shift supervisor is on site as expeditiously as practicable.

(B) Submit a status report and corrective action summary to the Administrator every four weeks following the initial notification. If the Administrator provides notice that the status report or corrective action summary is disapproved, the municipal waste combustion unit may continue operation for 90 days, but then must cease operation. If corrective actions are taken in the 90-day period such that the Administrator withdraws the disapproval, municipal waste combustion may continue.

(3) A provisionally certified operator who is newly promoted or recently transferred to a shift supervisor position or a chief facility operator position at the municipal waste combustion unit may perform the duties of the certified chief facility operator or certified shift supervisor without notice to, or approval by, the Administrator for up to six months before taking the ASME QRO certification exam.

(d) All chief facility operators, shift supervisors, and control room operators at affected facilities must complete the EPA or State municipal waste combustor operator training course no later than the date 6 months after the date of startup of the affected facility or by December 19, 1996, whichever is later.

(e) The owner or operator of an affected facility shall develop and update on a yearly basis a site-specific operating manual that shall, at a minimum, address the elements of municipal waste combustor unit operation specified in paragraphs (e)(1) through (e)(11) of this section.

(1) A summary of the applicable standards under this subpart;

(2) A description of basic combustion theory applicable to a municipal waste combustor unit;

(3) Procedures for receiving, handling, and feeding municipal solid waste;

(4) Municipal waste combustor unit startup, shutdown, and malfunction procedures;

(5) Procedures for maintaining proper combustion air supply levels;

(6) Procedures for operating the municipal waste combustor unit within the standards established under this subpart;

(7) Procedures for responding to periodic upset or off-specification conditions;

(8) Procedures for minimizing particulate matter carryover;

(9) Procedures for handling ash;

(10) Procedures for monitoring municipal waste combustor unit emissions; and

(11) Reporting and recordkeeping procedures.

(f) The owner or operator of an affected facility shall establish a training program to review the operating manual according to the schedule specified in paragraphs (f)(1) and (f)(2) of this section with each person who has responsibilities affecting the operation of an affected facility including, but not limited to, chief facility operators, shift supervisors, control room operators, ash handlers, maintenance personnel, and crane/load handlers.

(1) Each person specified in paragraph (f) of this section shall undergo initial training no later than the date specified in paragraph (f)(1)(i), (f)(1)(ii), or (f)(1)(iii) of this section whichever is later.

(i) The date 6 months after the date of startup of the affected facility;

(ii) The date prior to the day the person assumes responsibilities affecting municipal waste combustor unit operation; or

(iii) December 19, 1996.

(2) Annually, following the initial review required by paragraph (f)(1) of this section.

(g) The operating manual required by paragraph (e) of this section shall be kept in a readily accessible location for all persons required to undergo training under paragraph (f) of this section. The operating manual and records of training shall be available for inspection by the EPA or its delegated enforcement agency upon request.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997; 71 FR 27337, May 10, 2006]

§ 60.55b Standards for municipal waste combustor fugitive ash emissions.

(a) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, no owner or operator of an affected facility shall cause to be discharged to the atmosphere visible emissions of combustion ash from an ash conveying system (including conveyor transfer points) in excess of 5 percent of the observation period (i.e., 9 minutes per 3-hour period), as determined by EPA Reference Method 22 observations as specified in § 60.58b(k), except as provided in paragraphs (b) and (c) of this section.

(b) The emission limit specified in paragraph (a) of this section does not cover visible emissions discharged inside buildings or enclosures of ash conveying systems; however, the emission limit specified in paragraph (a) of this section does cover visible emissions discharged to the atmosphere from buildings or enclosures of ash conveying systems.

(c) The provisions specified in paragraph (a) of this section do not apply during maintenance and repair of ash conveying systems.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]

§ 60.56b Standards for air curtain incinerators.

On and after the date on which the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, the owner or operator of an air curtain incinerator with the capacity to combust greater than 250 tons per day of municipal solid waste and that combusts a fuel feed stream composed of 100 percent yard waste and no other municipal solid waste materials shall at no time cause to be discharged into the atmosphere from that incinerator any gases that exhibit greater than 10-percent opacity (6-minute average), except that an opacity level of up to 35 percent (6-minute average) is permitted during startup periods during the first 30 minutes of operation of the unit.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997]

§ 60.57b Siting requirements.

(a) The owner or operator of an affected facility shall prepare a materials separation plan, as defined in § 60.51b, for the affected facility and its service area, and shall comply with the requirements specified in paragraphs (a)(1) through (a)(10) of this section. The initial application is defined as representing a good faith submittal as determined by EPA.

(1) The owner or operator shall prepare a preliminary draft materials separation plan and shall make the plan available to the public as specified in paragraphs (a)(1)(i) and (a)(1)(i) of this section.

(i) The owner or operator shall distribute the preliminary draft materials separation plan to the principal public libraries in the area where the affected facility is to be constructed.

(ii) The owner or operator shall publish a notification of a public meeting in the principal newspaper(s) serving the area where the affected facility is to be constructed and where the waste treated by the affected facility will primarily be collected. As a minimum, the notification shall include the information specified in paragraphs (a)(1)(ii)(A) through (a)(1)(ii)(D) of this section.

(A) The date, time, and location of the public meeting.

(B) The location of the public libraries where the preliminary draft materials separation plan may be found, including normal business hours of the libraries.

(C) An agenda of the issues to be discussed at the public meeting.

(D) The dates that the public comment period on the preliminary draft materials separation plan begins and ends.

(2) The owner or operator shall conduct a public meeting, accept comments on the preliminary draft materials separation plan, and comply with the requirements specified in paragraphs (a)(2)(i) through (a)(2)(iv) of this section.

(i) The public meeting shall be conducted in the county where the affected facility is to be located.

(ii) The public meeting shall be scheduled to occur 30 days or more after making the preliminary draft materials separation plan available to the public as specified under paragraph (a)(1) of this section.

(iii) Suggested issues to be addressed at the public meeting are listed in paragraphs (a)(2)(iii)(A) through (a)(2)(iii)(H) of this section.

(A) The expected size of the service area for the affected facility.

- (B) The amount of waste generation anticipated for the service area.
- (C) The types and estimated amounts of materials proposed for separation.
- (D) The methods proposed for materials separation.
- (E) The amount of residual waste to be disposed.

(F) Alternate disposal methods for handling the residual waste.

(G) Identification of the location(s) where responses to public comment on the preliminary draft materials separation plan will be available for inspection, as specified in paragraphs (a)(3) and (a)(4) of this section.

(H) Identification of the locations where the final draft materials separation plan will be available for inspection, as specified in paragraph (a)(7).

(iv) Nothing in this section shall preclude an owner or operator from combining this public meeting with any other public meeting required as part of any other Federal, State, or local permit review process except the public meeting required under paragraph (b)(4) of this section.

(3) Following the public meeting required by paragraph (a)(2) of this section, the owner or operator shall prepare responses to the comments received at the public meeting.

(4) The owner or operator shall make the document summarizing responses to public comments available to the public (including distribution to the principal public libraries used to announce the meeting) in the service area where the affected facility is to be located.

(5) The owner or operator shall prepare a final draft materials separation plan for the affected facility considering the public comments received at the public meeting.

(6) As required under § 60.59b(a), the owner or operator shall submit to EPA a copy of the notification of the public meeting, a transcript of the public meeting, the document summarizing responses to public comments, and copies of both the preliminary and final draft materials separation plans on or before the time the facility's application for a construction permit is submitted under 40 CFR part 51, subpart I, or part 52, as applicable.

(7) As part of the distribution of the siting analysis required under paragraph (b)(3) of this section, the owner or operator shall make the final draft materials separation plan required under paragraph (a)(5) of this section available to the public, as specified in paragraph (b)(3) of this section.

(8) As part of the public meeting for review of the siting analysis required under paragraph (b)(4) of this section, the owner or operator shall address questions concerning the final draft materials separation plan required by paragraph (a)(5) of this section including discussion of how the final draft materials separation plan has changed from the preliminary draft materials separation plan that was discussed at the first public meeting required by paragraph (a)(2) of this section.

(9) If the owner or operator receives any comments on the final draft materials separation plan during the public meeting required in paragraph (b)(4) of this section, the owner or operator shall respond to those comments in the document prepared in accordance with paragraph (b)(5) of this section.

(10) The owner or operator shall prepare a final materials separation plan and shall submit, as required under § 60.59b(b)(5)(ii), the final materials separation plan as part of the initial notification of construction.

(b) The owner or operator of an affected facility for which the initial application for a construction permit under 40 CFR part 51, subpart I, or part 52, as applicable, is submitted after December 19, 1995 shall prepare a siting analysis in accordance with paragraphs (b)(1) and (b)(2) of this section and shall comply with the requirements specified in paragraphs (b)(3) through (b)(7) of this section.

(1) The siting analysis shall be an analysis of the impact of the affected facility on ambient air quality, visibility, soils, and vegetation.

(2) The analysis shall consider air pollution control alternatives that minimize, on a site-specific basis, to the maximum extent practicable, potential risks to the public health or the environment.

(3) The owner or operator shall make the siting analysis and final draft materials separation plan required by paragraph (a)(5) of this section available to the public as specified in paragraphs (b)(3)(i) and (b)(3)(ii) of this section.

(i) The owner or operator shall distribute the siting analysis and final draft materials separation plan to the principal public libraries in the area where the affected facility is to be constructed.

(ii) The owner or operator shall publish a notification of a public meeting in the principal newspaper(s) serving the area where the affected facility is to be constructed and where the waste treated by the affected facility will primarily be collected. As a minimum, the notification shall include the information specified in paragraphs (b)(3)(ii)(A) through (b)(3)(ii)(D) of this section.

(A) The date, time, and location of the public meeting.

(B) The location of the public libraries where the siting analyses and final draft materials separation plan may be found, including normal business hours.

(C) An agenda of the issues to be discussed at the public meeting.

(D) The dates that the public comment period on the siting analyses and final draft materials separation plan begins and ends.

(4) The owner or operator shall conduct a public meeting and accept comments on the siting analysis and the final draft materials separation plan required under paragraph (a)(5) of this section. The public meeting shall be conducted in the county where the affected facility is to be located and shall be scheduled to occur 30 days or more after making the siting analysis available to the public as specified under paragraph (b)(3) of this section.

(5) The owner or operator shall prepare responses to the comments on the siting analysis and the final draft materials separation plan that are received at the public meeting.

(6) The owner or operator shall make the document summarizing responses to public comments available to the public (including distribution to all public libraries) in the service area where the affected facility is to be located.

(7) As required under § 60.59b(b)(5), the owner or operator shall submit a copy of the notification of the public meeting, a transcript of the public meeting, the document summarizing responses to public comments, and the siting analysis as part of the initial notification of construction.

(c) The owner or operator of an affected facility for which construction is commenced after September 20, 1994 shall prepare a siting analysis in accordance with 40 CFR part 51, subpart I, or part 52, as applicable, and shall submit the siting analysis as part of the initial notification of construction. Affected facilities subject to paragraphs (a) and (b) of this section are not subject to this paragraph.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997; 71 FR 27337, May 10, 2006]

§ 60.58b Compliance and performance testing.

(a) The provisions for startup, shutdown, and malfunction are provided in paragraphs (a)(1) and (a)(2) of this section.

(1) Except as provided by § 60.56b, the standards under this subpart apply at all times except during periods of startup, shutdown, and malfunction. Duration of startup, shutdown, or malfunction periods are limited to 3 hours per occurrence, except as provided in paragraph (a)(1)(iii) of this section. During periods of startup, shutdown, or malfunction, monitoring data shall be dismissed or excluded from compliance calculations, but shall be recorded and reported in accordance with the provisions of 40 CFR 60.59b(d)(7).

(i) The startup period commences when the affected facility begins the continuous burning of municipal solid waste and does not include any warmup period when the affected facility is combusting fossil fuel or other nonmunicipal solid waste fuel, and no municipal solid waste is being fed to the combustor.

(ii) Continuous burning is the continuous, semicontinuous, or batch feeding of municipal solid waste for purposes of waste disposal, energy production, or providing heat to the combustion system in preparation for waste disposal or energy production. The use of municipal solid waste solely to provide thermal protection of the grate or hearth during the startup period when municipal solid waste is not being fed to the grate is not considered to be continuous burning.

(iii) For the purpose of compliance with the carbon monoxide emission limits in § 60.53b(a), if a loss of boiler water level control (e.g., boiler waterwall tube failure) or a loss of combustion air control (e.g., loss of combustion air fan, induced draft fan, combustion grate bar failure) is determined to be a malfunction, the duration of the malfunction period is limited to 15 hours per occurrence. During such periods of malfunction, monitoring data shall be dismissed or excluded from compliance calculations, but shall be recorded and reported in accordance with the provisions of § 60.59b(d)(7).

(2) The opacity limits for air curtain incinerators specified in § 60.56b apply at all times as specified under § 60.56b except during periods of malfunction. Duration of malfunction periods are limited to 3 hours per occurrence.

(b) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a continuous emission monitoring system for measuring the oxygen or carbon dioxide content of the flue gas at each location where carbon monoxide, sulfur dioxide, nitrogen oxides emissions, or particulate matter (if the owner or operator elects to continuously monitor emissions under paragraph (n) of this section) are monitored and record the output of the system and shall comply with the test procedures and test methods specified in paragraphs (b)(1) through (b)(8) of this section.

(1) The span value of the oxygen (or 20 percent carbon dioxide) monitor shall be 25 percent oxygen (or 20 percent carbon dioxide).

(2) The monitor shall be installed, evaluated, and operated in accordance with § 60.13 of subpart A of this part.

(3) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under § 60.8 of subpart A of this part.

(4) The monitor shall conform to Performance Specification 3 in appendix B of this part except for section 2.3 (relative accuracy requirement).

(5) The quality assurance procedures of appendix F of this part except for section 5.1.1 (relative accuracy test audit) shall apply to the monitor.

(6) If carbon dioxide is selected for use in diluent corrections, the relationship between oxygen and carbon dioxide levels shall be established during the initial performance test according to the procedures and methods specified in paragraphs (b)(6)(i) through (b)(6)(iv) of this section. This relationship may be reestablished during performance compliance tests.

(i) The fuel factor equation in Method 3B shall be used to determine the relationship between oxygen and carbon dioxide at a sampling location. Method 3, 3A, or 3B, or as an alternative ASME PTC-19-10-1981—part10, as applicable, shall be used to determine the oxygen concentration at the same location as the carbon dioxide monitor.

(ii) Samples shall be taken for at least 30 minutes in each hour.

(iii) Each sample shall represent a 1-hour average.

(iv) A minimum of three runs shall be performed.

(7) The relationship between carbon dioxide and oxygen concentrations that is established in accordance with paragraph (b)(6) of this section shall be submitted to EPA as part of the initial performance test report and, if applicable, as part of the annual test report if the relationship is reestablished during the annual performance test.

(8) During a loss of boiler water level control or loss of combustion air control malfunction period as specified in paragraph (a)(1)(iii) of this section, a diluent cap of 14 percent for oxygen or 5 percent for carbon dioxide may be used in the emissions calculations for sulfur dioxide and nitrogen oxides.

(c) Except as provided in paragraph (c)(10) of this section, the procedures and test methods specified in paragraphs (c)(1) through (c)(11) of this section shall be used to determine compliance with the emission limits for particulate matter and opacity under § 60.52b(a)(1) and (a)(2).

(1) The EPA Reference Method 1 shall be used to select sampling site and number of traverse points.

(2) The EPA Reference Method 3, 3A or 3B, or as an alternative ASME PTC-19-10-1981—part10, as applicable, shall be used for gas analysis.

(3) EPA Reference Method 5 shall be used for determining compliance with the particulate matter emission limit. The minimum sample volume shall be 1.7 cubic meters. The probe and filter holder heating systems in the sample train shall be set to provide a gas temperature no greater than 160 °C. An oxygen or carbon dioxide measurement shall be obtained simultaneously with each Method 5 run.

(4) The owner or operator of an affected facility may request that compliance with the particulate matter emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(5) As specified under § 60.8 of subpart A of this part, all performance tests shall consist of three test runs. The average of the particulate matter emission concentrations from the three test runs is used to determine compliance.

(6) In accordance with paragraphs (c)(7) and (c)(11) of this section, EPA Reference Method 9 shall be used for determining compliance with the opacity limit except as provided under § 60.11(e) of subpart A of this part.

(7) The owner or operator of an affected facility shall conduct an initial performance test for particulate matter emissions and opacity as required under § 60.8 of subpart A of this part.

(8) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a continuous opacity monitoring system for measuring opacity and shall follow the methods and procedures specified in paragraphs (c)(8)(i) through (c)(8)(iv) of this section.

(i) The output of the continuous opacity monitoring system shall be recorded on a 6-minute average basis.

(ii) The continuous opacity monitoring system shall be installed, evaluated, and operated in accordance with § 60.13 of subpart A of this part.

(iii) The continuous opacity monitoring system shall conform to Performance Specification 1 in appendix B of this part.

(iv) The initial performance evaluation shall be completed no later than 180 days after the date of the initial startup of the municipal waste combustor unit, as specified under § 60.8 of subpart A of this part.

(9) Following the date that the initial performance test for particulate matter is completed or is required to be completed under § 60.8 of subpart A of this part for an affected facility, the owner or operator shall conduct a performance test for particulate matter on a calendar year basis (no less than 9 calendar months and no more than 15 calendar months following the previous performance test; and must complete five performance tests in each 5-year calendar period).

(10) In place of particulate matter testing with EPA Reference Method 5, an owner or operator may elect to install, calibrate, maintain, and operate a continuous emission monitoring system for monitoring particulate matter emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility who elects to continuously monitor particulate matter emissions instead of conducting performance testing using EPA Method 5 shall install, calibrate, maintain, and operate a continuous emission monitoring system and shall comply with the requirements specified in paragraphs (c)(10)(i) through (c)(10)(xiv) of this section. The owner or operator who elects to continuously monitor particulate matter emissions instead of conducting performance testing using EPA Method 5 is not required to complete performance testing for particulate matter as specified in paragraph (c)(9) of this section and is not required to continuously monitor opacity as specified in paragraph (c)(8) of this section.

(i) Notify the Administrator one month before starting use of the system.

(ii) Notify the Administrator one month before stopping use of the system.

(iii) The monitor shall be installed, evaluated, and operated in accordance with § 60.13 of subpart A of this part.

(iv) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under § 60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of the continuous monitoring system if the owner or operator was previously determining compliance by Method 5 performance tests, whichever is later.

(v) The owner or operator of an affected facility may request that compliance with the particulate matter emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(vi) The owner or operator of an affected facility shall conduct an initial performance test for particulate matter emissions as required under § 60.8 of subpart A of this part. Compliance with the particulate matter emission limit shall be determined by using the continuous emission monitoring system specified in paragraph (c)(10) of this section to measure particulate matter and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19, section 12.4.1.

(vii) Compliance with the particulate matter emission limit shall be determined based on the 24-hour daily (block) average of the hourly arithmetic average emission concentrations using continuous emission monitoring system outlet data.

(viii) After April 28, 2008, at a minimum, valid continuous monitoring system hourly averages shall be obtained as specified in paragraphs (c)(10)(viii)(A) and (c)(10)(viii)(B) for at least 90 percent of the operating hours per calendar quarter and 95 percent of the operating hours per calendar year that the affected facility is combusting municipal solid waste.

(A) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(B) Each particulate matter 1-hour arithmetic average shall be corrected to 7 percent oxygen on an hourly basis using the 1-hour arithmetic average of the oxygen (or carbon dioxide) continuous emission monitoring system data.

(ix) The 1-hour arithmetic averages required under paragraph (c)(10)(vii) of this section shall be expressed in milligrams per dry standard cubic meter corrected to 7 percent oxygen (dry basis) and shall be used to calculate the 24-hour daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under § 60.13(e)(2) of subpart A of this part.

(x) All valid continuous emission monitoring system data shall be used in calculating average emission concentrations even if the minimum continuous emission monitoring system data requirements of paragraph (c)(10)(viii) of this section are not met.

(xi) The continuous emission monitoring system shall be operated according to Performance Specification 11 in appendix B of this part.

(xii) During each relative accuracy test run of the continuous emission monitoring system required by Performance Specification 11 in appendix B of this part, particulate matter and oxygen (or carbon dioxide) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and the test methods specified in paragraphs (c)(10)(xii)(A) and (c)(10)(xii)(B) of this section.

(A) For particulate matter, EPA Reference Method 5 shall be used.

(B) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 3B, as applicable shall be used.

(xiii) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part.

(xiv) When particulate matter emissions data are not obtained because of continuous emission monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 to provide, as necessary, valid emissions data for a minimum of 90 percent of the hours per calendar quarter and 95 percent of the hours per calendar year that the affected facility is operated and combusting municipal solid waste.

(11) Following the date that the initial performance test for opacity is completed or is required to be completed under § 60.8 of subpart A of this part for an affected facility, the owner or operator shall conduct a performance test for opacity on an annual basis (no less than 9 calendar months and no more than 15 calendar months following the previous performance test; and must complete five performance tests in each 5-year calendar period) using the test method specified in paragraph (c)(6) of this section.

(d) The procedures and test methods specified in paragraphs (d)(1) and (d)(2) of this section shall be used to determine compliance with the emission limits for cadmium, lead, and mercury under § 60.52b(a).

(1) The procedures and test methods specified in paragraphs (d)(1)(i) through (d)(1)(ix) of this section shall be used to determine compliance with the emission limits for cadmium and lead under § 60.52b(a) (3) and (4).

(i) The EPA Reference Method 1 shall be used for determining the location and number of sampling points.

(ii) The EPA Reference Method 3, 3A, or 3B, or as an alternative ASME PTC-19-10-1981—part10, as applicable, shall be used for flue gas analysis.

(iii) The EPA Reference Method 29 shall be used for determining compliance with the cadmium and lead emission limits.

(iv) An oxygen or carbon dioxide measurement shall be obtained simultaneously with each Method 29 test run for cadmium and lead required under paragraph (d)(1)(iii) of this section.

(v) The owner or operator of an affected facility may request that compliance with the cadmium or lead emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(vi) All performance tests shall consist of a minimum of three test runs conducted under representative full load operating conditions. The average of the cadmium or lead emission concentrations from three test runs or more shall be used to determine compliance.

(vii) Following the date of the initial performance test or the date on which the initial performance test is required to be completed under § 60.8 of subpart A of this part, the owner or operator of an affected facility shall conduct a performance test for compliance with the emission limits for cadmium and lead on a calendar year basis (no less than 9 calendar months and no more than 15 calendar months following the previous performance test; and must complete five performance tests in each 5-year calendar period).

(viii)-(ix) [Reserved]

(2) The procedures and test methods specified in paragraphs (d)(2)(i) through (d)(2)(xi) of this section shall be used to determine compliance with the mercury emission limit under § 60.52b(a)(5).

(i) The EPA Reference Method 1 shall be used for determining the location and number of sampling points.

(ii) The EPA Reference Method 3, 3A, or 3B, or as an alternative ASME PTC-19-10-1981—part10, as applicable, shall be used for flue gas analysis.

(iii) The EPA Reference Method 29 or as an alternative ASTM D6784-02 shall be used to determine the mercury emission concentration. The minimum sample volume when using Method 29 as an alternative ASTM D6784-02 for mercury shall be 1.7 cubic meters.

(iv) An oxygen (or carbon dioxide) measurement shall be obtained simultaneously with each Method 29 or as an alternative ASTM D6784-02 test run for mercury required under paragraph (d)(2)(iii) of this section.

(v) The percent reduction in the potential mercury emissions (%PHg) is computed using equation 1:

where:

%PHg = percent reduction of the potential mercury emissions achieved.

Ei = potential mercury emission concentration measured at the control device inlet, corrected to 7 percent oxygen (dry basis).

Eo = controlled mercury emission concentration measured at the mercury control device outlet, corrected to 7 percent oxygen (dry basis).

(vi) All performance tests shall consist of a minimum of three test runs conducted under representative full load operating conditions. The average of the mercury emission concentrations or percent reductions from three test runs or more is used to determine compliance.

(vii) The owner or operator of an affected facility may request that compliance with the mercury emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(viii) The owner or operator of an affected facility shall conduct an initial performance test for mercury emissions as required under § 60.8 of subpart A of this part.

(ix) Following the date that the initial performance test for mercury is completed or is required to be completed under § 60.8 of subpart A of this part, the owner or operator of an affected facility shall conduct a performance test for mercury emissions on a calendar year basis (no less than 9 calendar months and no more than 15 calendar months from the previous performance test; and must complete five performance tests in each 5-year calendar period).

(x) [Reserved]

(xi) The owner or operator of an affected facility where activated carbon injection is used to comply with the mercury emission limit shall follow the procedures specified in paragraph (m) of this section for measuring and calculating carbon usage.

(3) In place of cadmium and lead testing with EPA Reference Method 29 as an alternative ASTM D6784-02, an owner or operator may elect to install, calibrate, maintain, and operate a continuous emission monitoring system for monitoring cadmium and lead emissions discharged to the atmosphere and record the output of the system according to the provisions of paragraphs (n) and (o) of this section.

40 CFR 60, Subpart Eb Attachment E

(4) In place of mercury testing with EPA Reference Method 29 or as an alternative ASTM D6784-02, an owner or operator may elect to install, calibrate, maintain, and operate a continuous emission monitoring system or a continuous automated sampling system for monitoring mercury emissions discharged to the atmosphere and record the output of the system according to the provisions of paragraphs (n) and (o) of this section, or paragraphs (p) and (q) of this section, as appropriate. The owner or operator who elects to continuously monitor mercury in place of mercury testing with EPA Reference Method 29 or as an alternative ASTM D6784-02 is not required to complete performance testing for mercury as specified in paragraph (d)(2)(ix) of this section.

(e) The procedures and test methods specified in paragraphs (e)(1) through (e)(14) of this section shall be used for determining compliance with the sulfur dioxide emission limit under 60.52b(b)(1).

(1) The EPA Reference Method 19, section 4.3, shall be used to calculate the daily geometric average sulfur dioxide emission concentration.

(2) The EPA Reference Method 19, section 5.4, shall be used to determine the daily geometric average percent reduction in the potential sulfur dioxide emission concentration.

(3) The owner or operator of an affected facility may request that compliance with the sulfur dioxide emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(4) The owner or operator of an affected facility shall conduct an initial performance test for sulfur dioxide emissions as required under § 60.8 of subpart A of this part. Compliance with the sulfur dioxide emission limit (concentration or percent reduction) shall be determined by using the continuous emission monitoring system specified in paragraph (e)(5) of this section to measure sulfur dioxide and calculating a 24-hour daily geometric average emission concentration or a 24-hour daily geometric average percent reduction using EPA Reference Method 19, sections 4.3 and 5.4, as applicable.

(5) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a continuous emission monitoring system for measuring sulfur dioxide emissions discharged to the atmosphere and record the output of the system.

(6) Following the date that the initial performance test for sulfur dioxide is completed or is required to be completed under § 60.8 of subpart A of this part, compliance with the sulfur dioxide emission limit shall be determined based on the 24-hour daily geometric average of the hourly arithmetic average emission concentrations using continuous emission monitoring system outlet data if compliance is based on an emission concentration, or continuous emission monitoring system inlet and outlet data if compliance is based on a percent reduction.

(7) At a minimum, valid continuous monitoring system hourly averages shall be obtained as specified in paragraphs (e)(7)(i) and (e)(7)(i) for 90 percent of the operating hours per calendar quarter and 95 percent of the operating days per calendar year that the affected facility is combusting municipal solid waste.

(i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) Each sulfur dioxide 1-hour arithmetic average shall be corrected to 7 percent oxygen on an hourly basis using the 1-hour arithmetic average of the oxygen (or carbon dioxide) continuous emission monitoring system data.

(8) The 1-hour arithmetic averages required under paragraph (e)(6) of this section shall be expressed in parts per million corrected to 7 percent oxygen (dry basis) and used to calculate the 24-hour daily geometric average emission concentrations and daily geometric average emission percent reductions. The 1-hour arithmetic averages shall be calculated using the data points required under § 60.13(e)(2) of subpart A of this part.

(9) All valid continuous emission monitoring system data shall be used in calculating average emission concentrations and percent reductions even if the minimum continuous emission monitoring system data requirements of paragraph (e)(7) of this section are not met.

(10) The procedures under § 60.13 of subpart A of this part shall be followed for installation, evaluation, and operation of the continuous emission monitoring system.

(11) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the municipal waste combustor as specified under § 60.8 of subpart A of this part.

(12) The continuous emission monitoring system shall be operated according to Performance Specification 2 in appendix B of this part. For sources that have actual inlet emissions less than 100 parts per million dry volume, the relative accuracy criterion for inlet sulfur dioxide continuous emission monitoring systems should be no greater than 20 percent of the mean value of the reference method test data in terms of the units of the emission standard, or 5 parts per million dry volume absolute value of the mean difference between the reference method and the continuous emission monitoring systems, whichever is greater.

(i) During each relative accuracy test run of the continuous emission monitoring system required by Performance Specification 2 in appendix B of this part, sulfur dioxide and oxygen (or carbon dioxide) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and the test methods specified in paragraphs (e)(12)(i)(A) and (e)(12)(i)(B) of this section.

(A) For sulfur dioxide, EPA Reference Method 6, 6A, or 6C, or as an alternative ASME PTC-19-10-1981—part10, shall be used.

(B) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 3B, or as an alternative ASME PTC-19-10-1981—part10, as applicable, shall be used.

(ii) The span value of the continuous emissions monitoring system at the inlet to the sulfur dioxide control device shall be 125 percent of the maximum estimated hourly potential sulfur dioxide emissions of the municipal waste combustor unit. The span value of the continuous emission monitoring system at the outlet of the sulfur dioxide control device shall be 50 percent of the maximum estimated hourly potential sulfur dioxide emissions of the municipal waste combustor combustor unit.

(13) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 1 in appendix F of this part.

(14) When sulfur dioxide emissions data are not obtained because of continuous emission monitoring system breakdowns, repairs, calibration checks, and/or zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by EPA or EPA Reference Method 19 to provide, as necessary, valid emissions data for a minimum of 90 percent of the hours per calendar quarter and 95 percent of the hours per calendar year that the affected facility is operated and combusting municipal solid waste.

(f) The procedures and test methods specified in paragraphs (f)(1) through (f)(8) of this section shall be used for determining compliance with the hydrogen chloride emission limit under 60.52b(b)(2).

(1) The EPA Reference Method 26 or 26A, as applicable, shall be used to determine the hydrogen chloride emission concentration. The minimum sampling time shall be 1 hour.

(2) An oxygen (or carbon dioxide) measurement shall be obtained simultaneously with each test run for hydrogen chloride required by paragraph (f)(1) of this section.

(3) The percent reduction in potential hydrogen chloride emissions (% PHCI) is computed using equation 2:

where:

%PHCI = percent reduction of the potential hydrogen chloride emissions achieved.

Ei = potential hydrogen chloride emission concentration measured at the control device inlet, corrected to 7 percent oxygen (dry basis).

Eo = controlled hydrogen chloride emission concentration measured at the control device outlet, corrected to 7 percent oxygen (dry basis).

(4) The owner or operator of an affected facility may request that compliance with the hydrogen chloride emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(5) As specified under § 60.8 of subpart A of this part, all performance tests shall consist of three test runs. The average of the hydrogen chloride emission concentrations or percent reductions from the three test runs is used to determine compliance.

(6) The owner or operator of an affected facility shall conduct an initial performance test for hydrogen chloride as required under § 60.8 of subpart A of this part.

(7) Following the date that the initial performance test for hydrogen chloride is completed or is required to be completed under § 60.8 of subpart A of this part, the owner or operator of an affected facility shall conduct a performance test for hydrogen chloride emissions on an annual basis (no more than 12 calendar months following the previous performance test).

(8) In place of hydrogen chloride testing with EPA Reference Method 26 or 26A, an owner or operator may elect to install, calibrate, maintain, and operate a continuous emission monitoring system for monitoring hydrogen chloride emissions discharged to the atmosphere and record the output of the system according to the provisions of paragraphs (n) and (o) of this section.

(g) The procedures and test methods specified in paragraphs (g)(1) through (g)(9) of this section shall be used to determine compliance with the limits for dioxin/furan emissions under 60.52b(c).

(1) The EPA Reference Method 1 shall be used for determining the location and number of sampling points.

(2) The EPA Reference Method 3, 3A, or 3B, or as an alternative ASME PTC-19-10-1981—part10, as applicable, shall be used for flue gas analysis.

(3) The EPA Reference Method 23 shall be used for determining the dioxin/furan emission concentration.

(i) The minimum sample time shall be 4 hours per test run.

(ii) An oxygen (or carbon dioxide) measurement shall be obtained simultaneously with each Method 23 test run for dioxins/furans.

(4) The owner or operator of an affected facility shall conduct an initial performance test for dioxin/furan emissions in accordance with paragraph (g)(3) of this section, as required under § 60.8 of subpart A of this part.

(5) Following the date that the initial performance test for dioxins/furans is completed or is required to be completed under § 60.8 of subpart A of this part, the owner or operator of an affected facility shall conduct performance tests for dioxin/furan emissions in accordance with paragraph (g)(3) of this section, according to one of the schedules specified in paragraphs (g)(5)(i) through (g)(5)(ii) of this section.

(i) For affected facilities, performance tests shall be conducted on a calendar year basis (no less than 9 calendar months and no more than 15 calendar months following the previous performance test; and must complete five performance tests in each 5-year calendar period).

(ii) For the purpose of evaluating system performance to establish new operating parameter levels, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions, the owner or operator of an affected facility that qualifies for the performance testing schedule specified in paragraph (g)(5)(iii) of this section, may test one unit for dioxin/furan and apply the dioxin/furan operating parameters to similarly designed and equipped units on site by meeting the requirements specified in paragraphs (g)(5)(ii)(A) through (g)(5)(ii)(D) of this section.

(A) Follow the testing schedule established in paragraph (g)(5)(iii) of this section. For example, each year a different affected facility at the municipal waste combustor plant shall be tested, and the affected facilities at the plant shall be tested in sequence (e.g., unit 1, unit 2, unit 3, as applicable).

(B) Upon meeting the requirements in paragraph (g)(5)(iii) of this section for one affected facility, the owner or operator may elect to apply the average carbon mass feed rate and associated carbon injection system operating parameter levels for dioxin/furan as established in paragraph (m) of this section to similarly designed and equipped units on site.

(C) Upon testing each subsequent unit in accordance with the testing schedule established in paragraph (g)(5)(iii) of this section, the dioxin/furan and mercury emissions of the subsequent unit shall not exceed the dioxin/furan and mercury emissions measured in the most recent test of that unit prior to the revised operating parameter levels.

(D) The owner or operator of an affected facility that selects to follow the performance testing schedule specified in paragraph (g)(5)(iii) of this section and apply the carbon injection system operating parameters to similarly designed and equipped units on site shall follow the procedures specified in § 60.59b(g)(4) for reporting.

(iii) Where all performance tests over a 2-year period indicate that dioxin/furan emissions are less than or equal to 7 nanograms per dry standard cubic meter (total mass) for all affected facilities located within a municipal waste combustor plant, the owner or operator of the municipal waste combustor plant may elect to conduct annual performance tests for one affected facility (i.e., unit) per year at the municipal waste combustor plant. At a minimum, a performance test for dioxin/furan emissions shall be conducted on a calendar year basis (no less than 9 calendar months and no more than 15 months following the previous performance test; and must complete five performance tests in each 5-year calendar period) for one affected facility at the municipal waste combustor plant. Each year a different affected facility at the municipal waste combustor plant shall be tested, and the affected facilities at the plant shall be tested in sequence (e.g., unit 1, unit 2, unit 3, as applicable). If each annual performance test continues to indicate a dioxin/furan emission level less than or equal to 7 nanograms per dry standard cubic meter (total mass), the owner or operator may continue conducting a performance test on only one affected facility per calendar year. If any annual performance tests indicates either a dioxin/furan emission level greater than 7 nanograms per dry standard cubic meter (total mass), performance tests for all affected facilities at the plant until and unless all annual performance tests for all affected facilities at the plant or equal to 7 nanograms per dry standard cubic meter (total mass).

(6) The owner or operator of an affected facility that selects to follow the performance testing schedule specified in paragraph (g)(5)(iii) of this section shall follow the procedures specified in § 60.59b(g)(4) for reporting the selection of this schedule.

(7) The owner or operator of an affected facility where activated carbon is used shall follow the procedures specified in paragraph (m) of this section for measuring and calculating the carbon usage rate.

(8) The owner or operator of an affected facility may request that compliance with the dioxin/furan emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(9) As specified under § 60.8 of subpart A of this part, all performance tests shall consist of three test runs. The average of the dioxin/furan emission concentrations from the three test runs is used to determine compliance.

(10) In place of dioxin/furan sampling and testing with EPA Reference Method 23, an owner or operator may elect to sample dioxin/furan by installing, calibrating, maintaining, and operating a continuous automated sampling system for monitoring dioxin/furan emissions discharged to the atmosphere, recording the output of the system, and analyzing the sample using EPA Method 23. This option to use a continuous automated sampling system takes effect on the date a final performance specification applicable to dioxin/furan from monitors is published in the Federal Register or the date of approval of a site-specific monitoring plan. The owner or operator of an affected facility who elects to continuously sample dioxin/furan emissions instead of sampling and testing using EPA Method 23 shall install, calibrate, maintain, and operate a continuous automated sampling system and shall comply with the requirements specified in paragraphs (p) and (q) of this section.

(h) The procedures and test methods specified in paragraphs (h)(1) through (h)(12) of this section shall be used to determine compliance with the nitrogen oxides emission limit for affected facilities under § 60.52b(d).

(1) The EPA Reference Method 19, section 4.1, shall be used for determining the daily arithmetic average nitrogen oxides emission concentration.

(2) The owner or operator of an affected facility may request that compliance with the nitrogen oxides emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(3) The owner or operator of an affected facility subject to the nitrogen oxides limit under § 60.52b(d) shall conduct an initial performance test for nitrogen oxides as required under § 60.8 of subpart A of this part. Compliance with the nitrogen oxides emission limit shall be determined by using the continuous emission monitoring system specified in paragraph (h)(4) of this section for measuring nitrogen oxides and calculating a 24-hour daily arithmetic average emission concentration using EPA Reference Method 19, section 4.1.

(4) The owner or operator of an affected facility subject to the nitrogen oxides emission limit under § 60.52b(d) shall install, calibrate, maintain, and operate a continuous emission monitoring system for measuring nitrogen oxides discharged to the atmosphere, and record the output of the system.

(5) Following the date that the initial performance test for nitrogen oxides is completed or is required to be completed under § 60.8 of subpart A of this part, compliance with the emission limit for nitrogen oxides required under § 60.52b(d) shall be determined based on the 24-hour daily arithmetic average of the hourly emission concentrations using continuous emission monitoring system outlet data.

(6) At a minimum, valid continuous emission monitoring system hourly averages shall be obtained as specified in paragraphs (h)(6)(i) and (h)(6)(ii) of this section for 90 percent of the operating hours per calendar quarter and for 95 percent of the operating hours per calendar year that the affected facility is combusting municipal solid waste.

(i) At least 2 data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) Each nitrogen oxides 1-hour arithmetic average shall be corrected to 7 percent oxygen on an hourly basis using the 1-hour arithmetic average of the oxygen (or carbon dioxide) continuous emission monitoring system data.

(7) The 1-hour arithmetic averages required by paragraph (h)(5) of this section shall be expressed in parts per million by volume (dry basis) and used to calculate the 24-hour daily arithmetic average concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under § 60.13(e)(2) of subpart A of this part.

(8) All valid continuous emission monitoring system data must be used in calculating emission averages even if the minimum continuous emission monitoring system data requirements of paragraph (h)(6) of this section are not met.

(9) The procedures under § 60.13 of subpart A of this part shall be followed for installation, evaluation, and operation of the continuous emission monitoring system. The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the municipal waste combustor unit, as specified under § 60.8 of subpart A of this part.

(10) The owner or operator of an affected facility shall operate the continuous emission monitoring system according to Performance Specification 2 in appendix B of this part and shall follow the procedures and methods specified in paragraphs (h)(10)(i) and (h)(10)(ii) of this section.

(i) During each relative accuracy test run of the continuous emission monitoring system required by Performance Specification 2 of appendix B of this part, nitrogen oxides and oxygen (or carbon dioxide) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and the test methods specified in paragraphs (h)(10)(i)(A) and (h)(10)(i)(B) of this section.

(A) For nitrogen oxides, EPA Reference Method 7, 7A, 7C, 7D, or 7E shall be used.

(B) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 3B, or as an alternative ASME PTC-19-10-1981—part10, as applicable, shall be used.

(ii) The span value of the continuous emission monitoring system shall be 125 percent of the maximum estimated hourly potential nitrogen oxide emissions of the municipal waste combustor unit.

(11) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 1 in appendix F of this part.

(12) When nitrogen oxides continuous emission data are not obtained because of continuous emission monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained using other monitoring systems as approved by EPA or EPA Reference Method 19 to provide, as necessary, valid emissions data for a minimum of 90 percent of the hours per calendar quarter and 95 percent of the hours per calendar year the unit is operated and combusting municipal solid waste.

(i) The procedures specified in paragraphs (i)(1) through (i)(12) of this section shall be used for determining compliance with the operating requirements under 60.53b.

(1) Compliance with the carbon monoxide emission limits in § 60.53b(a) shall be determined using a 4-hour block arithmetic average for all types of affected facilities except mass burn rotary waterwall municipal waste combustors and refuse-derived fuel stokers.

(2) For affected mass burn rotary waterwall municipal waste combustors and refuse-derived fuel stokers, compliance with the carbon monoxide emission limits in § 60.53b(a) shall be determined using a 24-hour daily arithmetic average.

(3) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a continuous emission monitoring system for measuring carbon monoxide at the combustor outlet and record the output of the system and shall follow the procedures and methods specified in paragraphs (i)(3)(i) through (i)(3)(ii) of this section.

(i) The continuous emission monitoring system shall be operated according to Performance Specification 4A in appendix B of this part.

(ii) During each relative accuracy test run of the continuous emission monitoring system required by Performance Specification 4A in appendix B of this part, carbon monoxide and oxygen (or carbon dioxide) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and the test methods specified in paragraphs (i)(3)(ii)(A) and (i)(3)(ii)(B) of this section. For affected facilities subject to the 100 parts per million dry volume carbon monoxide standard, the relative accuracy criterion of 5 parts per million dry volume is calculated as the absolute value of the mean difference between the reference method and continuous emission monitoring systems.

(A) For carbon monoxide, EPA Reference Method 10, 10A, or 10B shall be used.

(B) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 3B, or ASME PTC-19-10-1981—part10 (incorporated by reference, see § 60.17 of subpart A of this part), as applicable, shall be used.

(iii) The span value of the continuous emission monitoring system shall be 125 percent of the maximum estimated hourly potential carbon monoxide emissions of the municipal waste combustor unit.

(4) The 4-hour block and 24-hour daily arithmetic averages specified in paragraphs (i)(1) and (i)(2) of this section shall be calculated from 1-hour arithmetic averages expressed in parts per million by volume corrected to 7 percent

oxygen (dry basis). The 1-hour arithmetic averages shall be calculated using the data points generated by the continuous emission monitoring system. At least two data points shall be used to calculate each 1-hour arithmetic average.

(5) The owner or operator of an affected facility may request that compliance with the carbon monoxide emission limit be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(6) The procedures specified in paragraphs (i)(6)(i) through (i)(6)(v) of this section shall be used to determine compliance with load level requirements under 60.53b(b).

(i) The owner or operator of an affected facility with steam generation capability shall install, calibrate, maintain, and operate a steam flow meter or a feedwater flow meter; measure steam (or feedwater) flow in kilograms per hour (or pounds per hour) on a continuous basis; and record the output of the monitor. Steam (or feedwater) flow shall be calculated in 4-hour block arithmetic averages.

(ii) The method included in the "American Society of Mechanical Engineers Power Test Codes: Test Code for Steam Generating Units, Power Test Code 4.1—1964 (R1991)" section 4 (incorporated by reference, see § 60.17 of subpart A of this part) shall be used for calculating the steam (or feedwater) flow required under paragraph (i)(6)(i) of this section. The recommendations in "American Society of Mechanical Engineers Interim Supplement 19.5 on Instruments and Apparatus: Application, partII of Fluid Meters, 6th edition (1971)," chapter 4 (incorporated by reference—see § 60.17 of subpart A of this part) shall be followed for design, construction, installation, calibration, and use of nozzles and orifices except as specified in (i)(6)(iii) of this section.

(iii) Measurement devices such as flow nozzles and orifices are not required to be recalibrated after they are installed.

(iv) All signal conversion elements associated with steam (or feedwater flow) measurements must be calibrated according to the manufacturer's instructions before each dioxin/furan performance test, and at least once per year.

(7) To determine compliance with the maximum particulate matter control device temperature requirements under § 60.53b(c), the owner or operator of an affected facility shall install, calibrate, maintain, and operate a device for measuring on a continuous basis the temperature of the flue gas stream at the inlet to each particulate matter control device utilized by the affected facility. Temperature shall be calculated in 4-hour block arithmetic averages.

(8) The maximum demonstrated municipal waste combustor unit load shall be determined during the initial performance test for dioxins/furans and each subsequent performance test during which compliance with the dioxin/furan emission limit specified in § 60.52b(c) is achieved. The maximum demonstrated municipal waste combustor unit load shall be the highest 4-hour arithmetic average load achieved during four consecutive hours during the most recent test during which compliance with the dioxin/furan emission limit was achieved. If a

subsequent dioxin/furan performance test is being performed on only one affected facility at the MWC plant, as provided in paragraph (g)(5)(iii) of this section, the owner or operator may elect to apply the same maximum municipal waste combustor unit load from the tested facility for all the similarly designed and operated affected facilities at the MWC plant.

(9) For each particulate matter control device employed at the affected facility, the maximum demonstrated particulate matter control device temperature shall be determined during the initial performance test for dioxins/furans and each subsequent performance test during which compliance with the dioxin/furan emission limit specified in § 60.52b(c) is achieved. The maximum demonstrated particulate matter control device temperature shall be the highest 4-hour arithmetic average temperature achieved at the particulate matter control device inlet during four consecutive hours during the most recent test during which compliance with the dioxin/furan limit was achieved. If a subsequent dioxin/furan performance test is being performed on only one affected facility at the MWC plant, as provided in paragraph (g)(5)(iii) of this section, the owner or operator may elect to apply the same maximum particulate matter control device temperature from the tested facility for all the similarly designed and operated affected facilities at the MWC plant.

(10) At a minimum, valid continuous emission monitoring system hourly averages shall be obtained as specified in paragraphs (i)(10)(i) and (i)(10)(ii) of this section for at least 90 percent of the operating hours per calendar quarter and 95 percent of the operating hours per calendar year that the affected facility is combusting municipal solid waste.

(i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) At a minimum, each carbon monoxide 1-hour arithmetic average shall be corrected to 7 percent oxygen on an hourly basis using the 1-hour arithmetic average of the oxygen (or carbon dioxide) continuous emission monitoring system data.

(11) All valid continuous emission monitoring system data must be used in calculating the parameters specified under paragraph (i) of this section even if the minimum data requirements of paragraph (i)(10) of this section are not met. When carbon monoxide continuous emission data are not obtained because of continuous emission monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained using other monitoring systems as approved by EPA or EPA Reference Method 10 to provide, as necessary, the minimum valid emission data.

(12) Quarterly accuracy determinations and daily calibration drift tests for the carbon monoxide continuous emission monitoring system shall be performed in accordance with procedure 1 in appendix F of this part.

(j) The procedures specified in paragraphs (j)(1) and (j)(2) of this section shall be used for calculating municipal waste combustor unit capacity as defined under 60.51b.

(1) For municipal waste combustor units capable of combusting municipal solid waste continuously for a 24-hour period, municipal waste combustor unit capacity shall be calculated based on 24 hours of operation at the maximum charging rate. The maximum charging rate shall be determined as specified in paragraphs (j)(1)(i) and (j)(1)(i) of this section as applicable.

(i) For combustors that are designed based on heat capacity, the maximum charging rate shall be calculated based on the maximum design heat input capacity of the unit and a heating value of 12,800 kilojoules per kilogram for combustors firing refuse-derived fuel and a heating value of 10,500 kilojoules per kilogram for combustors firing municipal solid waste that is not refuse-derived fuel.

(ii) For combustors that are not designed based on heat capacity, the maximum charging rate shall be the maximum design charging rate.

(2) For batch feed municipal waste combustor units, municipal waste combustor unit capacity shall be calculated as the maximum design amount of municipal solid waste that can be charged per batch multiplied by the maximum number of batches that could be processed in a 24-hour period. The maximum number of batches that could be processed in a 24-hour period. The maximum number of hours required to process one batch of municipal solid waste, and may include fractional batches (e.g., if one batch requires 16 hours, then 24/16, or 1.5 batches, could be combusted in a 24-hour period). For batch combustors that are designed based on heat capacity, the design heating value of 12,800 kilojoules per kilogram for combustors firing refuse-derived fuel and a heating value of 10,500 kilojoules per kilogram for combustor unit capacity in megagrams per day of municipal solid waste.

(k) The procedures specified in paragraphs (k)(1) through (k)(4) of this section shall be used for determining compliance with the fugitive ash emission limit under \S 60.55b.

(1) The EPA Reference Method 22 shall be used for determining compliance with the fugitive ash emission limit under § 60.55b. The minimum observation time shall be a series of three 1-hour observations. The observation period shall include times when the facility is transferring ash from the municipal waste combustor unit to the area where ash is stored or loaded into containers or trucks.

(2) The average duration of visible emissions per hour shall be calculated from the three 1-hour observations. The average shall be used to determine compliance with 60.55b.

(3) The owner or operator of an affected facility shall conduct an initial performance test for fugitive ash emissions as required under § 60.8 of subpart A of this part.

(4) Following the date that the initial performance test for fugitive ash emissions is completed or is required to be completed under § 60.8 of subpart A of this part for an affected facility, the owner or operator shall conduct a

performance test for fugitive ash emissions on an annual basis (no more than 12 calendar months following the previous performance test).

(I) The procedures specified in paragraphs (I)(1) through (I)(3) of this section shall be used to determine compliance with the opacity limit for air curtain incinerators under \S 60.56b.

(1) The EPA Reference Method 9 shall be used for determining compliance with the opacity limit.

(2) The owner or operator of the air curtain incinerator shall conduct an initial performance test for opacity as required under § 60.8 of subpart A of this part.

(3) Following the date that the initial performance test is completed or is required to be completed under § 60.8 of subpart A of this part, the owner or operator of the air curtain incinerator shall conduct a performance test for opacity on an annual basis (no more than 12 calendar months following the previous performance test).

(m) The owner or operator of an affected facility where activated carbon injection is used to comply with the mercury emission limit under § 60.52b(a)(5), and/or the dioxin/furan emission limits under § 60.52(b)(c), or the dioxin/furan emission level specified in paragraph (g)(5)(iii) of this section shall follow the procedures specified in paragraphs (m)(1) through (m)(4) of this section.

(1) During the performance tests for dioxins/furans and mercury, as applicable, the owner or operator shall estimate an average carbon mass feed rate based on carbon injection system operating parameters such as the screw feeder speed, hopper volume, hopper refill frequency, or other parameters appropriate to the feed system being employed, as specified in paragraphs (m)(1)(i) and (m)(1)(i) of this section.

(i) An average carbon mass feed rate in kilograms per hour or pounds per hour shall be estimated during the initial performance test for mercury emissions and each subsequent performance test for mercury emissions.

(ii) An average carbon mass feed rate in kilograms per hour or pounds per hour shall be estimated during the initial performance test for dioxin/furan emissions and each subsequent performance test for dioxin/furan emissions. If a subsequent dioxin/furan performance test is being performed on only one affected facility at the MWC plant, as provided in paragraph (g)(5)(iii) of this section, the owner or operator may elect to apply the same estimated average carbon mass feed rate from the tested facility for all the similarly designed and operated affected facilities at the MWC plant.

(2) During operation of the affected facility, the carbon injection system operating parameter(s) that are the primary indicator(s) of the carbon mass feed rate (e.g., screw feeder setting) shall be averaged over a block 8-hour period, and the 8-hour block average must equal or exceed the level(s) documented during the performance tests specified

under paragraphs (m)(1)(i) and (m)(1)(ii) of this section, except as specified in paragraphs (m)(2)(i) and (m)(2)(ii) of this section.

(i) During the annual dioxin/furan or mercury performance test and the 2 weeks preceding the annual dioxin/furan or mercury performance test, no limit is applicable for average mass carbon feed rate if the provisions of paragraph (m)(2)(ii) of this section are met.

(ii) The limit for average mass carbon feed rate may be waived in accordance with permission granted by the Administrator for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions.

(3) The owner or operator of an affected facility shall estimate the total carbon usage of the plant (kilograms or pounds) for each calendar quarter by two independent methods, according to the procedures in paragraphs (m)(3)(i) and (m)(3)(i) of this section.

(i) The weight of carbon delivered to the plant.

(ii) Estimate the average carbon mass feed rate in kilograms per hour or pounds per hour for each hour of operation for each affected facility based on the parameters specified under paragraph (m)(1) of this section, and sum the results for all affected facilities at the plant for the total number of hours of operation during the calendar quarter.

(4) Pneumatic injection pressure or other carbon injection system operational indicator shall be used to provide additional verification of proper carbon injection system operation. The operational indicator shall provide an instantaneous visual and/or audible alarm to alert the operator of a potential interruption in the carbon feed that would not normally be indicated by direct monitoring of carbon mass feed rate (e.g., continuous weight loss feeder) or monitoring of the carbon system operating parameter(s) that are the indicator(s) of carbon mass feed rate (e.g., screw feeder speed). The carbon injection system operational indicator used to provide additional verification of carbon injection system operations for selecting the indicator and operator response to the indicator alarm, shall be included in section (e)(6) of the site-specific operating manual required under § 60.54b(e) of this subpart.

(n) In place of periodic manual testing of mercury, cadmium, lead, or hydrogen chloride with EPA Reference Method 26, 26A, 29, or as an alternative ASTM D6784-02 (as applicable), the owner or operator of an affected facility may elect to install, calibrate, maintain, and operate a continuous emission monitoring system for monitoring emissions discharged to the atmosphere and record the output of the system. The option to use a continuous emission monitoring system for mercury takes effect on the date of approval of the site-specific monitoring system for cadmium, lead, or hydrogen chloride takes effect on the date a final performance specification applicable to cadmium, lead, or hydrogen chloride monitor is published in the Federal Register or the date of approval of the site-specific monitoring plan required in paragraphs (n)(13) and (o) of this section. The owner or operator of an affected facility who elects to continuously monitor emissions instead of conducting manual performance testing shall install, calibrate, maintain,

and operate a continuous emission monitoring system and shall comply with the requirements specified in paragraphs (n)(1) through (n)(13) of this section.

(1) Notify the Administrator one month before starting use of the system.

(2) Notify the Administrator one month before stopping use of the system.

(3) The monitor shall be installed, evaluated, and operated in accordance with § 60.13 of subpart A of this part.

(4) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under § 60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of the continuous monitoring system if the owner or operator was previously determining compliance by Method 26, 26A, 29, or as an alternative ASTM D6784-02 (as applicable) performance tests, whichever is later.

(5) The owner or operator may request that compliance with the emission limits be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(6) The owner or operator shall conduct an initial performance test for emissions as required under § 60.8 of subpart A of this part. Compliance with the emission limits shall be determined by using the continuous emission monitoring system specified in paragraph (n) of this section to measure emissions and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19, section 12.4.1.

(7) Compliance with the emission limits shall be determined based on the 24-hour daily (block) average of the hourly arithmetic average emission concentrations using continuous emission monitoring system outlet data.

(8) Beginning on April 28, 2008 for mercury and on the date two years after final performance specifications for cadmium, lead or hydrogen chloride monitors are published in the Federal Register or the date two years after approval of a site-specific monitoring plan, valid continuous monitoring system hourly averages shall be obtained as specified in paragraphs (n)(8)(i) and (n)(8)(ii) of this section for at least 90 percent of the operating hours per calendar year that the affected facility is combusting municipal solid waste.

(i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) Each 1-hour arithmetic average shall be corrected to 7 percent oxygen on an hourly basis using the 1-hour arithmetic average of the oxygen (or carbon dioxide) continuous emission monitoring system data.

(9) The 1-hour arithmetic averages required under paragraph (n)(7) of this section shall be expressed in micrograms per dry standard cubic meter for mercury, cadmium, lead and parts per million dry volume for hydrogen chloride corrected to 7 percent oxygen (dry basis) and shall be used to calculate the 24-hour daily arithmetic (block) average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under § 60.13(e)(2) of subpart A of this part.

(10) All valid continuous emission monitoring system data shall be used in calculating average emission concentrations even if the minimum continuous emission monitoring system data requirements of paragraph (n)(8) of this section are not met.

(11) The continuous emission monitoring system shall be operated according to the performance specifications in paragraphs (n)(11)(i) through (n)(11)(ii) of this section or the approved site-specific monitoring plan.

(i) For mercury, Performance Specification 12A in appendix B of this part.

(ii)-(iii) [Reserved]

(12) During each relative accuracy test run of the continuous emission monitoring system required by the performance specifications in paragraph (n)(11) of this section, mercury, cadmium, lead, hydrogen chloride, and oxygen (or carbon dioxide) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and the test methods specified in paragraphs (n)(12)(i) through (n)(12)(iii) of this section.

(i) For mercury, cadmium, and lead, EPA Reference Method 29 or as an alternative ASTM D6784-02 shall be used.

(ii) For hydrogen chloride, EPA Reference Method 26 or 26A shall be used.

(iii) For oxygen (or carbon dioxide), EPA Reference Method 3, 3A, or 3B, as applicable shall be used.

(13) The owner or operator who elects to install, calibrate, maintain, and operate a continuous emission monitoring system for mercury, cadmium, lead, or hydrogen chloride must develop and implement a site-specific monitoring plan

as specified in paragraph (o) of this section. The owner or operator who relies on a performance specification may refer to that document in addressing applicable procedures and criteria.

(14) When emissions data are not obtained because of continuous emission monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments, parametric monitoring data shall be obtained by using other monitoring systems as approved by EPA.

(o) The owner or operator who elects to install, calibrate, maintain, and operate a continuous emission monitoring system for mercury, cadmium, lead, or hydrogen chloride must develop and submit for approval by EPA, a site-specific mercury, cadmium, lead, or hydrogen chloride monitoring plan that addresses the elements and requirements in paragraphs (o)(1) through (o)(7) of this section.

(1) Installation of the continuous emission monitoring system sampling probe or other interface at a measurement location relative to each affected process unit such that the measurement is representative of control of the exhaust emissions (e.g., on or downstream of the last control device).

(2) Performance and equipment specifications for the sample interface, the pollutant concentration analyzer, and the data collection and reduction system.

(3) Performance evaluation procedures and acceptance criteria (e.g., calibrations).

(4) Provisions for periods when the continuous emission monitoring system is out of control as described in paragraphs (o)(4)(i) through (o)(4)(iii) of this section.

(i) A continuous emission monitoring system is out of control if either of the conditions in paragraphs (o)(4)(i)(A) or (o)(4)(i)(B) of this section are met.

(A) The zero (low-level), mid-level (if applicable), or high-level calibration drift exceeds two times the applicable calibration drift specification in the applicable performance specification or in the relevant standard; or

(B) The continuous emission monitoring system fails a performance test audit (e.g., cylinder gas audit), relative accuracy audit, relative accuracy test audit, or linearity test audit.

(ii) When the continuous emission monitoring system is out of control as defined in paragraph (o)(4)(i) of this section, the owner or operator of the affected source shall take the necessary corrective action and shall repeat all necessary

tests that indicate that the system is out of control. The owner or operator shall take corrective action and conduct retesting until the performance requirements are below the applicable limits. The beginning of the out-of-control period is the hour the owner or operator conducts a performance check (e.g., calibration drift) that indicates an exceedance of the performance requirements established under this part. The end of the out-of-control period is the hour following the completion of corrective action and successful demonstration that the system is within the allowable limits. During the period the continuous emission monitoring system is out of control, recorded data shall not be used in data averages and calculations or to meet any data availability requirements in paragraph (n)(8) of this section.

(iii) The owner or operator of a continuous emission monitoring system that is out of control as defined in paragraph (o)(4) of this section shall submit all information concerning out-of-control periods, including start and end dates and hours and descriptions of corrective actions taken in the annual or semiannual compliance reports required in \S 60.59b(g) or (h).

(5) Ongoing data quality assurance procedures for continuous emission monitoring systems as described in paragraphs (o)(5)(i) and (o)(5)(ii) of this section.

(i) Develop and implement a continuous emission monitoring system quality control program. As part of the quality control program, the owner or operator shall develop and submit to EPA for approval, upon request, a site-specific performance evaluation test plan for the continuous emission monitoring system performance evaluation required in paragraph (o)(5)(ii) of this section. In addition, each quality control program shall include, at a minimum, a written protocol that describes procedures for each of the operations described in paragraphs (o)(7)(i)(A) through (o)(7)(i)(F) of this section.

(A) Initial and any subsequent calibration of the continuous emission monitoring system;

(B) Determination and adjustment of the calibration drift of the continuous emission monitoring system;

(C) Preventive maintenance of the continuous emission monitoring system, including spare parts inventory;

(D) Data recording, calculations, and reporting;

(E) Accuracy audit procedures, including sampling and analysis methods; and

(F) Program of corrective action for a malfunctioning continuous emission monitoring system.
40 CFR 60, Subpart Eb Attachment E

(ii) The performance evaluation test plan shall include the evaluation program objectives, an evaluation program summary, the performance evaluation schedule, data quality objectives, and both an internal and external quality assurance program. Data quality objectives are the pre-evaluation expectations of precision, accuracy, and completeness of data. The internal quality assurance program shall include, at a minimum, the activities planned by routine operators and analysts to provide an assessment of continuous emission monitoring system performance, for example, plans for relative accuracy testing using the appropriate reference method in § 60.58b(n)(12) of this section. The external quality assurance program shall include, at a minimum, systems audits that include the opportunity for on-site evaluation by the Administrator of instrument calibration, data validation, sample logging, and documentation of quality control data and field maintenance activities.

(6) Conduct a performance evaluation of each continuous emission monitoring system in accordance with the sitespecific monitoring plan.

(7) Operate and maintain the continuous emission monitoring system in continuous operation according to the site-specific monitoring plan.

(p) In place of periodic manual testing of dioxin/furan or mercury with EPA Reference Method 23, 29, or as an alternative ASTM D6784-02 (as applicable), the owner or operator of an affected facility may elect to install, calibrate, maintain, and operate a continuous automated sampling system for determining emissions discharged to the atmosphere. This option takes effect on the date a final performance specification applicable to such continuous automated sampling systems is published in the Federal Register or the date of approval of a site-specific monitoring plan required in paragraphs (p)(10) and (q) of this section. The owner or operator of an affected facility who elects to use a continuous automated sampling system to determine emissions instead of conducting manual performance testing shall install, calibrate, maintain, and operate the sampling system and conduct analyses in compliance with the requirements specified in paragraphs (p)(1) through (p)(12) of this section.

(1) Notify the Administrator one month before starting use of the system.

(2) Notify the Administrator one month before stopping use of the system.

(3) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under § 60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of the continuous monitoring system if the owner or operator was previously determining compliance by manual performance testing using Method 23, 29, or as an alternative ASTM D6784-02 (as applicable), whichever is later.

(4) The owner or operator may request that compliance with the emission limits be determined using carbon dioxide measurements corrected to an equivalent of 7 percent oxygen. The relationship between oxygen and carbon dioxide levels for the affected facility shall be established as specified in paragraph (b)(6) of this section.

(5) The owner or operator shall conduct an initial performance test for emissions as required under § 60.8 of subpart A of this part. Compliance with the emission limits shall be determined by using the continuous automated sampling system specified in paragraph (p) of this section to collect integrated samples and analyze emissions for the time period specified in paragraphs (p)(5)(i) and (ii) of this section.

(i) For dioxin/furan, the continuous automated sampling system shall collect an integrated sample over each 2-week period. The collected sample shall be analyzed using Method 23.

(ii) For mercury, the continuous automated sampling system shall collect an integrated sample over each 24-hour daily period and the sample shall be analyzed according to the applicable final performance specification or the approved site-specific monitoring plan required by paragraph (q) of this section.

(6) Compliance with the emission limits shall be determined based on 2-week emission concentrations for dioxin/furan and on the 24-hour daily emission concentrations for mercury using samples collected at the system outlet. The emission concentrations shall be expressed in nanograms per dry standard cubic meter (total mass) for dioxin/furan and micrograms per dry standard cubic meter for mercury, corrected to 7 percent oxygen (dry basis).

(7) Beginning on the date two years after the respective final performance specification for continuous automated sampling systems for dioxin/furan or mercury is published in the Federal Register or two years after approval of a site-specific monitoring plan, the continuous automated sampling system must be operated and collect emissions for at least 90 percent of the operating hours per calendar quarter and 95 percent of the operating hours per calendar year that the affected facility is combusting municipal solid waste.

(8) All valid data shall be used in calculating emission concentrations.

(9) The continuous automated sampling system shall be operated according to the final performance specification in paragraphs (p)(9)(i) or (p)(9)(i) of this section or the approved site-specific monitoring plan.

(i)-(ii) [Reserved]

(10) The owner or operator who elects to install, calibrate, maintain, and operate a continuous automated sampling system for dioxin/furan or mercury must develop and implement a site-specific monitoring plan as specified in paragraph (q) of this section. The owner or operator who relies on a performance specification may refer to that document in addressing applicable procedures and criteria.

(11) When emissions data are not obtained because of continuous automated sampling system breakdowns, repairs, quality assurance checks, or adjustments, parametric monitoring data shall be obtained by using other monitoring systems as approved by EPA.

(q) The owner or operator who elects to install, calibrate, maintain, and operate a continuous automated sampling system for dioxin/furan or mercury must develop and submit for approval by EPA, a site-specific monitoring plan that has sufficient detail to assure the validity of the continuous automated sampling system data and that addresses the elements and requirements in paragraphs (q)(1) through (q)(7) of this section.

(1) Installation of the continuous automated sampling system sampling probe or other interface at a measurement location relative to each affected process unit such that the measurement is representative of control of the exhaust emissions (e.g., on or downstream of the last control device).

(2) Performance and equipment specifications for the sample interface, the pollutant concentration analytical method, and the data collection system.

(3) Performance evaluation procedures and acceptance criteria.

(4) Provisions for periods when the continuous automated sampling system is malfunctioning or is out of control as described in paragraphs (q)(4)(i) through (q)(4)(ii) of this section.

(i) The site-specific monitoring plan shall identify criteria for determining that the continuous automated sampling system is out of control. This shall include periods when the sampling system is not collecting a representative sample or is malfunctioning, or when the analytical method does not meet site-specific quality criteria established in paragraph (q)(5) of this section.

(ii) When the continuous automated sampling system is out of control as defined in paragraph (q)(4)(i) of this section, the owner or operator shall take the necessary corrective action and shall repeat all necessary tests that indicate that the system is out of control. The owner or operator shall take corrective action and conduct retesting until the performance requirements are within the applicable limits. The out-of-control period includes all hours that the sampling system was not collecting a representative sample or was malfunctioning, or hours represented by a sample for which the analysis did not meet the relevant quality criteria. Emissions data obtained during an out-of-control period shall not be used in determining compliance with the emission limits or to meet any data availability requirements in paragraph (p)(8) of this section.

(iii) The owner or operator of a continuous automated sampling system that is out of control as defined in paragraph (q)(4) of this section shall submit all information concerning out-of-control periods, including start and end dates and hours and descriptions of corrective actions taken in the annual or semiannual compliance reports required in § 60.59b(g) or (h).

(5) Ongoing data quality assurance procedures for continuous automated sampling systems as described in paragraphs (q)(5)(i) and (q)(5)(ii) of this section.

(i) Develop and implement a continuous automated sampling system and analysis quality control program. As part of the quality control program, the owner or operator shall develop and submit to EPA for approval, upon request, a site-specific performance evaluation test plan for the continuous automated sampling system performance evaluation required in paragraph (q)(5)(ii) of this section. In addition, each quality control program shall include, at a minimum, a written protocol that describes procedures for each of the operations described in paragraphs (q)(7)(i)(A) through (q)(7)(i)(F) of this section.

(A) Correct placement, installation of the continuous automated sampling system such that the system is collecting a representative sample of gas;

(B) Initial and subsequent calibration of flow such that the sample collection rate of the continuous automated sampling system is known and verifiable;

(C) Procedures to assure representative (e.g., proportional or isokinetic) sampling;

(D) Preventive maintenance of the continuous automated sampling system, including spare parts inventory and procedures for cleaning equipment, replacing sample collection media, or other servicing at the end of each sample collection period;

(E) Data recording and reporting, including an automated indicator and recording device to show when the continuous automated monitoring system is operating and collecting data and when it is not collecting data;

(F) Accuracy audit procedures for analytical methods; and

(G) Program of corrective action for a malfunctioning continuous automated sampling system.

(ii) The performance evaluation test plan shall include the evaluation program objectives, an evaluation program summary, the performance evaluation schedule, data quality objectives, and both an internal and external quality assurance program. Data quality objectives are the pre-evaluation expectations of precision, accuracy, and completeness of data. The internal quality assurance program shall include, at a minimum, the activities planned by routine operators and analysts to provide an assessment of continuous automated sampling system performance, for example, plans for relative accuracy testing using the appropriate reference method in 60.58b(p)(3), and an assessment of quality of analysis results. The external quality assurance program shall include, at a minimum, systems audits that include the opportunity for on-site evaluation by the Administrator of instrument calibration, data validation, sample logging, and documentation of quality control data and field maintenance activities.

(6) Conduct a performance evaluation of each continuous automated sampling system in accordance with the sitespecific monitoring plan.

(7) Operate and maintain the continuous automated sampling system in continuous operation according to the site-specific monitoring plan.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45126, Aug. 25, 1997; 65 FR 61753, Oct. 17, 2000; 66 FR 57827, Nov. 16, 2001; 71 FR 27337, May 10, 2006]

§ 60.59b Reporting and recordkeeping requirements.

(a) The owner or operator of an affected facility with a capacity to combust greater than 250 tons per day shall submit, on or before the date the application for a construction permit is submitted under 40 CFR part 51, subpart I, or part 52, as applicable, the items specified in paragraphs (a)(1) through (a)(4) of this section.

(1) The preliminary and final draft materials separation plans required by 60.57b(a)(1) and (a)(5).

(2) A copy of the notification of the public meeting required by § 60.57b(a)(1)(ii).

(3) A transcript of the public meeting required by § 60.57b(a)(2).

(4) A copy of the document summarizing responses to public comments required by § 60.57b(a)(3).

(b) The owner or operator of an affected facility with a capacity to combust greater than 250 tons per day shall submit a notification of construction, which includes the information specified in paragraphs (b)(1) through (b)(5) of this section.

(1) Intent to construct.

(2) Planned initial startup date.

(3) The types of fuels that the owner or operator plans to combust in the affected facility.

(4) The municipal waste combustor unit capacity, and supporting capacity calculations prepared in accordance with § 60.58b(j).

(5) Documents associated with the siting requirements under § 60.57b (a) and (b), as specified in paragraphs (b)(5)(i) through (b)(5)(v) of this section.

(i) The siting analysis required by § 60.57b (b)(1) and (b)(2).

(ii) The final materials separation plan for the affected facility required by § 60.57b(a)(10).

(iii) A copy of the notification of the public meeting required by § 60.57b(b)(3)(ii).

(iv) A transcript of the public meeting required by § 60.57b(b)(4).

(v) A copy of the document summarizing responses to public comments required by § 60.57b (a)(9) and (b)(5).

(c) The owner or operator of an air curtain incinerator subject to the opacity limit under § 60.56b shall provide a notification of construction that includes the information specified in paragraphs (b)(1) through (b)(4) of this section.

(d) The owner or operator of an affected facility subject to the standards under \$ 60.52b, 60.53b, 60.54b, 60.55b, and 60.57b shall maintain records of the information specified in paragraphs (d)(1) through (d)(15) of this section, as applicable, for each affected facility for a period of at least 5 years.

(1) The calendar date of each record.

(2) The emission concentrations and parameters measured using continuous monitoring systems as specified under paragraphs (d)(2)(i) and (d)(2)(ii) of this section.

(i) The measurements specified in paragraphs (d)(2)(i)(A) through (d)(2)(i)(F) of this section shall be recorded and be available for submittal to the Administrator or review on site by an EPA or State inspector.

(A) All 6-minute average opacity levels as specified under § 60.58b(c).

(B) All 1-hour average sulfur dioxide emission concentrations as specified under § 60.58b(e).

(C) All 1-hour average nitrogen oxides emission concentrations as specified under § 60.58b(h).

(D) All 1-hour average carbon monoxide emission concentrations, municipal waste combustor unit load measurements, and particulate matter control device inlet temperatures as specified under § 60.58b(i).

(E) For owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, or hydrogen chloride emissions instead of conducting performance testing using EPA manual test methods, all 1-hour average particulate matter, cadmium, lead, mercury, or hydrogen chloride emission concentrations as specified under § 60.58b(n).

(ii) The average concentrations and percent reductions, as applicable, specified in paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(F) of this section shall be computed and recorded, and shall be available for submittal to the Administrator or review on-site by an EPA or State inspector.

(A) All 24-hour daily geometric average sulfur dioxide emission concentrations and all 24-hour daily geometric average percent reductions in sulfur dioxide emissions as specified under § 60.58b(e).

(B) All 24-hour daily arithmetic average nitrogen oxides emission concentrations as specified under § 60.58b(h).

(C) All 4-hour block or 24-hour daily arithmetic average carbon monoxide emission concentrations, as applicable, as specified under § 60.58b(i).

(D) All 4-hour block arithmetic average municipal waste combustor unit load levels and particulate matter control device inlet temperatures as specified under § 60.58b(i).

(E) For owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, or hydrogen chloride emissions instead of conducting performance testing using EPA manual test methods, all 24-hour daily arithmetic average particulate matter, cadmium, lead, mercury, or hydrogen chloride emission concentrations as specified under § 60.58b(n).

(F) For owners and operators who elect to use a continuous automated sampling system to monitor mercury or dioxin/furan instead of conducting performance testing using EPA manual test methods, all integrated 24-hour mercury concentrations or all integrated 2-week dioxin/furan concentrations as specified under § 60.586(p).

(3) Identification of the calendar dates when any of the average emission concentrations, percent reductions, or operating parameters recorded under paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(F) of this section, or the opacity levels recorded under paragraph (d)(2)(i)(A) of this section are above the applicable limits, with reasons for such exceedances and a description of corrective actions taken.

(4) For affected facilities that apply activated carbon for mercury or dioxin/furan control, the records specified in paragraphs (d)(4)(i) through (d)(4)(v) of this section.

(i) The average carbon mass feed rate (in kilograms per hour or pounds per hour) estimated as required under § 60.58b(m)(1)(i) of this section during the initial mercury performance test and all subsequent annual performance tests, with supporting calculations.

(ii) The average carbon mass feed rate (in kilograms per hour or pounds per hour) estimated as required under § 60.58b(m)(1)(ii) of this section during the initial dioxin/furan performance test and all subsequent annual performance tests, with supporting calculations.

(iii) The average carbon mass feed rate (in kilograms per hour or pounds per hour) estimated for each hour of operation as required under 60.58b(m)(3)(ii) of this section, with supporting calculations.

(iv) The total carbon usage for each calendar quarter estimated as specified by paragraph 60.58b(m)(3) of this section, with supporting calculations.

(v) Carbon injection system operating parameter data for the parameter(s) that are the primary indicator(s) of carbon feed rate (e.g., screw feeder speed).

(5) [Reserved]

(6) Identification of the calendar dates and times (hours) for which valid hourly data specified in paragraphs (d)(6)(i) through (d)(6)(vi) of this section have not been obtained, or continuous automated sampling systems were not operated as specified in paragraph (d)(6)(vii) of this section, including reasons for not obtaining the data and a description of corrective actions taken.

(i) Sulfur dioxide emissions data;

(ii) Nitrogen oxides emissions data;

(iii) Carbon monoxide emissions data;

(iv) Municipal waste combustor unit load data;

(v) Particulate matter control device temperature data; and

(vi) For owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, or hydrogen chloride emissions instead of performance testing by EPA manual test methods, particulate matter, cadmium, lead, mercury, or hydrogen chloride emissions data.

(vii) For owners and operators who elect to use continuous automated sampling systems for dioxins/furans or mercury as allowed under "60.58b(p) and (q), dates and times when the sampling systems were not operating or were not collecting a valid sample.

(7) Identification of each occurrence that sulfur dioxide emissions data, nitrogen oxides emissions data, particulate matter emissions data, cadmium emissions data, lead emissions data, mercury emissions data, hydrogen chloride emissions data, or dioxin/furan emissions data (for owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, or hydrogen chloride, or who elect to use continuous automated sampling systems for dioxin/furan or mercury emissions, instead of conducting performance testing using EPA manual test methods) or operational data (i.e., carbon monoxide emissions, unit load, and particulate matter control device temperature) have been excluded from the calculation of average emission concentrations or parameters, and the reasons for excluding the data.

(8) The results of daily drift tests and quarterly accuracy determinations for sulfur dioxide, nitrogen oxides, and carbon monoxide continuous emission monitoring systems, as required under appendix F of this part, procedure 1.

(9) The test reports documenting the results of the initial performance test and all annual performance tests listed in paragraphs (d)(9)(i) and (d)(9)(ii) of this section shall be recorded along with supporting calculations.

(i) The results of the initial performance test and all annual performance tests conducted to determine compliance with the particulate matter, opacity, cadmium, lead, mercury, dioxins/furans, hydrogen chloride, and fugitive ash emission limits.

(ii) For the initial dioxin/furan performance test and all subsequent dioxin/furan performance tests recorded under paragraph (d)(9)(i) of this section, the maximum demonstrated municipal waste combustor unit load and maximum demonstrated particulate matter control device temperature (for each particulate matter control device).

(10) An owner or operator who elects to continuously monitor emissions instead of performance testing by EPA manual methods must maintain records specified in paragraphs (10)(i) through (iii) of this section.

(i) For owners and operators who elect to continuously monitor particulate matter instead of conducting performance testing using EPA manual test methods), as required under appendix F of this part, procedure 2, the results of daily drift tests and quarterly accuracy determinations for particulate matter.

(ii) For owners and operators who elect to continuously monitor cadmium, lead, mercury, or hydrogen chloride instead of conducting EPA manual test methods, the results of all quality evaluations, such as daily drift tests and periodic accuracy determinations, specified in the approved site-specific performance evaluation test plan required by § 60.58b(o)(5).

(iii) For owners and operators who elect to use continuous automated sampling systems for dioxin/furan or mercury, the results of all quality evaluations specified in the approved site-specific performance evaluation test plan required by 60.58b(q)(5).

(11) For each affected facility subject to the siting provisions under § 60.57b, the siting analysis, the final materials separation plan, a record of the location and date of the public meetings, and the documentation of the responses to public comments received at the public meetings.

(12) The records specified in paragraphs (d)(12)(i) through (d)(12)(iv) of this section.

(i) Records showing the names of the municipal waste combustor chief facility operator, shift supervisors, and control room operators who have been provisionally certified by the American Society of Mechanical Engineers or an equivalent State-approved certification program as required by § 60.54b(a) including the dates of initial and renewal certifications and documentation of current certification.

(ii) Records showing the names of the municipal waste combustor chief facility operator, shift supervisors, and control room operators who have been fully certified by the American Society of Mechanical Engineers or an equivalent State-approved certification program as required by § 60.54b(b) including the dates of initial and renewal certifications and documentation of current certification.

(iii) Records showing the names of the municipal waste combustor chief facility operator, shift supervisors, and control room operators who have completed the EPA municipal waste combustor operator training course or a State-approved equivalent course as required by § 60.54b(d) including documentation of training completion.

(iv) Records of when a certified operator is temporarily off site. Include two main items:

(A) If the certified chief facility operator and certified shift supervisor are off site for more than 12 hours, but for 2 weeks or less, and no other certified operator is on site, record the dates that the certified chief facility operator and certified shift supervisor were off site.

(B) When all certified chief facility operators and certified shift supervisors are off site for more than 2 weeks and no other certified operator is on site, keep records of four items:

(1) Time of day that all certified persons are off site.

(2) The conditions that cause those people to be off site.

(3) The corrective actions taken by the owner or operator of the affected facility to ensure a certified chief facility operator or certified shift supervisor is on site as soon as practicable.

(4) Copies of the written reports submitted every 4 weeks that summarize the actions taken by the owner or operator of the affected facility to ensure that a certified chief facility operator or certified shift supervisor will be on site as soon as practicable.

(13) Records showing the names of persons who have completed a review of the operating manual as required by § 60.54b(f) including the date of the initial review and subsequent annual reviews.

(14) For affected facilities that apply activated carbon, identification of the calendar dates when the average carbon mass feed rates recorded under paragraph (d)(4)(iii) of this section were less than either of the hourly carbon feed rates estimated during performance tests for mercury emissions and recorded under paragraphs (d)(4)(i) and (d)(4)(ii) of this section, respectively, with reasons for such feed rates and a description of corrective actions taken. For affected facilities that apply activated carbon, identification of the calendar dates when the average carbon mass feed rates recorded under paragraph (d)(4)(iii) of this section were less than either of the hourly carbon feed rates estimated during performance tests for dioxin/furan emissions and recorded under paragraphs (d)(4)(i) and (d)(4)(ii) of this section, respectively, with reasons for such feed rates and a description of corrective actions taken.

(15) For affected facilities that apply activated carbon for mercury or dioxin/furan control, identification of the calendar dates when the carbon injection system operating parameter(s) that are the primary indicator(s) of carbon mass feed rate (e.g., screw feeder speed) recorded under paragraph (d)(4)(v) of this section are below the level(s) estimated during the performance tests as specified in § 60.58b(m)(1)(i) and § 60.58b(m)(1)(i) of this section, with reasons for such occurrences and a description of corrective actions taken.

(e) The owner or operator of an air curtain incinerator subject to the opacity limit under § 60.56b shall maintain records of results of the initial opacity performance test and subsequent performance tests required by § 60.58b(I) for a period of at least 5 years.

(f) The owner or operator of an affected facility shall submit the information specified in paragraphs (f)(1) through (f)(6) of this section in the initial performance test report.

(1) The initial performance test data as recorded under paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(D) of this section for the initial performance test for sulfur dioxide, nitrogen oxides, carbon monoxide, municipal waste combustor unit load level, and particulate matter control device inlet temperature.

(2) The test report documenting the initial performance test recorded under paragraph (d)(9) of this section for particulate matter, opacity, cadmium, lead, mercury, dioxins/furans, hydrogen chloride, and fugitive ash emissions.

(3) The performance evaluation of the continuous emission monitoring system using the applicable performance specifications in appendix B of this part.

(4) The maximum demonstrated municipal waste combustor unit load and maximum demonstrated particulate matter control device inlet temperature(s) established during the initial dioxin/furan performance test as recorded under paragraph (d)(9) of this section.

(5) For affected facilities that apply activated carbon injection for mercury control, the owner or operator shall submit the average carbon mass feed rate recorded under paragraph (d)(4)(i) of this section.

(6) For those affected facilities that apply activated carbon injection for dioxin/furan control, the owner or operator shall submit the average carbon mass feed rate recorded under paragraph (d)(4)(ii) of this section.

(g) Following the first year of municipal waste combustor operation, the owner or operator of an affected facility shall submit an annual report that includes the information specified in paragraphs (g)(1) through (g)(5) of this section, as applicable, no later than February 1 of each year following the calendar year in which the data were collected (once the unit is subject to permitting requirements under title V of the Act, the owner or operator of an affected facility must submit these reports semiannually).

(1) A summary of data collected for all pollutants and parameters regulated under this subpart, which includes the information specified in paragraphs (g)(1)(i) through (g)(1)(v) of this section.

(i) A list of the particulate matter, opacity, cadmium, lead, mercury, dioxins/furans, hydrogen chloride, and fugitive ash emission levels achieved during the performance tests recorded under paragraph (d)(9) of this section.

(ii) A list of the highest emission level recorded for sulfur dioxide, nitrogen oxides, carbon monoxide, particulate matter, cadmium, lead, mercury, hydrogen chloride, and dioxin/furan (for owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, hydrogen chloride, and dioxin/furan emissions instead of conducting performance testing using EPA manual test methods), municipal waste combustor unit load level, and particulate matter control device inlet temperature based on the data recorded under paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(E) of this section.

(iii) List the highest opacity level measured, based on the data recorded under paragraph (d)(2)(i)(A) of this section.

(iv) Periods when valid data were not obtained as described in paragraphs (g)(1)(iv)(A) through (g)(1)(iv)(C) of this section.

(A) The total number of hours per calendar quarter and hours per calendar year that valid data for sulfur dioxide, nitrogen oxides, carbon monoxide, municipal waste combustor unit load, or particulate matter control device temperature data were not obtained based on the data recorded under paragraph (d)(6) of this section.

(B) For owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, and hydrogen chloride emissions instead of conducting performance testing using EPA manual test methods, the total number of hours per calendar quarter and hours per calendar year that valid data for particulate matter, cadmium, lead, mercury, and hydrogen chloride were not obtained based on the data recorded under paragraph (d)(6) of this section. For each continuously monitored pollutant or parameter, the hours of valid emissions data per calendar quarter and per calendar year expressed as a percent of the hours per calendar quarter or year that the affected facility was operating and combusting municipal solid waste.

40 CFR 60, Subpart Eb Attachment E

(C) For owners and operators who elect to use continuous automated sampling systems for dioxin/furan or mercury, the total number of hours per calendar quarter and hours per calendar year that the sampling systems were not operating or were not collecting a valid sample based on the data recorded under paragraph (d)(6)(vii) of this section. Also, the number of hours during which the continuous automated sampling system was operating and collecting a valid sample as a percent of hours per calendar quarter or year that the affected facility was operating and combusting municipal solid waste.

(v) Periods when valid data were excluded from the calculation of average emission concentrations or parameters as described in paragraphs (g)(1)(v)(A) through (g)(1)(v)(C) of this section.

(A) The total number of hours that data for sulfur dioxide, nitrogen oxides, carbon monoxide, municipal waste combustor unit load, and particulate matter control device temperature were excluded from the calculation of average emission concentrations or parameters based on the data recorded under paragraph (d)(7) of this section.

(B) For owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, or hydrogen chloride emissions instead of conducting performance testing using EPA manual test methods, the total number of hours that data for particulate matter, cadmium, lead, mercury, or hydrogen chloride were excluded from the calculation of average emission concentrations or parameters based on the data recorded under paragraph (d)(7) of this section.

(C) For owners and operators who elect to use continuous automated sampling systems for dioxin/furan or mercury, the total number of hours that data for mercury and dioxin/furan were excluded from the calculation of average emission concentrations or parameters based on the data recorded under paragraph (d)(7) of this section.

(2) The summary of data reported under paragraph (g)(1) of this section shall also provide the types of data specified in paragraphs (g)(1)(i) through (g)(1)(vi) of this section for the calendar year preceding the year being reported, in order to provide the Administrator with a summary of the performance of the affected facility over a 2-year period.

(3) The summary of data including the information specified in paragraphs (g)(1) and (g)(2) of this section shall highlight any emission or parameter levels that did not achieve the emission or parameter limits specified under this subpart.

(4) A notification of intent to begin the reduced dioxin/furan performance testing schedule specified in § 60.58b(g)(5)(iii) of this section during the following calendar year and notification of intent to apply the average carbon mass feed rate and associated carbon injection system operating parameter levels as established in § 60.58b(m) to similarly designed and equipped units on site.

(5) Documentation of periods when all certified chief facility operators and certified shift supervisors are off site for more than 12 hours.

(h) The owner or operator of an affected facility shall submit a semiannual report that includes the information specified in paragraphs (h)(1) through (h)(5) of this section for any recorded pollutant or parameter that does not comply with the pollutant or parameter limit specified under this subpart, according to the schedule specified under paragraph (h)(6) of this section.

(1) The semiannual report shall include information recorded under paragraph (d)(3) of this section for sulfur dioxide, nitrogen oxides, carbon monoxide, particulate matter, cadmium, lead, mercury, hydrogen chloride, dioxin/furan (for owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, or hydrogen chloride, or who elect to use continuous automated sampling systems for dioxin/furan or mercury emissions, instead of conducting performance testing using EPA manual test methods) municipal waste combustor unit load level, particulate matter control device inlet temperature, and opacity.

(2) For each date recorded as required by paragraph (d)(3) of this section and reported as required by paragraph (h)(1) of this section, the semiannual report shall include the sulfur dioxide, nitrogen oxides, carbon monoxide, municipal waste combustor unit load level, particulate matter control device inlet temperature, or opacity data, as applicable, recorded under paragraphs (d)(2)(ii)(A) through (d)(2)(ii)(D) and (d)(2)(i)(A) of this section, as applicable.

(3) If the test reports recorded under paragraph (d)(9) of this section document any particulate matter, opacity, cadmium, lead, mercury, dioxins/furans, hydrogen chloride, and fugitive ash emission levels that were above the applicable pollutant limits, the semiannual report shall include a copy of the test report documenting the emission levels and the corrective actions taken.

(4) The semiannual report shall include the information recorded under paragraph (d)(15) of this section for the carbon injection system operating parameter(s) that are the primary indicator(s) of carbon mass feed rate.

(5) For each operating date reported as required by paragraph (h)(4) of this section, the semiannual report shall include the carbon feed rate data recorded under paragraph (d)(4)(iii) of this section.

(6) Semiannual reports required by paragraph (h) of this section shall be submitted according to the schedule specified in paragraphs (h)(6)(i) and (h)(6)(i) of this section.

(i) If the data reported in accordance with paragraphs (h)(1) through (h)(5) of this section were collected during the first calendar half, then the report shall be submitted by August 1 following the first calendar half.

(ii) If the data reported in accordance with paragraphs (h)(1) through (h)(5) of this section were collected during the second calendar half, then the report shall be submitted by February 1 following the second calendar half.

(i) The owner or operator of an air curtain incinerator subject to the opacity limit under § 60.56b shall submit the results of the initial opacity performance test and all subsequent annual performance tests recorded under paragraph (e) of this section. Annual performance tests shall be submitted by February 1 of the year following the year of the performance test.

(j) All reports specified under paragraphs (a), (b), (c), (f), (g), (h), and (i) of this section shall be submitted as a paper copy, postmarked on or before the submittal dates specified under these paragraphs, and maintained onsite as a paper copy for a period of 5 years.

(k) All records specified under paragraphs (d) and (e) of this section shall be maintained onsite in either paper copy or computer-readable format, unless an alternative format is approved by the Administrator.

(I) If the owner or operator of an affected facility would prefer a different annual or semiannual date for submitting the periodic reports required by paragraphs (g), (h) and (i) of this section, then the dates may be changed by mutual agreement between the owner or operator and the Administrator according to the procedures specified in § 60.19(c) of subpart A of this part.

(m) Owners and operators who elect to continuously monitor particulate matter, cadmium, lead, mercury, or hydrogen chloride, or who elect to use continuous automated sampling systems for dioxin/furan or mercury emissions, instead of conducting performance testing using EPA manual test methods must notify the Administrator one month prior to starting or stopping use of the particulate matter, cadmium, lead, mercury, hydrogen chloride, and dioxin/furan continuous emission monitoring systems or continuous automated sampling systems.

(n) Additional recordkeeping and reporting requirements for affected facilities with continuous cadmium, lead, mercury, or hydrogen chloride monitoring systems. In addition to complying with the requirements specified in paragraphs (a) through (m) of this section, the owner or operator of an affected source who elects to install a continuous emission monitoring system for cadmium, lead, mercury, or hydrogen chloride as specified in § 60.58b(n), shall maintain the records in paragraphs (n)(1) through (n)(10) of this section and report the information in paragraphs (n)(11) through (n)(12) of this section, relevant to the continuous emission monitoring system:

(1) All required continuous emission monitoring measurements (including monitoring data recorded during unavoidable continuous emission monitoring system breakdowns and out-of-control periods);

(2) The date and time identifying each period during which the continuous emission monitoring system was inoperative except for zero (low-level) and high-level checks;

(3) The date and time identifying each period during which the continuous emission monitoring system was out of control, as defined in § 60.58b(o)(4);

(4) The specific identification (i.e., the date and time of commencement and completion) of each period of excess emissions and parameter monitoring exceedances, as defined in the standard, that occurs during startups, shutdowns, and malfunctions of the affected source;

(5) The specific identification (i.e., the date and time of commencement and completion) of each time period of excess emissions and parameter monitoring exceedances, as defined in the standard, that occurs during periods other than startups, shutdowns, and malfunctions of the affected source;

(6) The nature and cause of any malfunction (if known);

(7) The corrective action taken to correct any malfunction or preventive measures adopted to prevent further malfunctions;

(8) The nature of the repairs or adjustments to the continuous emission monitoring system that was inoperative or out of control;

(9) All procedures that are part of a quality control program developed and implemented for the continuous emission monitoring system under § 60.58b(o);

(10) When more than one continuous emission monitoring system is used to measure the emissions from one affected source (e.g., multiple breechings, multiple outlets), the owner or operator shall report the results as required for each continuous emission monitoring system.

(11) Submit to EPA for approval, the site-specific monitoring plan required by § 60.58b(n)(13) and § 60.58b(o), including the site-specific performance evaluation test plan for the continuous emission monitoring system required by § 60.58(b)(o)(5). The owner or operator shall maintain copies of the site-specific monitoring plan on record for the life of the affected source to be made available for inspection, upon request, by the Administrator. If the site-specific monitoring plan is revised and approved, the owner or operator shall keep previous (i.e., superseded) versions of the plan on record to be made available for inspection, upon request, by the Administrator, for a period of 5 years after each revision to the plan.

(12) Submit information concerning all out-of-control periods for each continuous emission monitoring system, including start and end dates and hours and descriptions of corrective actions taken, in the annual or semiannual reports required in paragraphs (g) or (h) of this section.

(o) Additional recordkeeping and reporting requirements for affected facilities with continuous automated sampling systems for dioxin/furan or mercury monitoring. In addition to complying with the requirements specified in paragraphs (a) through (m) of this section, the owner or operator of an affected source who elects to install a

continuous automated sampling system for dioxin/furan or mercury, as specified in § 60.58b(p), shall maintain the records in paragraphs (o)(1) through (o)(10) of this section and report the information in (o)(11) and (o)(12) of this section, relevant to the continuous automated sampling system:

(1) All required 24-hour integrated mercury concentration or 2-week integrated dioxin/furan concentration data (including any data obtained during unavoidable system breakdowns and out-of-control periods);

(2) The date and time identifying each period during which the continuous automated sampling system was inoperative;

(3) The date and time identifying each period during which the continuous automated sampling system was out of control, as defined in § 60.58b(q)(4);

(4) The specific identification (i.e., the date and time of commencement and completion) of each period of excess emissions and parameter monitoring exceedances, as defined in the standard, that occurs during startups, shutdowns, and malfunctions of the affected source;

(5) The specific identification (i.e., the date and time of commencement and completion) of each time period of excess emissions and parameter monitoring exceedances, as defined in the standard, that occurs during periods other than startups, shutdowns, and malfunctions of the affected source;

(6) The nature and cause of any malfunction (if known);

(7) The corrective action taken to correct any malfunction or preventive measures adopted to prevent further malfunctions;

(8) The nature of the repairs or adjustments to the continuous automated sampling system that was inoperative or out of control;

(9) All procedures that are part of a quality control program developed and implemented for the continuous automated sampling system under § 60.58b(q);

(10) When more than one continuous automated sampling system is used to measure the emissions from one affected source (e.g., multiple breechings, multiple outlets), the owner or operator shall report the results as required for each system.

(11) Submit to EPA for approval, the site-specific monitoring plan required by § 60.58b(p)(11) and § 60.58b(q) including the site-specific performance evaluation test plan for the continuous emission monitoring system required by § 60.58(b)(q)(5). The owner or operator shall maintain copies of the site-specific monitoring plan on record for the life of the affected source to be made available for inspection, upon request, by the Administrator. If the site-specific monitoring plan is revised and approved, the owner or operator shall keep previous (i.e., superseded) versions of the plan on record to be made available for inspection, upon request, by the Administrator, for a period of 5 years after each revision to the plan.

(12) Submit information concerning all out-of-control periods for each continuous automated sampling system, including start and end dates and hours and descriptions of corrective actions taken in the annual or semiannual reports required in paragraphs (g) or (h) of this section.

[60 FR 65419, Dec. 19, 1995, as amended at 62 FR 45121, 45127, Aug. 25, 1997; 71 FR 27345, May 10, 2006]

§ 60.4200 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE) and other persons as specified in paragraphs (a)(1) through (4) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

(1) Manufacturers of stationary CI ICE with a displacement of less than 30 liters per cylinder where the model year is:

- (i) 2007 or later, for engines that are not fire pump engines;
- (ii) The model year listed in Table 3 to this subpart or later model year, for fire pump engines.

(2) Owners and operators of stationary CI ICE that commence construction after July 11, 2005, where the stationary CI ICE are:

- (i) Manufactured after April 1, 2006, and are not fire pump engines, or
- (ii) Manufactured as a certified National Fire Protection Association (NFPA) fire pump engine after July 1, 2006.

(3) Owners and operators of any stationary CI ICE that are modified or reconstructed after July 11, 2005 and any person that modifies or reconstructs any stationary CI ICE after July 11, 2005.

(4) The provisions of § 60.4208 of this subpart are applicable to all owners and operators of stationary CI ICE that commence construction after July 11, 2005.

(b) The provisions of this subpart are not applicable to stationary CI ICE being tested at a stationary CI ICE test cell/stand.

(c) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart applicable to area sources.

(d) Stationary CI ICE may be eligible for exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C, except that owners and operators, as well as manufacturers, may be eligible to request an exemption for national security.

(e) Owners and operators of facilities with CI ICE that are acting as temporary replacement units and that are located at a stationary source for less than 1 year and that have been properly certified as meeting the standards that would be applicable to such engine under the appropriate nonroad engine provisions, are not required to meet any other provisions under this subpart with regard to such engines.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37967, June 28, 2011; 86 FR 34357, June 29, 2021]

Emission Standards for Manufacturers

§ 60.4201 What emission standards must I meet for non-emergency engines if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later nonemergency stationary CI ICE with a maximum engine power less than or equal to 2,237 kilowatt (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 1039.101, 1039.102, 1039.104, 1039.105, 1039.107, and 1039.115 and 40 CFR part 1039, appendix I, as applicable, for all pollutants, for the same model year and maximum engine power.

(b) Stationary CI internal combustion engine manufacturers must certify their 2007 through 2010 model year nonemergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.

(c) Stationary CI internal combustion engine manufacturers must certify their 2011 model year and later nonemergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same maximum engine power.

(d) Stationary CI internal combustion engine manufacturers must certify the following non-emergency stationary CI ICE to the appropriate Tier 2 emission standards for new marine CI engines as described in 40 CFR part 1042, appendix I, for all pollutants, for the same displacement and rated power:

(1) Their 2007 model year through 2012 non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder;

(2) Their 2013 model year non-emergency stationary CI ICE with a maximum engine power greater than or equal to 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and

(3) Their 2013 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.

(e) Stationary CI internal combustion engine manufacturers must certify the following non-emergency stationary CI ICE to the certification emission standards and other requirements for new marine CI engines in 40 CFR 1042.101, 40 CFR 1042.107, 40 CFR 1042.110, 40 CFR 1042.115, 40 CFR 1042.120, and 40 CFR 1042.145, as applicable, for all pollutants, for the same displacement and maximum engine power:

(1) Their 2013 model year non-emergency stationary CI ICE with a maximum engine power less than 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and

(2) Their 2014 model year and later non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder.

(f) Notwithstanding the requirements in paragraphs (a) through (c) of this section, stationary non-emergency CI ICE identified in paragraphs (a) and (c) of this section may be certified to the provisions of 40 CFR part 1042 for commercial engines that are applicable for the engine's model year, displacement, power density, and maximum engine power if the engines will be used solely in either or both of the following locations:

- (1) Remote areas of Alaska; and
- (2) Marine offshore installations.

(g) Notwithstanding the requirements in paragraphs (a) through (f) of this section, stationary CI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (e) of this section that are applicable to the model year, maximum engine power, and displacement of the reconstructed stationary CI ICE.

(h) Stationary CI ICE certified to the standards in 40 CFR part 1039 and equipped with auxiliary emission control devices (AECDs) as specified in 40 CFR 1039.665 must meet the Tier 1 certification emission standards for new nonroad CI engines in 40 CFR part 1039, appendix I, while the AECD is activated during a qualified emergency situation. A qualified emergency situation is defined in 40 CFR 1039.665. When the qualified emergency situation has ended and the AECD is deactivated, the engine must resume meeting the otherwise applicable emission standard specified in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37967, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34357, June 29, 2021]

§ 60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (a)(1) through (2) of this section.

(1) For engines with a maximum engine power less than 37 KW (50 HP):

(i) The Tier 2 emission standards for new nonroad CI engines for the appropriate rated power as described in 40 CFR part 1039, appendix I, for all pollutants and the smoke standards as specified in 40 CFR 1039.105 for model year 2007 engines; and

(ii) The certification emission standards for new nonroad CI engines in 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.115, and table 2 to this subpart, for 2008 model year and later engines.

(2) For engines with a rated power greater than or equal to 37 KW (50 HP), the Tier 2 or Tier 3 emission standards for new nonroad CI engines for the same rated power as described in 40 CFR part 1039, appendix I, for all pollutants and the smoke standards as specified in 40 CFR 1039.105 beginning in model year 2007.

(b) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (b)(1) through (2) of this section.

(1) For 2007 through 2010 model years, the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.

(2) For 2011 model year and later, the Tier 2 emission standards as described in 40 CFR part 1039, appendix I, for all pollutants and the smoke standards as specified in 40 CFR 1039.105.

(c) [Reserved]

(d) Beginning with the model years in table 3 to this subpart, stationary CI internal combustion engine manufacturers must certify their fire pump stationary CI ICE to the emission standards in table 4 to this subpart, for all pollutants, for the same model year and NFPA nameplate power.

(e) Stationary CI internal combustion engine manufacturers must certify the following emergency stationary CI ICE that are not fire pump engines to the appropriate Tier 2 emission standards for new marine CI engines as described in 40 CFR part 1042, appendix I, for all pollutants, for the same displacement and rated power:

(1) Their 2007 model year through 2012 emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder;

(2) Their 2013 model year and later emergency stationary CI ICE with a maximum engine power greater than or equal to 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder;

(3) Their 2013 model year emergency stationary CI ICE with a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder; and

(4) Their 2014 model year and later emergency stationary CI ICE with a maximum engine power greater than or equal to 2,000 KW (2,682 HP) and a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.

(f) Stationary CI internal combustion engine manufacturers must certify the following emergency stationary CI ICE to the certification emission standards and other requirements applicable to Tier 3 new marine CI engines in 40 CFR 1042.101, 40 CFR 1042.107, 40 CFR 1042.115, 40 CFR 1042.120, and 40 CFR 1042.145, for all pollutants, for the same displacement and maximum engine power:

(1) Their 2013 model year and later emergency stationary CI ICE with a maximum engine power less than 3,700 KW (4,958 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 15 liters per cylinder; and

(2) Their 2014 model year and later emergency stationary CI ICE with a maximum engine power less than 2,000 KW (2,682 HP) and a displacement of greater than or equal to 15 liters per cylinder and less than 30 liters per cylinder.

(g) Notwithstanding the requirements in paragraphs (a) through (d) of this section, stationary emergency CI ICE identified in paragraphs (a) and (c) of this section may be certified to the provisions of 40 CFR part 1042 for commercial engines that are applicable for the engine's model year, displacement, power density, and maximum engine power if the engines will be used solely in either or both of the locations identified in paragraphs (g)(1) and (2) of this section. Engines that would be subject to the Tier 4 standards in 40 CFR part 1042 that are used solely in either or both of the location may instead continue to be certified to the previous tier of standards in 40 CFR part 1042. The previous tier is Tier 3 in most cases; however, the previous tier is Tier 2 if there are no Tier 3 standards specified for engines of a certain size or power rating.

- (1) Remote areas of Alaska; and
- (2) Marine offshore installations.

(h) Notwithstanding the requirements in paragraphs (a) through (f) of this section, stationary CI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (f) of this

section that are applicable to the model year, maximum engine power and displacement of the reconstructed emergency stationary CI ICE.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37968, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34358, June 29, 2021; 88 FR 4471, Jan. 24, 2023]

§ 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines?

Engines manufactured by stationary CI internal combustion engine manufacturers must meet the emission standards as required in §§ 60.4201 and 60.4202 during the certified emissions life of the engines.

[76 FR 37968, June 28, 2011]

Emission Standards for Owners and Operators

§ 60.4204 What emission standards must I meet for non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of less than 10 liters per cylinder must comply with the emission standards in table 1 to this subpart. Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder must comply with the Tier 1 emission standards in 40 CFR part 1042, appendix I.

(b) Owners and operators of 2007 model year and later non-emergency stationary CI ICE with a displacement of less than 30 liters per cylinder must comply with the emission standards for new CI engines in § 60.4201 for their 2007 model year and later stationary CI ICE, as applicable.

(c) Owners and operators of non-emergency stationary CI engines with a displacement of greater than or equal to 30 liters per cylinder must meet the following requirements:

(1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 17.0 grams per kilowatt-hour (g/KW-hr) (12.7 grams per horsepower-hr (g/HP-hr)) when maximum engine speed is less than 130 revolutions per minute (rpm);

(ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and

(iii) 9.8 g/KW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.

(2) For engines installed on or after January 1, 2012 and before January 1, 2016, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and

(iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.

(3) For engines installed on or after January 1, 2016, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 3.4 g/KW-hr (2.5 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $9.0 \cdot n^{-0.20}$ g/KW-hr (6.7 $\cdot n^{-0.20}$ g/HP-hr) where n (maximum engine speed) is 130 or more but less than 2,000 rpm; and

(iii) 2.0 g/KW-hr (1.5 g/HP-hr) where maximum engine speed is greater than or equal to 2,000 rpm.

(4) Reduce particulate matter (PM) emissions by 60 percent or more, or limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.15 g/KW-hr (0.11 g/HP-hr).

(d) Owners and operators of non-emergency stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests in-use must meet the not-to-exceed (NTE) standards as indicated in § 60.4212.

(e) Owners and operators of any modified or reconstructed non-emergency stationary CI ICE subject to this subpart must meet the emission standards applicable to the model year, maximum engine power, and displacement of the modified or reconstructed non-emergency stationary CI ICE that are specified in paragraphs (a) through (d) of this section.

(f) Owners and operators of stationary CI ICE certified to the standards in 40 CFR part 1039 and equipped with AECDs as specified in 40 CFR 1039.665 must meet the Tier 1 certification emission standards for new nonroad CI engines in 40 CFR part 1039, appendix I, while the AECD is activated during a qualified emergency situation. A qualified emergency situation is defined in 40 CFR 1039.665. When the qualified emergency situation has ended and the AECD is deactivated, the engine must resume meeting the otherwise applicable emission standard specified in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37968, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34358, June 29, 2021]

§ 60.4205 What emission standards must I meet for emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of pre-2007 model year emergency stationary CI ICE with a displacement of less than 10 liters per cylinder that are not fire pump engines must comply with the emission standards in Table 1 to this subpart. Owners and operators of pre-2007 model year emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that are not fire pump engines must comply with the Tier 1 emission standards in 40 CFR part 1042, appendix I.

(b) Owners and operators of 2007 model year and later emergency stationary CI ICE with a displacement of less than 30 liters per cylinder that are not fire pump engines must comply with the emission standards for new nonroad CI engines in § 60.4202, for all pollutants, for the same model year and maximum engine power for their 2007 model year and later emergency stationary CI ICE.

(c) Owners and operators of fire pump engines with a displacement of less than 30 liters per cylinder must comply with the emission standards in table 4 to this subpart, for all pollutants.

(d) Owners and operators of emergency stationary CI engines with a displacement of greater than or equal to 30 liters per cylinder must meet the requirements in this section.

(1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 17.0 g/KW-hr (12.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and

(iii) 9.8 g/kW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.

(2) For engines installed on or after January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and

(iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.

(3) Limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.40 g/KW-hr (0.30 g/HP-hr).

(e) Owners and operators of emergency stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests in-use must meet the NTE standards as indicated in § 60.4212.

(f) Owners and operators of any modified or reconstructed emergency stationary CI ICE subject to this subpart must meet the emission standards applicable to the model year, maximum engine power, and displacement of the modified or reconstructed CI ICE that are specified in paragraphs (a) through (e) of this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011; 86 FR 34358, June 29, 2021]

§ 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine?

Owners and operators of stationary CI ICE must operate and maintain stationary CI ICE that achieve the emission standards as required in §§ 60.4204 and 60.4205 over the entire life of the engine.

[76 FR 37969, June 28, 2011]

Fuel Requirements for Owners and Operators

§ 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion engine subject to this subpart?

(a) [Reserved]

(b) Beginning October 1, 2010, owners and operators of stationary CI ICE subject to this subpart with a displacement of less than 30 liters per cylinder that use diesel fuel must use diesel fuel that meets the requirements of 40 CFR 1090.305 for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to October 1, 2010, may be used until depleted.

(c) [Reserved]

(d) Beginning June 1, 2012, owners and operators of stationary CI ICE subject to this subpart with a displacement of greater than or equal to 30 liters per cylinder must use diesel fuel that meets a maximum per-gallon sulfur content of 1,000 parts per million (ppm).

(e) Stationary CI ICE that have a national security exemption under § 60.4200(d) are also exempt from the fuel requirements in this section.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011; 78 FR 6695, Jan. 30, 2013; 85 FR 78463, Dec. 4, 2020]

Other Requirements for Owners and Operators

§ 60.4208 What is the deadline for importing or installing stationary CI ICE produced in previous model years?

(a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the applicable requirements for 2007 model year engines.

(b) After December 31, 2009, owners and operators may not install stationary CI ICE with a maximum engine power of less than 19 KW (25 HP) (excluding fire pump engines) that do not meet the applicable requirements for 2008 model year engines.

(c) After December 31, 2014, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 19 KW (25 HP) and less than 56 KW (75 HP) that do not meet the applicable requirements for 2013 model year non-emergency engines.

(d) After December 31, 2013, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 56 KW (75 HP) and less than 130 KW (175 HP) that do not meet the applicable requirements for 2012 model year non-emergency engines.

(e) After December 31, 2012, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 130 KW (175 HP), including those above 560 KW (750 HP), that do not meet the applicable requirements for 2011 model year non-emergency engines.

(f) After December 31, 2016, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 560 KW (750 HP) that do not meet the applicable requirements for 2015 model year non-emergency engines.

(g) After December 31, 2018, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power greater than or equal to 600 KW (804 HP) and less than 2,000 KW (2,680 HP) and a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that do not meet the applicable requirements for 2017 model year non-emergency engines.

(h) In addition to the requirements specified in §§ 60.4201, 60.4202, 60.4204, and 60.4205, it is prohibited to import stationary CI ICE with a displacement of less than 30 liters per cylinder that do not meet the applicable requirements specified in paragraphs (a) through (g) of this section after the dates specified in paragraphs (a) through (g) of this section.

(i) The requirements of this section do not apply to owners or operators of stationary CI ICE that have been modified, reconstructed, and do not apply to engines that were removed from one existing location and reinstalled at a new location.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011]

§ 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine?

If you are an owner or operator, you must meet the monitoring requirements of this section. In addition, you must also meet the monitoring requirements specified in § 60.4211.

(a) If you are an owner or operator of an emergency stationary CI internal combustion engine that does not meet the standards applicable to non-emergency engines, you must install a non-resettable hour meter prior to startup of the engine.

(b) If you are an owner or operator of a stationary CI internal combustion engine equipped with a diesel particulate filter to comply with the emission standards in § 60.4204, the diesel particulate filter must be installed with a

backpressure monitor that notifies the owner or operator when the high backpressure limit of the engine is approached.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011]

Compliance Requirements

§ 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of less than 10 liters per cylinder to the emission standards specified in §§ 60.4201(a) through (c) and 60.4202(a), (b), and (d) using the certification procedures required in 40 CFR part 1039, subpart C, and must test their engines as specified in 40 CFR part 1039. For the purposes of this subpart, engines certified to the standards in Table 1 to this subpart shall be subject to the same certification procedures required for engines certified to the standards in Table 1 to this subpart shall be subject to the same certification procedures required for engines certified to the standards in Table 4 to this subpart shall be subject to the same certification procedures required for engines certified to the Tier 1 standards in 40 CFR part 1039, appendix I. For the purposes of this subpart, engines certified to the standards in Table 4 to this subpart shall be subject to the same certification procedures required for engines certified to the Tier 1 standards in 40 CFR part 1039, appendix I, except that engines with NFPA nameplate power of less than 37 KW (50 HP) certified to model year 2011 or later standards shall be subject to the same requirements as engines certified to the standards in 40 CFR part 1039.

(b) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder to the emission standards specified in §§ 60.4201(d) and (e) and 60.4202(e) and (f) using the certification procedures required in 40 CFR part 1042, subpart C, and must test their engines as specified in 40 CFR part 1042.

(c) Stationary CI internal combustion engine manufacturers must meet the requirements of 40 CFR 1039.120, 1039.125, 1039.130, and 1039.135 and 40 CFR part 1068 for engines that are certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine manufacturers must meet the corresponding provisions of 40 CFR part 1042 for engines that would be covered by that part if they were nonroad (including marine) engines. Labels on such engines must refer to stationary engines, rather than or in addition to nonroad or marine engines, as appropriate. Stationary CI internal combustion engine manufacturers must label their engines according to paragraphs (c)(1) through (3) of this section.

(1) Stationary CI internal combustion engines manufactured from January 1, 2006 to March 31, 2006 (January 1, 2006 to June 30, 2006 for fire pump engines), other than those that are part of certified engine families under the nonroad CI engine regulations, must be labeled according to 40 CFR 1039.20.

(2) Stationary CI internal combustion engines manufactured from April 1, 2006 to December 31, 2006 (or, for fire pump engines, July 1, 2006 to December 31 of the year preceding the year listed in table 3 to this subpart) must be labeled according to paragraphs (c)(2)(i) through (iii) of this section:

(i) Stationary CI internal combustion engines that are part of certified engine families under the nonroad regulations must meet the labeling requirements for nonroad CI engines, but do not have to meet the labeling requirements in 40 CFR 1039.20.

(ii) Stationary CI internal combustion engines that meet Tier 1 requirements (or requirements for fire pumps) under this subpart, but do not meet the requirements applicable to nonroad CI engines must be labeled according to 40 CFR 1039.20. The engine manufacturer may add language to the label clarifying that the engine meets Tier 1 requirements (or requirements for fire pumps) of this subpart.

(iii) Stationary CI internal combustion engines manufactured after April 1, 2006 that do not meet Tier 1 requirements of this subpart, or fire pumps engines manufactured after July 1, 2006 that do not meet the requirements for fire pumps under this subpart, may not be used in the U.S. If any such engines are manufactured in the U.S. after April 1, 2006 (July 1, 2006 for fire pump engines), they must be exported or must be brought into compliance with the appropriate standards prior to initial operation. The export provisions of 40 CFR 1068.230 would apply to engines for export and the manufacturers must label such engines according to 40 CFR 1068.230.

(3) Stationary CI internal combustion engines manufactured after January 1, 2007 (for fire pump engines, after January 1 of the year listed in table 3 to this subpart, as applicable) must be labeled according to paragraphs (c)(3)(i) through (iii) of this section.

(i) Stationary CI internal combustion engines that meet the requirements of this subpart and the corresponding requirements for nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in 40 CFR part 1039 or 1042, as appropriate.

(ii) Stationary CI internal combustion engines that meet the requirements of this subpart, but are not certified to the standards applicable to nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in 40 CFR part 1039 or 1042, as appropriate, but the words "stationary" must be included instead of "nonroad" or "marine" on the label. In addition, such engines must be labeled according to 40 CFR 1039.20.

(iii) Stationary CI internal combustion engines that do not meet the requirements of this subpart must be labeled according to 40 CFR 1068.230 and must be exported under the provisions of 40 CFR 1068.230.

(d) An engine manufacturer certifying an engine family or families to standards under this subpart that are identical to standards applicable under 40 CFR part 1039 or 1042 for that model year may certify any such family that contains both nonroad (including marine) and stationary engines as a single engine family and/or may include any such family containing stationary engines in the averaging, banking, and trading provisions applicable for such engines under those parts.

(e) Manufacturers of engine families discussed in paragraph (d) of this section may meet the labeling requirements referred to in paragraph (c) of this section for stationary CI ICE by either adding a separate label containing the information required in paragraph (c) of this section or by adding the words "and stationary" after the word "nonroad" or "marine," as appropriate, to the label.

(f) Starting with the model years shown in table 5 to this subpart, stationary CI internal combustion engine manufacturers must add a permanent label stating that the engine is for stationary emergency use only to each new emergency stationary CI internal combustion engine greater than or equal to 19 KW (25 HP) that meets all the emission standards for emergency engines in § 60.4202 but does not meet all the emission standards for non-emergency engines in § 60.4201. The label must be added according to the labeling requirements specified in 40 CFR 1039.135(b). Engine manufacturers must specify in the owner's manual that operation of emergency engines is limited to emergency operations and required maintenance and testing.

(g) Manufacturers of fire pump engines may use the test cycle in table 6 to this subpart for testing fire pump engines and may test at the NFPA certified nameplate HP, provided that the engine is labeled as "Fire Pump Applications Only".

(h) Engine manufacturers, including importers, may introduce into commerce uncertified engines or engines certified to earlier standards that were manufactured before the new or changed standards took effect until inventories are depleted, as long as such engines are part of normal inventory. For example, if the engine manufacturers' normal industry practice is to keep on hand a one-month supply of engines based on its projected sales, and a new tier of standards starts to apply for the 2009 model year, the engine manufacturer may manufacture engines based on the normal inventory requirements late in the 2008 model year, and sell those engines for installation. The engine manufacturer may not circumvent the provisions of § 60.4201 or § 60.4202 by stockpiling engines that are built before new or changed standards take effect. Stockpiling of such engines beyond normal industry practice is a violation of this subpart.

(i) The replacement engine provisions of 40 CFR 1068.240 are applicable to stationary CI engines replacing existing equipment that is less than 15 years old.

(j) Stationary CI ICE manufacturers may equip their stationary CI internal combustion engines certified to the emission standards in 40 CFR part 1039 with AECDs for qualified emergency situations according to the requirements of 40 CFR 1039.665. Manufacturers of stationary CI ICE equipped with AECDs as allowed by 40 CFR 1039.665 must meet all the requirements in 40 CFR 1039.665 that apply to manufacturers. Manufacturers must document that the engine complies with the Tier 1 standard in 40 CFR part 1039, appendix I, when the AECD is activated. Manufacturers must provide any relevant testing, engineering analysis, or other information in

sufficient detail to support such statement when applying for certification (including amending an existing certificate) of an engine equipped with an AECD as allowed by 40 CFR 1039.665.

(k) Manufacturers of any size may certify their emergency stationary CI internal combustion engines under this section using assigned deterioration factors established by EPA, consistent with 40 CFR 1039.240 and 1042.240.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37969, June 28, 2011; 81 FR 44219, July 7, 2016; 86 FR 34358, June 29, 2021]

§ 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine?

(a) If you are an owner or operator and must comply with the emission standards specified in this subpart, you must do all of the following, except as permitted under paragraph (g) of this section:

(1) Operate and maintain the stationary CI internal combustion engine and control device according to the manufacturer's emission-related written instructions;

(2) Change only those emission-related settings that are permitted by the manufacturer; and

(3) Meet the requirements of 40 CFR part 1068, as they apply to you.

(b) If you are an owner or operator of a pre-2007 model year stationary Cl internal combustion engine and must comply with the emission standards specified in § 60.4204(a) or § 60.4205(a), or if you are an owner or operator of a Cl fire pump engine that is manufactured prior to the model years in table 3 to this subpart and must comply with the emission standards specified in § 60.4205(c), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) through (5) of this section.

(1) Purchasing an engine certified to emission standards for the same model year and maximum engine power as described in 40 CFR parts 1039 and 1042, as applicable. The engine must be installed and configured according to the manufacturer's specifications.

(2) Keeping records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.

(3) Keeping records of engine manufacturer data indicating compliance with the standards.

(4) Keeping records of control device vendor data indicating compliance with the standards.

(5) Conducting an initial performance test to demonstrate compliance with the emission standards according to the requirements specified in § 60.4212, as applicable.

(c) If you are an owner or operator of a 2007 model year and later stationary CI internal combustion engine and must comply with the emission standards specified in § 60.4204(b) or § 60.4205(b), or if you are an owner or operator of a CI fire pump engine that is manufactured during or after the model year that applies to your fire pump engine power rating in table 3 to this subpart and must comply with the emission standards specified in § 60.4205(c), you must comply by purchasing an engine certified to the emission standards in § 60.4204(b), or § 60.4205(c), or (c), as applicable, for the same model year and maximum (or in the case of fire pumps, NFPA nameplate) engine power. The engine must be installed and configured according to the manufacturer's emission-related specifications, except as permitted in paragraph (g) of this section.

(d) If you are an owner or operator and must comply with the emission standards specified in § 60.4204(c) or § 60.4205(d), you must demonstrate compliance according to the requirements specified in paragraphs (d)(1) through (3) of this section.

(1) Conducting an initial performance test to demonstrate initial compliance with the emission standards as specified in § 60.4213.

(2) Establishing operating parameters to be monitored continuously to ensure the stationary internal combustion engine continues to meet the emission standards. The owner or operator must petition the Administrator for approval of operating parameters to be monitored continuously. The petition must include the information described in paragraphs (d)(2)(i) through (v) of this section.

(i) Identification of the specific parameters you propose to monitor continuously;

(ii) A discussion of the relationship between these parameters and NO_X and PM emissions, identifying how the emissions of these pollutants change with changes in these parameters, and how limitations on these parameters will serve to limit NO_X and PM emissions;

(iii) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(iv) A discussion identifying the methods and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(v) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(3) For non-emergency engines with a displacement of greater than or equal to 30 liters per cylinder, conducting annual performance tests to demonstrate continuous compliance with the emission standards as specified in § 60.4213.

(e) If you are an owner or operator of a modified or reconstructed stationary CI internal combustion engine and must comply with the emission standards specified in § 60.4204(e) or § 60.4205(f), you must demonstrate compliance according to one of the methods specified in paragraphs (e)(1) or (2) of this section.

(1) Purchasing, or otherwise owning or operating, an engine certified to the emission standards in § 60.4204(e) or § 60.4205(f), as applicable.

(2) Conducting a performance test to demonstrate initial compliance with the emission standards according to the requirements specified in § 60.4212 or § 60.4213, as appropriate. The test must be conducted within 60 days after the engine commences operation after the modification or reconstruction.

(f) If you own or operate an emergency stationary ICE, you must operate the emergency stationary ICE according to the requirements in paragraphs (f)(1) through (3) of this section. In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (3), is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (3), the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary ICE in emergency situations.

(2) You may operate your emergency stationary ICE for the purpose specified in paragraph (f)(2)(i) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph (f)(3) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).

(i) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the

owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.

(ii)-(iii) [Reserved]

(3) Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing provided in paragraph (f)(2) of this section. Except as provided in paragraph (f)(3)(i) of this section, the 50 hours per calendar year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.

(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

(ii) [Reserved]

(g) If you do not install, configure, operate, and maintain your engine and control device according to the manufacturer's emission-related written instructions, or you change emission-related settings in a way that is not permitted by the manufacturer, you must demonstrate compliance as follows:

(1) If you are an owner or operator of a stationary CI internal combustion engine with maximum engine power less than 100 HP, you must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, if you do not install and configure the engine and control device according to the manufacturer's emission-related written instructions, or you change the emission-related settings in a way that is not permitted by the manufacturer, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of such action.

(2) If you are an owner or operator of a stationary CI internal combustion engine greater than or equal to 100 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of startup, or within 1 year after an engine and control device is no longer installed, configured, operated, and maintained in accordance with the manufacturer's emission-related written instructions, or within 1 year after you change emission-related settings in a way that is not permitted by the manufacturer.

(3) If you are an owner or operator of a stationary CI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain

and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance with the applicable emission standards within 1 year of startup, or within 1 year after an engine and control device is no longer installed, configured, operated, and maintained in accordance with the manufacturer's emission-related written instructions, or within 1 year after you change emission-related settings in a way that is not permitted by the manufacturer. You must conduct subsequent performance testing every 8,760 hours of engine operation or 3 years, whichever comes first, thereafter to demonstrate compliance with the applicable emission standards.

(h) The requirements for operators and prohibited acts specified in 40 CFR 1039.665 apply to owners or operators of stationary CI ICE equipped with AECDs for qualified emergency situations as allowed by 40 CFR 1039.665.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37970, June 28, 2011; 78 FR 6695, Jan. 30, 2013; 81 FR 44219, July 7, 2016; 86 FR 34359, June 29, 2021; 87 FR 48605, Aug. 10, 2022]

Testing Requirements for Owners and Operators

§ 60.4212 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of less than 30 liters per cylinder?

Owners and operators of stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests pursuant to this subpart must do so according to paragraphs (a) through (e) of this section.

(a) The performance test must be conducted according to the in-use testing procedures in 40 CFR part 1039, subpart F, for stationary CI ICE with a displacement of less than 10 liters per cylinder, and according to 40 CFR part 1042, subpart F, for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder. Alternatively, stationary CI ICE that are complying with Tier 2 or Tier 3 emission standards as described in 40 CFR part 1039, appendix I, or with Tier 2 emission standards as described in 40 CFR part 1042, appendix I, may follow the testing procedures specified in § 60.4213, as appropriate.

(b) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR part 1039 must not exceed the not-to-exceed (NTE) standards for the same model year and maximum engine power as required in 40 CFR 1039.101(e) and 40 CFR 1039.102(g)(1), except as specified in 40 CFR 1039.104(d). This requirement starts when NTE requirements take effect for nonroad diesel engines under 40 CFR part 1039.

(c) Exhaust emissions from stationary CI ICE subject to Tier 2 or Tier 3 emission standards as described in 40 CFR part 1039, appendix I, or Tier 2 emission standards as described in 40 CFR part 1042, appendix I, must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard, determined from the following equation:

NTE requirement for each pollutant = $(1.25) \times (STD)$ (Eq. 1)

Where:

STD = The standard specified for that pollutant in 40 CFR part 1039 or 1042, as applicable.

(d) Exhaust emissions from stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in § 60.4204(a), § 60.4205(a), or § 60.4205(c) must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard in § 60.4204(a), § 60.4205(a), or § 60.4205(c), determined from the equation in paragraph (c) of this section.

Where:

STD = The standard specified for that pollutant in § 60.4204(a), § 60.4205(a), or § 60.4205(c).

Alternatively, stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in § 60.4204(a), § 60.4205(a), or § 60.4205(c) may follow the testing procedures specified in § 60.4213, as appropriate.

(e) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR part 1042 must not exceed the NTE standards for the same model year and maximum engine power as required in 40 CFR 1042.101(c).

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011; 86 FR 34359, June 29, 2021]

§ 60.4213 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of greater than or equal to 30 liters per cylinder?

Owners and operators of stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder must conduct performance tests according to paragraphs (a) through (f) of this section.

(a) Each performance test must be conducted according to the requirements in § 60.8 and under the specific conditions that this subpart specifies in table 7. The test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load.

(b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in § 60.8(c).

(c) You must conduct three separate test runs for each performance test required in this section, as specified in § 60.8(f). Each test run must last at least 1 hour.

(d) To determine compliance with the percent reduction requirement, you must follow the requirements as specified in paragraphs (d)(1) through (3) of this section.

(1) You must use Equation 2 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_i - C_o}{C_i} \times 100 = R \qquad (Eq. 2)$$

Where:

C_i = concentration of NO_X or PM at the control device inlet,

 C_o = concentration of NO_X or PM at the control device outlet, and

R = percent reduction of NO_X or PM emissions.

(2) You must normalize the NO_X or PM concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen (O₂) using Equation 3 of this section, or an equivalent percent carbon dioxide (CO₂) using the procedures described in paragraph (d)(3) of this section.

$$C_{adj} = C_d \frac{5.9}{20.9 - \% O_2}$$
 (Eq. 3)

Where:

C_{adj} = Calculated NO_X or PM concentration adjusted to 15 percent O₂.

C_d = Measured concentration of NO_X or PM, uncorrected.

5.9 = 20.9 percent O₂-15 percent O₂, the defined O₂ correction value, percent.

 $%O_2$ = Measured O_2 concentration, dry basis, percent.

(3) If pollutant concentrations are to be corrected to 15 percent O_2 and CO_2 concentration is measured in lieu of O_2 concentration measurement, a CO_2 correction factor is needed. Calculate the CO_2 correction factor as described in paragraphs (d)(3)(i) through (iii) of this section.

(i) Calculate the fuel-specific F_0 value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

$$F_{o} = \frac{0.209_{F_{d}}}{F_{c}}$$
 (Eq. 4)

Where:

 F_{o} = Fuel factor based on the ratio of O₂ volume to the ultimate CO₂ volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is O_2 , percent/100.

 F_d = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

 F_c = Ratio of the volume of CO₂ produced to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent O₂, as follows:

$$X_{CO_2} = \frac{5.9}{F_0}$$
 (Eq. 5)

Where:

 X_{CO2} = CO₂ correction factor, percent.

5.9 = 20.9 percent O₂-15 percent O₂, the defined O₂ correction value, percent.

(iii) Calculate the NO_X and PM gas concentrations adjusted to 15 percent O₂ using CO₂ as follows:

$$C_{adj} = C_d \frac{X_{CO_2}}{\% CO_2}$$
 (Eq. 6)

Where:

Cadj = Calculated NO_X or PM concentration adjusted to 15 percent O₂.

C_d = Measured concentration of NO_X or PM, uncorrected.

 $%CO_2$ = Measured CO₂ concentration, dry basis, percent.

(e) To determine compliance with the NO_X mass per unit output emission limitation, convert the concentration of NO_X in the engine exhaust using Equation 7 of this section:

$$ER = \frac{C_d \times 1.912 \times 10^{-3} \times Q \times T}{KW-hour}$$
(Eq. 7)

Where:

ER = Emission rate in grams per KW-hour.

C_d = Measured NO_X concentration in ppm.

 1.912×10^{-3} = Conversion constant for ppm NO_X to grams per standard cubic meter at 25 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Brake work of the engine, in KW-hour.

(f) To determine compliance with the PM mass per unit output emission limitation, convert the concentration of PM in the engine exhaust using Equation 8 of this section:

$$ER = \frac{C_{adj} \times Q \times T}{KW-hour} \qquad (Eq. 8)$$

Where:

ER = Emission rate in grams per KW-hour.

C_{adj} = Calculated PM concentration in grams per standard cubic meter.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Energy output of the engine, in KW.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011]

Notification, Reports, and Records for Owners and Operators

§ 60.4214 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of non-emergency stationary CI ICE that are greater than 2,237 KW (3,000 HP), or have a displacement of greater than or equal to 10 liters per cylinder, or are pre-2007 model year engines that are greater than 130 KW (175 HP) and not certified, must meet the requirements of paragraphs (a)(1) and (2) of this section.

(1) Submit an initial notification as required in § 60.7(a)(1). The notification must include the information in paragraphs (a)(1)(i) through (v) of this section.

(i) Name and address of the owner or operator;

(ii) The address of the affected source;

(iii) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;

(iv) Emission control equipment; and

(v) Fuel used.

(2) Keep records of the information in paragraphs (a)(2)(i) through (iv) of this section.

(i) All notifications submitted to comply with this subpart and all documentation supporting any notification.

(ii) Maintenance conducted on the engine.

(iii) If the stationary CI internal combustion is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards.

(iv) If the stationary CI internal combustion is not a certified engine, documentation that the engine meets the emission standards.

(b) If the stationary CI internal combustion engine is an emergency stationary internal combustion engine, the owner or operator is not required to submit an initial notification. Starting with the model years in table 5 to this subpart, if the emergency engine does not meet the standards applicable to non-emergency engines in the applicable model year, the owner or operator must keep records of the operation of the engine in emergency and non-emergency service that are recorded through the non-resettable hour meter. The owner must record the time of operation of the engine and the reason the engine was in operation during that time.

(c) If the stationary CI internal combustion engine is equipped with a diesel particulate filter, the owner or operator must keep records of any corrective action taken after the backpressure monitor has notified the owner or operator that the high backpressure limit of the engine is approached.

(d) If you own or operate an emergency stationary CI ICE with a maximum engine power more than 100 HP that operates for the purpose specified in § 60.4211(f)(3)(i), you must submit an annual report according to the requirements in paragraphs (d)(1) through (3) of this section.
(1) The report must contain the following information:

- (i) Company name and address where the engine is located.
- (ii) Date of the report and beginning and ending dates of the reporting period.
- (iii) Engine site rating and model year.
- (iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
- (v)-(vi) [Reserved]

(vii) Hours spent for operation for the purposes specified in § 60.4211(f)(3)(i), including the date, start time, and end time for engine operation for the purposes specified in § 60.4211(f)(3)(i). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (*www.epa.gov/cdx*). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 60.4.

(e) Owners or operators of stationary CI ICE equipped with AECDs pursuant to the requirements of 40 CFR 1039.665 must report the use of AECDs as required by 40 CFR 1039.665(e).

[71 FR 39172, July 11, 2006, as amended at 78 FR 6696, Jan. 30, 2013; 81 FR 44219, July 7, 2016; 87 FR 48606, Aug. 10, 2022]

Special Requirements

§ 60.4215 What requirements must I meet for engines used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands?

(a) Stationary CI ICE with a displacement of less than 30 liters per cylinder that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are required to meet the applicable emission standards in §§ 60.4202 and 60.4205.

(b) Stationary CI ICE that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are not required to meet the fuel requirements in § 60.4207.

(c) Stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are required to meet the following emission standards:

(1) For engines installed prior to January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 17.0 g/KW-hr (12.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $45 \cdot n^{-0.2}$ g/KW-hr ($34 \cdot n^{-0.2}$ g/HP-hr) when maximum engine speed is 130 or more but less than 2,000 rpm, where n is maximum engine speed; and

(iii) 9.8 g/KW-hr (7.3 g/HP-hr) when maximum engine speed is 2,000 rpm or more.

(2) For engines installed on or after January 1, 2012, limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to the following:

(i) 14.4 g/KW-hr (10.7 g/HP-hr) when maximum engine speed is less than 130 rpm;

(ii) $44 \cdot n^{-0.23}$ g/KW-hr ($33 \cdot n^{-0.23}$ g/HP-hr) when maximum engine speed is greater than or equal to 130 but less than 2,000 rpm and where n is maximum engine speed; and

(iii) 7.7 g/KW-hr (5.7 g/HP-hr) when maximum engine speed is greater than or equal to 2,000 rpm.

(3) Limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.40 g/KW-hr (0.30 g/HP-hr).

[71 FR 39172, July 11, 2006, as amended at 76 FR 37971, June 28, 2011]

§ 60.4216 What requirements must I meet for engines used in Alaska?

(a) Prior to December 1, 2010, owners and operators of stationary CI ICE with a displacement of less than 30 liters per cylinder located in areas of Alaska not accessible by the FAHS should refer to 40 CFR part 69 to determine the diesel fuel requirements applicable to such engines.

(b) Except as indicated in paragraph (c) of this section, manufacturers, owners and operators of stationary CI ICE with a displacement of less than 10 liters per cylinder located in remote areas of Alaska may meet the requirements of this subpart by manufacturing and installing engines meeting the Tier 2 or Tier 3 emission standards described in 40 CFR part 1042 for the same model year, displacement, and maximum engine power, as appropriate, rather than the otherwise applicable requirements of 40 CFR part 1039, as indicated in §§ 60.4201(f) and 60.4202(g).

(c) Manufacturers, owners, and operators of stationary CI ICE that are located in remote areas of Alaska may choose to meet the applicable emission standards for emergency engines in §§ 60.4202 and 60.4205, and not those for non-emergency engines in §§ 60.4201 and 60.4204, except that for 2014 model year and later nonemergency CI ICE, the owner or operator of any such engine must have that engine certified as meeting at least the Tier 3 PM standards identified in appendix I of 40 CFR part 1039 or in 40 CFR 1042.101.

(d) The provisions of § 60.4207 do not apply to owners and operators of pre-2014 model year stationary CI ICE subject to this subpart that are located in remote areas of Alaska.

(e) The provisions of § 60.4208(a) do not apply to owners and operators of stationary CI ICE subject to this subpart that are located in areas of Alaska not accessible by the FAHS until after December 31, 2009.

(f) The provisions of this section and § 60.4207 do not prevent owners and operators of stationary CI ICE subject to this subpart that are located in remote areas of Alaska from using fuels mixed with used lubricating oil, in volumes of up to 1.75 percent of the total fuel. The sulfur content of the used lubricating oil must be less than 200 parts per million. The used lubricating oil must meet the on-specification levels and properties for used oil in 40 CFR 279.11.

[76 FR 37971, June 28, 2011, as amended at 81 FR 44219, July 7, 2016; 86 FR 34359, June 29, 2021]

§ 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels?

Owners and operators of stationary CI ICE that do not use diesel fuel may petition the Administrator for approval of alternative emission standards, if they can demonstrate that they use a fuel that is not the fuel on which the manufacturer of the engine certified the engine and that the engine cannot meet the applicable standards required in § 60.4204 or § 60.4205 using such fuels and that use of such fuel is appropriate and reasonably necessary, considering cost, energy, technical feasibility, human health and environmental, and other factors, for the operation of the engine.

[76 FR 37972, June 28, 2011]

General Provisions

§ 60.4218 What General Provisions and confidential information provisions apply to me?

(a) Table 8 to this subpart shows which parts of the General Provisions in §§ 60.1 through 60.19 apply to you.

(b) The provisions of 40 CFR 1068.10 and 1068.11 apply for engine manufacturers. For others, the general confidential business information (CBI) provisions apply as described in 40 CFR part 2.

[88 FR 4471, Jan. 24, 2023]

Definitions

§ 60.4219 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the CAA and in subpart A of this part.

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Certified emissions life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for certified emissions life for stationary CI ICE with a displacement of less than 10 liters per cylinder are given in 40 CFR 1039.101(g). The values for certified emissions life for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder are given in 40 CFR 1042.101(e).

Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), and any ancillary components and sub-components comprising any simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion turbine portion of any cogeneration cycle combustion system, or the combustion turbine portion of any components gas system.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Date of manufacture means one of the following things:

(1) For freshly manufactured engines and modified engines, date of manufacture means the date the engine is originally produced.

(2) For reconstructed engines, date of manufacture means the date the engine was originally produced, except as specified in paragraph (3) of this definition.

(3) Reconstructed engines are assigned a new date of manufacture if the fixed capital cost of the new and refurbished components exceeds 75 percent of the fixed capital cost of a comparable entirely new facility. An engine that is produced from a previously used engine block does not retain the date of manufacture of the engine in which the engine block was previously used if the engine is produced using all new components except for the engine block. In these cases, the date of manufacture is the date of reconstruction or the date the new engine is produced.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is number 2 distillate oil.

Diesel particulate filter means an emission control technology that reduces PM emissions by trapping the particles in a flow filter substrate and periodically removes the collected particles by either physical action or by oxidizing (burning off) the particles in a process called regeneration.

Emergency stationary internal combustion engine means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary ICE must comply with the requirements specified in § 60.4211(f) in order to be considered emergency stationary ICE. If the engine does not comply with the requirements specified in § 60.4211(f), then it is not considered to be an emergency stationary ICE under this subpart.

(1) The stationary ICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc.

(2) The stationary ICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in § 60.4211(f).

(3) The stationary ICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in § 60.4211(f)(3)(i).

Engine manufacturer means the manufacturer of the engine. See the definition of "manufacturer" in this section.

Fire pump engine means an emergency stationary internal combustion engine certified to NFPA requirements that is used to provide power to pump water for fire suppression or protection.

Freshly manufactured engine means an engine that has not been placed into service. An engine becomes freshly manufactured when it is originally produced.

Installed means the engine is placed and secured at the location where it is intended to be operated.

Manufacturer has the meaning given in section 216(1) of the Act. In general, this term includes any person who manufactures a stationary engine for sale in the United States or otherwise introduces a new stationary engine into commerce in the United States. This includes importers who import stationary engines for sale or resale.

Maximum engine power means maximum engine power as defined in 40 CFR 1039.801.

Model year means the calendar year in which an engine is manufactured (see "date of manufacture"), except as follows:

(1) Model year means the annual new model production period of the engine manufacturer in which an engine is manufactured (see "date of manufacture"), if the annual new model production period is different than the calendar year and includes January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year.

(2) For an engine that is converted to a stationary engine after being placed into service as a nonroad or other non-stationary engine, model year means the calendar year or new model production period in which the engine was manufactured (see "date of manufacture").

Other internal combustion engine means any internal combustion engine, except combustion turbines, which is not a reciprocating internal combustion engine or rotary internal combustion engine.

Reciprocating internal combustion engine means any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work.

Remote areas of Alaska means areas of Alaska that meet either paragraph (1) or (2) of this definition.

(1) Areas of Alaska that are not accessible by the Federal Aid Highway System (FAHS).

(2) Areas of Alaska that meet all of the following criteria:

(i) The only connection to the FAHS is through the Alaska Marine Highway System, or the stationary CI ICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.

(ii) At least 10 percent of the power generated by the stationary CI ICE on an annual basis is used for residential purposes.

(iii) The generating capacity of the source is less than 12 megawatts, or the stationary CI ICE is used exclusively for backup power for renewable energy.

Rotary internal combustion engine means any internal combustion engine which uses rotary motion to convert heat energy into mechanical work.

Spark ignition means relating to a gasoline, natural gas, or liquefied petroleum gas fueled engine or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary internal combustion engine means any internal combustion engine, except combustion turbines, that converts heat energy into mechanical work and is not mobile. Stationary ICE differ from mobile ICE in that a stationary internal combustion engine is not a nonroad engine as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), and is not used to propel a motor vehicle, aircraft, or a vehicle used solely for competition. Stationary ICE include reciprocating ICE, rotary ICE, and other ICE, except combustion turbines.

Subpart means 40 CFR part 60, subpart IIII.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37972, June 28, 2011; 78 FR 6696, Jan. 30, 2013; 81 FR 44219, July 7, 2016; 86 FR 34360, June 29, 2021; 87 FR 48606, Aug. 10, 2022]

Table 1 to Subpart IIII of Part 60—Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of <10 Liters per Cylinder and 2007-2010 Model Year Engines >2,237 KW (3,000 HP) and With a Displacement of <10 Liters per Cylinder

[As stated in §§60.4201(b), 60.4202(b), 60.4204(a), and 60.4205(a), you must comply with the following emission standards]

	Emission standards for stationary pre-2007 model year engines with a displacement of <10 liters per cylinder and 2007-2010 model year engines >2,237 KW (3,000 HP) and with a displacement of <10 liters per cylinder in g/KW-hr (g/HP-hr)					
Maximum engine power	NMHC + NOx	нс	NOx	со	РМ	
KW<8 (HP<11)	10.5 (7.8)			8.0 (6.0)	1.0 (0.75)	
8≤KW<19 (11≤HP<25)	9.5 (7.1)			6.6 (4.9)	0.80 (0.60)	
19≤KW<37 (25≤HP<50)	9.5 (7.1)			5.5 (4.1)	0.80 (0.60)	
37≤KW<56 (50≤HP<75)			9.2 (6.9)			
56≤KW<75 (75≤HP<100)			9.2 (6.9)			
75≤KW<130 (100≤HP<175)			9.2 (6.9)			
130≤KW<225 (175≤HP<300)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	
225≤KW<450 (300≤HP<600)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	
450≤KW≤560 (600≤HP≤750)		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	
<w>560 (HP>750)</w>		1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)	

Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later Emergency StationaryCI ICE <37 KW (50 HP) With a Displacement of <10 Liters per Cylinder</td>

[As stated in §60.4202(a)(1), you must comply with the following emission standards]

	onary CI ICE <37 KW (50 -hr)			
Engine power	Model year(s)	NOx + NMHC	со	РМ
KW<8 (HP<11)	2008 +	7.5 (5.6)	8.0 (6.0)	0.40 (0.30)
8≤KW<19 (11≤HP<25)	2008 +	7.5 (5.6)	6.6 (4.9)	0.40 (0.30)
19≤KW<37 (25≤HP<50)	2008 +	7.5 (5.6)	5.5 (4.1)	0.30 (0.22)

Table 3 to Subpart IIII of Part 60—Certification Requirements for Stationary Fire Pump Engines

As stated in §60.4202(d), you must certify new stationary fire pump engines beginning with the following model years:

Engine power	Starting model year engine manufacturers must certify new stationary fire pump engines according to §60.4202(d) ¹
KW<75 (HP<100)	2011
75≤KW<130 (100≤HP<175)	2010
130≤KW≤560 (175≤HP≤750)	2009
KW>560 (HP>750)	2008

¹Manufacturers of fire pump stationary CI ICE with a maximum engine power greater than or equal to 37 kW (50 HP) and less than 450 KW (600 HP) and a rated speed of greater than 2,650 revolutions per minute (rpm) are not required to certify such engines until three model years following the model year indicated in this Table 3 for engines in the applicable engine power category.

[71 FR 39172, July 11, 2006, as amended at 76 FR 37972, June 28, 2011]

Table 4 to Subpart IIII of Part 60—Emission Standards for Stationary Fire Pump Engines

[As stated in §§60.4202(d) and 60.4205(c), you must comply with the following emission standards for stationary fire pump engines]

Maximum engine power	Model year(s)	NMHC + NO _X	со	РМ
KW<8 (HP<11)	2010 and earlier	10.5 (7.8)	8.0 (6.0)	1.0 (0.75)
	2011 +	7.5 (5.6)		0.40 (0.30)
8≤KW<19 (11≤HP<25)	2010 and earlier	9.5 (7.1)	6.6 (4.9)	0.80 (0.60)
	2011 +	7.5 (5.6)		0.40 (0.30)
19≤KW<37 (25≤HP<50)	2010 and earlier	9.5 (7.1)	5.5 (4.1)	0.80 (0.60)
	2011 +	7.5 (5.6)		0.30 (0.22)
37≤KW<56 (50≤HP<75)	2010 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2011 + ¹	4.7 (3.5)		0.40 (0.30)
56≤KW<75 (75≤HP<100)	2010 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2011 + ¹	4.7 (3.5)		0.40 (0.30)
75≤KW<130 (100≤HP<175)	2009 and earlier	10.5 (7.8)	5.0 (3.7)	0.80 (0.60)
	2010 + ²	4.0 (3.0)		0.30 (0.22)
130≤KW<225 (175≤HP<300)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)

40 CFR 60, Subpart Eb Attachment E

Maximum engine power	Model year(s)	NMHC + NO _X	со	РМ
	2009 + ³	4.0 (3.0)		0.20 (0.15)
225≤KW<450 (300≤HP<600)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009 + ³	4.0 (3.0)		0.20 (0.15)
450≤KW≤560 (600≤HP≤750)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009 +	4.0 (3.0)		0.20 (0.15)
KW>560 (HP>750)	2007 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2008 +	6.4 (4.8)		0.20 (0.15)

¹For model years 2011-2013, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 revolutions per minute (rpm) may comply with the emission limitations for 2010 model year engines.

²For model years 2010-2012, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2009 model year engines.

³In model years 2009-2011, manufacturers of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2008 model year engines.

Table 5 to Subpart IIII of Part 60—Labeling and Recordkeeping Requirements for New Stationary Emergency Engines

[You must comply with the labeling requirements in §60.4210(f) and the recordkeeping requirements in §60.4214(b) for new emergency stationary CI ICE beginning in the following model years:]

Engine power	Starting model year
19≤KW<56 (25≤HP<75)	2013
56≤KW<130 (75≤HP<175)	2012
KW≥130 (HP≥175)	2011

Table 6 to Subpart IIII of Part 60—Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

[As stated in §60.4210(g), manufacturers of fire pump engines may use the following test cycle for testing fire pump engines:]

Mode No.	Engine speed ¹		Weighting factors
1	Rated	100	0.30
2	Rated	75	0.50
3	Rated	50	0.20

¹Engine speed: ±2 percent of point.

 2 Torque: NFPA certified nameplate HP for 100 percent point. All points should be ±2 percent of engine percent load value.

Table 7 to Subpart IIII of Part 60—Requirements for Performance Tests for Stationary CI ICE With a Displacement of ≥30 Liters per Cylinder

As stated in §60.4213, you must comply with the following requirements for performance tests for stationary CI ICE with a displacement of ≥30 liters per cylinder:

Each	Complying with the requirement to	You must	Using	According to the following requirements
1. Stationary CI internal combustion engine with a displacement of ≥ 30 liters per cylinder	a. Reduce NO _X emissions by 90 percent or more;	i. Select the sampling port location and number/location of traverse points at the inlet and outlet of the control device;		(a) For NO _X , O ₂ , and moisture measurement, ducts \leq 6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and \leq 12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter <i>and</i> the sampling port location meets the two and half- diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Measure O ₂ at the inlet and outlet of the control device;	· · · ·	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for NO _X concentration.
			ČFR part 60, appendix A-3,	(c) Measurements to determine moisture content must be made at the same time as the measurements for NO _X concentration.
			40 CFR part 60, appendix A-4,	(d) NO _X concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

Each	Complying with the requirement to	You must	Using	According to the following requirements
	b. Limit the concentration of NO _x in the stationary CI internal combustion engine exhaust.	i. Select the sampling port location and number/location of traverse points at the exhaust of the stationary internal combustion engine;		(a) For NO _X , O ₂ , and moisture measurement, ducts <6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and <12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter <i>and</i> the sampling port location meets the two and half- diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Determine the O ₂ concentration of the stationary internal combustion engine exhaust at the sampling port location;	(1) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurement for NO _X concentration.
		iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(2) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 (incorporated by reference, see §60.17)	(c) Measurements to determine moisture content must be made at the same time as the measurement for NO _X concentration.
		iv. Measure NO _X at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device.	(3) Method 7E of 40 CFR part 60, appendix A-4, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 (incorporated by reference, see §60.17)	(d) NO _x concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
	c. Reduce PM emissions by 60 percent or more	i. Select the sampling port location and the number of traverse points;	(1) Method 1 or 1A of 40 CFR part 60, appendix A-1	(a) Sampling sites must be located at the inlet and outlet of the control device.

Each	Complying with the requirement to	You must	Using	According to the following requirements
		ii. Measure O ₂ at the inlet and outlet of the control device;	(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for PM concentration.
		iii. If necessary, measure moisture content at the inlet and outlet of the control device; and	(3) Method 4 of 40 CFR part 60, appendix A-3	(c) Measurements to determine and moisture content must be made at the same time as the measurements for PM concentration.
		iv. Measure PM at the inlet and outlet of the control device.	(4) Method 5 of 40 CFR part 60, appendix A-3	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
	d. Limit the concentration of PM in the stationary CI internal combustion engine exhaust	i. Select the sampling port location and the number of traverse points;		(a) If using a control device, the sampling site must be located at the outlet of the control device.
		ii. Determine the O ₂ concentration of the stationary internal combustion engine exhaust at the sampling port location;	(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for PM concentration.
		iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(3) Method 4 of 40 CFR part 60, appendix A-3	(c) Measurements to determine moisture content must be made at the same time as the measurements for PM concentration.
		iv. Measure PM at the exhaust of the stationary internal combustion engine.	(4) Method 5 of 40 CFR part 60, appendix A-3	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

[79 FR 11251, Feb. 27, 2014]

Table 8 to Subpart IIII of Part 60—Applicability of General Provisions to Subpart IIII

§60.17

§60.18

§60.19

Incorporations by reference

General control device

General notification and

reporting requirements

requirements

General Provisions citation	Subject of citation	Applies to subpart	Explanation
§60.1	General applicability of the General Provisions	Yes	
§60.2	Definitions	Yes	Additional terms defined in §60.4219.
§60.3	Units and abbreviations	Yes	
§60.4	Address	Yes	
§60.5	Determination of construction or modification	Yes	
§60.6	Review of plans	Yes	
§60.7	Notification and Recordkeeping	Yes	Except that §60.7 only applies as specified in §60.4214(a).
§60.8	Performance tests	Yes	Except that §60.8 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder and engines that are not certified.
§60.9	Availability of information	Yes	
§60.10	State Authority	Yes	
§60.11	Compliance with standards and maintenance requirements	No	Requirements are specified in subpart IIII.
§60.12	Circumvention	Yes	
§60.13	Monitoring requirements	Yes	Except that §60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder.
§60.14	Modification	Yes	
§60.15	Reconstruction	Yes	
§60.16	Priority list	Yes	

Yes

No

Yes

[As stated in §60.4218, you must comply with the following applicable General Provisions:]

Indiana Department of Environmental Management Office of Air Quality

Addendum to the Technical Support Document (ATSD) for a Part 70 Operating Permit Renewal

Source Background and Description

Source Name: Source Location: County: SIC Code: Operation Permit No.: Permit Reviewer: Reworld Indianapolis, Inc. 2320 S. Harding Street, Indianapolis, IN 46221 Marion (Center Township) 4953 (Refuse Systems) T097-47411-00123 Natalie Moore

On March 19, 2024, the Office of Air Quality (OAQ) had a notice posted on IDEM's website (<u>https://www.in.gov/idem/public-notices/</u>), stating that Reworld Indianapolis, Inc. had applied for a Part 70 Operating Permit Renewal to continue to operate its existing source. The notice also stated that the OAQ proposed to issue a Part 70 Operating Permit Renewal for this operation and provided information on how the public could review the proposed permit and other documentation. Finally, the notice informed interested parties that there was a period of thirty (30) days to provide comments on whether or not this permit should be issued as proposed.

Comments and Responses

On April 16, 2024, U.S. Environmental Protection Agency submitted comments to IDEM, OAQ on the draft Part 70 Operating Permit Renewal.

The Technical Support Document (TSD) is used by IDEM, OAQ for historical purposes. IDEM, OAQ does not make any changes to the original TSD, but the Permit will have the updated changes. The comments and revised permit language are provided below with deleted language as strikeouts and new language **bolded**.

Comment 1:

Under the federal rule applicability section of the TSD, page 6, it states that the source is subject to the Emission Guidelines for Large Municipal Waste Combustors, 40 CFR Part 60, Subpart Cb and 326 IAC 12. Also, Section E.1.2 of the draft permit, page 47, identifies the Emission Guidelines as the applicable requirement and includes a general reference to 326 IAC 12 and detailed references to Part 60 Subpart Cb. Because Subpart Cb includes emission guidelines for existing sources and not directly applicable New Source Performance Standards, the TSD and the permit should refer to and cite the EPA approved Indiana State Plan in 326 IAC 11-7 as the underlying applicable requirement for these standards. Please revise the permit as necessary to correct and/or supplement the underlying authorities for these requirements, in accordance with 40 CFR 70.6(a)(1)(i). Also note that, because 326 IAC 11-7 incorporates many sections of Subpart Cb by reference (which in turn incorporates sections of Subpart Eb by reference), multiple authority citations may be necessary for each permit condition.

In addition, please clarify in the permit which emissions limits in IAC 11-7-3, 40 CFR 60.33b, 40 CFR 60.34b, and Tables 1 and 3 of 40 CFR Part 60, Subpart Cb that the source is subject to, in accordance with 40 CFR 70.6(a)(1).

Link to the current approved Indiana LMWC State Plan

https://www.federalregister.gov/documents/2008/10/01/E8-22952/approval-of-revised-municipalwaste-combustor-state-plan-for-designated-facilities-and-pollutants

Link to all approved Indiana State Plans, including history of Indiana's LMWC State Plan <u>https://www.epa.gov/in/indiana-part-60-emission-guidelines-and-part-62-statefederal-plans-section-111d129-delegations</u>

Response to Comment 1:

The Technical Support Document (TSD) is used by IDEM, OAQ for historical purposes. IDEM, OAQ does not make any changes to the original TSD, but the Permit will have the updated changes.

IDEM agrees with the recommended changes, since 40 CFR 60, Subpart Cb is not the enforceable rule for the municipal waste combustor requirements. The detailed permit limits and other requirements for the emissions units, which were previously included in references to CFR 60, Subpart Cb, have been added to Section D.1 of the permit. The permit has been revised as follows:

D.1.3 Fugitive Ash Limits [326 IAC 11-7-6] **[40 CFR 60, Subpart Eb]** Pursuant to 326 IAC 11-7-6, the Permittee shall meet the fugitive ash emission standards specified in 40 CFR 60, Subpart Eb, Section 60.55b.

Pursuant to 326 IAC 11-7-6 and 40 CFR 60.55b, the Permittee shall comply with the following fugitive ash emission standards:

- (a) On and after the date on which the initial performance test is completed or is required to be completed under 40 CFR 60.8, the Permittee shall not cause to be discharged to the atmosphere visible emissions of combustion ash from an ash conveying system (including conveyor transfer points) in excess of 5 percent of the observation period (i.e., 9 minutes per 3-hour period), as determined by EPA Reference Method 22 observations as specified in 40 CFR 60.58b(k) [referenced in Condition D.1.10], except as provided in (b) and (c) of this condition.
- (b) The emission limit specified in (a) of this condition does not cover visible emissions discharged inside buildings or enclosures of ash conveying systems; however, the emission limit specified in (a) of this condition does cover visible emissions discharged to the atmosphere from buildings or enclosures of ash conveying systems.
- (c) The provisions of (a) of this condition do not apply during maintenance and repair of ash conveying systems.

D.1.4 Operating Practices [326 IAC 11-7-4] [40 CFR 60, Subpart Eb] Pursuant to 326 IAC 11-7-4, the Permittee shall comply with the following operating practices:

(a) 40 CFR 60, Subpart Eb, Section 60.53b(b) (b) 40 CFR 60, Subpart Eb, Section 60.53b(c)

Pursuant to 326 IAC 11-7-4 and 40 CFR 60.53b(b) and (c), the Permittee shall comply with the following operating practices:

(a) The Permittee shall not cause the facility to operate at a load level greater than 110 percent of the maximum demonstrated municipal waste combustor unit load as defined in 40 CFR 60.51b, except as specified in paragraphs (a)(1) and (a)(2) of this

condition. The averaging time is specified under 40 CFR 60.58b(i) [as referenced in Condition D.1.10].

- (1) During the annual dioxin/furan or mercury performance test and the two (2) weeks preceding the annual dioxin/furan or mercury performance test, no municipal waste combustor unit load limit is applicable if the provisions of paragraph (a)(2) of this condition are met.
- (2) The municipal waste combustor unit load limit may be waived in writing by the Administrator for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions. The municipal waste combustor unit load limit continues to apply, and remains enforceable, until and unless the Administrator grants the waiver.
- (b) The Permittee shall not cause the facility to operate at a temperature, measured at the particulate matter control device inlet, exceeding 17 °C above the maximum demonstrated particulate matter control device temperature as defined in 40 CFR 60.51b, except as specified in paragraphs (b)(1) and (b)(2) of this condition. The averaging time is specified under 40 CFR 60.58b(i) [as referenced in Condition D.1.10]. The requirements specified in this paragraph apply to each particulate matter control device utilized at the affected facility.
 - (1) During the annual dioxin/furan or mercury performance test and the two (2) weeks preceding the annual dioxin/furan or mercury performance test, no particulate matter control device temperature limitations are applicable if the provisions of paragraph (a)(2) of this condition are met.
 - (2) The particulate matter control device temperature limits may be waived in writing by the Administrator for the purpose of evaluating system performance, testing new technology or control technologies, diagnostic testing, or related activities for the purpose of improving facility performance or advancing the state-of-the-art for controlling facility emissions. The temperature limits continue to apply, and remain enforceable, until and unless the Administrator grants the waiver.
- D.1.5 Municipal Waste Combustor Operator Training and Certification Requirements [326 IAC 11-7-5] [40 CFR 60, Subpart Eb]

Pursuant to 326 IAC 11-7-5, the Permittee shall comply with the municipal waste combustor operator training and certification requirements specified in 40 CFR 60, Subpart Eb, Section 60.54b.

Pursuant to 326 IAC 11-7-5 and 40 CFR 60.54b, the Permittee shall comply with the following municipal waste combustor operator training and certification requirements:

- (a) Each chief facility operator and shift supervisor shall obtain and maintain a current provisional operator certification from either the American Society of Mechanical Engineers [QRO-1-1994 (incorporated by reference—see 40 CFR 60.17)] or a State certification program.
- (b) Each chief facility operator and shift supervisor shall have completed full certification or shall have scheduled a full certification exam with either the American Society of Mechanical Engineers [QRO-1-1994 (incorporated by reference—see 40 CFR 60.17)] or a State certification program.

- (c) The Permittee shall not allow the facility to be operated at any time unless one of the following persons is on duty and at the affected facility: A fully certified chief facility operator, a provisionally certified chief facility operator who is scheduled to take the full certification exam, a fully certified shift supervisor, or a provisionally certified shift supervisor who is scheduled to take the full certification exam.
 - (1) If both the certified chief facility operator and certified shift supervisor are unavailable, a provisionally certified control room operator on site at the municipal waste combustion unit may fulfill the certified operator requirement. Depending on the length of time that a certified chief facility operator and certified shift supervisor are away, the owner or operator of the affected facility must meet one of three criteria:
 - (i) When the certified chief facility operator and certified shift supervisor are both off site for 12 hours or less, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor.
 - (ii) When the certified chief facility operator and certified shift supervisor are off site for more than 12 hours, but for two weeks or less, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor without notice to, or approval by, the Administrator. However, the owner or operator of the affected facility must record the period when the certified chief facility operator and certified shift supervisor are off site and include that information in the annual report as specified under Condition D.1.25.
 - (iii) When the certified chief facility operator and certified shift supervisor are off site for more than two weeks, and no other certified operator is on site, the provisionally certified control room operator may perform the duties of the certified chief facility operator or certified shift supervisor without approval by the Administrator. However, the owner or operator of the affected facility must take two actions:
 - (A) Notify the Administrator in writing. In the notice, state what caused the absence and what actions are being taken by the owner or operator of the facility to ensure that a certified chief facility operator or certified shift supervisor is on site as expeditiously as practicable.
 - (B) Submit a status report and corrective action summary to the Administrator every four weeks following the initial notification. If the Administrator provides notice that the status report or corrective action summary is disapproved, the municipal waste combustion unit may continue operation for 90 days, but then must cease operation. If corrective actions are taken in the 90-day period such that the Administrator withdraws the disapproval, municipal waste combustion unit operation may continue.

- (2) A provisionally certified operator who is newly promoted or recently transferred to a shift supervisor position or a chief facility operator position at the municipal waste combustion unit may perform the duties of the certified chief facility operator or certified shift supervisor without notice to, or approval by, the Administrator for up to six months before taking the ASME QRO certification exam.
- (d) All chief facility operators, shift supervisors, and control room operators at affected facilities must have completed the EPA or State municipal waste combustor operator training course.
- (e) The Permittee shall develop and update on a yearly basis a site-specific operating manual that shall, at a minimum, address the elements of municipal waste combustor unit operation specified in paragraphs (e)(1) through (e)(11) of this condition.
 - (1) A summary of the applicable standards under 40 CFR 60, Subpart Eb;
 - (2) A description of basic combustion theory applicable to a municipal waste combustor unit;
 - (3) Procedures for receiving, handling, and feeding municipal solid waste;
 - (4) Municipal waste combustor unit startup, shutdown, and malfunction procedures;
 - (5) **Procedures for maintaining proper combustion air supply levels;**
 - (6) Procedures for operating the municipal waste combustor unit within the standards established under 40 CFR 60, Subpart Eb;
 - (7) Procedures for responding to periodic upset or off-specification conditions;
 - (8) Procedures for minimizing particulate matter carryover;
 - (9) Procedures for handling ash;
 - (10) Procedures for monitoring municipal waste combustor unit emissions; and
 - (11) Reporting and recordkeeping procedures.
- (f) The Permittee shall establish a training program to review the operating manual according to the schedule specified in paragraphs (f)(1) and (f)(2) of this condition with each person who has responsibilities affecting the operation of an affected facility including, but not limited to, chief facility operators, shift supervisors, control room operators, ash handlers, maintenance personnel, and crane/load handlers.
 - (1) Each person specified in paragraph (f) of this condition shall undergo initial training no later than the date prior to the day the person assumes responsibilities affecting municipal waste combustor unit operation.
 - (2) Annually, following the initial review required by paragraph (f)(1) of this condition.
- (g) The operating manual required by paragraph (e) of this condition shall be kept in a readily accessible location for all persons required to undergo training under paragraph (f) of this condition. The operating manual and records of training shall be available for inspection by the EPA or IDEM upon request.

D.1.10 Compliance and Performance Testing [326 IAC 11-7-7] **[40 CFR 60, Subpart Eb]** Pursuant to 326 IAC 11-7-7, the Permittee shall comply with the following:

- (a) Compliance and performance testing methods and procedures specified in 40 CFR 60, Subpart Eb (included as Attachment E to the operating permit), Section 60.58b, except as provided in subsections (b) through (c). All tests shall meet the requirements of 326 IAC 3-6.
- (b) If all of the dioxin/furan compliance tests for all designated facilities over a two (2) year period indicate that the dioxin/furan emissions are less than or equal to fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen, the owner or operator of the plant may elect to conduct an annual dioxin/furan performance test for one (1) designated facility (unit) per year at the plant. At a minimum, a performance test for dioxin/furan emissions shall be conducted annually (no more than twelve (12) months following the previous performance test) for one (1) designated facility at the plant. Each year a different designated facility shall be tested. The designated facilities at the plant shall be tested in sequence, such as Unit 1 the first year, followed by Unit 2 the next year.
- (c) If an annual performance test indicates an emission level for dioxin/furan greater than fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen, then performance tests shall be conducted annually on all designated facilities at the plant until all annual performance tests for all designated facilities at the plant over a two (2) year period indicate a dioxin and furan emission level less than or equal to fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen.
- (d) The owner or operator of a designated facility who elects to follow the performance testing schedule specified in subsection (b) shall follow the procedures specified in 40 CFR 60, Subpart Eb, Section 60.59b(g)(4), for reporting the election of this schedule to the department.

D.1.13 Testing Requirements [326 IAC 2-1.1-11]

To demonstrate compliance with Condition D.1.1(a) (326 IAC 6.5-1), and Condition D.1.2 (326 IAC 11-7-3), and Condition E.1.2 (40 CFR 60, Subpart Cb), the Permittee shall perform PM, opacity, Cadmium, Lead, Mercury, Dioxin/Furan, and HCI testing as required by 40 CFR 60, Subpart Cb, and 326 IAC 11-7, and as specified in Condition D.1.10.

D.1.25 Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 11-7-8] [40 CFR 60, Subpart Eb]

Pursuant to 326 IAC 11-7-8 and 40 CFR 60.59b, the Permittee shall comply with the following record keeping and reporting requirements:

- (a) The Permittee shall comply with the reporting and record keeping provisions of 40 CFR 60, Subpart Eb (included as Attachment E to the operating permit), Section 60.59b.
- (b) The following sitting requirements are not required under subsection (a):
 - (1) 40 CFR 60, Subpart Eb, Section 60.59b(a)
 - (2) 40 CFR 60, Subpart Eb, Section 60.59b(b)(5)
 - (3) 40 CFR 60, Subpart Eb, Section 60.59b(d)(11)

(c) All report and record keeping shall meet the requirements of 326 IAC 3 when applicable.

SECTION E.1 NSPS

Emiss	ions Uni	Description:
(a)	identifi rate of	3) mass burn waterwall municipal solid waste combustion units, constructed in 1988, ed as EU1, EU2, and EU3. Each unit is capable of burning municipal solid waste at a 726 tons per day at 5500 Btu/lb. Each Combustor unit is equipped with two (2) 140 per hour natural gas-fired burners used for start-up, shutdown, and flame stabilization.
	(1)	The flue gas from each combustion unit is controlled by:
		(A) a spray dryer absorber with hydrated lime slurry controlling acid gas, identified as CE1A, CE2A, and CE3A;
		(B) fabric filter bags controlling particulates, identified as CE1B, CE2B, and CE3B in parallel; exhausting to stack vents SV1, SV2, and SV3, with CEMS for NOx, CO, SO ₂ , O ₂ and a COM for opacity;
		(C) a Mercury Emissions Control System comprised of:
		(i) three (3) outlet hoppers for each combustion unit; three (3) surge bins, one for each combustion unit, each equipped with gravimetric feeders for controlling the carbon feed rate to each combustion unit, and
		(ii) three (3) injection trains equipped with pneumatic conveying equipment to transport (blow) the carbon from the feeder to the flue gas duct of each combustion unit.
		(D) a Nitrogen Oxide Emission Control System utilizing one (1) selective non catalytic reduction (SNCR) system comprised of:
		(i) one (1) 20,000 gallon, aqueous ammonia storage tank;
		(ii) two (2) ammonia feed pumps to supply ammonia from the storage tank to the injection nozzle system; and
		(iii) three (3) injection nozzle systems equipped with carrier blowers.
	(2)	A Fugitive Ash Emission Control System utilizing one (1) dustmaster fly ash conditioning system comprised of:
		(A) five (5) screw conveyors that convey ash from the three (3) scrubber- baghouse units to the ash storage silo;
		(B) one (1) ash storage silo that batch feeds the fly ash into the dustmaster conditioning system; and
		(C) one (1) dustmaster fly ash conditioning system that mixes water and fly ash to produce consistent moisture content that reduces fugitive dust.

(3) Each combustor is equipped with a Liquid Direct Injection (LDI) System, including multiple nozzles for product dispersion. Additional components include two (2) 150,000 gallon mixing tanks and two (2) 12,500 gallon storage tanks.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

- E.1.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]
 - (a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart Cb.
 - (b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

E.1.2 Emission Guidelines and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20,1994 [326 IAC 12] [40 CFR Part 60, Subpart Cb]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart Cb (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

40 CFR 60.30b (1)(2)40 CFR 60.31b (3) 40 CFR 60.32b (a), (c), (n) (4) 40 CFR 60.33b (a)(1)(i), (a)(1)(iii), (a)(2)(i), (a)(3), (a)(4), (b)(3), (c)(1)(iii), (d) (5) 40 CFR 60.34b [Incorporates by reference 40 CFR 60.53b (b) and (c)] (6) 40 CFR 60.35b [Incorporates by reference 40 CFR 60.54b] (7) 40 CFR 60.36b [Incorporates by reference 40 CFR 60.55b] (8) 40 CFR 60.38b [Incorporates by reference 40 CFR 60.58b] (9)40 CFR 60.39b [Incorporates by reference 40 CFR 60.59b] (10) 40 CFR 60, Subpart Cb Table 1 40 CFR 60, Subpart Cb Table 3 (11)

SECTION E.21

NSPS

Specifically Regulated Insignificant Activity:

(e) One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.

This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

- E.21.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]
- E.21.2 New Source Performance Standards for Stationary Compression Ignition Internal Combustion Engines NSPS [326 IAC 12] [40 CFR Part 60, Subpart IIII]

SECTION E.32

NESHAP

Specifically Regulated Insignificant Activity:

(e) One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.

This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

E.32.1 National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

Comment 2:

In the federal rule applicability section of the TSD, page 11 states that the municipal solid waste combustion units EU1, EU2, and EU3 are exempt from 40 CFR Part 64 Compliance Assurance Monitoring because they are subject to 40 CFR Part 60, Subpart Cb, i.e., the EPA approved State Plan for Large Municipal Waste Combustors. Although emissions limits required by the State Plan are exempt from CAM, the TSD does not address whether CAM applies to any other emission limits that these units are subject to. Please review all additional applicable emissions limitations for EU1, EU2, and EU3, in accordance with IDEM's CAM applicability table, to determine possible CAM applicability, and revise the permit if necessary to include any CAM permit content requirements, in accordance with 40 CFR 70.6(a)(1) and 40 CFR 64.6(c).

Response to Comment 2:

IDEM, OAQ has reviewed compliance assurance monitoring (CAM) applicability for the three (3) mass burn waterwall municipal solid waste combustion units EU1, EU2, and EU3 in the table

below. 326 IAC 11-7 contains the state implementation plan (SIP) for 40 CFR 60, Subpart Cb, which is exempt from CAM. Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed by the EPA after November 15, 1990 pursuant to Section 111 or 112 of the Clean Air Act are exempt from CAM. 40 CFR 60, Subpart Cb was proposed by the EPA on September 20, 1994 in accordance with Section 111(d) and Section 129 of the Clean Air Act. Therefore, the limitations in 326 IAC 11-7 are not included in the table below.

Compliance Assurance Monitoring (CAM):

- (a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each existing pollutant-specific emission unit that meets the following criteria:
 - (1) has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved;
 - (2) is subject to an emission limitation or standard for that pollutant (or a surrogate thereof); and
 - (3) uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.
- (b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.
- (c) Pursuant to 40 CFR 64.3(d), if a continuous emission monitoring system (CEMS) is required pursuant to other federal or state authority, the owner or operator shall use the CEMS to satisfy the requirements of CAM according to the criteria contained in 40 CFR 64.3(d).

The following table is used to identify the applicability of CAM to each emission unit and each emission limitation or standard for a specified pollutant based on the criteria specified under 40 CFR 64.2:

Emission Unit/Pollutant	Control Device	Applicable Emission Limitation	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)	
EU1 / PM*	BH	326 IAC 6.5	> 100	< 100	Y	Ν	
EU2 / PM*	BH	326 IAC 6.5	> 100	< 100	Y	Ν	
EU3 / PM*	BH	326 IAC 6.5	> 100	< 100	Y	Ν	
EU1 / Pb	BH	326 IAC 2-2	> 10	< 10	Y	N	
EU2 / Pb	BH	326 IAC 2-2	> 10	< 10	Y	Ν	
EU3 / Pb	BH	326 IAC 2-2	> 10	< 10	Y	Ν	
EU1 / NOx	SNCR	326 IAC 2-2	> 100	> 100	N ²		
EU2 / NOx	SNCR	326 IAC 2-2	> 100	> 100	N ²		
EU3 / NOx	SNCR	326 IAC 2-2	> 100	> 100	N ²		
EU1 / SO2	SDA				N ²		
EU2 / SO2	SDA				N ²		
EU3 / SO2	SDA				N ²		
EU1 / HCI	SDA				N		
EU2 / HCI	SDA				N		
EU3 / HCI	SDA				N		
EU1 / Hg	MECS	326 IAC 2-2	< 10		N ¹		
EU2 / Hg	MECS	326 IAC 2-2	< 10		N ¹		

Emission Unit/Pollutant	Control Device	Applicable Emission Limitation	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)			
EU3 / Hg	MECS	326 IAC 2-2	< 10		N ¹				
EU1 / Dioxins	MECS				N				
EU2 / Dioxins	MECS				N				
EU3 / Dioxins	MECS				N				
EU1 / Furans	MECS				N				
EU2 / Furans	MECS				N				
EU3 / Furans	MECS				N				
Major Source Threshold for regulated air pollutants (PM10, PM2.5, SO2, NOx, VOC and CO) is 100 tpy, for a single HAP ten (10) tpy, and for total HAPs twenty-five (25) tpy. PM* For limitations under 326 IAC 6-3-2, 326 IAC 6.5, and 326 IAC 6.8, IDEM OAQ uses PM as a surrogate for the regulated air pollutant PM10. Therefore, uncontrolled PTE and controlled PTE reflect the emissions of the regulated air pollutant PM10.									
ten (10) tpy, and for total HA PM* For limitations under regulated air pollutations	Ps twenty-five r 326 IAC 6-3- nt PM10. The	(25) tpy. 2, 326 IAC 6.5, and 326	6 IAC 6.8, IDEM 0	Cand CO) is 10	as a surrogate	gle HAP for the			
ten (10) tpy, and for total HA PM* For limitations unde regulated air polluta regulated air polluta	Ps twenty-five r 326 IAC 6-3- nt PM10. The nt PM10.	(25) tpy. 2, 326 IAC 6.5, and 326	FIAC 6.8, IDEM C E and controlled I	and CO) is 10 DAQ uses PM a PTE reflect the	00 tpy, for a sing as a surrogate emissions of th	gle HAP for the he			
ten (10) tpy, and for total HA PM* For limitations under regulated air polluta regulated air polluta N 1 CAM does not apply threshold. N 2 A continuous comp directly to the comp	Ps twenty-five r 326 IAC 6-3- nt PM10. The nt PM10. y for Mercury b liance determin liance limit, is	(25) tpy. 2, 326 IAC 6.5, and 326 erefore, uncontrolled PT	3 IAC 6.8, IDEM C E and controlled I d PTE of Mercury rovides data eithe Part 70 permit.	c and CO) is 10 DAQ uses PM a PTE reflect the is less than th	00 tpy, for a sing as a surrogate emissions of the major source estandard or co	gle HAP for the ne			
ten (10) tpy, and for total HA PM* For limitations under regulated air pollutar regulated air pollutar regulated air pollutar regulated air pollutar threshold. N 1 CAM does not applicated air pollutar threshold. N 2 A continuous comprised air exemption of the comprised air exemption of the comprised and the pollutar threshold. Controls: BH = Baghouse, RTO = Regenerar	Ps twenty-five r 326 IAC 6-3- nt PM10. The nt PM10. y for Mercury b liance determin liance limit, is from the requi C = Cyclone, I tive or Recupe	(25) tpy. 2, 326 IAC 6.5, and 326 prefore, uncontrolled PT because the uncontrolled nation method, which pr already specified in the irements of 40 CFR Par	A PTE of Mercury ovides data eithe Part 70 permit. T t 64, CAM. stem, MECS = M	c and CO) is 10 DAQ uses PM a PTE reflect the v is less than th r in units of the Therefore, the e ercury Emissio ryer Absorber,	00 tpy, for a sing as a surrogate emissions of the major source estandard or co emission limitat	gle HAP for the he orrelated ion or tem,			

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are applicable to the three (3) mass burn waterwall municipal solid waste combustion units EU1, EU2, and EU3 for PM10 and lead upon issuance of the Part 70 Renewal. A CAM plan has been submitted as part of this application and the Compliance Determination and Monitoring Requirements section includes a detailed description of the CAM requirements.

IDEM agrees with the recommended changes, since the three (3) mass burn waterwall municipal solid waste combustion units EU1, EU2, and EU3 are subject to CAM for PM10 and lead. The permit has been revised as follows:

C.10 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]

- For new units:
 Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.
- (b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

- (c) For monitoring required by CAM, at all times, the Permittee shall maintain the monitoring, including but not limited to, maintaining necessary parts for routine repairs of the monitoring equipment.
- (d) For monitoring required by CAM, except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall conduct all monitoring in continuous operation (or shall collect data at all required intervals) at all times that the pollutant-specific emissions unit is operating. Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used for purposes of this part, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. The owner or operator shall use all the data collected during all other periods in assessing the operation of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

- C.14 Response to Excursions or Exceedances **[40 CFR 64] [326 IAC 3-8]** [326 IAC 2-7-5] [326 IAC 2-7-6]
 - (I) Upon detecting an excursion where a response step is required by the D Section, or an exceedance of a limitation, not subject to CAM, in this permit:
 - (a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.
 - (b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:
 - (1) initial inspection and evaluation;
 - (2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

- (3) any necessary follow-up actions to return operation to normal or usual manner of operation.
- (c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:
 - (1) monitoring results;
 - (2) review of operation and maintenance procedures and records; and/or
 - (3) inspection of the control device, associated capture system, and the process.
- (d) Failure to take reasonable response steps shall be considered a deviation from the permit.
- (e) The Permittee shall record the reasonable response steps taken.
- (II)
- (a) CAM Response to excursions or exceedances.
 - Upon detecting an excursion or exceedance, subject to CAM, the (1) Permittee shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal without operator action (such as through response by a computerized distribution control system), or any necessary followup actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable.
 - (2) Determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include but is not limited to, monitoring results, review of operation and maintenance procedures and records, and inspection of the control device, associated capture system, and the process.
- (b) If the Permittee identifies a failure to achieve compliance with an emission limitation, subject to CAM, or standard, subject to CAM, for which the approved monitoring did not provide an indication of an excursion or exceedance while providing valid data, or the results of compliance or performance testing document a need to modify the existing indicator ranges or designated conditions, the Permittee shall promptly notify the IDEM, OAQ and, if necessary, submit a proposed significant permit modification to this permit to address the necessary monitoring changes. Such a modification may include, but is not limited to, reestablishing

indicator ranges or designated conditions, modifying the frequency of conducting monitoring and collecting data, or the monitoring of additional parameters.

- (c) Based on the results of a determination made under paragraph (II)(a)(2) of this condition, the EPA or IDEM, OAQ may require the Permittee to develop and implement a Quality Improvement Plan (QIP). The Permittee shall develop and implement a QIP if notified to in writing by the EPA or IDEM, OAQ.
- (d) Elements of a QIP: The Permittee shall maintain a written QIP, if required, and have it available for inspection. The plan shall conform to 40 CFR 64.8(b)(2).
- (e) If a QIP is required, the Permittee shall develop and implement a QIP as expeditiously as practicable and shall notify the IDEM, OAQ if the period for completing the improvements contained in the QIP exceeds 180 days from the date on which the need to implement the QIP was determined.
- (f) Following implementation of a QIP, upon any subsequent determination pursuant to paragraph (II)(a)(2) of this condition the EPA or the IDEM, OAQ may require that the Permittee make reasonable changes to the QIP if the QIP is found to have:
 - (1) Failed to address the cause of the control device performance problems; or
 - (2) Failed to provide adequate procedures for correcting control device performance problems as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions.
- (g) Implementation of a QIP shall not excuse the Permittee from compliance with any existing emission limitation or standard, or any existing monitoring, testing, reporting or recordkeeping requirement that may apply under federal, state, or local law, or any other applicable requirements under the Act.
- (h) CAM recordkeeping requirements.
 - (1) The Permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to paragraph (II)(c) of this condition and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under this condition (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). Section C General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.
 - (2) Instead of paper records, the owner or operator may maintain records on alternative media, such as microfilm, computer files, magnetic tape disks, or microfiche, provided that the use of such alternative media allows for expeditious inspection and review, and does not conflict with other applicable recordkeeping requirements

C.18 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11] [326 IAC 2-2][326 IAC 2-3] **[40 CFR 64][326 IAC 3-8]**

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

On and after the date by which the Permittee must use monitoring that meets the requirements of 40 CFR Part 64 and 326 IAC 3-8, the Permittee shall submit CAM reports to the IDEM, OAQ.

A report for monitoring under 40 CFR Part 64 and 326 IAC 3-8 shall include, at a minimum, the information required under paragraph (a) of this condition and the following information, as applicable:

- (1) Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken;
- (2) Summary information on the number, duration and cause (including unknown cause, if applicable) for monitor downtime incidents (other than downtime associated with zero and span or other daily calibration checks, if applicable); and
- (3) A description of the actions taken to implement a QIP during the reporting period as specified in Section C - Response to Excursions or Exceedances. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring.

The Permittee may combine the Quarterly Deviation and Compliance Monitoring Report and a report pursuant to 40 CFR 64 and 326 IAC 3-8.

(b) The address for report submittal is:

Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251

D.1.18 Parametric Monitoring [40 CFR 64]

The Permittee shall record the pressure drop across the baghouses used in conjunction with the municipal solid waste combustion units (EU1, EU2, and EU3), at least once per day when the municipal solid waste combustion units (EU1, EU2, and EU3) are in operation. When for any one reading, the pressure drop across the baghouses is outside the normal range the Permittee shall take a reasonable response. The normal range for this unit is a pressure drop between 6.5 and 14.5 inches of water unless a different upperbound or lower-bound value for this range is determined during the latest stack test. Section C – Response to Excursions and Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. A pressure reading that is outside the above mentioned range is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.

The instrument used for determining the pressure shall comply with Section C -Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

D.1.19 Broken or Failed Bag Detection

- (a) For a single compartment baghouses controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).
- (b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the emissions unit. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B -Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse's pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.1.1820Reporting Requirements for Consent Decree

D.1.1921 Record Keeping Requirements for COMS [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]

D.1.202 Record Keeping Requirements for CEMS and Baghouse [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]

- (e) In order to document the compliance status with Condition D.1.17(b), whenever a sulfur dioxide, nitrogen oxides, carbon monoxide, or oxygen continuous emission monitor is malfunctioning or is down for calibration, maintenance, or repairs for a period of four (4) hours or more, the Permittee shall maintain the following records:
 - (1) In the event that a sulfur dioxide CEMS is down, the Permittee shall maintain slurry feed rate records pursuant to Condition D.1.17(b).

- (2) In the event that a nitrogen oxides CEMS is down, the Permittee shall maintain ammonia feed records pursuant to Condition D.1.17(b).
- (3) In the event that a carbon monoxide CEMS is down, the Permittee shall maintain oxygen records and waste combustor rooftop thermocouple temperature records pursuant to Condition D.1.17(b).
- (4) In the event that a oxygen monitor failure, the Permittee shall maintain oxygen records using the second oxygen monitor pursuant to Condition D.1.17(b).
- (f) To document the compliance status with Condition D.1.18, the Permittee shall maintain daily records of the pressure drop across the baghouses controlling the municipal solid waste combustion units (EU1, EU2, and EU3). The Permittee shall include in its daily record when a pressure drop reading is not taken and the reason for the lack of a pressure drop reading (e.g., the process did not operate that day).
- (fg) Section C General Record Keeping Requirements of this permit contains the Permittee's obligation with regard to the records required by this condition.

D.1.243 Reporting Requirements

D.1.224 Reporting Requirements for CEMS [326 IAC 2-7-5(3)(A)(iii)] [326 IAC 3-5]

Additional Changes

IDEM, OAQ has decided to make additional revisions to the permit as described below, with deleted language as strikeouts and new language **bolded**.

- (a) The citations for Condition D.1.2 have been updated for clarification.
- (b) The reference to Procedure 1 in Appendix F at the end of Condition D.1.2 has been capitalized for clarity.
- (c) The company name has been revised throughout the permit as follows:

Company Name: Covanta Indianapolis, Inc. Reworld Indianapolis, Inc.

D.1.2 Emission Limits [326 IAC 11-7-3] [326 IAC 12] [326 IAC 7-1.1]

Pursuant to 326 IAC 11-7-3, the concentration of pollutants contained in the gases discharged to the atmosphere from each of the municipal solid waste combustor units (EU1, EU2, and EU3) shall not exceed the following limits:

(a) Particulate Matter - 25 milligrams per dry standard cubic meter (mg/dscm), corrected to seven percent (7%) oxygen.

. . . .

(j) Carbon monoxide - 100 parts per million by volume (ppmv) measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to seven

percent (7%) oxygen, dry basis, calculated as an arithmetic mean (based on a 4-hour block averaging time).

Compliance with the emission limit for nitrogen oxides in D.1.2(i) required under 40 CFR 60.33b(d) shall be determined based on the 24-hour daily arithmetic average of the hourly emission concentrations using continuous emission monitoring system outlet data. Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with **pP**rocedure 1 in **aA**ppendix F of 40 CFR 60.

IDEM Contact

- If you have any questions regarding this permit, please contact Natalie Moore, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-8279 or (800) 451-6027, and ask for Natalie Moore or (317) 233-8279.
- (b) A copy of the findings is available on the Internet at: <u>http://www.in.gov/ai/appfiles/idem-caats/</u>
- (c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: <u>https://www.in.gov/idem/airpermit/public-participation/;</u> and the Citizens' Guide to IDEM on the Internet at: <u>https://www.in.gov/idem/resources/citizens-guide-to-idem/</u>.

Indiana Department of Environmental Management Office of Air Quality

Technical Support Document (TSD) for a Part 70 Operating Permit Renewal

Source Description and Location

Source Name: Source Location: County: SIC Code: Permit Renewal No.: Permit Reviewer: Covanta Indianapolis, Inc. 2320 S. Harding Street, Indianapolis, IN 46221 Marion (Center Township) 4953 (Refuse Systems) T097-47411-00123 Natalie Moore

On January 11, 2024, Covanta Indianapolis, Inc. submitted an application to the Office of Air Quality (OAQ) requesting to renew its operating permit. OAQ has reviewed the operating permit renewal application from Covanta Indianapolis, Inc. relating to the operation of a stationary municipal solid waste combustion facility. Covanta Indianapolis, Inc. was issued its third Part 70 Operating Permit Renewal (T097-40864-00123) on November 4, 2019.

Existing Approvals

The source was issued Part 70 Operating Permit Renewal No. T097-40864-00123 on November 4, 2019. The source has since received the following approval:

- (a) Administrative Amendment No. 097-46239-00123, issued on February 14, 2023; and
- (b) Administrative Amendment No. 097-46588-00123, issued on May 31, 2023.

All terms and conditions of previous permits issued pursuant to permitting programs approved into the State Implementation Plan have been either incorporated as originally stated, revised, or deleted by this permit. All previous registrations and permits are superseded by this permit.

Emission Units and Pollution Control Equipment

The source consists of the following permitted emission units:

- (a) Three (3) mass burn waterwall municipal solid waste combustion units, constructed in 1988, identified as EU1, EU2, and EU3. Each unit is capable of burning municipal solid waste at a rate of 726 tons per day at 5500 Btu/lb. Each Combustor unit is equipped with two (2) 140 MMBtu per hour natural gas-fired burners used for start-up, shutdown, and flame stabilization.
 - (1) The flue gas from each combustion unit is controlled by:
 - (A) a spray dryer absorber with hydrated lime slurry controlling acid gas, identified as CE1A, CE2A, and CE3A;
 - (B) fabric filter bags controlling particulates, identified as CE1B, CE2B, and CE3B in parallel; exhausting to stack vents SV1, SV2, and SV3, with CEMS for NOx, CO, SO₂, O₂ and a COM for opacity;
 - (C) a Mercury Emissions Control System comprised of:

- (i) three (3) outlet hoppers for each combustion unit; three (3) surge bins, one for each combustion unit, each equipped with gravimetric feeders for controlling the carbon feed rate to each combustion unit, and
- (ii) three (3) injection trains equipped with pneumatic conveying equipment to transport (blow) the carbon from the feeder to the flue gas duct of each combustion unit.
- (D) a Nitrogen Oxide Emission Control System utilizing one (1) selective non catalytic reduction (SNCR) system comprised of:
 - (i) one (1) 20,000 gallon, aqueous ammonia storage tank;
 - (ii) two (2) ammonia feed pumps to supply ammonia from the storage tank to the injection nozzle system; and
 - (iii) three (3) injection nozzle systems equipped with carrier blowers.
- (2) A Fugitive Ash Emission Control System utilizing one (1) dustmaster fly ash conditioning system comprised of:
 - (A) five (5) screw conveyors that convey ash from the three (3) scrubber-baghouse units to the ash storage silo;
 - (B) one (1) ash storage silo that batch feeds the fly ash into the dustmaster conditioning system; and
 - (C) one (1) dustmaster fly ash conditioning system that mixes water and fly ash to produce consistent moisture content that reduces fugitive dust.
- (3) Each combustor is equipped with a Liquid Direct Injection (LDI) System, including multiple nozzles for product dispersion. Additional components include two (2) 150,000 gallon mixing tanks and two (2) 12,500 gallon storage tanks.

Insignificant Activities

The source also consists of the following insignificant activities:

- (a) One (1) sand blaster, used for maintenance purposes only, constructed in 1988, with a maximum capacity of 292 pounds of abrasive per hour, using dust collector as control, and exhausting indoors.
- (b) Lime Silo equipped with a vent fabric filter for particulate control.

The facility includes two (2) alternative systems for lime handling:

- (A) Source will deliver lime slurry by tanker trucks directly into the holding tank prior to pumping to the spray dryer absorber.
- (B) One (1) portable hydrated lime slurry system, identified as T104 trailer, permitted in 2023, with a maximum capacity of 23,000 gallons of slurry, using dust collector as control, and exhausting to the atmosphere.
- (c) One (1) dry activated carbon storage silo associated with the Mercury Emissions Control System equipped with an integrated baghouse system with a maximum storage capacity of 3,000 cubic feet.
- (d) Vents from ash transport systems not operated at positive pressure.

(e) One (1) diesel-fired emergency fire pump engine, manufactured in 2018 and installed in 2019, with a maximum capacity of 183 hp, uncontrolled, and exhausting to the outdoors.

This unit is an affected facility under 40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ.

- (f) One (1) parts washer, constructed in 1988, with a maximum capacity of 40 gallons per month, uncontrolled, and exhausting to the indoors.
- (g) Paved and unpaved roads and parking lots with public access.
- (h) Space heaters powered by steam from the three (3) mass burn waterwall municipal solid waste combustion units, EU1, EU2, and EU3.
- (i) A laboratory as defined in 326 IAC 2-7-1(21)(D).
- (j) One (1) diesel dispensing facility, identified as Diesel Tank 1, constructed in 2008, with a 1,000 gallon tank, dispensing 60,000 gallons of diesel per year, uncontrolled, and exhausting to the outdoors.
- (k) Two (2) diesel dispensing facilities, identified as Diesel Tank 2 and Diesel Tank 3, constructed in 2009, each with a 300 gallon tank, with Diesel Tank 2 dispensing 5,000 gallons of diesel per year and the portable Diesel Tank 3, with secondary containment, dispensing 10,000 gallons of diesel per year, uncontrolled, and exhausting to the outdoors.
- (I) One (1) kerosene dispensing facility, identified as Kerosene Tank, constructed in 2012, with a portable 500 gallon tank, with secondary containment, dispensing 3,000 gallons of kerosene per year, uncontrolled, and exhausting to the outdoors.

Enforcement Issue

There are no enforcement actions pending.

Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.

County Attainment Status

The source is located in Marion County.

Pursuant to amendments to Indiana Code IC 13-17-3-14, effective July 1, 2023, a federal regulation that classifies or amends a designation of attainment, nonattainment, or unclassifiable for any area in Indiana under the federal Clean Air Act is effective and enforceable in Indiana on the effective date of the federal regulation.

Pollutant	Designation
SO ₂	Attainment effective May 21, 2020, for the 2010 SO ₂ primary 1-hour standard for Center, Perry, and Wayne townships. Unclassifiable or attainment effective April 9, 2018, for the remainder of the county. Better than national secondary standards effective March 3, 1978.
со	Attainment effective February 18, 2000, for the part of the city of Indianapolis bounded by 11th Street on the north; Capitol Avenue on the west; Georgia Street on the south; and Delaware Street on the east. Unclassifiable or attainment effective November 15, 1990, for the remainder of Indianapolis and Marion County.
O3	Unclassifiable or attainment effective January 16, 2018, for the 2015 8-hour ozone standard.
PM _{2.5}	Unclassifiable or attainment effective April 15, 2015, for the 2012 annual PM _{2.5} standard.

Pollutant	Designation
PM _{2.5}	Unclassifiable or attainment effective December 13, 2009, for the 2006 24-hour $PM_{2.5}$ standard.
PM ₁₀	Unclassifiable effective November 15, 1990.
NO ₂	Unclassifiable or attainment effective January 29, 2012, for the 2010 NO ₂ standard.
Pb	Unclassifiable or attainment effective December 31, 2011, for the 2008 lead standard.

(a) Ozone Standards

Volatile organic compounds (VOC) and Nitrogen Oxides (NO_x) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NO_x emissions are considered when evaluating the rule applicability relating to ozone. Marion County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NO_x emissions were reviewed pursuant to the requirements of Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

- (b) PM_{2.5} Marion County has been classified as attainment for PM_{2.5}. Therefore, direct PM_{2.5}, SO₂, and NOx emissions were reviewed pursuant to the requirements of Prevention of Significant Deterioration (PSD), 326 IAC 2-2.
- (c) Other Criteria Pollutants Marion County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

Since this source is classified as municipal incinerators capable of charging more than 250 tons of refuse per day, it is considered one (1) of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B). Therefore, fugitive emissions are counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of *Utility Air Regulatory Group v. EPA*, cause no. 12-1146, (available at <u>http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf</u>) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court's decision. U.S. EPA's guidance states that U.S. EPA will no longer require PSD or Title V permits for sources "previously classified as 'Major' based solely on greenhouse gas emissions."

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.

Unrestricted Potential Emissions

	Unrestricted Potential Emissions (ton/year)									
	PM ¹	PM1 PM101 PM2.51, 2 SO2 NOx VOC CO GHGs							Single HAP ³	Total HAPs
Total PTE of Entire Source Including Fugitives*	10,050	> 141	> 132	1,378	2,447	29.64	493.39	1,336,371	2,544	2,650
Title V Major Source Thresholds	NA	100	100	100	100	100	100	100,000 CO ₂ e	10	25
PSD Major Source Thresholds	100	100	100	100	100	100	100			

This table reflects the unrestricted potential emissions of the source.

¹Under the Part 70 Permit program (40 CFR 70), PM₁₀ and PM_{2.5}, not particulate matter (PM), are each considered as a "regulated air pollutant."

²PM_{2.5} listed is direct PM_{2.5}.

³Single highest source-wide HAP is hydrochloric acid.

*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed unrestricted potential emissions of the source.

- (a) The potential to emit (as defined in 326 IAC 2-7-1(30)) of PM10, PM2.5, SO2, NOx, and CO are each equal to or greater than one hundred (100) tons per year. Therefore, the source is subject to the provisions of 326 IAC 2-7 and will be issued a Part 70 Operating Permit Renewal.
- (b) The potential to emit (as defined in 326 IAC 2-7-1(30)) of any single HAP is equal to or greater than ten (10) tons per year and/or the potential to emit (as defined in 326 IAC 2-7-1(30)) of a combination of HAPs is equal to or greater than twenty-five (25) tons per year. The source will be issued a Part 70 Operating Permit Renewal.

Part 70 Permit Conditions

This source is subject to the requirements of 326 IAC 2-7, because the source met the following:

- (a) Emission limitations and standards, including those operational requirements and limitations that assure compliance with all applicable requirements at the time of issuance of Part 70 permits.
- (b) Monitoring and related record keeping requirements which assume that all reasonable information is provided to evaluate continuous compliance with the applicable requirements.

Potential to Emit After Issuance

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any new control equipment is considered federally enforceable only after issuance of this Part 70 permit renewal, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.

		Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)									
	PM ¹	PM 10 ¹	PM _{2.5} ^{1, 2}	SO ₂	NOx	voc	со	GHGs	Single HAP ³	Total HAPs	
Total PTE of Entire Source Including Fugitives*	> 170	> 114	> 104	> 100	< 664	15.11	199.16	1,336,371	20.99	28.52	

	Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)									
	PM ¹	PM 10 ¹	PM _{2.5} ^{1, 2}	SO ₂	NOx	voc	со	GHGs	Single HAP ³	Total HAPs
Title V Major Source Thresholds	NA	100	100	100	100	100	100	100,000 CO ₂ e	10	25
PSD Major Source Thresholds	100	100	100	100	100	100	100	100,000 CO ₂ e	NA	NA
¹ Under the Part 70 Permit program (40 CFR 70), PM ₁₀ and PM _{2.5} , not particulate matter (PM), are each considered as a "regulated air pollutant." ² PM _{2.5} listed is direct PM _{2.5} . ³ Single highest source-wide HAP is hydrochloric acid. *Fugitive HAP emissions are always included in the source-wide emissions.										

Appendix A of this TSD reflects the detailed potential to emit of the entire source after issuance.

- (a) This existing source is a major stationary source, under PSD (326 IAC 2-2), because a PSD regulated pollutant, PM10, PM2.5, SO2, NOx, and CO, are each emitted at a rate of 100 tons per year or more, and it is one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).
- (b) This source is a major source of HAP, as defined in 40 CFR 63.2, because HAP emissions are equal to or greater than ten (10) tons per year for a single HAP and equal to or greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, this source is a major source under Section 112 of the Clean Air Act (CAA).

Federal Rule Applicability

Federal rule applicability for this source has been reviewed as follows:

New Source Performance Standards (NSPS):

(a) This source is still subject to the Emission Guidelines and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20,1994, 40 CFR 60, Subpart Cb and 326 IAC 12, because this source was constructed in 1988 and has a combustion capacity greater than 250 tons per day of municipal solid waste. This source combusts 726 tons per day of municipal solid waste.

This source is subject to the following portions of Subpart Cb.

- (1) 40 CFR 60.30b
- (2) 40 CFR 60.31b
- (3) 40 CFR 60.32b (a), (c), (n)
- (4) 40 CFR 60.33b (a)(1)(i), (a)(1)(iii), (a)(2)(i), (a)(3), (a)(4), (b)(3), (c)(1)(iii), (d)
- (5) 40 CFR 60.34b [Incorporates by reference 40 CFR 60.53b (b) and (c)]
- (6) 40 CFR 60.35b [Incorporates by reference 40 CFR 60.54b]
- (7) 40 CFR 60.36b [Incorporates by reference 40 CFR 60.55b]
- (8) 40 CFR 60.38b [Incorporates by reference 40 CFR 60.58b]
- (9) 40 CFR 60.39b [Incorporates by reference 40 CFR 60.59b]
- (10) 40 CFR 60, Subpart Cb Table 1
- (11) 40 CFR 60, Subpart Cb Table 3

The Permittee may request an extension of a deadline to conduct testing as provided by 40 CFR §§ 60.8, 61.13 or 63.7.

(b) The requirements of the New Source Performance Standard for Fossil-Fuel-Fired Steam Generators, 40 CFR 60, Subpart D (326 IAC 12), are still not included in the permit for EU1, EU2,
and EU3, because EU1, EU2, and EU3 are not fossil-fuel-fired steam generators; they are large municipal waste combustors.

- (c) The requirements of the New Source Performance Standard for Electric Utility Steam Generating Units, 40 CFR 60, Subpart Da (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, because EU1, EU2, and EU3 are not electric utility steam-generating units as defined in §60.41Da. Although this source used approximately 20% of the steam generated to power their in-house 5-6 MW/hr turbine, this source does not provide electrical output to any utility power distribution system for sale. This source only provides steam for sale to Citizens Energy Group's thermal service.
- (d) The requirements of the New Source Performance Standard for Industrial-Commercial-Institutional Steam Generating Units, 40 CFR 60, Subpart Db (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since pursuant to §60.40b(k), any affected facility that is subject to an EPA approved State or Federal section 111(d)/129 plan implementing 40 CFR 60, Subpart Cb is not covered by this subpart.
- (e) The requirements of the New Source Performance Standard for Small Industrial-Commercial-Institutional Steam Generating Units, 40 CFR 60, Subpart Dc (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since they were each constructed before June 9, 1989. Each of these facilities were constructed in 1988.
- (f) The requirements of the New Source Performance Standard for Incinerators, 40 CFR 60, Subpart E (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, pursuant to §60.50(c), since they are covered by 40 CFR 60, Subpart Cb.
- (g) The requirements of the New Source Performance Standard for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994, 40 CFR 60, Subpart Ea (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since they were each constructed before December 20, 1989. Each of these facilities was constructed in 1988.
- (h) The requirements of the New Source Performance Standard for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which Modification or Reconstruction is Commenced After June 19, 1996, 40 CFR 60, Subpart Eb (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since they were each constructed before September 20, 1994. Each of these facilities was constructed in 1988.
- The requirements of the New Source Performance Standard for New Stationary Sources: Hospital/Medical/Infectious Waste Incinerators, 40 CFR 60, Subpart Ec (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since they were each constructed before June 20, 1996. Each of these facilities was constructed in 1988.
- (j) The requirements of the New Source Performance Standard for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After May 14, 2007, 40 CFR 60, Subpart K (326 IAC 12), are still not included in the permit, since each of the dispensing facilities has a capacity of less than one hundred fifty-one thousand, four hundred and twelve (151,412) liters (forty thousand (40,000) gallons).
- (k) The requirements of the New Source Performance Standard for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984, 40 CFR 60, Subpart Ka (326 IAC 12), are still not included in the permit, since each of the dispensing facilities has a capacity of less than one hundred fifty-one thousand, four hundred and twelve (151,412) liters (forty thousand (40,000) gallons).
- (I) The requirements of the New Source Performance Standard for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced after July 23, 1984, 40 CFR 60, Subpart Kb (326 IAC 12), are still not

included in this permit for the dispensing facilities, because the tanks each have a storage capacity of less than 75 cubic meters (19,812.9 gallons).

- (m) The requirements of the New Source Performance Standard for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for which Modification or Reconstruction is Commenced after June 6, 2001, 40 CFR 60, Subpart AAAA (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since these facilities were constructed prior to August 30, 1999 and these facilities burn more than 250 tons per day of municipal solid waste.
- (n) The requirements of the Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999, 40 CFR 60, Subpart BBBB (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since these facilities burn more than 250 tons per day of municipal solid waste.
- (o) The requirements of the New Source Performance Standard for Commercial and Industrial Solid Waste Incineration Units, 40 CFR 60, Subpart CCCC (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since these facilities are exempt under §60.2020(b) as they are regulated under Subpart Cb.
- (p) The requirements of the Emission Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units, 40 CFR 60, Subpart DDDD (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since these facilities are exempt under §60.2555(b) as they are municipal waste combustion units that are regulated under Subpart Cb.
- (q) The requirements of the New Source Performance Standard for Other Solid Waste Incineration Units for Which Construction Is Commenced After December 9, 2004, or for Which Modification or Reconstruction is Commenced on or After June 16, 2006, 40 CFR 60, Subpart EEEE (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since these facilities were constructed prior to December 9, 2004 and these facilities are not other solid waste incinerators (OSWI) as defined in §60.2977. Pursuant to §60.2887(m), these facilities are excluded from this subpart, since they are considered "large municipal waste combustion units" regulated under Subpart Cb.
- (r) The requirements of the Emission Guidelines and Compliance Times For Other Solid Waste Incineration Units That Commenced Construction On Or Before December 9, 2004, 40 CFR 60, Subpart FFFF (326 IAC 12), are still not included in the permit for EU1, EU2, and EU3, since these facilities are not other solid waste incinerators (OSWI) as defined in §60.3078. Pursuant to §60.2993(m), these facilities are excluded from this subpart, since they are considered "large municipal waste combustion units" regulated under Subpart Cb.
- (s) The 183 hp diesel-fired emergency fire pump engine is still subject to the New Source Performance Standards for Stationary Compression Ignition Internal Combustion Engines, 40 CFR 60, Subpart IIII and 326 IAC 12, because it is a fire pump engine manufactured after July 1, 2006 and installed after July 11, 2005. The fire pump engine was manufactured in 2018 and installed in 2019.

The diesel-fired emergency fire pump engine is subject to the following portions of Subpart IIII.

- (1) 40 CFR 60.4200(a)(2)(ii), (a)(4)
- (2) 40 CFR 60.4205(c)
- (3) 40 CFR 60.4206
- (4) 40 CFR 60.4207(b)
- (5) 40 CFR 60.4211(a), (c), (f)(1), (f)(2)(i), (f)(3)(i), (g)(2)
- (6) 40 CFR 60.4214(b), (d)
- (7) 40 CFR 60.4218
- (8) 40 CFR 60.4219
- (9) Table 4

- (10) Table 5
- (11) Table 8

The requirements of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the diesel-fired emergency fire pump engine except as otherwise specified in 40 CFR 60, Subpart IIII.

- (t) The requirements of the New Source Performance Standard for Stationary Spark Ignition Internal Combustion Engines, 40 CFR 60, Subpart JJJJ and 326 IAC 12, are still not included in the permit for the 183 hp diesel-fired emergency fire pump engine, since this engine does not have a spark ignition. This engine has a compression ignition.
- (u) There are no other New Source Performance Standards (40 CFR Part 60) and 326 IAC 12 included in the permit.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

- (a) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAP) from Hazardous Waste Combustors, 40 CFR 63, Subpart EEE (326 IAC 20-28), are still not included in the permit for the municipal solid waste combustion units (EU1, EU2, and EU3), since they each do not meet the definition of a hazardous waste combustor under §63.1201. EU1, EU2, and EU3 are each not considered a hazardous waste combustor, since they each do not combust hazardous waste, as defined in 40 CFR 261.3.
- (b) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Organic Liquids Distribution (Non-Gasoline), 40 CFR 63, Subpart EEEE (326 IAC 20-83) are still not included in the permit for the dispensing operations, since although this source is a major source of HAPs as defined in §63.2, pursuant to §63.2406, organic liquid does not include kerosene or diesel for the purposes of this subpart.
- (c) The 183 hp diesel-fired emergency fire pump engine is still subject to the National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines, 40 CFR 63, Subpart ZZZZ, which is incorporated by reference as 326 IAC 20-82, because it is considered a new (construction commenced on or after June 12, 2006) stationary reciprocating internal combustion engine (RICE) at a major source of hazardous air pollutants (HAP). The compliance date for the emergency fire pump engine is upon startup of the engine.

The diesel-fired emergency fire pump engine is subject to the following portions of Subpart ZZZZ:

- (1) 40 CFR 63.6580
- (2) 40 CFR 63.6585(a), (b)
- (3) 40 CFR 63.6590(a)(2)(ii), (c)(7)
- (4) 40 CFR 63.6595(a)(5)
- (5) 40 CFR 63.6665
- (6) 40 CFR 63.6670
- (7) 40 CFR 63.6675

Pursuant to 40 CFR 63.6665, the 183 hp diesel-fired emergency fire pump engine does not have to meet the requirements of 40 CRF 63, Subpart A (General Provisions), since it is considered a new compression ignition stationary RICE with a site rating of less than 500 hp located at a major source of HAP emissions.

(d) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Industrial, Commercial, and Institutional Boilers and Process Heaters, 40 CFR 63, Subpart DDDDD (326 IAC 20-95) are still not included in the permit for EU1, EU2, and EU3, since they each do not meet the definition of a boiler or a process heater under 40 CFR 63.7575. EU1, EU2, and EU3 are each not considered a boiler or a process heater, since they are each considered a device combusting solid waste, as defined in 40 CFR 241.3, and each is not exempt from the definition of a solid waste incineration unit as provided in section 129(g)(1) of the Clean Air Act.

- (e) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Industrial, Commercial, and Institutional Boilers Area Sources, 40 CFR 63, Subpart JJJJJJ are not included in the permit for EU1, EU2, and EU3, since this source is a major source of HAPs as defined in §63.2 and EU1, EU2, and EU3 are not boilers as defined in §63.11237. EU1, EU2, and EU3 are each not considered a boiler, since they each are considered a device combusting solid waste, as defined in 40 CFR 241.3, and each is not exempt from the definition of a solid waste incineration unit as provided in section 129(g)(1) of the Clean Air Act.
- (f) There are no other National Emission Standards for Hazardous Air Pollutants under 40 CFR 63, 326 IAC 14 and 326 IAC 20 included in the permit.

Compliance Assurance Monitoring (CAM):

- (a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each existing pollutant-specific emission unit that meets the following criteria:
 - (1) has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved;
 - (2) is subject to an emission limitation or standard for that pollutant (or a surrogate thereof); and
 - (3) uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.
- (b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.
- (c) Pursuant to 40 CFR 64.3(d), if a continuous emission monitoring system (CEMS) is required pursuant to other federal or state authority, the owner or operator shall use the CEMS to satisfy the requirements of CAM according to the criteria contained in 40 CFR 64.3(d).

The following table is used to identify the applicability of CAM to each emission unit and each emission limitation or standard for a specified pollutant based on the criteria specified under 40 CFR 64.2:

Emission Unit/Pollutant	Control Device	Applicable Emission Limitation	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)
Sand Blaster (PM*)	DC	326 IAC 6.5	< 100		N ¹	
Lime Silo (PM*)	BH	326 IAC 6.5	< 100		N ¹	
Dry Activated Carbon Storage Silo (PM*)	BH	326 IAC 6.5	< 100		N ¹	
	(40.055					

Under the Part 70 Permit program (40 CFR 70), PM is not a regulated air pollutant.

Uncontrolled PTE (tpy) and controlled PTE (tpy) are evaluated against the Major Source Threshold for each pollutant. Major Source Threshold for regulated air pollutants (PM10, PM2.5, SO2, NOx, VOC and CO) is 100 tpy, for a single HAP ten (10) tpy, and for total HAPs twenty-five (25) tpy.

- PM* For limitations under 326 IAC 6-3-2, 326 IAC 6.5, and 326 IAC 6.8, IDEM OAQ uses PM as a surrogate for the regulated air pollutant PM10. Therefore, uncontrolled PTE and controlled PTE reflect the emissions of the regulated air pollutant PM10.
- N¹ CAM does not apply for PM10 because the uncontrolled PTE of PM10 is less than the major source threshold.

Emission Unit/Pollutant Control Device		Applicable Emission Limitation	Uncontrolled PTE (tons/year)	Controlled PTE (tons/year)	CAM Applicable (Y/N)	Large Unit (Y/N)		
Controls: BH = Baghouse, C = Cyclone, DC = Dust Collection System, RTO = Regenerative or Recuperative Thermal								
Oxidizer, WS = Wet Scrubber, ESP = Electrostatic Precipitator								
Emission units without air pol	llution controls	s are not subject to CAN	1. Therefore, they	are not listed.				

The three (3) mass burn waterwall municipal solid waste combustion units (EU1, EU2, and EU3) were not included in the chart above because they are exempt from CAM due to the fact that they are regulated by the emission limitations and standards of 40 CFR 60, Subpart Cb, which was proposed after November 15, 1990 by the Administrator. [40 CFR 64.1]

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are not applicable to any of the existing units as part of this Part 70 permit renewal.

State Rule Applicability - Entire Source

State rule applicability for this source has been reviewed as follows:

326 IAC 1-6-3 (Preventive Maintenance Plan)

The source is subject to 326 IAC 1-6-3.

326 IAC 2-2 (PSD)

PSD applicability is discussed under the Potential to Emit After Issuance section of this document.

<u>Prevention of Significant Deterioration Best Available Control Technology (PSD BACT)</u> Pursuant to 326 IAC 2-2-3 (PSD BACT), the Permittee shall comply with the following requirements:

- (a) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, nitrogen dioxide mass emission rate shall not exceed 151.2 pounds per hour per combustion unit and an annual emission rate of 662.25 tons per twelve (12) consecutive months while combusting only municipal waste.
- (b) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, carbon monoxide mass emission rate shall not exceed 45.4 pounds per hour per combustion unit and an annual emission rate of 198.85 tons per twelve (12) consecutive months while combusting only municipal waste.
- (c) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, lead mass emission rate, averaged over a three month period, shall not exceed 2.01 pounds per hour for the three (3) combustion units.
- (d) Pursuant to Construction Permit PSD (49) 1602, issued April 23, 1986, mercury mass emission rate, averaged over all 24-hour rolling periods, shall not exceed a mass emission rate of 0.54 pounds per hour for the three (3) combustion units.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))

The provisions of 326 IAC 2-4.1 apply to any owner or operator who constructs or reconstructs a major source of hazardous air pollutants (HAP), as defined in 40 CFR 63.41, after July 27, 1997, unless the major source has been specifically regulated under or exempted from regulation under a NESHAP that was issued pursuant to Section 112(d), 112(h), or 112(j) of the Clean Air Act (CAA) and incorporated under 40 CFR 63. On and after June 29, 1998, 326 IAC 2-4.1 is intended to implement the requirements of Section 112(g)(2)(B) of the Clean Air Act (CAA).

The operation of the municipal solid waste combustion units (constructed in 1988) will emit greater than ten (10) tons per year for a single HAP and greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 would apply to the municipal solid waste combustion units. However, pursuant to 326 IAC 2-4.1-1(a), because the municipal solid waste combustion units were each

constructed before July 27, 1997, the municipal solid waste combustion units are exempt from the requirements of 326 IAC 2-4.1.

326 IAC 2-6 (Emission Reporting)

This source is subject to the requirements of 326 IAC 2-6 (Emission Reporting), since it is required to have an operating permit under 326 IAC 2-7, Part 70 Permit Program. Pursuant to 326 IAC 2-6-3(a)(2), the Permittee shall submit triennially, by July 1, an emission statement covering the previous calendar year in accordance with the compliance schedule in 326 IAC 2-6-3. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.

326 IAC 2-7-6(5) (Annual Compliance Certification)

The U.S. EPA Federal Register 79 FR 54978 notice does not exempt Title V Permittees from the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D), but the submittal of the Title V annual compliance certification to IDEM satisfies the requirement to submit the Title V annual compliance certifications to EPA. IDEM does not intend to revise any permits since the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D) still apply, but Permittees can note on their Title V annual compliance certifications that submission to IDEM has satisfied reporting to EPA per Federal Register 79 FR 54978. This only applies to Title V Permittees and Title V compliance certifications.

326 IAC 5-1 (Opacity Limitations)

This source is subject to the opacity limitations specified in 326 IAC 5-1-2(2).

326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1(c)(3), the source is not subject to the requirements of 326 IAC 6-3, since this source is subject to the requirements of 326 IAC 6.5.

326 IAC 6-4 (Fugitive Dust Emissions Limitations)

The source is subject to the requirements of 326 IAC 6-4, because the roads have the potential to emit fugitive particulate emissions. Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions Limitations), the source shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)

This source was constructed after December 13, 1985, and has potential fugitive particulate emissions of twenty-five (25) tons per year or more. Pursuant to 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations), fugitive particulate matter emissions shall be controlled according to the Fugitive Dust Control Plan that is included as Attachment A to the permit.

326 IAC 6.5 (Particulate Matter Limitations Except Lake County)

This source (located in Marion County) is located in one of the counties listed in 326 IAC 6.5, but is not one of the sources specifically listed in 326 IAC 6.5-2 through 326 IAC 6.5-10. The source-wide PTE of PM is 10 tons per year or more. Therefore, this source is subject to the requirements of 326 IAC 6.5-1-2 because the source-wide actual emissions of PM can be 10 tons per year or more.

326 IAC 6.8 (Particulate Matter Limitations for Lake County)

Pursuant to 326 IAC 6.8-1-1(a), this source (located in Marion County) is not subject to the requirements of 326 IAC 6.8 because it is not located in Lake County.

326 IAC 6.8-10 (Lake County: Fugitive Particulate Matter)

Pursuant to 326 IAC 6.8-10-1, this source (located in Marion County) is not subject to the requirements of 326 IAC 6.8-10 because it is not located in Lake County.

State Rule Applicability – Individual Facilities

State rule applicability has been reviewed as follows:

Municipal Solid Waste Combustion Units (EU1, EU2, and EU3)

326 IAC 4-2 (Incinerators)

Pursuant to 326 IAC 4-2-1(b)(2)(E), the municipal solid waste combustion units (EU1, EU2, and EU3) are each not subject to the requirements of 326 IAC 4-2 because each is subject to the requirements of the state plan approved under 40 CFR 62.3650 through 40 CFR 62.3652, Large Municipal Waste Combustors. As indicated in 40 CFR 62.3650 (Indiana: Identification of plan), Indiana has established rules for municipal waste combustors under 326 IAC 11-7 and 326 IAC 12 (incorporates by reference 40 CFR 60, including 40 CFR 60, Subpart Cb).

326 IAC 6.5 (PM Limitations Except Lake County)

As discussed in the State Rule Applicability - Entire Source, this source is subject to the requirements of 326 IAC 6.5.

(a) Pursuant to 326 IAC 6.5-1-2(b)(1)(A), particulate matter (PM) emissions from the municipal solid waste combustion units (EU1, EU2, and EU3) shall not exceed 0.18 grams per million calories (0.10 pounds per MMBtu), since they are each a solid fuel-fired generator that has a heat input greater than 250 MMBtu/hr.

Pursuant to 326 IAC 6.5-1-1(d), if the above limitation conflicts with or is inconsistent with the limitation established in 326 IAC 12, then the more stringent limitation shall apply.

- (b) Pursuant to 326 IAC 6.5-1-2(a), particulate matter (PM) emissions from the following facilities shall not exceed 0.03 grains per dry standard cubic foot (dscf):
 - (1) a Mercury Emissions Control System comprised of:
 - (A) three (3) outlet hoppers for each combustion unit; three (3) surge bins, one for each combustion unit, each equipped with gravimetric feeders for controlling the carbon feed rate to each combustion unit, and
 - (B) three (3) injection trains equipped with pneumatic conveying equipment to transport (blow) the carbon from the feeder to the flue gas duct of each combustion unit.
 - (2) A Fugitive Ash Emission Control System utilizing one (1) dustmaster fly ash conditioning system comprised of:
 - (A) five (5) screw conveyors that convey ash from the three (3) scrubber-baghouse units to the ash storage silo;
 - (B) one (1) ash storage silo that batch feeds the fly ash into the dustmaster conditioning system; and
 - (C) one (1) dustmaster fly ash conditioning system that mixes water and fly ash to produce consistent moisture content that reduces fugitive dust.

326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations)

Each of the municipal solid waste combustion units (EU1, EU2, and EU3) is subject to 326 IAC 326 IAC 7-1.1 because each has a potential to emit sulfur dioxide (SO2) greater than 25 tons per year or 10 pounds per hour. However, there are no applicable requirements for the municipal solid waste combustion units at this source under 326 IAC 7-1.1-2, 326 IAC 7-2, 326 IAC 7-4, or 326 IAC 7-4.1. Therefore, pursuant to 326 IAC 7-1.1-1(3), each of the municipal solid waste combustion units (EU1, EU2, and EU3) shall comply with the sulfur dioxide emission limitations and other requirements under 326 IAC 12 (incorporates by reference 40 CFR 60, including 40 CFR 60, Subpart Cb).

326 IAC 2-7-6(1), (6) (Testing Requirements)

This source shall perform PM, opacity, cadmium, lead, mercury, dioxin/furan, and HCl testing as required by 40 CFR 60, Subpart Cb, and 326 IAC 11-7.

326 IAC 2-7-6(6) (Operation of Equipment)

The Permittee shall comply with the following requirements for each of the municipal solid waste combustor units (EU1, EU2, and EU3):

- (a) Based on data from the nitrogen oxides continuous emission monitoring systems (CEMS) for each of the municipal waste combustors, the selective noncatalytic reduction (SNCR) system for NOx control shall be in operation and control emissions from the municipal waste combustors as necessary in order to comply with NOx limit under 326 IAC 11-7-3.
- (b) In order to comply with the sulfur dioxide and hydrogen chloride limits under 326 IAC 11-7-3, the Permittee shall operate the spray dryer absorber and the fabric filter prior to charging any MSW, during continuous combustion of MSW, and during shutdown until all MSW remaining on the grate is combusted.
- (c) In order to comply with the opacity, sulfur dioxide, and carbon dioxide limits under 326 IAC 11-7-3, the PSD BACT for carbon monoxide, and the sulfur dioxide Consent Decree requirements, the Permittee shall operate continuous monitoring equipment for sulfur dioxide, oxygen, and carbon monoxide at the economizer outlet, and sulfur dioxide and opacity at the fabric filter outlet.
- (d) Pursuant to 326 IAC 2-7-6(6), primary combustion air shall be drawn from the tipping floor maintaining a negative air pressure in the building containing the tipping floor and receiving pit.
- (e) In order to comply with particulate matter and lead limits under 326 IAC 11-7-3, and the particulate matter emission limitations under 326 IAC 6.5 and 326 IAC 12 (NSPS), the fabric filter for particulate matter, opacity, cadmium, and lead control shall be in operation and control emissions from the municipal waste combustors at all times when the facility is in operation.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

The solid waste combustion units (EU1, EU2, and EU3) are subject to the requirements of 326 IAC 8-1-6, because they were each constructed after January 1, 1980, and their unlimited VOC potential emissions are equal to or greater than twenty-five (25) tons per year, each, and the solid waste combustion units (EU1, EU2, and EU3) are each not regulated by other rules in 326 IAC 8. Therefore, a Best Available Control Technology (BACT) analysis was required for the solid waste combustion units.

Construction Permit PSD (49) 1602, issued on April 23, 1986, established a BACT limit of 3.30 pound of VOC per hour per combustion unit and an annual emission rate of 14.45 tons per twelve (12) consecutive months while combusting only municipal waste.

326 IAC 9-1-2 (Carbon Monoxide Emission Limits)

Pursuant to 326 IAC 9-1-1(b)(2), this source is not subject to the requirements of 326 IAC 9-1-2, because it is subject to a state plan approved under 40 CFR 62, Subpart P, Approval and Promulgation of State Plans for Specific Sources and Facilities in Indiana. As indicated in 40 CFR 62.3650 (Indiana: Identification of plan), Indiana has established rules for municipal waste combustors under 326 IAC 11-7 and 326 IAC 12 (incorporates by reference 40 CFR 60, including 40 CFR 60, Subpart Cb).

326 IAC 11-7 (Municipal Waste Combustors)

The three (3) mass burn waterwall municipal solid waste combustion units (EU1, EU2, and EU3) are subject to the requirements of 326 IAC 11-7, because each unit commenced construction before September 20, 1994 and each has a combustion capacity greater than two hundred fifty (250) tons per day of municipal solid waste. The source is subject to the emission limits, operation practices, training standards, monitoring, testing, record keeping, and reporting requirements contained in 326 IAC 11-7.

326 IAC 11-7-3 (Emission Limits)

Pursuant to 326 IAC 11-7-3, the concentration of pollutants contained in the gases discharged to the atmosphere from each of the municipal solid waste combustion units (EU1, EU2, and EU3) shall not exceed the following limits:

- (a) Particulate Matter 25 milligrams per dry standard cubic meter (mg/dscm), corrected to seven percent (7%) oxygen.
- (b) Opacity 10% based on 6-minute average.
- (c) Cadmium 0.035 milligrams per dry standard cubic meter (mg/dscm), corrected to seven percent (7%) oxygen.
- (d) Lead 0.400 milligrams per dry standard cubic meter (mg/dscm), corrected to seven percent (7%) oxygen.
- (e) Mercury 0.050 milligrams per dry standard cubic meter (mg/dscm); or 15% of the potential mercury emissions concentration, corrected to seven percent (7%) oxygen, whichever concentration is less stringent.
- (f) Sulfur dioxide 29 parts per million by volume (ppmv); or 20% of the potential sulfur dioxide emission concentration, whichever concentration is less stringent, corrected to seven percent (7%) oxygen, dry basis, calculated as a 24-hour daily geometric mean.
- (g) Hydrogen chloride 29 parts per million by volume (ppmv); or 5% of the potential hydrogen chloride emissions concentration, corrected to seven percent (7%) oxygen, dry basis, whichever is less stringent.
- (h) Organic emissions (expressed as total mass dioxins/furans) 30 nanograms per dry standard cubic meter (ng/dscm) total mass, corrected to seven percent (7%) oxygen.
- (i) Nitrogen oxides 205 parts per million by volume (ppmv), corrected to seven percent (7%) oxygen, dry basis. Compliance may be based on the average daily NOx emissions.
- (j) Carbon monoxide 100 parts per million by volume (ppmv) measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to seven percent (7%) oxygen, dry basis, calculated as an arithmetic mean (based on a 4-hour block averaging time).

Compliance with the emission limit for nitrogen oxides in (i) required under 40 CFR 60.33b(d) shall be determined based on the 24-hour daily arithmetic average of the hourly emission concentrations using continuous emission monitoring system outlet data. Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 1 in appendix F of 40 CFR 60.

326 IAC 11-7-4 (Operating Practices)

Pursuant to 326 IAC 11-7-4, the Permittee shall comply with the following operating practices:

- (a) 40 CFR 60, Subpart Eb, Section 60.53b(b)
- (b) 40 CFR 60, Subpart Eb, Section 60.53b(c)

326 IAC 11-7-5 (Municipal Waste Combustor Operator Training and Certification Requirements) Pursuant to 326 IAC 11-7-5, the Permittee shall comply with the municipal waste combustor operator training and certification requirements specified in 40 CFR 60, Subpart Eb, Section 60.54b.

326 IAC 11-7-6 (Standards for Municipal Waste Combustor Fugitive Ash Emissions)

Pursuant to 326 IAC 11-7-6, the Permittee shall meet the fugitive ash emission standards specified in 40 CFR 60, Subpart Eb, Section 60.55b.

326 IAC 11-7-7 (Compliance and Performance Testing)

Pursuant to 326 IAC 11-7-7 and their initial Title V permit (T097-5985-00123, issued on March 6, 2003), compliance with the emission limit for nitrogen oxides required under 40 CFR 60.52b(d) shall be determined based on the 24-hour daily arithmetic average of hourly emission concentrations using continuous emission monitoring system outlet data. Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 1 in appendix F of 40 CFR 60.

There is an additional option pursuant to 40 CFR 60.33b(d), where a source may elect to submit a nitrogen oxides emissions averaging plan to comply with 326 IAC 11-7. However, the Source has not elected to submit an emissions averaging plan nor is there a state approved nitrogen oxides emission averaging plan. Therefore, the source is ineligible for this option at this time.

Consequently, the source shall comply with the 326 IAC 11-7-3 using test methods established in 40 CFR 60.52b(d) by a 24 hour-daily arithmetic average of the hourly emission concentrations using continuous emission monitoring system outlet data.

Pursuant to 326 IAC 11-7-7, the Permittee shall comply with the following:

- (a) Compliance and performance testing methods and procedures specified in 40 CFR 60, Subpart Eb, Section 60.58b, except as provided in subsections (b) through (c). All tests shall meet the requirements of 326 IAC 3-6.
- (b) If all of the dioxin/furan compliance tests for all designated facilities over a two (2) year period indicate that the dioxin/furan emissions are less than or equal to fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen, the owner or operator of the plant may elect to conduct an annual dioxin/furan performance test for one (1) designated facility (unit) per year at the plant. At a minimum, a performance test for dioxin/furan emissions shall be conducted annually (no more than twelve (12) months following the previous performance test) for one (1) designated facility at the plant. Each year a different designated facility shall be tested. The designated facilities at the plant shall be tested in sequence, such as Unit 1 the first year, followed by Unit 2 the next year.
- (c) If an annual performance test indicates an emission level for dioxin/furan greater than fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen, then performance tests shall be conducted annually on all designated facilities at the plant until all annual performance tests for all designated facilities at the plant over a two (2) year period indicate a dioxin and furan emission level less than or equal to fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen.
- (d) The owner or operator of a designated facility who elects to follow the performance testing schedule specified in subsection (b) shall follow the procedures specified in 40 CFR 60, Subpart Eb, Section 60.59b(g)(4), for reporting the election of this schedule to the department.

326 IAC 11-7-8 (Reporting and Record Keeping Requirements)

Pursuant to 326 IAC 11-7-8, the Permittee shall comply with the following:

- (a) The reporting and record keeping provisions of 40 CFR 60, Subpart Eb, Section 60.59b.
- (b) The following sitting requirements are not required under subsection (a):
 - (1) 40 CFR 60, Subpart Eb, Section 60.59b(a).
 - (2) 40 CFR 60, Subpart Eb, Section 60.59b(b)(5).
 - (3) 40 CFR 60, Subpart Eb, Section 60.59b(d)(11).
- (c) All report and record keeping shall meet the requirements of 326 IAC 3 (Monitoring Requirements) when applicable.

Additional Requirements - Construction Permits and Consent Decree

- (a) Pursuant to Construction Permit, City of Indianapolis, issued March 25, 1986 and incorporated into Construction Permit PSD (49) 1602, issued April 23, 1986, the total nonmethane hydrocarbon (VOC) mass emission rate from EU1, EU2, and EU3 shall not exceed 3.30 pounds per hour per combustion unit and an annual emission rate of 14.45 tons per twelve (12) consecutive months while combusting only municipal waste.
- (b) If duplicate requirements are found between the incorporated sections of the Consent Decree filed January 12, 1993 and any other conditions of the Part 70 Operating Permit, the Permittee shall comply with the more stringent requirements. There are additional requirements specified from the Consent Decree filed January 12, 1993, Cause number 49F12-9110-OV-2155 that are carried over into the Part 70 Permit. The conditions not carried over from the Consent Decree were either satisfied or were not required by the consent decree to be incorporated into the Part 70 permit. These special requirements of the Consent Decree that are carried over into the Part 70 Permit are not federally enforceable and are as follows:
 - Operation and Maintenance Plan
 Pursuant to the Consent Decree filed January 12, 1993, for Cause number 49F12-9110 OV-2155, Section G, Paragraphs 1 and 5:
 - (A) Whenever a boiler tube failure, ash plug, broken grate bar, decrease in expected bag performance, or scrubber failure occurs, or a work practice causes any of the foregoing or is demonstrated to adversely impact the Facility's ability to meet the terms and conditions of the Permit, the Permittee shall reevaluate the applicable provisions of its O & M Plan required in (b)(1)(B) to determine if any changes in such provisions, including work practices, are required, and shall report to IDEM the results of the reevaluations noted below. The Permittee shall notify IDEM, OAQ and OES, in writing within thirty (30) days prior to implementing revisions to the O & M Plan.
 - (B) The Permittee shall combine all current operation and preventative maintenance plans, including the Baghouse/Scrubber Preventive Maintenance Plan, Boiler Operation and Maintenance Plan and the Maintenance Management System, into one plan to be described as the Operation and Maintenance Plan (O & M Plan), containing sections on (1) Maintenance Management System, (2) Auxiliary Burner, (3) Martin Stoker/Ash Discharger, (4) Waste Feed, (5) Boiler, and (6) Baghouse/Scrubber. Each section shall describe the applicable work practices to assure the proper operation of the applicable equipment and systems which may impact air emissions from the Facility and shall describe or reference related work orders for such equipment and systems included in the Prefix or equivalent system described in the Maintenance Management System section of the O & M Plan.
 - (2) Sulfur Dioxide Pursuant to Consent Decree filed January 12, 1993, Cause number 49F12-9110-OV-2155, Section D, Paragraph 1, the Permittee shall keep the acid gas scrubber for each combustor in service whenever municipal solid waste is on the grate for that unit.
 - (3) Substantive Provisions
 - (A) Baghouse

Pursuant to Consent Decree Section B, Paragraph 2, Cause number 49F12-9110-OV-2155, the Permittee shall not bypass the baghouse for a Unit while municipal solid waste is on the grate unless necessary to avoid an explosive or other dangerous situation which could result in structural or major damage to any equipment of the Facility impairing the use of such equipment, or injury to personnel working at or near the Facility. Structural or major damage to any equipment of the Facility does not include damage to or destruction of bags. The Permittee shall bear the burden of demonstrating the need for the bypass. Within ten (10) days of a bypass incident, the Permittee shall submit a written report to the OES and IDEM detailing the length of the bypass incident, the operating parameters at the time of the bypass, including but not limited to flue gas inlet temperature to the baghouse and differential pressure across the baghouse, and the conditions or reasons necessitating the bypass.

(B) Good Combustion Practices

Pursuant to Consent Decree Section B, Paragraph 3 Cause number 49F12-9110-OV-2155, because the furnace boiler tube thinning may be attributable to fireside corrosion stemming from acid gases and corrosive salts, providing a catalyst for boiler tube failure, Covanta Indianapolis, Inc. shall, within thirty (30) days after the effective date of this Consent Decree, conduct a review of the boiler operation to determine the optimum operation to reduce boiler tube thinning and to establish procedure to ensure that the optimum boiler operation can be consistently maintained. The following will be addressed in such review:

 Training Operating personnel have increased the number of furnace observations made at regularly scheduled intervals, as part of their normal "walkdowns". In addition, an operator/shift supervisor training program, geared toward optimum combustion control and stoker operation, will continue to be implemented.

Lime Silo, Dry Activated Carbon Storage Silo, and Vents from Ash Transport Systems

326 IAC 6.5 (PM Limitations Except Lake County)

As discussed in the State Rule Applicability - Entire Source, this source is subject to the requirements of 326 IAC 6.5. Pursuant to 326 IAC 6.5-1-2(a), particulate matter (PM) emissions from the lime silo, dry activated carbon storage silo, and vents from ash transport systems shall each not exceed 0.07 grams per dry standard cubic meter (g/dscm) (0.03 grains per dry standard cubic foot (dscf)).

Maintenance Sand Blaster

326 IAC 6.5 (PM Limitations Except Lake County)

As discussed in the State Rule Applicability - Entire Source, this source is subject to the requirements of 326 IAC 6.5. Pursuant to 326 IAC 6.5-1-2(a), particulate matter (PM) emissions from the maintenance sand blaster shall not exceed 0.07 grams per dry standard cubic meter (g/dscm) (0.03 grains per dry standard cubic foot (dscf)).

Diesel-fired Emergency Fire Pump Engine

326 IAC 6.5 (PM Limitations Except Lake County)

As discussed in the State Rule Applicability - Entire Source, this source is subject to the requirements of 326 IAC 6.5. Pursuant to 326 IAC 6.5-1-2(a), particulate matter (PM) emissions from the diesel-fired emergency fire pump engine shall not exceed 0.07 grams per dry standard cubic meter (g/dscm) (0.03 grains per dry standard cubic foot (dscf)).

326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations)

This emission unit is not subject to 326 IAC 326 IAC 7-1.1 because it has a potential to emit sulfur dioxide (SO2) of less than 25 tons per year or 10 pounds per hour.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

Even though the diesel-fired emergency fire pump engine was constructed after January 1, 1980, it is not subject to the requirements of 326 IAC 8-1-6 because its unlimited VOC potential emissions are less than twenty-five (25) tons per year.

326 IAC 9-1 (Carbon Monoxide Emission Limits)

The requirements of 326 IAC 9-1 do not apply to the diesel-fired emergency fire pump engine, because this unit is not a catalyst regeneration petroleum cracking system or a petroleum fluid coker, grey iron cupola, blast furnace, basic oxygen steel furnace, or other ferrous metal smelting equipment.

326 IAC 10-3 (Nitrogen Oxide Reduction Program for Specific Source Categories)

The requirements of 326 IAC 10-3 do not apply to the diesel-fired emergency fire pump engine, since this unit is not a blast furnace gas-fired boiler, a Portland cement kiln, or a facility specifically listed under 326 IAC 10-3-1(a)(2).

Parts Washer

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

The cold cleaner degreaser is not subject to the requirements of 326 IAC 8-1-6 because it is regulated by other rules in 326 IAC 8. The degreaser is subject to the requirements of 326 IAC 8-3-2 and 326 IAC 8-3-8.

326 IAC 8-3-2 (Cold Cleaner Degreaser Control Equipment and Operating Requirements)

Pursuant to 326 IAC 8-3-1(c)(2)(A), the parts washer is subject to the requirements of 326 IAC 8-3-2, since it was constructed before July 1, 1990 and is located in Marion County.

Pursuant to 326 IAC 8-3-2 (Cold Cleaner Degreaser Control Equipment and Operating Requirements), the Permittee shall:

- (a) Comply with the following control equipment and operating requirements:
 - (1) Equip the degreaser with a cover.
 - (2) Equip the degreaser with a device for draining cleaned parts.
 - (3) Close the degreaser cover whenever parts are not being handled in the degreaser.
 - (4) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases;
 - (5) Provide a permanent, conspicuous label that lists the operating requirements in subdivisions (3), (4), (6), and (7).
 - (6) Store waste solvent only in closed containers.
 - (7) Prohibit the disposal or transfer of waste solvent in a manner that would allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.
- (b) Comply with the following additional control equipment and operating requirements:
 - (1) Equip the degreaser with one (1) of the following control devices if the solvent is heated to a temperature of greater than forty-eight and nine-tenths (48.9) degrees Celsius (one hundred twenty (120) degrees Fahrenheit):
 - (A) A freeboard that attains a freeboard ratio of seventy-five hundredths (0.75) or greater.
 - (B) A water cover when solvent used is insoluble in, and heavier than, water.
 - (C) A refrigerated chiller.
 - (D) Carbon adsorption.
 - (2) Ensure the degreaser cover is designed so that it can be easily operated with one (1) hand if the solvent is agitated or heated.

- (3) If used, solvent spray must be:
 - (A) performed in an enclosed chamber, with or without venting; or
 - (B) a solid, fluid stream applied at a pressure that does not cause excessive splashing.

326 IAC 8-3-8 (Material Requirements for Cold Cleaner Degreasers)

Pursuant to 326 IAC 8-3-1(c)(3)(B), the cold cleaner degreaser is subject to the requirements of 326 IAC 8-3-8, since it is a cold cleaner degreaser used after January 1, 2015 anywhere in the state.

Pursuant to 326 IAC 8-3-8 (Material Requirements for Cold Cleaner Degreasers), the Permittee shall not operate a cold cleaning degreaser with a solvent that has a VOC composite partial vapor pressure that exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

Diesel and Kerosene Dispensing Facilities

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

Even though this diesel and kerosene dispensing facilities were constructed after January 1, 1980, they are each not subject to the requirements of 326 IAC 8-1-6 because their unlimited VOC potential emissions are less than twenty-five (25) tons per year, each.

326 IAC 8-4-3 (Petroleum Liquid Storage Facilities)

Pursuant to 326 IAC 8-4-3(a), the diesel and kerosene dispensing facilities are not subject to the requirements of 326 IAC 8-4-3, since each of their tanks has a maximum capacity less than 39,000 gallons.

326 IAC 8-9 (Volatile Organic Liquid Storage Vessels)

Pursuant to 326 IAC 8-9-1(a), the diesel and kerosene dispensing facilities are not subject to the requirements of 326 IAC 8-9, since this source is not located in Clark, Floyd, Lake, or Porter County.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source's failure to take the appropriate corrective actions within a specific time period.

(a) The Compliance Determination Requirements applicable to this source are as follows:

The municipal solid waste combustor units (EU1, EU2, and EU3) have applicable compliance determination conditions as specified below:

(1) The Permittee shall comply with the following requirements for each of the municipal solid waste combustor units (EU1, EU2, and EU3):

- (A) Based on data from the nitrogen oxides continuous emission monitoring systems (CEMS) for each of the municipal waste combustors, the selective noncatalytic reduction (SNCR) system for NOx control shall be in operation and control emissions from the municipal waste combustors as necessary in order to comply with the permit.
- (B) In order to comply with the permit, and pursuant to Installation Permit, issued March 25, 1986 and Operation Permit, issued May 12, 1989, the Permittee shall operate the spray dryer absorber and the fabric filter prior to charging any MSW, during continuous combustion of MSW, and during shutdown until all MSW remaining on the grate is combusted.
- (C) Pursuant to Installation Permit, issued March 25, 1986 and Operation Permit, issued May 12, 1989, the Permittee shall operate continuous monitoring equipment for sulfur dioxide, oxygen, and carbon monoxide at the economizer outlet, and sulfur dioxide and opacity at the fabric filter outlet.
- (D) Pursuant to Installation Permit, issued March 25, 1986 and Operation Permit, issued May 12, 1989, primary combustion air shall be drawn from the tipping floor maintaining a negative air pressure in the building containing the tipping floor and receiving pit.
- (E) In order to comply with the permit, the fabric filter for particulate matter, opacity, cadmium, and lead control shall be in operation and control emissions from the municipal waste combustors at all times when the facility is in operation.
- (2) Based on stack test data and municipal waste data for each of the municipal waste combustors, the carbon injection system for mercury control shall be in operation and control emissions from the municipal waste combustors as necessary in order to comply with the permit.

Testing Requirements:

	:	Summary of Testing R	equirements		
Emission Unit	Control Device	Timeframe for Testing or Date of Initial Valid Demonstration)	Pollutant/ Parameter	Frequency of Testing	Authority
	Fabric Filter Bags (CE1B, CE2B, and CE3B)	No less than 9 calendar months and no more than 15 calendar months following the	Particulate Matter Opacity		326 IAC 6.5 326 IAC 11-7-3 40 CFR 60, Subpart Cb
Municipal Solid Waste	Not Applicable Not Applicable	previous performance test, with 5 performance tests in each 5-year calendar period	Cadmium Lead Mercury	Annually	
Combustor Units (EU1, EU2, and EU3)	Mercury Emissions Control System	No less than 9 calendar months and no more than 12 calendar months following the previous performance test	Dioxin/Furan	Annually for one (1) unit at the plant*	326 IAC 11-7-3 40 CFR 60, Subpart Cb
	Spray Dryer Absorber (CE1A, CE2A, and CE3A)	No more than 12 calendar months following the previous performance test	Hydrogen Chloride	Annually	

* If an annual performance test indicates an emission level for dioxin/furan greater than fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen, then performance tests shall be conducted annually on all designated facilities at the plant until all annual performance tests for all designated facilities at the plant over a two (2) year period indicate a dioxin and furan emission level less than or equal to fifteen (15) nanograms per dry standard cubic meter corrected to seven percent (7%) oxygen.

The last valid stack tests for EU1, EU2, and EU3 were June 21 - 23, 2023.

<u>Continuous Emissions Monitoring System (CEMS) and Continuous Opacity Monitoring (COM)</u> <u>Requirements:</u>

Emission Units	Type of Continuous Monitor (Pollutant Monitored)	Applicable Rule or Authority
	CEMS (Sulfur Dioxide)	
	CEMS (Nitrogen Oxides)	326 IAC 3-5
Municipal Solid Waste Combustion Units (EU1, EU2, and EU3)	CEMS (Carbon Monoxide)	326 IAC 2-7-6(1),(6) 40 CFR 60, Subpart Cb
	CEMS (Oxygen)	326 IAC 2-2
	COMS (Opacity)	

Proposed Changes

As part of this permit approval, the permit may contain new or different permit conditions and some conditions from previously issued permits/approvals may have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes.

The following changes were made to conditions contained previously issued permits/approvals (these changes may include Title I changes):

- (1) References to the OES (Indianapolis Office of Environmental Services) have been removed from Conditions D.1.8 and D.1.18, since the office no longer exists.
- (2) Condition D.1.11 has been updated to include current template language.

Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on January 11, 2024.

The operation of this stationary municipal solid waste combustion facility shall be subject to the conditions of the attached proposed Part 70 Operating Permit Renewal No. T097-47411-00123.

The staff recommends to the Commissioner that the Part 70 Operating Permit Renewal be approved.

IDEM Contact

- If you have any questions regarding this permit, please contact Natalie Moore, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-8279 or (800) 451-6027, and ask for Natalie Moore or (317) 233-8279.
- (b) A copy of the findings is available on the Internet at: <u>http://www.in.gov/ai/appfiles/idem-caats/</u>
- (c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: <u>https://www.in.gov/idem/airpermit/public-participation/;</u> and the Citizens' Guide to IDEM on the Internet at: <u>https://www.in.gov/idem/resources/citizens-guide-to-idem/</u>.

Appendix A: Emission Calculations PTE Summary

Company Name:Reworld Indianapolis IncSource Address:2320 S. Harding Street, Indianapolis, IN 46221Permit Number:T097-47411-00123Reviewer:Natalie Moore

	Uncontrolled Potential to Emit (tons/yr)											
Emissions Unit	PM	PM10	PM2.5 *	SO ₂	NOx	VOC	СО	GHGs as CO2e	Total HAPs**			
Natural Gas Burners	6.99	27.96	27.96	2.21	1030.18	20.24	309.05	444,128	6.94			
Municipal Solid Waste Combustion Units (EU1, EU2, and EU3)	9976.87	9976.87	9976.87	1375.30	1415.05	8.74	184.04	892,190	2643.55			
Insignificant Activities	Insignificant Activities											
Emergency Fire Pump	0.10	0.10	0.10	0.09	1.42	0.12	0.31	52.79	1.24E-03			
Maintenance Sand Blaster	0.31	0.22	0.22	-	-	-	-	-	-			
Diesel & Kerosene Dispensing Facilities	-	-	-	-	-	negl.	-	-	negl.			
Parts Washer	-	-	-	-	-	0.54	-	-	5.41E-04			
Incinerator Roads	66.07	13.21	3.24	-	-	-	-	-	-			
Paved Roads (fugitive)	3.48	0.70	0.17	-	-	-	-	-	-			
Total Including Fugitives	10,053.83	10,019.06	10,008.57	1,377.60	2,446.64	29.64	493.39	1,336,370.78	2,650.49			

	Potential to Emit after Issuance (tons/yr)										
Emission Unit	PM	PM10	PM2.5 *	SO ₂	NOx	voc	со	GHGs as CO2e	Total HAPs**		
Natural Gas Burners	> 100	> 100	> 100	> 100	662.25	14.45	198.85	444,128	> 25		
Municipal Solid Waste Combustion Units (EU1, EU2, and EU3)	2 100	- 100	/ 100	- 100	002.25	14.45	190.00	892,190	> 25		
Insignificant Activities											
Emergency Fire Pump	0.10	0.10	0.10	0.09	1.42	0.12	0.31	52.79	1.24E-03		
Maintenance Sand Blaster	0.31	0.22	0.22	-	-	-	-	-	-		
Diesel & Kerosene Dispensing Facilities	-	-	-	-	-	negl.	-	-	negl.		
Parts Washer	-	-	-	-	-	0.54	-	-	5.41E-04		
Incinerator Roads	66.07	13.21	3.24	-	-	-	-	-	-		
Paved Roads (fugitive)	3.48	0.70	0.17	-	-	-	-	-	-		
Total Including Fugitives	Greater than	Greater than	Greater than	Greater than					Greater than		
	169.96	114.23	103.73	100.09	663.67	15.11	199.16	1,336,370.78	25.00		

* PM2.5 listed is direct PM2.5

Note: The gray shaded cells indicate where limits are included.

Appendix A: Emission Calculations Summary of Hazardous Air Pollutants (HAP) Emissions

Company Name:Reworld Indianapolis IncSource Address:2320 S. Harding Street, Indianapolis, IN 46221Permit Number:T097-47411-00123Reviewer:Natalie Moore

			Unlimited	/Uncontrolled Pot	tential to Emit (ton	s/year)		
	Natural Gas	Units (EU1, EU2, &	Emergency	Maintenance	Dispensing		Incinerator	
	Burners	EU3)	Fire Pump	Sand Blaster	Facilities	Parts Washer	Roads	Total HAP
Acetaldehyde	-	-	2.46E-04	-	-	-	-	2.46E-04
Acrolein	-	-	2.96E-05	-	-	-	-	2.96E-05
Arsenic	-	1.74	-	-	-	-	-	1.74
Benzene	0.01	-	2.99E-04	-	-	-	-	8.03E-03
Butadiene	-	-	1.25E-05	-	-	-	-	1.25E-05
Cadmium	4.05E-03	4.33	-	-	-	-	-	4.34
Chromium	0.01	3.57	-	-	-	-	-	3.57
Dichlorobenzene	4.42E-03	-	-	-	-	-	-	4.42E-03
Formaldehyde	0.28	-	3.78E-04	-	-	-	-	0.28
Hexane	6.62	-	-	-	-	-	-	6.62
Hydrochloric Acid	-	2543.90	-	-	-	-	-	2543.90
Lead	1.84E-03	84.66	-	-	-	-	-	84.67
Manganese	1.40E-03	-	-	-	-	-	-	1.40E-03
Mercury	-	2.23	-	-	-	-	-	2.23
Nickel	0.01	3.12	-	-	-	-	-	3.13
Toluene	0.01	-	1.31E-04	-	-	0.001	-	0.01
Total PAH HAPs	-	-	5.38E-05	-	-	-	-	5.38E-05
Xylene	-	-	9.13E-05	-	-	-	-	9.13E-05
Total HAPs	6.94	2643.55	1.24E-03	0.00	0.00	0.001	0.00	2650.49

			Limited	/Controlled Pote	ntial to Emit (tons/	/ear)		
	Natural Gas	Units (EU1, EU2, &	Emergency	Maintenance	Dispensing	Danta Mirahan	Incinerator	T
	Burners	EU3)	Fire Pump	Sand Blaster	Facilities	Parts Washer	Roads	Total HAP
Acetaldehyde	-	-	2.46E-04	-	-	-	-	2.46E-04
Acrolein	-	-	2.96E-05	-	-	-	-	2.96E-05
Arsenic	-	2.05E-03	-	-	-	-	-	2.05E-03
Benzene	0.01	-	2.99E-04	-	-	-	-	8.03E-03
Butadiene	-	-	1.25E-05	-	-	-	-	1.25E-05
Cadmium	4.05E-03	0.01	-	-	-	-	-	0.02
Chromium	0.01	0.02	-	-	-	-	-	0.02
Dichlorobenzene	4.42E-03	-	-	-	-	-	-	4.42E-03
Formaldehyde	0.28	-	3.78E-04	-	-	-	-	0.28
Hexane	6.62	-	-	-	-	-	-	6.62
Hydrochloric Acid	-	20.99	-	-	-	-	-	20.99
Lead	1.84E-03	0.41	-	-	-	-	-	0.42
Manganese	1.40E-03	-	-	-	-	-	-	1.40E-03
Mercury	-	0.12	-	-	-	-	-	0.12
Nickel	0.01	0.03	-	-	-	-	-	0.03
Toluene	0.01	-	1.31E-04	-	-	0.001	-	0.01
Total PAH HAPs	-	-	5.38E-05	-	-	-	-	5.38E-05
Xylene	-	-	9.13E-05	-	-	-	-	9.13E-05
Total HAPs	6.94	21.57	1.24E-03	0.00	0.00	0.001	0.00	28.52

Appendix A: Emission Calculations Natural Gas Combustion Only MMBTU/HR >100 tural Cas Eirod Burgoss for Start II. Shutdown and Elamo Stabilization

Natural Gas-Fired Burners for Start-Up, Shutdown, and Flame Stabilization

 Company Name:
 Reworld Indianapolis Inc

 Source Address:
 2320 S. Harding Street, Indianapolis, IN 46221

 Permit Number:
 T097-47411-00123

 Reviewer:
 Natalie Moore

	Heat Input Capacity				
Emission Units	MMBtu/hr*	Total			
EU1	280	Heat Input Cap	pacity P	otential Through	put
EU2	280	MMBtu/hr	·	MMCF/yr	_
EU3	280	840.0		7358.4	
*Each unit has tw	/o (2) 140 MMBtu/hr n	atural gas fir <u>ed burners</u>			
					Dellutent

		Pollutant							
	PM*	PM10*	direct PM2.5*	SO2	NOx	VOC	CO		
Emission Factor in Ib/MMCF	1.9	7.6	7.6	0.6	280.0	5.5	84.0		
					**see below				
Potential Emission in tons/yr	7.0	28.0	28.0	2.2	1030.2	20.2	309.1		

*PM emission factor is filterable PM only. PM10 emission factor is condensable and filterable PM10 combined. PM2.5 emission factor is condensable and filterable PM2.5 combined.

**Emission Factors for NOx: Uncontrolled = 280 (pre-NSPS) or 190 (post-NSPS), Low NOx Burner = 140, Flue gas recirculation = 100 (See Table 1.4-1)

Methodology

All emission factors are based on normal firing. MMBtu = 1,000,000 Btu MMCF = 1,000,000 Cubic Feet of Gas

Potential Throughput (MMCF) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,000 MMBtu Emission Factors from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, and 1.4-3, SCC #1-01-006-01, 1-01-006-04 (AP-42 Supplement D 3/98)

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

Hazardous Air Pollutants (HAPs)

	HAPs - Organics							
	Benzene	Dichlorobenzene	Formaldehyde	Hexane	Toluene			
Emission Factor in Ib/MMcf	2.10E-03	1.20E-03	7.50E-02	1.80E+00	3.40E-03			
Potential Emission in tons/yr	7.7E-03 4.4E-03 0.28 6.62 0.01							

		HAPs - Metals							
	Lead	Cadmium	Chromium	Manganese	Nickel				
Emission Factor in Ib/MMcf	5.00E-04	1.10E-03	1.40E-03	3.80E-04	2.10E-03				
Potential Emission in tons/yr	1.8E-03	4.0E-03	5.2E-03	1.4E-03	7.7E-03				

The five highest organic and metal HAPs emission factors are provided above. Additional HAPs emission factors are available in AP-42, Chapter 1.4.

Greenhouse Gases (GHGs)

		Greenhouse Gas		
	CO2	CH4	N2O	
Emission Factor in Ib/MMcf	120,000	2.3	2.2	
Potential Emission in tons/yr	441,504	8.5	8.1	
Summed Potential Emissions in tons/yr		441,521	-	
CO2e Total in tons/yr		444,128		

Methodology

The N2O Emission Factor for uncontrolled is 2.2. The N2O Emission Factor for low Nox burner is 0.64. Emission Factors are from AP 42, Table 1.4-2 SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03. Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).

Page 4 of 10 TSD App A

Appendix A: Emission Calculations Municipal Solid Waste Combustion Units (EU1, EU2, and EU3) Uncontrolled Emissions

Company Name: Reworld Indianapolis Inc Source Address: 2320 S. Harding Street, Indianapolis, IN 46221 Permit Number: T097-47411-00123 Reviewer: Natalie Moore

Emission Units	Maximum Throughput (tons/day)		Total	Total		Total
EU1	726		Potential	Potential		Maximum
EU2	726		Throughput	Throughput	Heat Content	Heat Input
EU3	726		(lbs/hr)	(ton/yr)	(Btu/lb)	(MMBtu/hr)
Total	2178	-	181500	794970	5500	998.25
					 1	

			FOLLUTANT		
	*PM	*SO ₂	†C0	VOC	†NO _X
Emission Factor in lb/ton	25.1	3.46	0.463	0.022	3.56
Potential Emissions in ton/yr	9976.9	1375.3	184.0	8.74	1415.0

Methodology

*Emission factors are from AP 42 (5th Edition 10/96) Table 2.1-2, Particulate Matter, Metals, and Acid Gas Emissions Factors for Mass Burn and Modular Excess Air Combustors

†Emission factors are from AP 42 (5th Edition 10/96) Table 2.1-4, Organic, Nitrogen Oxides, Carbon Monoxide, and Carbon Dioxide Emission Factors for Mass Burn Waterwall Combustors

Throughput (lb/hr) * 8760 hr/yr * ton/2000 lb = throughput (ton/yr)

The VOC emission factor was calculated by dividing the VOC emissions from 2004 by the throughput of solid waste from 2004 4920 lbs of VOC / 221627 tons of solid waste burned = 0.022 lbs of VOC / ton

Hazardous Air Pollutants (HAPs)

				POLLUTAN	Т		
							Hydrochloric
	Arsenic	Cadmium	Chromium	Mercury	Nickel	Lead	Acid
Emission Factor in lb/ton	4.37E-03	1.09E-02	8.97E-03	5.60E-03	7.85E-03	0.2130	6.4000
Potential Emissions in ton/yr	1.74	4.33	3.57	2.23	3.12	84.66	2543.9

Methodology

All Emission factors are from AP 42 (5th Edition 10/96) Table 2.1-2, Particulate Matter, Metals, and Acid Gas Emission Factors For Mass Burn and Modular Excess Air Combustors

Throughput (lb/hr) * 8760 hr/yr * ton/2000 lb = throughput (ton/yr)

Emission factors from AP 42 (5th Edition 1/95) Table 2.1-2 and 2.1-4, were multiplied by the source's Btu value of 5500/lb and then divided by the assumed Btu value of 4500/lb to arrive at the correct emission factor. This equation is based on EPA guidance in AP-42 Table 2.1-2 footnote A. The source's Btu value of 5500/lb is based on average Btu values from montly reports

Greenhouse Gases (GHGs)

	Greenhouse Gas			
	CO2	CH4	N2O	
Emission Factor in Ib/MMBtu	199.54	0.0704	0.00924	
Potential Emission in tons/yr	872,456	307.81	40.40	
Summed Potential Emissions in tons/yr		872,804		
CO2e Total in tons/yr		892,190		

Methodology

Emission Factors are from 40 CFR 98 Subpart C, Table C-1 and C-2

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Emission (tons/yr) = Heat Capacity (MMBtu/hr) x Emission Factor (lb/MMBtu) x 8760 /2,000 lb/ton

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).

Appendix A: Emission Calculations Municipal Solid Waste Combustion Units (EU1, EU2, and EU3) **Controlled Emissions**

Company Name: Reworld Indianapolis Inc Source Address: 2320 S. Harding Street, Indianapolis, IN 46221 **Permit Number:** T097-47411-00123 Reviewer: Natalie Moore

Emission Units	Maximum Throughput (tons/day)	Total	Total		Total
EU1	726	Potential	Potential		Maximum
EU2	726	Throughput	Throughput	Heat Content	Heat Input
EU3	726	(lbs/hr)	(ton/yr)	(Btu/lb)	(MMBtu/hr)
Total	2178	181500	794970	5500	998.25

			POLLUTANT		
	*PM	*SO ₂	**CO	***VOC	**NO _X
Emission Factor in lb/ton	0.062	0.554	0.463	0.022	3.56
Controls****	SD/FF	SD/FF			
Potential Emissions in ton/yr	24.6	220.2	184.0	8.74	1415.0
Limited Emissions in ton/yr					< 662.25

Methodology

*Emission factors are from AP 42 (5th Edition 10/96) Table 2.1-2, Particulate Matter, Metals, and Acid Gas Emissions Factors for Mass Burn and Modular Excess Air Combustors

**Emission factors are from AP 42 (5th Edition 10/96) Table 2.1-4, Organic, Nitrogen Oxides, Carbon Monoxide, and Carbon Dioxide Emission Factors for Mass Burn Waterwall Combustors

The VOC emission factor was calculated by dividing the VOC emissions from 2004 by the throughput of solid waste from 2004 *Controls: SD/FF = Spray Dryer/Fabric Filter

Throughput (lb/hr) * 8760 hr/yr * ton/2000 lb = throughput (ton/yr)

4920 lbs of VOC / 221627 tons of solid waste burned = 0.22 lbs of VOC / ton

Hazardous Air Pollutants (HAPs)

		POLLUTANT						
	Arsenic	Cadmium	Chromium	Mercury	Nickel	Lead	Hydrochloric Acid	
Emission Factor in lb/ton	5.17E-06	3.32E-05	4.04E-05	2.92E-04	6.30E-05	1.04E-03	5.28E-02	
Potential Emissions in ton/yr	2.1E-03	0.01	0.02	0.12	0.03	0.41	21.0	

Methodology

All Emission factors are from AP 42 (5th Edition 10/96) Table 2.1-2, Particulate Matter, Metals, and Acid Gas Emission Factors For Mass Burn and Modular Excess Air Combustors

Throughput (lb/hr) * 8760 hr/yr * ton/2000 lb = throughput (ton/yr)

Emission factors from AP 42 (5th Edition 1/95) Table 2.1-2 and 2.1-4, were multiplied by the source's Btu value of 5500/lb and then divided by the assumed Btu value of 4500/lb to arrive at the correct emission factor. This equation is based on EPA guidance in AP-42 Table 2.1-2 footnote A. The source's Btu value of 5500/lb is based on average Btu values from monthly reports

Greenhouse Gases (GHGs)

	G	reenhouse Ga	as
	CO2	CH4	N2O
Emission Factor in Ib/MMBtu	199.54	0.0704	0.00924
Potential Emission in tons/yr	872,456	307.81	40.40
Summed Potential Emissions in tons/yr		872,804	
CO2e Total in tons/yr		892,190	

Methodology

Emission Factors are from 40 CFR 98 Subpart C, Table C-1 and C-2

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Emission (tons/yr) = Heat Capacity (MMBtu/hr) x Emission Factor (lb/MMBtu) x 8760 /2,000 lb/ton

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP

(25) + N2O Potential Emission ton/yr x N2O GWP (298).

СО

0.00668

Appendix A: Emission Calculations Reciprocating Internal Combustion Engines - Diesel Fuel Output Rating (<=600 HP) Maximum Input Rate (<=4.2 MMBtu/hr)

 Company Name:
 Reworld Indianapolis Inc

 Source Address:
 2320 S. Harding Street, Indianapolis, IN 46221

 Permit Number:
 T097-47411-00123

 Reviewer:
 Natalie Moore

Emissions calculated based on output rating (hp)

Output Horsepower Rating (hp) 183.0 Maximum Hours Operated per Year 500 Potential Throughput (hp-hr/yr) 91,500

0.1	(, , ,					
				Pollutant		
	PM*	PM10*	direct PM2.5*	SO2	NOx	VOC
Emission Factor in lb/hp-hr	0.0022	0.0022	0.0022	0.00205	0.0310	0.0025

 Potential Emission in tons/yr
 0.10
 0.10
 0.09
 1.42
 0.12
 0.31

 *PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

Hazardous Air Pollutants (HAPs)

		Pollutant						
								Total PAH
	Benzene	Toluene	Xylene	1,3-Butadiene	Formaldehyde	Acetaldehyde	Acrolein	HAPs***
Emission Factor in lb/hp-hr****	6.53E-06	2.86E-06	2.00E-06	2.74E-07	8.26E-06	5.37E-06	6.48E-07	1.18E-06
Potential Emission in tons/yr	2.99E-04	1.31E-04	9.13E-05	1.25E-05	3.78E-04	2.46E-04	2.96E-05	5.38E-05
***DAL - Dolygromatic Hydrocarbon (DAHs are considered HADs, since they are considered Dolygyclic Organic Matter)								

***PAH = Polyaromatic Hydrocarbon (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

****Emission factors in lb/hp-hr were calculated using emission factors in lb/MMBtu and a brake specific

fuel consumption of 7,000 Btu / hp-hr (AP-42 Table 3.3-1)

Potential Emission of Total HAPs (tons/yr) 1.24E-03

Methodology

Emission Factors are from AP 42 (Supplement B 10/96) Tables 3.3-1 and 3.3-2.

Potential Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Maximum Hours Operated per Year] Potential Emission (tons/yr) = [Potential Throughput (hp-hr/yr)] * [Emission Factor (lb/hp-hr)] / [2,000 lb/ton]

Green House Gas Emissions (GHG)

		Pollutant	
	CO2	CH4	N2O
Emission Factor in lb/hp-hr	1.15E+00	4.63E-05	9.26E-06
Potential Emission in tons/yr	52.61	2.12E-03	4.24E-04

Summed Potential Emissions in tons/yr	52.62
CO2e Total in tons/yr	52.79

Methodology

CO2 Emission Factor is from AP42 (Supplement B 10/96), Tables 3.3-1.

CH4 and N2O Emission Factors are from 40 CFR 98 Subpart C Table C-2.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Potential Emission (tons/yr) = [Potential Throughput (hp-hr/yr)] * [Emission Factor (lb/hp-hr)] / [2,000 lb/ton]

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O

Potential Emission ton/yr x N2O GWP (298).

Appendix A: Emission Calculations Abrasive Blasting - Confined

Company Name: Reworld Indianapolis Inc Source Address: 2320 S. Harding Street, Indianapolis, IN 46221 Permit Number: T097-47411-00123 Reviewer: Natalie Moore

Table 1 - Emission Factors for Abrasives

Emission Factor (EF)					
Abrasive	lb PM / lb abrasive	lb PM10 / lb PM			
Sand	0.041	0.70			
Grit	0.010	0.70			
Steel Shot	0.004	0.86			
Other	0.010				

Table 2 - Density of Abrasives (lb/ft3)							
Abrasive	Density (lb/ft3)						
Al oxides	160						
Sand	99						
Steel	487						

Table 3 - Sand Flow Rate (FR1) Through Nozzle (lb/hr)

Flow rate (FR1) of sand through a blasting nozzle as a function of nozzle pressure and internal diameter (ID1)

					Nozzle Pressure	e (psig)			
Nozzle Type (diameter)	Internal diameter, in	30	40	50	60	70	80	90	100
No. 2 (1/8 inch)	0.125	28	35	42	49	55	63	70	77
No. 3 (3/16 inch)	0.1875	65	80	94	107	122	135	149	165
No. 4 (1/4 inch)	0.25	109	138	168	195	221	255	280	309
No. 5 (5/16 inch)	0.3125	205	247	292	354	377	420	462	507
No. 6 (3/8 inch)	0.375	285	355	417	477	540	600	657	720
No. 7 (7/16 inch)	0.4375	385	472	560	645	755	820	905	940
No. 8 (1/2 inch)	0.5	503	615	725	835	945	1050	1160	1265
No. 10 (5/8 inch)	0.625	820	990	1170	1336	1510	1680	1850	2030
No. 12 (3/4 inch)	0.75	1140	1420	1670	1915	2160	2400	2630	2880
No. 16 (1 inch)	1	2030	2460	2900	3340	3780	4200	4640	5060

CALCULATIONS

Adjusting Flow Rates for Different Abrasives and Nozzle Diameters							
Flow Rate (FR) = Abrasive flow rate (lb/hr) of abrasive at nozzle pressure and internal nozzle diameter (ID)							
D1 = Density of sand from Table 2 =	99	lb/ft3					
ID1 = Internal diameter of nozzle for sand blasting from Table 3 =	0.3125	inch					
FR1 = Sand flow rate at nozzle pressure and internal diameter (ID1) from Table 3 =	292	lb/hr					
	202						
D = Density of actual abrasive =	99	lb/ft3					
ID = internal diameter of actual nozzle =	0.3125	inch					
FR = Flow rate of actual abrasive (lb/hr) =	292.0	lb/hr (per noz	zzle)				
Potential to Emit Before Control		_					
Potential to Emit Before Control FR = Flow rate of actual abrasive (lb/hr) =	292.0	lb/hr (per noz	zzle)				
	292.0 0	lb/hr (per noz %	zzle)				
FR = Flow rate of actual abrasive (lb/hr) =			zzle)				
FR = Flow rate of actual abrasive (lb/hr) = w = fraction of time of wet blasting =	0		,				
FR = Flow rate of actual abrasive (lb/hr) = w = fraction of time of wet blasting = N = number of nozzles =	0 1	%	asive				
FR = Flow rate of actual abrasive (lb/hr) = w = fraction of time of wet blasting = N = number of nozzles = EF = PM emission factor for actual abrasive from Table 1 =	0 1 0.041	% lb PM/ lb abr	asive				
FR = Flow rate of actual abrasive (lb/hr) = w = fraction of time of wet blasting = N = number of nozzles = EF = PM emission factor for actual abrasive from Table 1 =	0 1 0.041	% lb PM/ lb abr	asive	1			
FR = Flow rate of actual abrasive (lb/hr) = w = fraction of time of wet blasting = N = number of nozzles = EF = PM emission factor for actual abrasive from Table 1 =	0 1 0.041 0.70	% Ib PM/ Ib abr Ib PM10 / Ib	rasive PM	lb/hr			
w = fraction of time of wet blasting = N = number of nozzles = EF = PM emission factor for actual abrasive from Table 1 = PM10 emission factor ratio for actual abrasive from Table 1 =	0 1 0.041 0.70 PM	% Ib PM/ Ib abr Ib PM10 / Ib PM10	asive PM PM2.5	lb/hr lb/day			

Potential to Emit After Control	PM	PM10	PM2.5	
Emission Control Device Efficiency =	99.0%	99.0%	99.0%	
Potential to Emit (after control) =	0.120	0.084	0.084	lb/hr
=	0.120	0.084	0.084	lb/day
=	0.003	0.002	0.002	ton/yr

METHODOLOGY

PM2.5 emissions assumed equal to PM10 emissions.

Emission Factors from STAPPA/ALAPCO "Air Quality Permits", Vol. I, Section 3 "Abrasive Blasting" (1991 edition)

- Flow rate of actual abrasive (FR) (lb/hr) = FR1 x (ID/ID1)^2 x (D/D1)
- Potential to Emit (before control) = EF x FR x (1 - w/200) x N (where w should be entered in as a whole number (if w is 50%, enter 50)) Potential to Emit (after control)
 - = [Potential to Emit (before control)] * [1 control efficiency]
- Potential to Emit (tons/year) = [Potential to Emit (lbs/hour)] x [52 hours/year] x [ton/2000 lbs]

The maintenance sand blaster operates one hour per week.

Page 8 of 10 TSD App A

Appendix A: Emissions Calculations Volatile Organic Compounds (VOC) & Hazardous Air Pollutants (HAPs) From Solvent Based Parts Washer

Company Name: Reworld Indianapolis Inc Source Address: 2320 S. Harding Street, Indianapolis, IN 46221 **Permit Number:** T097-47411-00123 **Reviewer:** Natalie Moore

Total Potential Emissions					0.54	0.001
Crystal Clean 142 Mineral Spirits	6.76	40.00	100.00%	0.10%	0.54	0.001
	(Lb/Gal)	(gal/month)	VOC	Toluene	(ton/yr)	(ton/yr)
Material	Density	Material	Weight %	Weight %	Emissions	Emissions
		Gallons of			VOC	Toluene

Total Potential Emissions

0.54

METHODOLOGY

VOC emission rate (tons/yr) = Density (lb/gal) * Gal of Material (gal/unit) * Maximum (unit/hr) * Weight % VOC * 4 quarters/yr * 1 ton/2000 lbs HAPS emission rate (tons/yr) = Density (lb/gal) * Gal of Material (gal/unit) * Maximum (unit/hr) * Weight % HAP * 4 quarters/yr * 1 ton/2000 lbs The solvent based parts washer can hold 40 gallons of 100% VOC parts washer solution that is serviced every 4 weeks.

Appendix A: Emission Calculations MSW Incinerator Fugitive Dust Emissions - Paved Roads

Company Name:	Reworld Indianapolis Inc
Source Address:	2320 S. Harding Street, Indianapolis, IN 46221
Permit Number:	T097-47411-00123
Reviewer:	Natalie Moore

Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (1/2011).

The Indianapolis Resource Recovery Facility (IRRF) has three (3) combustors, each with a rated capacity of 726 tons MSW /day. The source estimates that approximately 26% of the combusted MSW is trucked off site as ash.

726	tons/day per unit
794970	tons/year
2178	tons/day
189	tons/day per unit
206692	tons/year
566	tons/day
	794970 2178 189 206692

	Maximum	Maximum	Weight of			Total Weight	Maximum	Maximum	Maximum
	Weight of	Weight	Vehicle and	Maximum	Maximum	driven per	one-way	one-way	one-way
	Vehicle	of Load	Load	trips per day	trips per year	year	distance	distance	miles
Process	(tons)	(tons)	(tons/trip)	(trip/day)	(trip/yr)	(ton/yr)	(feet/trip)*	(miles/trip)	(miles/yr)
MSW packer truck entering site full	19.0	8.0	27.0	2.7E+02	9.9E+04	2.7E+06	2000	0.38	37640.6
MSW packer truck leaving site empty	19.0	0.0	19.0	2.7E+02	9.9E+04	1.9E+06	2000	0.38	37640.6
Ash Truck entering site empty	19.0	0.0	19.0	3.5E+01	1.3E+04	2.5E+05	2000	0.38	4893.3
Ash Truck leaving site full	19.0	16.0	35.0	3.5E+01	1.3E+04	4.5E+05	2000	0.38	4893.3
	Total			615	224.579	5.268.664			85.068

Average Vehicle Weight Per Trip = 23.5 tons/trip Average Miles Per Trip = 0.379 miles/trip

Unmitigated Emission Factor, Ef = [k * (sL)^0.91 * (W)^1.02] (Equation 1 from AP-42 13.2.1)

	PM	PM10	PM2.5	
where k =	0.011	0.0022	0.00054	Ib/VMT = particle size multiplier (AP-42 Table 13.2.1-1)
W =	23.5	23.5	23.5	tons = average vehicle weight (provided by source)
sL =	7.4	7.4	7.4	g/m^2 = silt loading value for paved roads at municipal solid waste landfills - Table 13.2.1-3)

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, Eext = E * [1 - (p/4N)] Mitigated Emission Factor, Eext = Ef * [1 - (p/4N)]

Willigated Ethission Factor, Eext -	EI [I-(p/4iv	0							
where p =	125	125 days of rain greater than or equal to 0.01 inches (see Fig. 13.2.1-2)							
N =	365	days per year							
	PM	PM10	PM2.5						
Unmitigated Emission Factor, Ef =	1.6988	0.3398	0.0834	lb/mile					
Mitigated Emission Factor, Eext =	1.5533	0.3107	0.0763	lb/mile					
Dust Control Efficiency =	88%	88%	88%	(pursuant to control measures outlined in fugitive dust control plan)					

	72.25	14.45	3.55	66.07	13.21	3.24	7.93	1.59	0.39
Ash Truck leaving site full	4.16	0.83	0.20	3.80	0.76	0.19	0.46	0.09	0.02
Ash Truck entering site empty	4.16	0.83	0.20	3.80	0.76	0.19	0.46	0.09	0.02
MSW packer truck leaving site empty	31.97	6.39	1.57	29.23	5.85	1.44	3.51	0.70	0.17
MSW packer truck entering site full	31.97	6.39	1.57	29.23	5.85	1.44	3.51	0.70	0.17
Process	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
	PTE of PM	PTE of PM10	PTE of PM2.5	PTE of PM	PTE of PM10	PTE of PM2.5	PTE of PM	PM10	PTE of PM2.5
	Unmitigated	Unmitigated	Unmitigated	Mitigated	Mitigated	Mitigated	Controlled	PTE of	Controlled
								Controlled	

Methodology

 Methodogy

 Maximum Weight of Vehicle and Load (tons/trip) = [Maximum Weight of Vehicle (tons/trip)] + [Maximum Weight of Load (tons/trip)]

 Maximum trips per day (trips/day) = [Maximum Material Processing Rate (tons/trip)] / [Maximum Weight of Load (tons/trip)] * [24 hours/day]

 Maximum trips per year (trip/yr) = [Maximum trips per day (trips/day)] * [365 days/year]

 Total Weight driven per year (tor/yr) = [Maximum trips per day (trips/day)] * [365 days/year]

 Naximum trips per year (tor/yr) = [Maximum trips per year (trip/yr)]

 Maximum one-way distance (mi/trip) = [Maximum trips per year (trip/yr)] * [Maximum one-way distance (mi/trip)]

 Average Vehicle Weight Fer Trip (torn/trip) = SUM[Total Weight driven per year (tor/yr)] * [Maximum trips per year (trip/yr)]

 Average Vehicle Weight Fer Trip (torn/trip) = SUM[Maximum one-way miles (miles/yr)] / SUM[Maximum trips per year (trip/yr)]

 Average Vehicle Weight PE Trip (torn/trip) = SUM[Total Weight driven per year (tor/yr)] / SUM[Maximum trips per year (trip/yr)]

 Average Miles Per Trip (torniles/trip) = SUM[Maximum one-way miles (miles/yr)] / SUM[Maximum trips per year (trip/yr)]

 Unmitigated PTE (tons/yr) = (Maximum one-way miles (miles/yr)) / Unmitigated Emission Factor (lb/mile) * (ton/2000 lbs)

 Mitigated PTE (tons/yr) = [Mitigated PTE (tons/yr)] * [1 - Dust Control Efficiency]

Abbreviations

PM = Particulate Matter PM10 = Particulate Matter (<10 um) PM2.5 = Particle Matter (<2.5 um) PTE = Potential to Emit

Appendix A: Emission Calculations Fugitive Dust Emissions - Paved Roads

Company Name: Reworld Indianapolis Inc Source Address: 2320 S. Harding Street, Indianapolis, IN 46221 Permit Number: T097-47411-00123 Reviewer: Natalie Moore

Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (1/2011).

Totals	3.48	0.70	0.17	1.74	0.35	0.09			
ehicle (leaving plant) (one-way trip)	2.12	0.42	0.10	1.06	0.21	0.05			
hicle (entering plant) (one-way trip)	1.36	0.27	0.07	0.68	0.14	0.03			
ocess	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)			
	(Before Control)	(Before Control)	(Before Control)	PTE of PM (After Control)	PTE of PM10 (After Control)	PTE of PM2.5 (After Control)			
	PTE of PM		PTE of PM2.5	Mitigated	Mitigated	Mitigated			
	Mitigated	Mitigated	Mitigated						
						-	. ,		
Dust Control Efficiency =	50%	50%	50%	(pursuant to cor	trol measures ou	utlined in fugitive	dust control plan)		
Mitigated Emission Factor, Eext =	6.679	1.336	0.3279	lb/mile					
Unmitigated Emission Factor, Ef =	7.304	1.461	0.3586	lb/mile					
	PM	PM10	PM2.5						
		, , oui							
N =	365	days per year			- (·g. 10.2.	_,			
where p =			eater than or eq	ual to 0.01 inche	s (see Fia. 13.2. ⁴	1-2)			
Mitigated Emission Factor, Eext =				icioi, Lexi - L	[1-(p/4N)] (AF-42 13.2.1)		
aking natural mitigation due to precipita	tion into conci	doration Mitiga		otor Eaxt - E *	[1 (p/4N)] (Equation 2 from A	AD 42 12 2 1)		
sL =	9.7	9.7	9.7	$g/m^2 = silt loa$	ding value for pa	ived roads at iron	and steel product	ion facilities - Tab	le 13.2.1-3)
W =	77.0	77.0	77.0	tons = average	0				40.04.0
where k =	0.011	0.0022	0.00054		•	(AP-42 Table 13	.2.1-1)		
	PM	PM10	PM2.5						
.	,			, I					
Unmitigated Emission Factor, Ef =	[k * (sL)^0.91	* (W)^1.02]	(Equation 1 from	n AP-42 13.2.1)					
Average Miles Per Trip =	0.36	miles/trip							
Average Vehicle Weight Per Trip =	77.0	tons/trip							
		Totals	0.0		010.0			2.5	1042.5
ehicle (leaving plant) (one-way trip)	4.0	1.0 Totals	4.0 8.0	77.0	308.0 616.0	2300	0.436	1.7 2.9	636.0 1042.5
ehicle (entering plant) (one-way trip)	4.0	1.0	4.0	77.0	308.0	1470	0.278	1.1	406.5
уре	day	vehicle	(trip/day)	(tons/trip)	(ton/day)	(feet/trip)	(mi/trip)	(miles/day)	(miles/yr
	vehicles per	per day per	per day	Loaded Vehicle	driven per day	way distance	way distance	way miles	way mile
	number of		Maximum trips	Weight of	Total Weight	Maximum one-	Maximum one-	Maximum one-	Maximum o
	Maximum	Number of		Maximum					

Total Weight driven per day (ton/day) Maximum one-way distance (mi/trip) Maximum one-way miles (miles/day) Average Miles Per Trip (miles/trip) Unmitigated PTE (tons/yr)

= [Maximum Weight of Loaded Vehicle (tons/trip)] * [Maximum trips per day (trip/day)]

= [Maximum one-way distance (feet/trip) / [5280 ft/mile]

= [Maximum trips per year (trip/day)] * [Maximum one-way distance (mi/trip)]

Average Vehicle Weight Per Trip (ton/trip = SUM[Total Weight driven per day (ton/day)] / SUM[Maximum trips per day (trip/day)]

= SUM[Maximum one-way miles (miles/day)] / SUM[Maximum trips per year (trip/day)]

= [Maximum one-way miles (miles/yr)] * [Unmitigated Emission Factor (lb/mile)] * (ton/2000 lbs)

Mitigated PTE (Before Control) (tons/yr) = [Maximum one-way miles (miles/yr)] * [Mitigated Emission Factor (lb/mile)] * (ton/2000 lbs)

Mitigated PTE (After Control) (tons/yr) = [Mitigated PTE (Before Control) (tons/yr)] * [1 - Dust Control Efficiency]

PM = Particulate Matter PM10 = Particulate Matter (<10 um) PM2.5 = Particle Matter (<2.5 um) PTE = Potential to Emit

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb Governor

Brian C. Rockensuess Commissioner

R

SENT VIA U.S. MAIL: CONFIRMED DELIVERY AND SIGNATURE REQUESTED

- TO: Michael Rathbun Reworld Indianapolis Incorporated 2320 S Harding St Indianapolis, IN 46221
- DATE: July 2, 2024
- FROM: Jenny Acker, Branch Chief Permits Branch Office of Air Quality
- SUBJECT: Final Decision TV Renewal 097-47411-00123

This notice is to inform you that a final decision has been issued for the air permit application referenced above.

Our records indicate that you are the contact person for this application. However, if you are not the appropriate person within your company to receive this document, please forward it to the correct person. In addition, the Notice of Decision has been sent to the OAQ Permits Branch Interested Parties List and, if applicable, the Consultant/Agent and/or Responsible Official/Authorized Individual.

The final decision and supporting materials are available electronically; the original signature page is enclosed for your convenience. The final decision and supporting materials available electronically at:

IDEM's online searchable database: <u>http://www.in.gov/apps/idem/caats/</u>. Choose Search Option **by Permit Number**, then enter permit 47411

and

IDEM's Virtual File Cabinet (VFC): <u>https://www.in.gov/idem</u>. Enter VFC in the search box, then search for permit documents using a variety of criteria, such as Program area, date range, permit #, Agency Interest Number, or Source ID.

If you have technical questions regarding the enclosed documents, please contact the Office of Air Quality, Permits Branch at (317) 233-0178, or toll-free at 1-800-451-6027 (ext. 3-0178), and ask to speak to the permit reviewer who prepared the permit. If you think you have received this document in error, or have difficulty accessing the documents online, please contact Joanne Smiddie-Brush of my staff at 1-800-451-6027 (ext 3-0185), or via e-mail at jbrush@idem.IN.gov.

Final Applicant Cover Letter 8/20/20-acces via website

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204 (800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb Governor Brian C. Rockensuess Commissioner

July 2, 2024

- TO: Indianapolis Public Library Central Library Branch
- From: Jenny Acker, Branch Chief Permits Branch Office of Air Quality

Subject: Important Information for Display Regarding a Final Determination

Applicant Name:	Reworld Indianapolis Incorporated
Permit Number:	097-47411-00123

You previously received information to make available to the public during the public comment period of a draft permit. Enclosed is a copy of the final decision and supporting materials for the same project. Please place the enclosed information along with the information you previously received. To ensure that your patrons have ample opportunity to review the enclosed permit, we ask that you retain this document for at least 60 days.

The applicant is responsible for placing a copy of the application in your library. If the permit application is not on file, or if you have any questions concerning this public review process, please contact Joanne Smiddie-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185.

Enclosures Final Library 1/9/2017

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb Governor Brian C. Rockensuess Commissioner

July 2, 2024 Reworld Indianapolis Incorporated 097-47411-00123

To: Interested Parties

This notice is to inform you that a final decision has been issued for the air permit application referenced above. This notice is for informational purposes only. You are not required to take any action.

You are receiving this notice because you asked to be on IDEM's notification list for this company and/or county; or because your property is nearby the company being permitted; or because you represent a local/regional government entity.

The enclosed Notice of Decision Letter provides additional information about the final permit decision.

The final decision and supporting materials are available electronically at:

IDEM's online searchable database: <u>http://www.in.gov/apps/idem/caats/</u> . Choose Search Option by Permit Number, then enter permit 47411

and

IDEM's Virtual File Cabinet (VFC): <u>https://www.in.gov/idem.</u> Enter VFC in the search box, then search for permit documents using a variety of criteria, such as Program area, date range, permit #, Agency Interest Number, or Source ID.

If you have technical questions regarding the enclosed documents, please contact the Office of Air Quality, Permits Branch at (317) 233-0178, or toll-free at 1-800-451-6027 (ext. 3-0178), and ask to speak to the permit reviewer who prepared the permit.

Please Note: If you would like to be removed from the Air Permits mailing list, please contact Joanne Smiddie-Brush with the Air Permits Administration Section at 1-800-451-6027, ext. 3-0185 or via e-mail at JBRUSH@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.

Mail Code 61-53 Page 1 of 2

IDEM Staff	CMOSIER 7/2/2	024		
	Reworld Indianap	oolis Incorporated 097-47411-00123 (final)	AFFIX STAMP	
Name and		Indiana Department of Environmental	Type of Mail:	HERE IF
address of		Management		USED AS
Sender		Office of Air Quality – Permits Branch	CERTIFICATE OF	CERTIFICATE
		100 N. Senate	MAILING ONLY	OF MAILING
		Indianapolis, IN 46204		

Line	Article Number	Name, Address, Street and Post Office Address	Postage	Handing Charges	Act. Value (If Registered)	Insured Value	Due Send if COD	R.R. Fee	S.D. Fee	S.H. Fee	Rest. Del. Fee
			10001 (0								Remarks
1		Michael Rathbun Reworld Indianapolis Incorporated 2320 S Harding St Indianapolis IN	46221 (Sou	rce CAATS) vi	a UPS						
2		Ms. Suzzette Carter 3534 6th Ave Indianapolis IN 46221 (Affected Party)									
3		Ms. Elaine Gregg 7328 Mendenhall Rd Camby IN 46113 (Affected Party)									
4		Mr. Glenn Pratt 8460 Spring Mill Ct Indianapolis IN 46260 (Affected Party)									
5		Wilie May Cooley 3076 Davis Dr Indianapolis IN 46221 (Affected Party)									
6		E. Broading 4468 Moller Rd Indianapolis IN 46254 (Affected Party)									
7		Mr. Sam H Jones 777 Indiana Ave Indianapolis IN 46204 (Affected Party)									
8		Cornell Burris 4345 Ashbourne Ln Indianapolis IN 46226 (Affected Party)									
9		Ms. Patricia Miller 1041 S Muesing Rd Indianapolis IN 46239-9186 (Legislator)									
10		Indianapolis Public Library - Central Library 40 E Saint Clair St Indianapolis IN 46204 (Library)									
11		Mr. Ray Pelton 3509 6th Ave Indianapolis IN 46221 (Affected Party)									
12		Taylor L Baker 5413 Redberry Ct Indianapolis IN 46254 (Affected Party)									
13		Indianapolis City Council and Mayors office 200 E Washington St, City-County Bldg, Ste 2501 Indianapolis IN 46204 (Local Official)									
14		Lawrence City Council and Mayors Office 9001 E 59th St #201 Lawrence IN 46216 (Local Official)									
15		Marion County Commissioners 200 E Washington St, City-County Bldg, Ste 801 India	mapolis IN 4	6204 <i>(Local</i> 0	Official)						

Total number of pieces Listed by Sender	Total number of Pieces Received at Post Office	Postmaster, Per (Name of Receiving employee)	The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is \$50,000 per piece subject to a limit of \$50, 000 per occurrence. The maximum indemnity payable on Express mil merchandise insurance is \$500. The maximum indemnity payable is \$25,000 for registered mail, sent with optional postal insurance. See <i>Domestic Mail Manual</i> R900 , S913 , and S921 for limitations of coverage on
			inured and COD mail. See <i>International Mail Manual</i> for limitations o coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.

Mail Code 61-53 Page 2 of 2

IDEM Staff	CMOSIER 7/2/2	024		
	Reworld Indianar	polis Incorporated 097-47411-00123 (final)	AFFIX STAMP	
Name and	L .	Indiana Department of Environmental	Type of Mail:	HERE IF
address of		Management		USED AS
Sender		Office of Air Quality – Permits Branch	CERTIFICATE OF	CERTIFICATE
		100 N. Senate	MAILING ONLY	OF MAILING
		Indianapolis, IN 46204		

Line	Article Number	Name, Address, Street and Post Office Address	Postage	Handing Charges	Act. Value (If Registered)	Insured Value	Due Send if COD	R.R. Fee	S.D. Fee	S.H. Fee	Rest. Del. Fee
4		Edward 4999 E SR 46 Bloomington IN 47401 (Affected Party)									Remarks
1											
2		Office of Sustainability, Marion County City-County Bldg, 200 E Washington St, Rm	2460 Indiana	polis IN 46204	(Local Official)						
3		Planning Div., Dept. of Metropolitan Development 200 E Washington St Rm 2042 Inc	lianapolis IN	46204 <i>(Local</i>	Official)						
4		Marion County Health Department 3838 N Rural St Indianapolis IN 46205 (Health D	epartment)								
5		Wayne Township Trustee 5401 W Washington St Indianapolis IN 46241 (Local Office	cial)								
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											

Total number of pieces	Total number of Pieces	Postmaster, Per (Name of	The full declaration of value is required on all domestic and international registered mail. The
	Received at Post Office	Receiving employee)	maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is \$50,000 per piece subject to a limit of \$50, 000 per occurrence. The maximum indemnity payable on Express mil merchandise insurance is \$500. The maximum indemnity payable is \$25,000 for registered mail, sent with optional postal insurance. See Domestic Mail Manual R900 , S913 , and S921 for limitations of coverage on inured and COD mail. See International Mail Manual for limitations o coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.