From: Sweazy, Colleen To: Hummel, Lindsey Cc: WEAVER, TROY; Schwartz, Owen R; Roeder, Chris; Luke, William C; Flanigan, Daniel W; Holstein, David C; Whittaker, Robert D **Subject:** Gibson South Landfill FP 26-06 Background Sampling Event May 2024 **Date:** Wednesday, July 3, 2024 2:54:00 PM Attachments: <u>image001.png</u> FP 26-06 Background Event 3 Report 5-2024.pdf SALF FP 26-06 May 2024 EDD 50373903 MW-109S MW-111S.txt SALF FP 26-06 May 2024 EDD 50374080 MW-112S.txt **** This is an EXTERNAL email. Exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email. **** Good afternoon Lindsey, Please see the attached Third Background Water Quality Sampling Report for the Gibson South Landfill (FP 26-06) monitoring wells MW-109S, MW-111S, and MW-112S. The electronic data files (EDFs) are attached and will also be submitted to geologydata@idem.in.gov. The Level IV QA/QC package is not yet available from Pace Labs, and will posted to the IDEM Sharepoint when finalized. Regards, Colleen Sweazy Senior Environmental Specialist Waste and Groundwater Programs (O) 812-386-4805 (M) 812-457-6282 800 Old Wheatland Road Vincennes, IN 47591 Colleen.sweazy@duke-energy.com Duke Energy WP994 / 1000 East Main Street Plainfield, IN 46168 July 3, 2024 Ms. Lindsey Hummel Environmental Manager Solid Waste Permits Section Office of Land Quality IDEM 100 North Senate Ave. IGCN 1154 Indianapolis, IN 46204 Subject: Gibson South Landfill RWS Type I Landfill FP #26-06 MW-109S, MW-111S, MW-112S Third Background Water Quality Monitoring Report Dear Ms. Hummel: In accordance with 329 IAC 10-29-4(a)(4), Duke Energy Indiana, LLC (DEI) respectfully submits to the Indiana Department of Environmental Management (IDEM) the attached first quarterly background monitoring event report for MW-109S, MW-111S, and MW-112S at the RWS Type I Landfill (FP #26-06). The submittal includes an analytical report completed by Pace Analytical Services, Inc., sampling trip report and field data sheets from Apex Companies, LLC. Proper QA/QC procedures for this sampling event were adhered to as detailed in the Revised Sampling and Analysis Plan (SAP) for the Gibson Generating Station South Landfill FP #26-06 dated August 25, 2023 and approved by IDEM on September 14, 2023. A well installation report for monitoring wells MW-109S, MW-111S, and MW-112S was submitted to IDEM on August 25, 2023 and approved by IDEM on October 12, 2023. The third quarterly sampling event was completed on May 21 and May 23, 2024. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further certify that I am authorized to submit this information. If you have any questions or require additional information regarding this submittal, please contact me at colleen.sweazy@duke-energy.com. Sincerely, Duke Energy Indiana, LLC Colleen Sweazy EHS CCP Waste & Groundwater Programs #### **Attachment** **CC: Electronic Full Version** Owen Schwartz Chris Roeder Dan Flanigan Dave Holstein Robert Whittaker William Luke Cast Pro June 17, 2024 Ms. Colleen Sweazy Senior Environmental Specialist Duke Energy 1000 East Main Street, WP994 Plainfield, IN 46168-1782 Re: May 2024 Gibson Station - South Landfill Background Sampling Event Owensville, Indiana Dear Ms. Sweazy: Apex Companies, LLC completed the South Landfill background monitoring event at the Duke Energy Gibson Station located in Owensville, Indiana during the week of May 20, 2024. The following information regarding the background monitoring activities for the South Landfill is enclosed: - ◆ Trip report memorandum; - ◆ Copy of the field logbook notes (Attachment A); - ♦ Field data sheet (Attachment B); - ◆ Summary of water level measurements (Attachment C); and - ♦ Chain-of-custody records (Attachment D). If you require additional information or have any questions, please contact me at (412) 400-6985. We appreciate the opportunity to continue providing environmental services to Duke Energy. Sincerely, **Apex Companies, LLC** Tom Wolf Senior Project Manager Enclosure ## Apex Companies, LLC # Memo To: Tom Wolf From: G. O'Toole Date: June 13, 2024 Re: May 2024 South Landfill Background Sampling Event Duke Energy Gibson Station, Owensville, IN #### SCOPE OF WORK The scope of work involved the collection of three (3) groundwater monitoring well samples associated with the South Landfill Background monitoring event at the Duke Energy Gibson Station Site in Owensville, IN. Depth to water level measurements were also obtained at the 3 planned monitoring well locations. Purging prior to sampling was conducted using low flow techniques, with pH, conductivity, ORP, dissolved oxygen and temperature or turbidity as the stabilization parameters. #### WORK COMPLETION One round of groundwater levels was completed on Monday, May 20, 2024. Apex personnel conducted the monitoring well sampling activities on Tuesday, May 21, 2024 and Thursday, May 23, 2024. All monitoring well samples were collected using submersible pumps and low flow techniques. Wells MW-109S and MW-111S were sampled using dedicated submersible pumps. The dedicated pump in well MW-112S malfunctioned and it was sampled with a portable submersible pump. The following wells were sampled on the following dates: - Tuesday, May 21, 2024 MW-109S; MW-111S (2 wells); and - Thursday, May 23, 2023 MW-112S (1 well). Samples were placed in coolers and kept on ice following collection. The samples collected on Tuesday, May 21, 2024 were held until the following day and transported with the samples from that date by Jett Express to Pace Analytical Services in Indianapolis, IN on Wednesday, May 22, 2024. The samples collected on Thursday, May 23, 2024 were delivered to the lab by Jett Express on the day of collection. #### QA/QC SAMPLES QA/QC sample collection at the site was completed as planned. QA/QC samples included one field duplicate collected at well MW-109S, one field blank collected near MW-111S and one trip blank. One equipment blank was also collected from a non-dedicated water level meter utilized during this event and analyzed for the South Landfill Background list of constituents. #### WORK DOCUMENTATION A complete package of project documentation is attached to this memo. Included are the following: - Notes from the field books (Attachment A); - Field Data Sheet for South Landfill wells (Attachment B); - Summary of Water Level Measurements (Attachment C); and - Chain-of-Custody Records (Attachment D). #### **ADDITIONAL NOTES** All waste material from sampling activities was bagged and disposed of by Apex at the Gibson Station site. Samples for dissolved metals analyses from each well were field filtered. #### Well Condition Notes: MW-112S: Dedicated pump malfunctioned this event. Well sampled with a portable submersible pump. #### Attachment A **Field Book Notes** | 33 | | 5-2 | 0-24 | 6,bson | 1 | |---------|--------|----------|----------|--------|---------| | Wate | Les | | | | | | MN-47A | 12.77 | 14140 R | MW 49C | 16,97 | 15.54 R | | MW-47B | 12.74 | 14:44 8 | MW-1015 | 41.32 | 13140 | | MW-47C | 12.84 | 14:47 R | MW-10LS | 23.57 | 13:36 | | MU-48A | 14.35 | 14:55 R | MD-1085 | 37.83 | 12.55 | | MW-43B | 14.36 | 14:57R | MU-1035 | 28.35 | 13.30 | | MW-43C | 14.26 | 15,00R | MW-1045 | 27.22 | 13725 R | | MU-53A | 10:58 | 16:17 6 | MW-1055 | 29.14 | 13:20 R | | MW-53B | 10.45 | 16:19 6 | MW-105I | 23,98 | 13218 R | | MW-53C | 10,24 | 16 346 | MU-105D | 23.91 | 13-16 € | | MW-S4A | 20.09 | 14:326 | ML5-1065 | 29.56 | 13.14 R | | NW-548 | 20,45 | 14:346 | 1 | 29.55 | 13:11 A | | MW-SYC | 20,39 | 14:366 | | 2964 | 13:69 R | | MW-52A | 9.34 | 15/62 G | MW-1075 | 36.05 | 13:07 R | | MU-52B | 9.46 | 15165 R | MW-107D | 35.85 | 13:64 R | | MW 520 | 9,62 | 15:07 R | MW-1095 | 25.05 | 12:37 G | | MW-44 B | 8.45 | 15:26 R | MW-1115 | 23-50 | 12:27R | | MW-44C | 813 | 10,22 R | | 22,99 | 12:46 R | | MW-45A | 16,92 | 15.39 R | | 37.22 | 12:59 R | | MW-45B | 17.25 | 15.36 R | Mis-955 | 12.11 | 17521 A | | Mu-45C | [7,17 | 15132 B | MW-965 | 9.14 | 11:35 R | | MW-468 | n.45 | 15:44 R | 1 | 1096 | 11:488 | | MW-46C | 17.48 | 15:47 B | P2-315R | 11.49 | 11:38 R | | | 15.20 | 16.00 R | P2~985 | 11.65 | 12:188 | | MW-496 | 16,87 | 15,57R | P2-95I | 12,30 | 11:17 R | | V K 4 | 9A war | - entern | r wei) | | | MW-51A MW-51B MW-51C N 02 08 22 53 ?2 14.20 bration 4.00 4.01 41-01 4.5 4 30 4.50 4.50 HUD 0 6 9.0 017 0,0 5-2-2-4 t-121-24 \$ 200 24 9,30 9,46 19:30 0600 9,95 870 \$ 35,80° 00 4,0 42 4,0 41,0 4.50 450 0.7 0,0 0.0 5-22-21 9-23-24 16-15 9:71 06 19:30 8:42 1911 00 5-20-24 X | 115 | | | 5-22 | <i>I</i> | | |-------------|---------|-------------|-------|----------|------| | Well I | MW2-100 | \ <u>\$</u> | □ COT | 25.10 | | | Purje | B311 | 18/33 | ほっつ | | | | | | | msin | | | | reading | Gallon | ph | Cond | Teny_ | D0 | | <u></u> 0 ' | 0.30 | 7,53 | 0,566 | 15,0 | 6.42 | | 1 | 6,60 | 7.48 | 0/578 | 14.4 | 4.53 | | 2 | 090 | 7.05 | 0.579 | /4.7 | 4:33 | | 3 | 1-20 | 7.05 | 6,579 | 14-3 | 4.34 | | 4 | histo | 7.05 | 6.579 | 14.3 | 4.35 | | · · · · · · | - | | | | | | | | - | г | | | T. | _ | т- | | | _ | т. | 1 | T | | | | 1 | | · | | | | | _ | _ | | _ | | | _ | | _ | | | |
--------------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------------|----------|----------|----|------------|----------|---|----------|-----|----------|-----------|------------|------------|----------|----------|----------|----------|--------|----------|----------|--------------|----------|----------| | | < | \geq | <u>ا</u> | 0 | b. | b | ی | ے | | | ļ [′] | ١ | ₿ | 1 | + | 5 | 1 | | ľ | | | | | | | | ļ | | | | | | | | | 1 | 7 | | | | | ı | | | 3 | | | - | < | 1 | F | Ī | | 1 % | L | | | , | | a | ١ | | | T | | П | 7 | | | H | | - | ~ | 111 | 2 | ·C | 1 | - | - | 17 | <u> </u> | IJ | - | 2 | X _ | 1 | | | U | Q | U | د | L | U | <u>a</u> | ١,١ | دا | - | _ | | Н | \dashv | _ | | | | | L_ | L | | | | | | | | | | | | | | <u> </u> | | | | | | L | İ | - | | | | . / | 1 | _ | H | Ι, | - | | | 7 | | - | _ | ļ- | 1 | H | ╁╴ | - | ┢ | ~ | 1 | - | ┝ | - | - | - | | ٦ | - | _ | H | Н | - | \dashv | | 4 | | 1 | e | ļ., | | 1 | ပ
(၁ | 2 | 9 | | <u> </u> _ | <u>_</u> | 3 | 7 | - | | _ | ļ | (| | 0 | U | <u>}</u> | L | _ | 1 | | (| ٦. | <u>ነ</u> | | 4 | 4 | | | ļ | | 2 | _ | | <u>ا</u> | þ¢ | ļ | 2 | ∤ | | | | 1 | k | اوري | | | 0 | 5 | 14 | 57 | | | | | 12 | ģ. | 3: | اح | Ιİ | | | | | Ì | 3 | . 2 | ? | | | (9 | 1 | 5 | | Γ | (| _ | | 2 | | | | |) | | 1 | 7 | | | | , | ٥ | بر | 2 | 5 | | | | + | j | 1 | | _ | - | - | | | | - | | - | | 10 | | 7.0 | | - | 1 | γ.)
\ |) '
 | <u>د</u> | څ | | _ | | 1 | G
G | 1 | ノフ | 5
8
11 | + | \dashv | | 4 | l | P | C | <u> </u> | _ | _ | 0 | ١., | \circ | <u> </u> | | | (| 1 | 2 | | 4 | | |) | ٠ (| Ś | − [| ַ | | | _ | C | | ク | <u>ර</u> | | _ | | | ١ | ŀ | 1 | | | | U | " | 0 | | | | (| | 1 | 2 | | Sue | | 0 | 9 (| <u>-</u> ا | 5 | ~ | ٥ | | (| چ | }. | 4 | 11 | | 1 | | | • | 1 | .1 | | | | 4 | , | - | | | | | 1 | | 2 | " | | | | De | <u></u> | | | | | | 0 | , | 1 | , (| <u>.</u> | | | + | - | 4 | 7 | _ | <u> </u> | | _ | [| 7000 | F | | | 1 | - | 15 | LC | 5 | È | L | 0 | 7 - 2 | - | | | | | <u> </u> | | ۳, | Ц | H | <u>'</u> | \dashv | | | _ | | L | | L | ļ | <u> </u> | | _ | | L | _ | | _ | | L | L | | | | L. | L | | | | | | _ | | | Ш | | _[| | | ا | Ì | | | | | | | | | | | | | | | | | | | - | | Г | Г | | | | | - | <u> </u> | | | | | - | | | - | | 7 | | _ | | | | + | \dashv | | + | \dashv | | | _ | | | H | <u> </u> | ļ | | | _ | | _ | | | | _ | _ | _ | | | _ | _ | 4 | \dashv | | _ | | | \vdash | 4 | _ | | | | | | | _ | | | L., | T | | | + | + | _ | _ | | | | | - | \vdash | H | | _ | - | | | _ | | | _ | . | _ | | _ | _ | _ | + | - | _ | - | \dashv | \dashv | + | \dashv | | 4 | 4 | | | | | | | | <u> </u> | | | _ | _ | L | | <u>_</u> | - | | | | | _ | _ | | | | | | _ | | \dashv | _ | 1 | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | \exists | 1 | ٦ | | + | - | | - | - | | H | Н | | | | \vdash | | | | - | - | | \vdash | | - | \vdash | | | \dashv | \dashv | \dashv | - | | | \dashv | - | + | \dashv | | \downarrow | 4 | | | | | | | | | L | | | | _ | L | | | | | | | | _ | _ | _ | _ | | | | \Box | _ | _ | | | | | - | ł | _ | | | | | | | | | | | | | | | | | | \dashv | 寸 | 7 | | | + | + | \dashv | \dashv | \dashv | | Н | | \vdash | | | \dashv | \dashv | | | H | H | | - | - | _ | - | | \dashv | - | \dashv | | | - | - | \dashv | | + | 4 | | _ | _ | _ | | | | Щ | | | | | | | | | | | | Ц | _ | _ | | | | | | | _ | | | | \perp | ĺ | | | | | | | | | 1 | \dashv | _ | | | | | | ٦ | _ | | | - | Т | Г | Н | | | _ | _ | \exists | | - | 7 | 7 | \dashv | \dashv | | | \dashv | + | + | ┪ | | + | - | - | \dashv | | _ | | \dashv | | | | | - | | L | | | | - | 4 | - | | - | _ | - | \dashv | | _ | - | \dashv | - | \dashv | _ | 4 | İ | - | | | | | | - | | | | | | | | | (D) | I | | l . 1 | | | |---------------------------------------|--------------|---|--------|-------|----------| | | | 5-2 | 1-24 | | | | wen | my -7+ | 750 0 | TOW | 3.5 | <u> </u> | | - | 1(| | | | | | Purse | Barra | 17:26 | たつ | 17:41 | | | · · · · · · | 0 | | 95Ca | | | | Reading | Gullon | oh | | Teno | DO | | 0 | 0130 | 7.63 | 0.534 | , | | | 1 | 060 | * | 0,534 | | | | 2 | 690 | 7.33 | 0.533 | | 0.00 | | 3 | 1-20 | | 0.534 | 17.4 | 0.00 | | q | 1.50 | 7.30 | 1 | 17.4 | 0,00 | | < | 1.80 | 7.27 | 0.535 | 17.4 | 0,00 | | | | , | om 15° | - | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | | | | | | - | | - | | | | | | | | | <u> </u> | | Sample | 117:45 | | | |----------|--------------------|-------------|--| | 1, | | 3LF Shares | 175) | | *Collect | | | 11/1/3 | | | | | | | 500 | | | | | BRP TO | Mb Col | er Otew | | | 109 7 | 61 Clsu
32 Clea | 24,23 | 17-26 | | | 871 Clea | | 17:29 | | 82 4 | 2,0 (lea- | 241,12 | 117,32 | | 75 2 | 1,d Oka | 2412 | (7-35 | | 71 (2. | 8 C/22 | - 24.12 | | | 69 9 | ,9 Clea | 24.12 | 17/33 | | | | | | | | | | | | | | | | | | دسر 8 | (113) | | I | i l | | | |----------|----------------|--------------------|--------|-------|------| | | | 5 | -23.24 | 77.6 | 1-} | | Weh | MW- | 1125 | TDW_ | 25,17 | 1 / | | | | | | | | | Purpe! | 3 <u>e</u> ~4_ | 1 3 -6) | Zn) | 9:45 | | | | 0 | | msla | | | | hoalings | Gallon | ph_ | Cond | Temp | Do | | ပ် | 0,30 | 7.32 | 0,464 | 14.9 | 0,00 | | ļ | 060 | 7.28 | 0.465 | 14.6 | 0,00 | | 2_ | 0,90 | 7.28 | 0.464 | 14.7 | 0,00 | | 3 | 1.20 | 7.25 | 0,464 | 14.6 | 6,00 | | 4 | 1.50 | 7.25 | 0,464 | 14.7 | 0.00 | | 72 | 1.80 | 7.27 | 0.464 | | 0,00 | | 0 | 2.10 | 7.27 | 0.464 | 14.6 | 0,00 | | | | | | | | | • | 4 | - سرد
- سرد | 2 ~ | Γ. | ١ | 5 | 1 |) | | (| 1 | × | 5 | X | | | | | | | | | | | | | | | | \top | T | ٦ | |----------|----------|----------------|-------------|--|----------|----------|------------------|-----|---|----------|---|-------------------------|-----|-----|----------|----------|---|---|-------------------|----------|-------------------|----------|---|----------|----------|-----------|---------------|------|----------|--------------|-----------|----------| | - | | حب | ۸
۱ | C | | | | | F | >(| | _ | | - | | | | | est. | | , | | | _ | | _ | | _ | 1 | + | \dagger | - | | Н. | 4 | خصر | 1/1 | Г | উ | | 2 | L | 0 | , | U | 7, | 1 | - | 1 | | 7 | l | 9 | _ | | 2 | | <u>ر</u> | C | A. | (Q) | | 1 | | 1 | \dashv | | | ر
ا | ٥ | 2 | ٠ | 1 | . 2 | 3 | Z | 3 | 4 | 4 | ře | س | 8 | (د |) ; | 3 | Ŷ | c | ~ | Ç | , | ρ | J | - 3 | [
[وسر |) | > | 6 | -] | () | 27 | | | 70 | Ĺ, | . | - | \$ | 6 | _ | ٠. | | - | Λ | e | a | d | 1 | \
*/ | ļ | | L | | | | | | | | | | | \perp | | | | (| 2 | <u> </u> | , | | ~ | ١, | 30 | ,] | 2 | L | (| $\langle \cdot \rangle$ | | 0 | | | | F |)- | le. | 2 | ٢ | | | ۴ | Ţ | Ή | γ | 4 | | 1 | | | ١ | þ | 2 | | | | Ç | ۵ | | 1 | | 1 | 3 | ۸, | يد | ď | | | 2 | 3 | | | | | | | Q |) | | 3 | , | | | | | ς | 7 | | | | | Q | 1 | | | | _ | | ید | | | | | | | | <u>つ</u> | | | | Ç. | ì | | Ø | | 7 | ٦ | | | 2 | 7 | _دب | | | _ | | | | | | Ö | | 20 | | | | | | ٠. ر | | <u> </u> | | | | (| 7 | | | 5 | † | ┨ | | \vdash | | · · | | - | ya. | ľ | / <u>-</u>
イ、 | | _ | \vdash | - | ~ | ì | | | | | , | ,,- | , | | . ~ | | | Н | - | <u>'</u>
٦ | | _ + | 7 | + | \dashv | | | 7 | - ا | ļ | _ | | 1 | | - | | | ` |
 | | 2_(| رية | _ | _ | ٠ | 2.5
2.5
2.5 | 2 '
} | | ٠
`` | | - | | _ | | | | 1 | _ | \dashv | | - | -/ | <u> </u> | > | <u>. </u> | | | | 1 | | | - | _ | · . | 2 | | - | _ | _ | رے
ر | | \mathcal{S}_{i} | | | | - | _ | 1 | • | 3 | \$ | _ | - | | | 3 | • | | | | ζ | ٧ | * | 2 | 5 | | (| - | | a | | | | _ | | | | 2 | _ | | _ | 4 | | | Φ |) | _ | | _ | <u>₹</u> | 9 | _ | | _ | 2 | 8 | (| 0 | | | < | | 9 | æ | 1 | , | | 2 | 3 | ŧ | 5 | ز | • | | _ | 7 | ٠ ٦. | 4 | . \$ | 1 | _ | | | | | | _ | | L | 1 | \perp | | | | | | | | | | | Î | İ | | | | | | | | | | ĺ | - | T | ٦ | | Ħ | | | <u> </u> | | | | | | | | | | | _ | \vdash | _ | | | | | | | | | | _ | | _ | | + | T | 1 | | \vdash | | + | - | | | | - | \dashv | + | + | ┨ | | \vdash | + | - | + | - | <u> </u> | <u> </u> | | _ | L | - | | | | | | | _ | _ | Н | - | | | | | \dashv | | | - | - | + | + | \dashv | | }-} | + | + | ┝ | H | _ | _ | | l | | | | | _ | | | | | _ | Н | - | | \dashv | - | \dashv | - | _ | | _ | \dashv | + | + | 4 | | igert | + | +- | ₽. | | ļ., | | | | | | | | | Ц | | L | | | | - | _ | _ | | 4 | _ | | _ | _ | - | _ | + | \dashv | | | 1 | | _ | _ | | | | L | | | | | | | | | | | | | _ | | _ | | _ | |
_ | | | \downarrow | 1 | _ | ╛ | İ | | | | | | | | | 1 | Ì | | | 7 | T | | | | 1 | 1 | | | | | | | | П | | Н | | | | _ | | | | | | | | | 7 | | \dashv | | 1 | \dagger | + | 7 | | Щ. | L_ | Д | 1 | | | Щ. | | | | | | | | | L | | | | | | | | | | | | | | ساسما | | | | γ **Attachment B** **Field Data Sheet** FIELD DATA SHEET | Facility: Gibson Station - South Landfill Background | Event (month/year): May-24 | Location: Ow | Location: Owensville, Indiana | |---|---|----------------------|------------------------------------| | Operator Names/Signatures: | Gordon O'Toole | Gorden Bilos | 09 | | | Print | Signature | Initials | | | Print | Signature | Initials | | | Print | Signature | Initials | | , , | Print | Signature | Initials | | | Print | Signature | Initials | | | Print | Signature | Initials | | Comments: Water levels collected on 5/20/2024. Equipment blank collected on non-dedicated water level meter May 23, 2043. | | | | | | | | | | Quality Assurance Sample Summary: | | Trip Blank Shipped?: | | | | Date, Time, and Location of Field Blank Preparation: Selected Well for Duplicate Sample: Selected Well used for MS/MSD bottles: | | 5/21/2024 17:45 MW-111S
MW-109S | | | | | | Checked By: TW Date Checked:06/14/2024 #### FIELD DATA SHEET | | FIELD DA | | | | |---|---------------------|--------------------|--------------------|-------------------------------| | Facility: Gibson Station - South Landfill Background | Event (month/year): | | | Location: Owensville, Indiana | | Well ID: | MW-109S | MW-111S | MW-112S | | | Water Level Measurements and Well Information: | | | | | | Date and Time of Measurement | 12:37 | 12:27 | 12:46 | | | Elevation of Top of PVC Casing, MSL (TOC) | 408.21 | 407.34 | 408.30 | | | Depth to Water, ft (DTW) (measure to nearest 0.01 ft) | 25.05 | 23.50 | 22.99 | | | Static Water Level, MSL (SWL = TOC - DTW) | 383.16 | 383.84 | 385.31 | | | Total Well Depth, ft (TD) | 30.68 | 29.34 | 34.80 | | | Well Diameter, inches (WD) | 2 | 2 | 2 | | | Upgradient or Downgradient | Downgradient | Not Applicable | Not Applicable | | | Purging Information: | | | | | | Water Volume (WV) in Well Casing (gallons) = (TD-DTW) x 0.163 | | | | | | Date and Time of Purge Start | 18:32 | 17:26 | 9:15 | | | Date and Time of Purge End | 18:44 | 17:41 | 9:45 | | | Elapsed Purge Time (minutes) | 12 | 15 | 30 | | | Actual Volume Purged (gallons) | 1.5 | 1.80 | 2.1 | | | Purge Rate (gallons per minute) | 0.13 | 0.12 | 0.07 | | | Sample and Field Analysis Information: | • | | | - | | Date and Time of Sample | 5/21/24 18:45 | 5/21/24 17:45 | 5/23/24 09:50 | | | Sample Device | Geotech | Grundfos Rediflo 2 | Grundfos Rediflo 2 | | | Sample Material / Tubing Material | Teflon | Teflon | Teflon | | | Sample Rate (gallons per minute or liters per minute) | 0.13 | 0.12 | 0.07 | | | Filter Device (for dissolved metals) | 0.45µm | 0.45µm | 0.45µm | | | Final Dissolved Oxygen mg/L | 4.35 | 0.00 | 0.00 | | | Final ORP, mv | 161 | 69 | 39 | | | Final pH, standard units | 7.05 | 7.27 | 7.27 | | | Final Specific conductance, umhos/cm | 579 | 535 | 464 | | | Final Temperature, °C | 14.3 | 17.4 | 14.6 | | | Sample Appearance (color / odor / turbidity (NTU)) | Clear | Clear | Clear | | | Weather Conditions During Sample | Clear,80's | Clear, 80's | Clear, 80's | | | Comments: | • | | | 1 | | The dedicated pump in MW-112S malfunctioned and it was sampled with a portable pump | Operators Initials (also sign and initial cover sheet): | GO | GO | GO | | | A | <u> </u> | | | | #### FIELD DATA SHEET | Facility: Gibson Station - South Landfill Background | Event (month/day/year): | May-24 | | Location: Owensvill | le, Indiana | |--|-------------------------|--------------|---------|---------------------|---------------------| | Field Meter Information | Meter #2 | | | | | | Manufacturer, Model Number, and Serial Number: | U64227X | | | | | | Calibrated by: | FEI | | | | | | Analyzed by: | GO | | | | | | Initial Meter Calibration | Standard Used | Manufacturer | Lot No. | Expiration Date | Meter Reading | | pH Standard #2: (5/20-5/23) | 4.00 | FEI | 830965 | 1/17/2026 | 4.01/4.01/4.00/4.00 | | Specific Conductance Standard #2: (5/20-5/23) | 4.45 | FEI | 830965 | 1/17/2026 | 4.50/4.50/4.50/4.50 | | Final Meter Calibration/Check | | | | | | | pH Standard #2: (5/20-5/23) | 4.00 | FEI | 830965 | 1/17/2026 | 4.00/4.01/4.00/4.00 | | Specific Conductance Standard #2: (5/20-5/23) | 4.45 | FEI | 830965 | 1/17/2026 | 4.40/4.50/4.50/4.50 | ### Attachment C **Summary of Water Level Measurements** # TABLE 1 SUMMARY OF DEPTH TO WATER MEASUREMENTS - May 20, 2024 SOUTH LANDFILL BACKGROUND WELLS ## DUKE ENERGY GIBSON STATION OWENSVILLE, INDIANA | Well
Number | Depth to Water
(feet) | Time of Measurement | Top of Casing
Elevation (feet MSL) | Total Depth
(feet) | Groundwater
Elevation (feet MSL) | |----------------|--------------------------|---------------------|---------------------------------------|-----------------------|-------------------------------------| | MW-109S | 25.05 | 12:37 | 408.21 | 30.68 | 383.16 | | MW-111S | 23.50 | 12:27 | 407.34 | 29.34 | 383.84 | | MW-112S | 22.99 | 12:46 | 408.30 | 34.80 | 385.31 | #### Notes: - 1. Top of casing elevations and total depths taken from Atlas Monitoring Well Installation Report dated August 24, 2023. - 2. Water level meters were calibrated at MW-35A. No changes were needed. ### Attachment D **Chain-of-Custody Records** Section B Report To: Required Project Information: Section A Company Required Client Information: CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All r LIO#: 50373903 Section C Invoice Information: | ~~ | | 3.700 | | | | |------|-------|--------------------|----|------|----| | 111 | 18 18 | | MI | 11 1 | 1 | | ш | | 1111 | ш | | 11 | | ш | | THE REAL PROPERTY. | | | | | 5037 | 3903 | | | | | Of Duke Energy-Gibson Generating Station Colleen Sweazy Accounts Payable GIBSON GENERATING STATION Address Copy To Company Name: Duke Energy Owensville, IN 47665 Address colleen.sweazy@duke-energy.com Purchase Order #: Pace Quote Phone 317-838-2161 Project Name: Gibson SLF New Wells Pace Project Manager State / Location kenneth hunt@pacelabs.com, Requested Due Date Project#: 5992 Line 7 Standard Pace Profile #: Requested Analysis Filtered (Y/N) Y COLLECTED valid codes to Preservatives MATRIX CODE Drinking Water DW WT GRAB pH 4500, Conductance 2510B, Nitrate-353.2 ww Waste Weter PA PA Product SAMPLE TEMP AT COI SAMPLE ID SL OL WP AR Soll/Solid START END Ra 226 Sub Pace® Ra 228 Sub Pace® 90 # OF CONTAINERS Diss Metals FF olics 420.4 One Character per box. Wipe CODE (A-Z, 0-91, -) OT Sample Ids must be unique SAMPLE ITEM Tissue NaOH TIME TIME DATE MW-109S MW-111S 1945 3/21 WT 12 6 MW-112S WT 12 6 X GBS SHARE-FD-2024 0521 3/4 WT 5 7 8 10 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION TIME SAMPLE CONDITIONS Metals 6010 (Ba, B, Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ag, Zn, Ca, Na, Li) ZOK 704 822 Metals Continued 6020 (Be, Co, As, Se, Sb, Tl), Mercury 7470 Nitrate 353.2 Short Hold (48 hours) SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: DATE Signed: 5-22 SIGNATURE of SAMPLER: # CHAIN-OF-CUSTODY / Analytical Re The Chain-of-Custody is a LEGAL DOCUMENT. All relevan W0#:50373913 | Section A Required Client Information: | Section B Required Project Information: | Section C Invoice Information: | | |--|---|--|------------------| | Company: Duke Energy-Gibson Generating Station | Report To: Colleen Sweazy | Attention: Accounts Payable 50373913 | 1141141 411 | | Address: GIBSON GENERATING STATION | Copy To: | Company Name: Duke Energy | | | Owensville, IN 47665 | | Address: | | | Email: colleen.sweazy@duke-energy.com | Purchase Order #: | Pace Quote: | | | Phone: 317-838-2161 Fax: | Project Name: Gibson SLF NW Shared QC | Pace Project Manager: kenneth.hunt@pacelabs.com, | State / Location | | Requested Due Date: Standard | Project #: | Pace Profile #: 5992 Line 6 | IN | Requ | ested | Analy | sis Fil | tered | (Y/N |) | | | | | |---|---
--|--|--|--|---
---	---	--	---
--	---	--	--
--	--	---	--
--	--	---	--
--		MATRIX	CODE
---	----------------------------	-----------------	------------
report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 6010 Description: 6010 MET ICP Client: Duke Energy Gibson Generating Station **Date:** June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 6010 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 3010 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 793481 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50374037021 P6: Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike • MS (Lab ID: 3630681) Calcium • MSD (Lab ID: 3630682) Calcium #### **Additional Comments:** Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 6010 Description: 6010 MET ICP, Dissolved Client: Duke Energy Gibson Generating Station Date: June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 6010 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 3010 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 6020 Description: 6020 MET ICPMS Client: Duke Energy Gibson Generating Station **Date:** June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 6020 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 200.2 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Internal Standards: All internal standards were within QC limits with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 6020 Description: 6020 MET ICPMS, Dissolved Client: Duke Energy Gibson Generating Station Date: June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 6020 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 200.2 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Internal Standards: All internal standards were within QC limits with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 7470 Description: 7470 Mercury Client: Duke Energy Gibson Generating Station Date: June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 7470 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 7470 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 7470 Description: 7470 Mercury, Dissolved Client: Duke Energy Gibson Generating Station Date: June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 7470 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 7470 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 8260 Description: 8260/5030 MSV unpreserved Client: Duke Energy Gibson Generating Station Date: June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 8260 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### **Internal			
Standards:** All internal standards were within QC limits with any exceptions noted below. #### Surrogates: All surrogates were within QC limits with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. QC Batch: 792047 L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high. - LCS (Lab ID: 3624788) - lodomethane #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **Additional Comments:** #### Analyte Comments: QC Batch: 792047 1d: Neither matrix spike nor matrix precision data could be provided for this analytical batch due to insufficient sample volume. - BLANK (Lab ID: 3624787) - Dibromofluoromethane (S) Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 903.1 Description: 903.1 Radium 226 Client: Duke Energy Gibson Generating Station Date: June 24, 2024 #### **General Information:** 3 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 904.0 Description: 904.0 Radium 228 Client: Duke Energy Gibson Generating Station Date: June 24, 2024 ## **General Information:** 3 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. # **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: Total Radium Calculation Description: Total Radium 228+226 Client: Duke Energy Gibson Generating Station Date: June 24, 2024 ## **General Information:** 3 samples were analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ## **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. # **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: SM 2510B **Description: 2510B Specific Conductance** Client: Duke Energy Gibson Generating Station Date: June 24, 2024 ## **General Information:** 3 samples were analyzed for SM 2510B by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: SM 2540C **Description: 2540C Total Dissolved Solids** Client: Duke Energy Gibson Generating Station **Date:** June 24, 2024 ## **General Information:** 3 samples were analyzed for SM 2540C by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 410.4 Description: 410.4 COD Client: Duke Energy Gibson Generating Station **Date:** June 24, 2024 ## **General Information:** 3 samples were analyzed for EPA 410.4 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ### Sample Preparation: The samples were prepared in accordance with EPA 410.4 with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 792796 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50373903001,50373948001 M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. - MS (Lab ID: 3627850) - Chemical Oxygen Demand - MSD (Lab ID: 3627849) - Chemical Oxygen Demand Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: SM 4500-H+B Description: 4500H+ pH, Electrometric Client: Duke Energy Gibson Generating Station Date: June 24, 2024 ## **General Information:** 3 samples were analyzed for SM 4500-H+B by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ## **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. H3: Sample was received or analysis requested beyond the recognized method holding time. • GBS_SHARE-FD-20240521 (Lab ID: 50373903003) MW-109S (Lab ID: 50373903001)MW-111S (Lab ID: 50373903002) ## Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. ## **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 350.1 Description: 350.1 Ammonia Client: Duke Energy Gibson Generating Station Date: June 24, 2024 ## **General Information:** 3 samples were analyzed for EPA 350.1 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. # **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent			
recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 353.2 **Description:** 353.2 Nitrogen, NO2/NO3 unpres **Client:** Duke Energy Gibson Generating Station Date: June 24, 2024 ## **General Information:** 3 samples were analyzed for EPA 353.2 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ## **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. H3: Sample was received or analysis requested beyond the recognized method holding time. • GBS_SHARE-FD-20240521 (Lab ID: 50373903003) #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50373903 Method: EPA 420.4 Description: 420.4 Phenolics, Total Client: Duke Energy Gibson Generating Station Date: June 24, 2024 ## **General Information:** 3 samples were analyzed for EPA 420.4 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. ## **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ## Sample Preparation: The samples were prepared in accordance with EPA 420.4 with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. ## **Additional Comments:** This data package has been reviewed for quality and completeness and is approved for release. Project: Gibson SLF New Wells Pace Project No.: 50373903 Date: 06/24/2024 08:15 AM	Sample: MW-109S	Lab ID: 5037	73903001
05/24/24 16:21			
Analytical Meth	nod: EPA 74	170 Preparation Meth	nod: EP/
06/01/24 09:3	3 7440-28-0		
Analytical Method: EPA 353.2 Pace Analytical Services - Indianapolis		•	
-----------	-------	---------	--------
mg/L	0.04	0.040	101
Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Total Dissolved Solids mg/L ND 25.0 05/28/24 11:51 LABORATORY CONTROL SAMPLE: 3625856 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 300 293 98 80-120 SAMPLE DUPLICATE: 3625857 50373872003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 250 **Total Dissolved Solids** mg/L 239 4 10 SAMPLE DUPLICATE: 3625858 Date: 06/24/2024 08:15 AM 50373906001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1190 0 10 mg/L 1190 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: Gibson SLF New Wells Pace Project No.: 50373903 QC Batch: 792796 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD Laboratory: Pace Analytical Services - Indianapolis Qualifiers Associated Lab Samples: 50373903001, 50373903002, 50373903003 METHOD BLANK: 3627846 Matrix: Water Associated Lab Samples: 50373903001, 50373903002, 50373903003 Blank Reporting Parameter Units Result Limit Analyzed Chemical Oxygen Demand mg/L ND 10.0 05/30/24 17:25 LABORATORY CONTROL SAMPLE: 3627847 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Chemical Oxygen Demand 49.5 50.3 102 90-110 mg/L MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3627848 3627849 MS MSD 50373903001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Qual Result Conc. Conc. % Rec % Rec Limits Chemical Oxygen Demand 20 M0 mg/L ND 49.5 49.5 55.4 48.0 98 83 90-110 MATRIX SPIKE SAMPLE: 3627850 Date: 06/24/2024 08:15 AM 50373948001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 27.7 Chemical Oxygen Demand 49.5 69.7 85 90-110 M0 mg/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: Gibson SLF New Wells Pace Project No.: 50373903 QC Batch: 794003 Analysis Method: SM 4500-H+B QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50373903001, 50373903002, 50373903003 SAMPLE DUPLICATE: 3632695 Parameter Units 50373902006 Result Dup Result Max RPD Max RPD Qualifiers pH at 25 Degrees C Std. Units 6.9 7.0 1 2 H3 SAMPLE DUPLICATE: 3632696 Date: 06/24/2024 08:15 AM			50373902014
Greensburg -0.185U ± 0.462 (0.956) EPA 903.1 Radium-226 pCi/L 06/17/24 16:07 13982-63-3 C:NA T:93% Pace Analytical Services - Greensburg EPA 904.0 0.257U ± 0.332 (0.706) Radium-228 pCi/L 06/04/24 15:06 15262-20-1 C:86% T:84% Pace Analytical Services - Greensburg 0.257U ± 0.794 (1.66) pCi/L 06/17/24 17:19 7440-14-4 #### **QUALITY CONTROL - RADIOCHEMISTRY** Project: Gibson SLF New Wells Pace Project No.: 50373903 QC Batch: 671620 Analysis Method: EPA 903.1 QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226 Laboratory: Pace Analytical Services - Greensburg Associated Lab Samples: 50373903001, 50373903002, 50373903003 METHOD BLANK: 3270325 Matrix: Water Associated Lab Samples: 50373903001, 50373903002, 50373903003 ParameterAct \pm Unc (MDC) Carr TracUnitsAnalyzedQualifiersRadium-226-0.116 \pm 0.178 (0.466) C:NA T:88%pCi/L06/17/24 15:54 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. #### **QUALITY CONTROL - RADIOCHEMISTRY** Project: Gibson SLF New Wells Pace Project No.: 50373903 QC Batch: 671622 Analysis Method: EPA 904.0 QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228 Laboratory: Pace Analytical Services - Greensburg Associated Lab Samples: 50373903001, 50373903002, 50373903003 METHOD BLANK: 3270326 Matrix: Water Associated Lab Samples: 50373903001, 50373903002, 50373903003 Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers Radium-228 0.605 ± 0.388 (0.718) C:83% T:81% pCi/L 06/04/24 15:04 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. #### **QUALIFIERS** Project: Gibson SLF New Wells Pace Project No.: 50373903 #### **DEFINITIONS** DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot. ND - Not Detected at or above adjusted reporting limit. TNTC - Too Numerous To Count J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. MDL - Adjusted Method Detection Limit. PQL - Practical Quantitation Limit. RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix. S - Surrogate 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration. Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values. LCS(D) - Laboratory Control Sample (Duplicate) MS(D) - Matrix Spike (Duplicate) **DUP - Sample Duplicate** RPD - Relative Percent Difference NC - Not Calculable. SG - Silica Gel - Clean-Up U - Indicates the compound was analyzed for, but not detected. N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration. Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters. Act - Activity Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval) (MDC) - Minimum Detectable Concentration Trac - Tracer Recovery (%) Carr - Carrier Recovery (%) Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes. TNI - The NELAC Institute. #### **ANALYTE QUALIFIERS** Date: 06/24/2024 08:15 AM	1d	Neither matrix spike nor matrix precision data could be provided for this analytical batch due to insufficient sample	
-) ot Metals Other OT Sample Ids must be unique SAMPLE ITEM Ra 226 Ra 228 \$ DATE TIME DATE TIME MW-109S WT MAS MW-111S 9/21 WT MW-112S WT 12 6 Х X X GBS_SHARE-FD-2024 0521 3/4 WT 5 6 8 10 11 12 ADDITIONAL COMMENTS **RELINQUISHED BY / AFFILIATION** DATE ACCEPTED BY / AFFILIATION TIME SAMPLE CONDITIONS * Metals 6010: (Ba, B, Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ag, Zn, Ca, Na, Li) 704 1045 822 Metals Continued: 6020 (Be, Co, As, Se, Sb, Tl), Mercury 7470 Sur Nitrate 353.2 Short Hold (48 hours) SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Bage 64 of 66 TEMP DATE Signed: 5-22 SIGNATURE of SAMPLER: # SAMPLE CONDITION UPON RECEIPT FORM	Date/Time and Initials of person examining contents	:: I BM	20:
Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: TN02867 Texas/TNI Certification #: T104704188-22-18 Utah/TNI Certification #: PA014572223-14 USDA Soil Permit #: 525-23-67-77263 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad ### Pace Analytical Services Indianapolis 7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Washington Dept of Ecology #: C1081 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001 ### **SAMPLE SUMMARY** Project: Gibson SLF New Wells Pace Project No.: 50374080	Lab ID	Sample ID	Matrix
Internal Standards: All internal standards were within QC limits with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 7470 Description: 7470 Mercury Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 7470 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 7470 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 7470 Description: 7470 Mercury, Dissolved Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 7470 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 7470 with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 8260 Description: 8260/5030 MSV unpreserved Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 8260 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### **Internal Standards:** All internal standards were within QC limits with any exceptions noted below. ### Surrogates: All surrogates were within QC limits with any exceptions noted below. ### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. QC Batch: 792047 L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high. - LCS (Lab ID: 3624788) - lodomethane #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. ### **Additional Comments:** ### **Analyte Comments:** QC Batch: 792047 1d: Neither matrix spike nor matrix precision data could be provided for this analytical batch due to insufficient sample volume. - BLANK (Lab ID: 3624787) - Dibromofluoromethane (S) Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 903.1 Description: 903.1 Radium 226 Client: Duke Energy Gibson Generating Station Date: June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 904.0 Description: 904.0 Radium 228 Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: Total Radium Calculation Description: Total Radium 228+226 Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for Total Radium Calculation by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: SM 2510B Description: 2510B Specific Conductance Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for SM 2510B by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. ### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: SM 2540C **Description: 2540C Total Dissolved Solids** Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for SM 2540C by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report			
limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. ### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 410.4 Description: 410.4 COD Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 410.4 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 410.4 with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 793222 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50374033006,50374041002 M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. - MSD (Lab ID: 3629783) - Chemical Oxygen Demand M3: Matrix spike recovery was outside laboratory control limits due to matrix interferences. - MS (Lab ID: 3629780) - Chemical Oxygen Demand - MSD (Lab ID: 3629781) - Chemical Oxygen Demand #### **Additional Comments:** Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: SM 4500-H+B Description: 4500H+ pH, Electrometric Client: Duke Energy Gibson Generating Station Date: June 19, 2024 #### **General Information:** 1 sample was analyzed for SM 4500-H+B by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. H3: Sample was received or analysis requested beyond the recognized method holding time. • MW-112S (Lab ID: 50374080001) #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 350.1 Description: 350.1 Ammonia Client: Duke Energy Gibson Generating Station Date: June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 350.1 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **PROJECT NARRATIVE** Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 353.2 **Description:** 353.2 Nitrogen, NO2/NO3 unpres **Client:** Duke Energy Gibson Generating Station Date: June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 353.2 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. ## **Additional Comments:** ## **PROJECT NARRATIVE** Project: Gibson SLF New Wells Pace Project No.: 50374080 Method: EPA 420.4 Description: 420.4 Phenolics, Total Client: Duke Energy Gibson Generating Station **Date:** June 19, 2024 #### **General Information:** 1 sample was analyzed for EPA 420.4 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 420.4 with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 794398 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50374557005,50374563005 M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits. - MS (Lab ID: 3634536) - Phenolics, Total Recoverable M3: Matrix spike recovery was outside laboratory control limits due to matrix interferences. - MS (Lab ID: 3634534) - Phenolics, Total Recoverable - MSD (Lab ID: 3634535) - Phenolics, Total Recoverable R1: RPD value was outside control limits. - MSD (Lab ID: 3634535) - Phenolics, Total Recoverable ## **Additional Comments:** This data package has been reviewed for quality and completeness and is approved for release. Project: Gibson SLF New Wells Pace Project No.: 50374080 Date: 06/19/2024 09:03 AM	Sample: MW-112S	Lab ID: 503	74080001
06/06/24 16:12			
Services -	Indianapolis		
ND	1	1	0.97
	Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: Gibson SLF New Wells Pace Project No.: 50374080 Date: 06/19/2024 09:03 AM QC Batch: 792047 Analysis Method: EPA 8260 QC Batch Method: EPA 8260 Analysis Description: 8260 MSV unpreserved Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50374080001 METHOD BLANK: 3624787 Matrix: Water Associated Lab Samples: 50374080001	Parameter	Units
MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Qual Result Conc. Conc. % Rec % Rec Limits Chemical Oxygen Demand mg/L 42.9 49.5 49.5 85.4 79.9 86 75 90-110 7 20 M3 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3629782 3629783 MS MSD 50374033006 MS MSD MS MSD % Rec Spike Spike Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual 91 Chemical Oxygen Demand 16.9 49.5 49.5 62.0 58.2 83 90-110 6 20 M0 mg/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: Gibson SLF New Wells Pace Project No.: 50374080 QC Batch: 794738 Analysis Method: SM 4500-H+B QC Batch Method: SM 4500-H+B Analysis Description: 4500H+B pH Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50374080001 SAMPLE DUPLICATE: 3636408 Parameter Units 50374077001 Result Dup Result Max RPD RPD Qualifiers pH at 25 Degrees C Std. Units 9.0 9.1 1 2 H3 SAMPLE DUPLICATE: 3636409 Date: 06/19/2024 09:03 AM 50374090005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 7.1 pH at 25 Degrees C 7.1 0 2 H3 Std. Units Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Nitrogen, Ammonia Date: 06/19/2024 09:03 AM #### **QUALITY CONTROL DATA** Project: Gibson SLF New Wells Pace Project No.: 50374080 QC Batch: 794097 Analysis Method: EPA 350.1 QC Batch Method: EPA 350.1 Analysis Description: 350.1 Ammonia Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50374080001 METHOD BLANK: 3633163 Matrix: Water Associated Lab Samples: 50374080001 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrogen, Ammonia mg/L ND 0.10 06/06/24 09:17 LABORATORY CONTROL SAMPLE: 3633164 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Nitrogen, Ammonia 5.2 103 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3633165 3633166 mg/L MSD MS 50374049001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.31 5 103 20 Nitrogen, Ammonia mg/L 5 5.5 5.4 102 90-110 MATRIX SPIKE SAMPLE: 3633167 50374090001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.41 5 5.6 104 90-110 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: Gibson SLF New Wells Pace Project No.: 50374080 QC Batch: 791950 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, Unpres. Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50374080001 METHOD BLANK: 3624225 Matrix: Water Associated Lab Samples: 50374080001 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrogen, Nitrate mg/L ND 0.10 05/24/24 16:28 LABORATORY CONTROL SAMPLE: 3624226 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Nitrate mg/L 1 1.1 107 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3624227 3624228 MS MSD 50374070014 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits Nitrogen, Nitrate ND 107 20 mg/L 1 1.1 1.1 108 90-110 3 MATRIX SPIKE SAMPLE: 3624229 Date: 06/19/2024 09:03 AM % Rec 50374075001 MS MS Spike Qualifiers Parameter Units Result Conc. Result % Rec Limits ND Nitrogen, Nitrate 1 1.1 106 90-110 mg/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: Gibson SLF New Wells Pace Project No.: 50374080 QC Batch: 794398 Analysis Method: EPA 420.4 QC Batch Method: EPA 420.4 Analysis Description: 420.4 Phenolics Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50374080001 METHOD BLANK: 3634532 Matrix: Water Associated Lab Samples: 50374080001 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Phenolics, Total Recoverable ug/L ND 20.0 06/07/24 16:54 LABORATORY CONTROL SAMPLE: 3634533 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Phenolics, Total Recoverable 46.4 93 90-110 ug/L MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3634534 3634535 MSD MS 50374557005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result **RPD** RPD Qual Result % Rec % Rec Limits Phenolics, Total 0.0055J 20 M3,R1 ug/L 50 50 72.8 53.3 135 90-110 31 Recoverable mg/L MATRIX SPIKE SAMPLE: 3634536 Date: 06/19/2024 09:03 AM 50374563005 Spike MS MS % Rec Parameter Limits Units Result Conc. Result % Rec Qualifiers Phenolics, Total Recoverable 0.018J mg/L ug/L 50 55.1 74 90-110 M0 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. ## **ANALYTICAL RESULTS - RADIOCHEMISTRY** Project: Gibson SLF New Wells Pace Project No.: 50374080	Sample: MW-112S PWS:	Lab ID: 5037 Site ID:	4080001 Collected: 05/23/24 09:50 Sample Type:
Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.		M3	Matrix spike recovery was outside laboratory control limits due to matrix interferences.
ASI	10		