

401 North College Avenue Indianapolis, Indiana 46202 (317) 685-6600

WBENC-Certified

info@keramida.com | (800) 508-8034 | www.keramida.com

June 5, 2024

RECEIVED DEPARTMENT OF

JUN 27

ENVIRONMENTAL MANAGEMENT OFFICE OF LAND QUALITY

Indiana Department of Environmental Management Self-Disclosure and Environmental Audit Administrator Mail Code 60-02P 100 North Senate Avenue, IGCN1301 Indianapolis, Indiana 46204-2251

RE:

Ecobat Resources Indiana, LLC

7870 West Morris Street

Indianapolis, Marion County, Indiana. Self-Disclosure and Environmental Audit

To Whom It May Concern:

KERAMIDA Inc. (KERAMIDA) sent the attached Self-Disclosure and Environmental Audit report and supporting documentation to the Indiana Department of Environmental Management (IDEM) via Priority Mail (4204620422739407830109355002489090) on behalf of Ecobat Resources Indiana, LLC (Ecobat). The package was postmarked May 28, 2024; however, the United States Postal Service (USPS) did not scan it until May 29, 2024. According to the tracking information, USPS attempted delivery on June 1, 2024, but the office was closed and it was rescheduled for delivery the next day. The tracking information has not been updated online; therefore, we have filed a request with the USPS to track the document. Due to the lack of delivery by the USPS via the certified mail process, the documents are being hand delivered. Thank you for your assistance.

Sincerely,

KERAMIDA Inc.

Sara Guss

Senior Engineer, Land Services

Enclosures

Receipt Documentation:

Signature

INCREASING OUR CLIENTS' PROFITABILITY THROUGH SMART CONSULTING™

401 North College Avenue Indianapolis, Indiana 46202 (317) 685-6600 WBENC-Certified

info@keramida.com | (800) 508-8034 | www.keramida.com

May 28, 2024

Indiana Department of Environmental Management Self-Disclosure and Environmental Audit Administrator Mail Code 60-02P 100 North Senate Avenue, IGCN1301 Indianapolis, Indiana 46204-2251

RE:

Ecobat Resources Indiana, LLC

7870 West Morris Street

Indianapolis, Marion County, Indiana Self-Disclosure and Environmental Audit

To Whom It May Concern:

On behalf of Ecobat Resources Indiana, LLC (Ecobat), attached please find the Self-Disclosure and Environmental Audit report and supporting documentation.

Thank you for your assistance. If you have any questions, please contact Mark Hoffman, Environmental Director, Ecobat, at (845) 673-2225 or via e-mail at Mark.Hoffman@ecobat.com.

Sincerely,

KERAMIDA Inc.

Sara Guss

Senior Engineer, Land Services

Enclosures

cc: Mark Hoffman, Environmental Director, Ecobat

Carrie Doehrmann, Attorney at Law, Frost Brown Todd LLC

SELF-DISCLOSURE AND ENVIRONMENTAL AUDIT STATE FORM 55075 (R / 10-23)

INSTRUCTIONS: A copy of IDEM's Self-Disclosure and Environmental Audit Policy can be obtained by visiting IDEM's website at https://www.in.gov/idem/files/nrpd mp-004-r2.pdf. For questions on how to complete a self disclosure, please contact IDEM's Compliance and Technical Assistance Program: toll-free (within Indiana) at 1-800-451-6027, press 0 and ask for extension 2-8172 or 317/232-8172 or by email at ctap@idem.IN.gov. Completed Self-Disclosures should be sent via certified U.S. Mail to:

Self-Disclosure and Environmental Audit Administrator Indiana Department of Environmental Management Mail Code 60-02P 100 North Senate Avenue, IGCN 1301 Indianapolis, Indiana 46204-2251

		FACIL	ITY INFO	RMATION						
Name Ecobat Resources Indiana, Ll	LC					Is the regulatory entity a new owner? ☐ Yes ☑ No				
Physical Street Address (number 7870 West Morris Street	r and street)					Is the facility a small regulated entity? ☐ Yes ☑ No				
City Indianapolis	State IN	ZIP Code 46231	3:		SIC Code 3341					
IDEM Program ID(s) (i.e., Plant I NPDES: IN0053171, RCRA:					e ID)					
Mailing Street Address (if different		address)								
City	State	ZIP Code	• W	ebsite						
		n is author	ized by the	CONTACT entity to make su- aking functions of						
Name Mark Hoffman	111 1111		—,,,		Job Title Environ	mental Director				
Email address Mark Hoffman <mark.hoffma< td=""><td>n@ecobat.cor</td><td>ท></td><td></td><td></td><td></td><td colspan="3">Felephone number (<i>with area code</i>) 845-673-2225</td></mark.hoffma<>	n@ecobat.cor	ท>				Felephone number (<i>with area code</i>) 845-673-2225				
Contact Street Address (if difference 65 Ballard Road	ent from physica	ıl and/or ma	ailing addre	ss, please specify)					
City Middletown	State NY		ZIP Code 10941		Fax Nun	nber (with area code)				
	ion exists, each	should be	enumerale	* *		as completely as possible.				
Collection Request (ICR). In to contractors for the construction	preparation fo ction of access	or the amb s paths to	ient air mo the northe	onitoring, Ecoba east and northwe	t sent out est side o	Air Act Section 114 Information a Request for Proposal (RFP) f the site for the placement of the				

the facility and are not used during the daily operations. The contractor's subcontractor used recycled concrete containing painted concrete and concrete with metal and fiberglass for the construction of the access paths instead of

the material specified in the RFP (#2 stone) without a legitimate use approval or Ecobat approval.

How was the violation discovered? It was discovered while accessing the ambient air monitors. The access paths are used for the sole purpose of the ambient air monitoring which is conducted on a one in six day schedule. During the course of conducting the ambient air monitoring, concrete with metal was found at one location by the company performing the sampling. A subsequent visual investigation of the access paths identified painted concrete. Physical location of the violation: 7870 West Morris Street, Indianapolis, IN	Date the violation was discovered (month, day, year) Concrete was observed April 9, 2024 Verfication of no legitimate use was discovered April 11, 2024 (see item 3 below) Ecobat retained Keramida to conduct confirmation sampling of the material and these results were obtained May 13, 2024. Keramida confirmed the material as solid waste on May 20, 2024.
Other Comments:	
CONDITIONS REQUIRED UNDER THE S In addition to answering Yes/No, please prov 9 Audit Policy condit	ide a detailed explanation of how each of the
1. Was the violation discovered through an environmental a	audit or Compliance Management System?
If the violation was discovered through a Compliance Manag meets IDEM's requirement of "an objective, documented, sys diligence in preventing, detecting and correcting violations," i system. If applicable, include details regarding the facility's r compliance assistance.	stematic procedure or practice reflecting the [facility's] due not
☐ Yes ☑ No	
Explain:	
2. Was the violation identified voluntarily and not through a by statute, regulation, permit, judicial or administrative order, with a new owner.)	
⊠ Yes □ No	
Explain: The violation was identified voluntarily.	
3. Was the disclosure prompt? The facility must demonstra after it discovered the violation occurred or may have likely o	
⊠ Yes □No	
Explain: Ecobat immediately began due diligence efforts, incl necessary investigation, notifying the contractor and its subco	
4. Was the discovery and disclosure independent of a government demonstrate that it took the initiative to find the violation and enforcement action or third-party complaint.	
⊠ Yes □ No	
Explain: Ecobat took the initiative to find the violation and rep	ort it. Ecobat retained Keramida to conduct an analysis of

the material and the analysis was provided to Ecobat on May 13, 2024. A copy of the report is attached.
5. Was the violation corrected at the time of disclosure?
☐ Yes No
If yes, provide a statement certifying that the violation has been corrected. If no, provide details of how the violation will be corrected within sixty (60) days after the date the facility notified IDEM of the violation. (See Policy if more than sixty (60) days are needed to correct the violation.)
Ecobat has retained legal counsel. The contractor has been notified it is in violation of the agreement. Ecobat intends to make arrangements with the contractor for the removal of the recycled concrete. Confirmation sampling will be conducted within the footprint of the access paths to demonstrate there are no impacts. The results of the confirmation sampling will be compared to the IDEM Remediation Closure Guide (R2) Published Levels (PLs). If results indicate there are impacts associated with the recycled concrete, the surface soil will be removed and additional confirmation sampling will be conducted.
6. What measures are being taken to prevent recurrence of the violation and when will those measures be implemented?
This placement of the material occurred without Ecobat's knowledge or approval. The contracted entities acted contrary to the contract and Indiana law.
7.a. Has the same (or closely related violation) occurred previously at this facility within the past three (3) years?
Yes ⊠ No
Explain: The facility has not conducted work that resulted in the use of recycled concrete or similar materials.
 b. Has the violation (or closely related violation) occurred within the facility's <u>parent</u> organization within the past three (3) years?
☐ Yes No
Explain: The facility parent organization has not conducted work that resulted in the use of recycled concrete or similar materials.
8.a. Did the violation result in serious environmental harm or risk to human health?
☐ Yes No
Explain: The concrete placement is expected to be short term. Sampling and analysis of the paint and the concrete were conducted. Results indicated that out of the 15 concrete samples, arsenic was detected above the R2 Long Term – Commercial PL in two samples and above the Long Term – Residential PL in two samples. Mercury was detected above the Long Term – Commercial PL in six of the samples. No PCBs were detected in any of the paint wipe samples. For additional information refer to attached May 13, 2024, KERAMIDA report.
b. Did the violation present an imminent and substantial endangerment to human health or the environment?
☐ Yes No

Explain:	
☐ Yes 〔	⊠ No
e. Did the	e violation violate the specific terms of any judicial or administrative order?
Explain: U until the wo	nknown. Ecobat was not aware that contractor used recycled concrete rather than the specified aggregate ork was completed.
☐ Yes [□ No
d. Was th	ne violation inadvertent?
Explain: U entities act	nknown. The placement of the material occurred without Ecobat's knowledge or approval. The contracted sed contrary to the contract and Indiana law.
☐ Yes [□ No
c. Was th	ne violation knowingly, intentional or reckless such that it may constitute criminal conduct?
presents a	he results of the sampling and analysis of the paint and concrete do not indicate the recycled concrete n imminent and substantial endangerment to human health and the environment. The area is restricted from ess and is not within the area of operation.

**

·- ... **

9. Has the regulated entity cooperated and provided information to IDEM as necessary and requested, to determine applicability of the Policy?
⊠ Yes □ No
Explain: Ecobat has retained legal counsel and environmental consultants to assist with the self-disclosure process, evaluation of the legitimate use of recycled concrete, and sampling and analysis of the concrete.
Estimate of the cost of compliance: At least \$170,000 to excavate, transport, dispose, confirmation sample and report the placement of the material, excluding costs of counsel and experts.
Basis of estimate: Ecobat did not derive any economic benefit from the placement of the concrete without Ecobat's knowledge or approval. Costs for excavation, transportation, disposal, confirmation sampling, and reporting noted above are preliminary estimates to remediate the placement of the material only. Total remediation amounts are unknown.
CERTIFICATION
I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify, based upon reasonable investigation, that the submitted information is true, accurate and complete to the best of my knowledge and belief.
Mark D. Hoffman Environmental Director Name (printed) Title
inde (human)
Signature May 28. 2024 Date (month, day, year)

KERAMIDA SOIL AND CONCRETE SAMPLING REPORT

401 North College Avenue Indianapolis, Indiana 46202 (317) 685-6600

WBENC-Certified info@keramida.com | (800) 508-8034 | www.keramida.com

FROST BROWN TODD LLC SOIL AND CONCRETE SAMPLING 7870 WEST MORRIS STREET INDIANAPOLIS, INDIANA KERAMIDA PROJECT NO. 22686

Submitted to:

FROST BROWN TODD LLC

111 Monument Circle, Suite 4500

P.O. Box 44961

Indianapolis, IN 46244-0961

Submitted by:

KERAMIDA INC.

401 North College Avenue Indianapolis, IN 46202

(317) 685-6600

Sara Guss

Senior Engineer, Land Services

Brian Harrington

Senior Vice President, Land Services

May 13, 2024

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
2.0	SAMPLING PROCESS	1
2.1	Soil Sampling	1
2.2	Concrete Sampling	1
3.0	RESULTS	3
	Soil Sampling	
3.2	Concrete Sampling	4

FIGURES

Figure 1 - Site Vicinity Map

Figure 2 – Soil Sample Location Map

TABLES

Table 1 - Soil Lead Analytical Results (mg/kg)

Table 2 – Paint RCRA Metals Analytical Results (mg/kg)

Table 3 – Paint PCBs Analytical Results (µg/100 cm²)

Table 4 – Concrete RCRA Metals Analytical Results (mg/kg)

Table 5 – Concrete PAHs Analytical Results (mg/kg)

Table 6 – Concrete PCBs Analytical Results (mg/kg)

ATTACHMENTS

Attachment 1 - KERAMIDA Standard Operating Procedures (SOPs)

Attachment 2 - Photographs

Attachment 3 - Laboratory Analytical Reports

FROST BROWN TODD LLC SOIL AND CONCRETE SAMPLING 7870 WEST MORRIS STREET INDIANAPOLIS, INDIANA KERAMIDA PROJECT NO. 22686

1.0 INTRODUCTION

KERAMIDA Inc. (KERAMIDA) completed soil and concrete sampling for Frost Brown Todd LLC at the Ecobat Resources Indiana, LLC (Ecobat) facility located at 7870 West Morris Street, Indianapolis, Indiana (Site). A Site Vicinity Map is provided as Figure 1.

2.0 SAMPLING PROCESS

KERAMIDA conducted field activities associated with the sampling on April 30, 2024 under the supervision of Brayton Pew, Staff Geologist with KERAMIDA. In general, the sampling was conducted in accordance with KERAMIDA Standard Operating Procedures (SOPs). Copies of the SOPs are provided in Attachment 1.

2.1 Soil Sampling

Prior to beginning the soil sampling, KERAMIDA used a measuring wheel to determine the approximate length of the access drives located on the northern side of the Site. The total length of the drives was estimated to be 2,000 linear feet. KERAMIDA collected surface soil samples approximately every 150 feet along the access drives. The approximate GPS coordinates of the sample locations were recorded. The sample locations are shown on Figure 2.

Soil samples were collected at a depth of 0-0.5 ft below ground surface (bgs) using a stainless-steel hand auger. The hand-auger was decontaminated with a soap and distilled water solution between each sample location. A total of 13 samples (SS-1 through SS-13) were collected. A duplicate and Matrix Spike/ Matrix Spike Duplicate (MS/MSD) samples were collected for Quality Assurance/Quality Control (QA/QC).

The soil samples were transferred directly to the laboratory-supplied containers, labeled, and placed in an ice-filled, insulated cooler. The samples were logged on a chain-of-custody form according to KERAMIDA SOPs. The samples were submitted to Pace Analytical Services, Inc. (Pace) in Indianapolis, Indiana for lead analysis.

2.2 Concrete Sampling

KERAMIDA collected concrete samples of the various paint types that were found along the access drives. The paint colors identified included cream, blue, green, olive green, and white as shown in the

photographs provided in Attachment 2. In addition to painted concrete samples, KERAMIDA conducted field surveyance for concrete that appeared to be stained or was combined with other items such as metal or fiberglass. Representative photographs are included in Attachment 2. The concrete samples were taken to the KERAMIDA field office for processing prior to sampling.

The Indiana Department of Environmental Management (IDEM) Fact Sheet for the Legitimate Use of Painted Concrete (Fact Sheet) states three samples per each paint color or other contaminant are required and sampling must be conducted on the paint, not on a mix of the paint and the concrete. Therefore, three samples from each paint color were collected per the Fact Sheet. The paint was removed from the concrete samples using a heat gun. A total of 15 paint samples were collected as well as duplicate and MS/MSD samples.

Due to the limited volume of paint present on the concrete and the availability of painted concrete pieces, KERAMIDA was not able to collect the 15-20 grams of paint required for polychlorinated biphenyls (PCBs) analysis of the paint. Therefore, three wipe samples were collected from each color of painted concrete and were submitted to EMSL Analytical, Inc. for PCBs analysis.

Although, the Fact Sheet indicates that samples should consist of paint, not a combination of paint and concrete, due to the limited pieces of painted concrete, the amount of paint on the concrete, and the sheer number of painted concrete samples that would be required to analyze just the paint, it was determined the painted concrete samples could provide additional data regarding potential concrete contamination. Therefore, KERAMIDA collected samples of the painted concrete which were pulverized (pea size or less) as required by the laboratory. Concrete pieces that contained fiberglass or metal, such as nails or rebar, were also collected. A total of 20 concrete samples were collected.

Concrete and paint samples (not including wipe samples) were placed in laboratory-supplied containers, labeled, and placed in ice-filled, insulated coolers. The samples were logged on a chain-of-custody form and were submitted to Pace Analytical Services, Inc. (Pace) in Indianapolis, Indiana.

The following table provides a summary of the paint and concrete samples collected and submitted to the laboratory for analysis.

Media	Samples	Lab Analyses
Paint	PS-1-1 – PS-1-3 – Cream Color PS-2-1 – PS-2-3 – Blue Color PS-3-1 – PS-3-3 – Green Color PS-4-1 – PS-4-3 – Olive Green Color PS-5-1 – PS-5-3 – Crean Color	RCRA Metals PCBs (wipes)
Concrete	CS-1 – concrete with fiberglass CS-2 – concrete with metal CS-3 – concrete with fiberglass CS-4 – concrete with fiberglass CS-5 – concrete with metal CS-6 – concrete with metal CS-7 – concrete with metal CS-8 – concrete with metal CS-9 – concrete with fiberglass CS-10 – concrete with fiberglass CS-11 – concrete with fiberglass CS-12 – concrete with metal CS-13 – concrete with pink paint CS-14 – concrete with green color CS-15 – concrete with green color CS-16 – concrete with olive green color CS-17 – concrete with cream color CS-18 – concrete with white color CS-19 – concrete with white color CS-20 – concrete composite	RCRA Metals, PAHs, PCBs

Lead - EPA Method 6010

RCRA = Resource Conservation and Recovery Act; Mercury - EPA Method 7471, Other RCRA Metals - EPA Method 6010

PAHs = Polynuclear Aromatic Hydrocarbons; EPA Method 8270 SIM

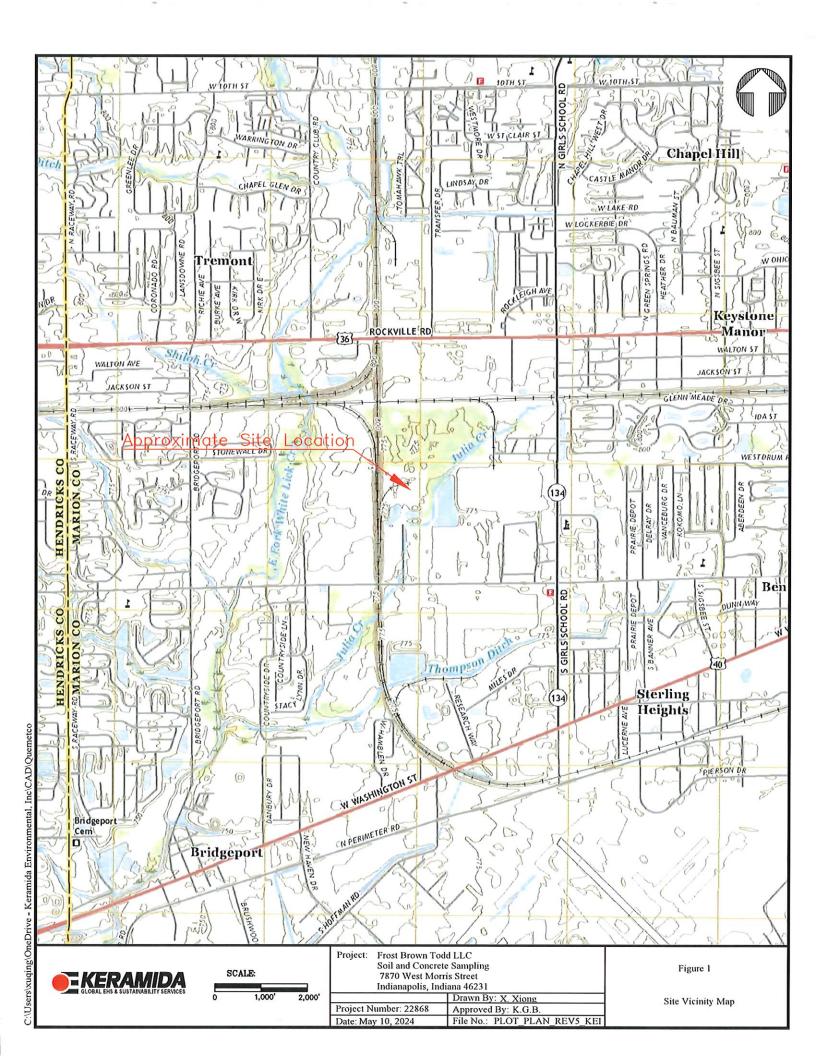
PCBs = Polychlorinated biphenyls, EPA Method 8082

There were only a few pieces of concrete with the pink paint. Therefore, paint samples could not be obtained.

3.0 RESULTS

The sampling results are summarized in Tables 1 - 6. The laboratory analytical reports are provided in Attachment 3.

3.1 Soil Sampling


The soil samples were analyzed for lead; the results are summarized in Table 1. The analytical results were compared to the IDEM Remediation Closure Guide (R2) Published Level (PL) for lead. The samples were all below the Long Term – Residential PL.

3.2 Concrete Sampling

The paint removed from the concrete was analyzed for RCRA metals and PCBs. The RCRA metal analytical results were compared to the applicable IDEM R2 PLs. The results are summarized in Table 2. Out of the 15 samples, arsenic was detected above the Long Term – Commercial PL in two samples and above the Long Term – Residential PL in two samples. Mercury was detected above the Long Term – Commercial PL in six of the samples. The results of the PCBs analysis for the paint are provided in Table 3. No PCBs were detected in any of the paint samples. The IDEM R2 PLs for PCBs are reporting in milligrams per kilograms (mg/kg) and wipe samples are reporting in micrograms per 100 square centimeters (μ g/100 cm²). The wipe results cannot be converted to the R2 units. As a point of reference, according to 40 CFR 761.79, Decontamination standards and procedures, the decontamination standard for concrete is \leq 10 μ g/100 cm² as measured by a standard wipe test (§ 761.123) if the decontamination procedure is commenced within 72 hours of the initial spill of PCBs to the concrete or portion thereof being decontaminated. The laboratory detection limit is 0.50 μ g/100 cm², well below the decontamination standard for concrete.

The concrete samples were analyzed for RCRA metals, PAHs, and PCBs. The results are summarized in Tables 4 - 6. The analytical results were compared to the applicable IDEM R2 PLs. The concentrations of metals that were detected were all below the applicable PLs as shown in Table 4. Low levels of PAHs were detected; however, the concentrations were below the applicable PLs. The results are shown in Table 5. No PCBs were detected in any of the concrete samples; results are presented in Table 6.

FIGURES

TABLES

	Sample Depth	Date	Lab Sample	
Sample No.	(feet)	(feet) Sampled N		Lead
R2 Soil Human Health	Levels - Long Term -	- Residential ⁽¹⁾		400
R2 Soil Human Health	800			
R2 Soil Human Health				1,000
Common Background				2 - 200
DUP-1	0.0-0.5 feet	04/30/2024	50372022016	76
SS-1	0.0-0.5 feet	04/30/2024	50372022001	345
SS-2	0.0-0.5 feet	04/30/2024	50372022002	169
SS-3	0.0-0.5 feet	04/30/2024	50372022003	190
SS-4	0.0-0.5 feet	04/30/2024	50372022004	122
SS-5	0.0-0.5 feet	04/30/2024	50372022005	120
SS-6	0.0-0.5 feet	04/30/2024	50372022006	120
SS-7	0.0-0.5 feet	04/30/2024	50372022007	123
SS-8	0.0-0.5 feet	04/30/2024	50372022008	113
SS-9	0.0-0.5 feet	04/30/2024	50372022009	105
SS-10	0.0-0.5 feet	04/30/2024	50372022010	104
SS-11	0.0-0.5 feet	04/30/2024	50372022011	92.9
SS-12	0.0-0.5 feet	04/30/2024	50372022012	91
SS-13	0.0-0.5 feet	04/30/2024	50372022013	60.2
SS-14	0.0-0.5 feet	04/30/2024	50372022014	76.3
SS-15	0.0-0.5 feet	04/30/2024	50372022015	80.3

Samples analyzed using EPA Method 6010

mg/kg = milligrams per kilogram

NA = Not Available

(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

(2) Source: James Dragun. The Soil Chemistry of Hazardous Materials Table 3.1 Native Soil Concentration of Various Elements: p.229, 1998.

OLD = Indicates Detection	
exceeds R2 Soil Human Health Levels - Long Term - Residential	
exceeds R2 Soil Human Health Levels - Long Term - Commercial	
exceeds R2 Soil Human Health Levels - Short Term - Excavation	

			No.													
sen enne	R2 Soil	R2 Soil	R2 Sol				97							Dup-01		
Sample No.	Human Health	Human Health Levels -	Human Health Levels	Common	PS-1-1	PS-1-2	PS-1-3	PS-2-1	PS-2-2	PS-2-3	PS-3-1	PS-3-2	PS-3-3	(PS-3-3)	PS-4-1	PS-4-2
	Levels - Long Term	Long Term -	Short Term -	Background	5/1/2024	5/2/2024	5/2/2024	5/1/2024	5/2/2024	5/2/2024	5/1/2024	5/2/2024	5/2/2024	5/2/2024	5/1/2024	5/2/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation ⁽¹⁾	Ranges (2)	5.0372E+10	5.0372E+10	5.0372E+10	5.0372E+10					5.0372E+10	5.0372E+10	5.0372E+10	5.0372E+10
Arsenic	10	30	900	1.0 - 40	<4.0			< 3.9		< 3.9	133	18.4				< 3.8
Barium	20,000	100,000	100,000	100 - 3,500	739	201	412	43.7	69.5	53.5	1,210				42.9	
Cadmium	10	100	200	0.01 - 70	<2.0	<2.0	<2.0	<2.0	<2.0	<20	-,			<1.9	2.9	
Chromium Total	NA	- NA	NA	5.0 - 3,000	15.2	16.7	11.9	4	<4.0	< 3.9	17.7	136	12.9			
Lead	400	800	1,000	2 - 200	93.4	87.1	55.6	< 3.9	4.4	5.2	102	60.1				
Mercury*	3	3	3	0.01 - 4.15	0.32	0.35	0.29	0.8	2.5	< 0.21	2.9	12.1		< 0.20	13.6	
Selenium	500	6,000	10,000	0.1 - 2.0	<4.0	<4.0	<4.0	< 3.9	<4.0	<3.9	<4.0		-		-	<3.8
Silver	500	6,000	10,000	0.1 - 50	<20	<20	<2.0	<2.0		<20	2.5		<2.0			<1.9

Samples analyzed using EPA Method Series 6000/1000

mg/kg = miligrams per kleignen

NA = Not Avalable

(1) Indiana Department of Environmental Mesagement Famedaston Rick Based Closure Guide (RG), IDEM Philabed Levels Table 1 Human Health Standard Exposure Scenario, March. 1, 2024

(2) Source, Lease Dougan The Sci Demarky of Hazardous Marcash Table 31 Networ Soil Concentration of Visions Elements p. 222, 1958

I Indianas Heanth Value used, not total

(BOLD = Indianas Heanth Value used, not total

(BOLD = Indianas Health Levels - Long Term - Residential

Exceeds R2 Soil Human Health Levels - Long Term - Commercial

Exceeds R2 Soil Human Health Levels - Short Term - Excavation

10 10100	R2 Soil	R2 Soil	R2 Soil					
Sample No.	Human Health	Human Health Levels -	Human Health Levels	Common	PS-4-3	PS-5-1	PS-5-2	PS-5-3
Date Sampled	Levels - Long Term	Long Term -	Short Term -	Background	5/2/2024	5/1/2024	5/2/2024	5/2/2024
Lab Sample No.	Residential (1)	Commercial ⁽¹⁾	Excavation ⁽ⁱ⁾	Ranges (2)	5.0372E+10	5.0372E+10	5.0372E+10	5.0372E+10
Arsenic	10	30	900	1.0 - 40	<3.8	<4.0	<3.8	<3.8
Barium	20,000	100,000	100,000	100 - 3,500	53.5	319	1,490	68.8
Cadmium	10	100	200	0.01 - 70	<1.9	<2.0	<1.9	<1.9
Chromium Total	NA	NA	NA	5.0 - 3,000	48.7	25.8	7.2	44.1
Lead	400	800	1,000	2 - 200	141	144	51.7	
Mercury*	3	3	3	0.01 - 4.15	5.7	1.8	3.1	2.7
Selenium	500	6,000	10,000	0.1 - 2.0	<3.8	<4.0	<3.8	<3.8
Silver	500	6,000	10,000	0.1 - 50	<1.9	<20	<1.9	<1.9

Samples sudyard using EPA Method Senes (000)/7000

mg/lkg = miligrames per lidigiam

NA = Net Available

(I) Indiana Department of Elemann Health Standard Exposure Scenarios, March 1, 2024

(I) Some James Dongon. The Sel Chemistry of Harardous Materials Table 31 Network Soil Concentration of Visional Empirical Part of Sel Concentration of Visional Empire p20, 1978.

* Indicates elemantal value used, not total

BOLD = Indicates Detection

Baccerds R2 Soil Human Health Lavels - Long Term - Residential

Baccerds R2 Soil Human Health Lavels - Long Term - Commercial

Beccede R2 Soil Human Health Lavels - Short Term - Excavation

Table 3 Paint PCBs Analytical Results (µg/100 cm²) Frost Brown Todd LLC Soil and Concrete Sampling 7870 West Morris Street Indianapolis, Indiana KERAMIDA Project No. 22686

Sample No.	PS-1-1	PS-1-2	PS-1-3	PS-2-1	PS-2-2	PS-2-3	PS-3-1	PS-3-2
Date Sampled	5/1/2024	5/2/2024	5/2/2024	5/1/2024	5/2/2024	5/2/2024	5/1/2024	5/2/2024
Lab Sample No.	CC52174-01	CC52174-02	CC52174-03	CC52174-04	CC52174-05	CC52174-06	CC52174-07	CC52174-08
PCB-1016	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1221	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1232	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1242	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1248	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1254	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1260	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1262	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Samples analyzed using EPA SW-846 Method 3540C/8082A $\mu g/100~cm^2=micrograms~pcr~100~squate~centimenters~of~surface~area$

PCBs = Polychlorinated Biphenyls

Table 3 Paint PCBs Analytical Results (ng/100 cm²) Frost Brown Todd LLC Soil and Concrete Sampling 7870 West Morris Street Indianapolis, Indiana KERAMIDA Project No. 22686

		Dup-01						
Sample No.	PS-3-3	(PS-3-3)	PS-4-1	PS-4-2	PS-4-3	PS-5-1	PS-5-2	PS-5-3
Date Sampled	5/2/2024	5/2/2024	5/1/2024	5/2/2024	5/2/2024	5/1/2024	5/2/2024	5/2/2024
Lab Sample No.	CC52174-09	CC52174-16	CC52174-10	CC52174-11	CC52174-12	CC52174-13	CC52174-14	CC52174-15
PCB-1016	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1221	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50
PCB-1232	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1242	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1248	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1254	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1260	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
PCB-1262	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Samples analyzed using EPA SW-846 Method 3540C/8082A $\mu g/100~cm^2=micrograms$ per 100 square centimenters of surface area

PCBs = Polychlorinated Biphenyls

1,000,00								,		
Sample No.	R2 Soil	R2 Soil	R2 Soil		CS-1	CS-2	CS-3	CS-4	CS-5	CS-6
Sample Depth (feet)	Human Health	Human Health Levels -	Human Health Levels	Common						
Date Sampled	Levels - Long Term	Long Term -	- Short Term -	Background	4/30/2024	4/30/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation(1)	Ranges (2)	50372127001	50372127002	50372127020	50372127003	50372127004	50372127005
Arsenic	10	30	900	1.0 - 40	5.3	5.1	4.8	5	5.1	8.6
Barium	20,000	100,000	100,000	100 - 3,500	51	56.1	37.6	56.3	48.8	32.6
Cadmium	10	100	200	0.01 - 70	< 0.53	< 0.46	< 0.49	< 0.47	< 0.49	0.55
Chromium Total	NA	NΛ	NA	5.0 - 3,000	18.4	10.9	18.9	17	16.4	12
Lead	400	800	1,000	2 - 200	4.7	3	31.9	4.5	4.5	4
Mercury*	3	3	3	0.01 - 4.15	< 0.22	< 0.21	< 0.20	< 0.22	< 0.20	< 0.21
Selenium	500	6,000	10,000	0.1 - 2.0	<1.1	< 0.91	< 0.97	< 0.93	< 0.97	<1.0
Silver	500	6,000	10,000	0.1 - 50	< 0.53	< 0.46	< 0.49	< 0.47	< 0.49	< 0.51

Samples analyzed using EPA Method Series 6000/7000

mg/kg = milligrams per kilogram

NA = Not Available

(N) Indian Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

(2) Source: James Dragun. The Soil Chemistry of Hazardous Materials Table 3.1 Native Soil Concentration of Various Elements: p 229, 1998.

* Indicates elemental value used, not total

Sample No. Sample Depth (feet)	R2 Soil Human Health	R2 Soil Human Health Levels -	R2 Soil Human Health Levels	Common	CS-7	CS-8	CS-9	CS-10	CS-11	CS-12
Date Sampled	Levels - Long Term	Long Term -	- Short Term -	Background	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation ⁽¹⁾	Ranges (2)	50372127006	50372127007	50372127008	50372127009	50372127010	50372127011
Arsenic	10	30	900	1.0 - 40	4.9	3.4	4.5	3.7	4.6	5.3
Barium	20,000	100,000	100,000	100 - 3,500	32.6	29.9	32.3	37.4	30.6	39.1
Cadmium	10	100	200	0.01 - 70	< 0.48	< 0.50	< 0.45	< 0.49	< 0.51	< 0.50
Chromium Total	NA	NA	NA	5.0 - 3,000	8.7	13.2	16.3	18.4	9	15.7
Lead	400	800	1,000	2 - 200	3.3	2.7	3.6	3.4	2.3	3.3
Mercury*	3	3	3	0.01 - 4.15	< 0.21	< 0.22	< 0.20	< 0.22	< 0.22	< 0.22
Selenium	500	6,000	10,000	0.1 - 2.0	< 0.96	<1.0	< 0.89	< 0.99	<1.0	<1.0
Silver	500	6,000	10,000	0.1 - 50	< 0.48	< 0.50	< 0.45	< 0.49	< 0.51	< 0.50

Samples analyzed using EPA Method Series 6000/7000

mg/kg = milligrams per kilogram NA = Not Available

NA = Not Available

(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

(2) Source: James Dragun. The Soil Chemistry of Hazardous Materials Table 3.1 Native Soil Concentration of Various Elements: p 229, 1998.

* Indicates elemental value used, not total

BOLD = Indicates Detection

							D 1			
Sample No.	R2 Soil	R2 Soil	R2 Soil		CS-13	CS-14	Dup-1 (CS-14)	CS-15	CS-16	CS-17
Sample Depth (feet)	Human Health	Human Health Levels -	Human Health Levels	Common						
	Levels - Long Term	Long Term -	- Short Term -	Background	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation(1)	Ranges (2)	50372127012	50372127013	50372127014	50372127021	50372127015	
Arsenic	10	30	900	1.0 - 40	5.4	6.1	4.9	5.4	6.4	5
Barium	20,000	100,000	100,000	100 - 3,500	46.3	33.7	35,3	43.8	38.7	37.8
Cadmium	10	100	200	0.01 - 70	< 0.50	< 0.47	< 0.48	< 0.45	< 0.50	< 0.50
Chromium Total	NA	NA	NA	5.0 - 3,000	11.9	10.2	7.1	7.8	10	
Lead	400	800	1,000	2 - 200	3.2	6.9	3.8	4.4	5.2	4.6
Mercury*	3	3	3	0.01 - 4.15	< 0.20	< 0.20	< 0.22	< 0.20	< 0.20	<0.20
Selenium	500	6,000	10,000	0.1 - 2.0	< 0.99	< 0.94	< 0.96	< 0.91	<1.0	<1.0
Silver	500	6,000	10,000	0.1 - 50	< 0.50	< 0.47	< 0.48	0.71	< 0.50	< 0.50

Samples analyzed using EPA Method Series 6000/7000

mg/kg = milligrams per kilogram

NA = Not Available

[1] Indian Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

(2) Source: James Dragun. The Soil Chemistry of Hazardous Materials Table 3.1 Native Soil Concentration of Various Elements: p 229, 1998.

* Indicates elemental value used, not total

Sample No.	R2 Soil	R2 Soil	R2 Soil		CS-18	CS-19	CS-20
Sample Depth (feet)	Human Health	Human Health Levels -	Human Health Levels	Common			
Date Sampled	Levels - Long Term	Long Term -	- Short Term -	Background	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation(1)	Ranges (2)	50372127017	50372127018	50372127019
Arsenic	10	30	900	1.0 - 40	6.1	4.5	4.6
Barium	20,000	100,000	100,000	100 - 3,500	30.2	30.4	31.1
Cadmium	10	100	200	0.01 - 70	< 0.45	< 0.46	< 0.49
Chromium Total	NA	NA	NA	5.0 - 3,000	8.8	9	7.9
Lead	400	800	1,000	2 - 200	8.2	4.3	8.9
Mercury*	3	3	3	0.01 - 4.15	< 0.21	< 0.22	< 0.20
Selenium	500	6,000	10,000	0.1 - 2.0	< 0.91	< 0.92	< 0.99
Silver	500	6,000	10,000	0.1 - 50	< 0.45	< 0.46	< 0.49

Samples analyzed using EPA Method Series 6000/7000

mg/kg = milligrams per kilogram

NA = Not Available

NA = Not Available

(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

(2) Source: James Dragun. The Soil Chemistry of Hazardous Materials Table 3.1 Native Soil Concentration of Various Elements: p 229, 1998.

* Indicates elemental value used, not total

BOLD = Indicates Detection Exceeds R2 Soil Human Health Levels - Long Term - Residential Exceeds R2 Soil Human Health Levels - Long Term - Commercial Exceeds R2 Soil Human Health Levels - Short Term - Excavation

0 1 11	R2 Soil										
Sample No.	Human Health	R2 Soil	R2 Soil	CS-1	CS-2	CS-3	CS-4	CS-5	CS-6	CS-7	CS-8
Sample Depth (feet)	Levels - Long	Human Health	Human Health Levels -								
Date Sampled	Term -	Levels - Long Term	Short Term -	4/30/2024	4/30/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation ⁽¹⁾	5.0372E+10							
Acenaphthene	5,000	50,000	100,000	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Acenaphthylene	NA	NA	NA	< 0.0053	0.0059	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Anthracene	30,000	100,000	100,000	< 0.0053	0.0061	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Benzo(a)anthracene	20	200	10,000	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Benzo(a)pyrene	2	20	500	< 0.0053	0.0092	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Benzo(b)fluoranthene	20	200	10,000	< 0.0053	0.014	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	0.0083
Benzo(ghi)perylene	NA	NA	NA	< 0.0053	0.016	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Benzo(k)fluoranthene	200	2,000	100,000	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Chrysene	2,000	20,000	100,000	0.0056	0.02	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	0.0068
Dibenz(a,h)anthracene	2	20	1,000	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Fluoranthene	3,000	30,000	70,000	< 0.0053	0.0072	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	0.0083
Fluorene	3,000	30,000	70,000	< 0.0053	0.0069	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Indeno(1,2,3-cd)pyrene	20	200	10,000	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
1-Methylnaphthalene	300	400	400	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
2-Methylnaphthalene	300	3,000	7,000	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Naphthalene	30	90	3,000	< 0.0053	< 0.0052	< 0.0050	< 0.0052	< 0.0049	< 0.0052	< 0.0050	< 0.0051
Phenanthrene	NΛ	NΛ	NA	0.006	0.019	0.0079	0.01	< 0.0049	< 0.0052	< 0.0050	0.0061
Pyrene	3,000	20,000	50,000	< 0.0053	0.013	< 0.0050	< 0.0052	< 0.0049	< 0.0052	0.0087	

Samples analyzed using EPA SW-846 Method 8270C

mg/kg = milligrams per kilogram

NA = Not Available

PAH = Polymuclear Aromatic Hydrocarbons
(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024. BOLD = Indicates Detection

	R2 Soil									Dup-1	
Sample No.	Human Health	R2 Soil	R2 Soil	CS-9	CS-10	CS-11	CS-12	CS-13	CS-14	(CS-14)	CS-15
Sample Depth (feet)	Levels - Long	Human Health	Human Health Levels -								
Date Sampled	Term -	Levels - Long Term	Short Term -	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation ⁽¹⁾	5.0372E+10							
Acenaphthene	5,000	50,000	100,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Acenaphthylene	NA	NA	NA	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Anthracene	30,000	100,000	100,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Benzo(a)anthracene	20	200	10,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Benzo(a)pyrene	2	20	500	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Benzo(b)fluoranthene	20	200	10,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Benzo(ghi)perylene	NA	NA	NA	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Benzo(k)fluoranthene	200	2,000	100,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Chrysene	2,000	20,000	100,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Dibenz(a,h)anthracene	2	20	1,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Fluoranthene	3,000	30,000	70,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Fluorene	3,000	30,000	70,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
Indeno(1,2,3-cd)pyrene	20	200	10,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051
1-Methylnaphthalene	300	400	400	< 0.0050	0.011	0.0061	0.01	0.0063	0.0057	0.0087	0.019
2-Methylnaphthalene	300	3,000	7,000	< 0.0050	0.022	0.011	0.02	0.011	0.01	0.016	0.034
Naphthalene	30	90	3,000	< 0.0050	0.019	0.0099	0.021	0.0077	0.0089	0.013	0.014
Phenanthrene	NA	NA	NA	< 0.0050	< 0.0051	0.0053	< 0.0049	< 0.0051	< 0.0049	0.0084	0.021
Pyrene	3,000	20,000	50,000	< 0.0050	< 0.0051	< 0.0049	< 0.0049	< 0.0051	< 0.0049	< 0.0051	< 0.0051

Samples analyzed using EPA SW-846 Method 8270C

mg/kg = milligrams per kilogram

NA = Not Available

PAH = Polynuclear Aromatic Hydrocarbons
(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

BOLD = Indicates Detection

	The state of the s			1		I		
Sample No.	R2 Soil Human Health	R2 Soil	R2 Soil	CS-16	CS-17	CS-18	CS-19	CS-20
Sample Depth (feet)	Levels - Long		Human Health Levels -	G0 10	50.17	C5 10	C5-17	C0-20
Date Sampled	Term -	Levels - Long Term		5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation ⁽¹⁾		5.0372E+10			
Acenaphthene	5,000	50,000	100,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	< 0.0050
Acenaphthylene	NA	NA	NA	< 0.0049	< 0.0049	< 0.0050	< 0.0049	< 0.0050
Anthracene	30,000	100,000	100,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.0095
Benzo(a)anthracene	20	200	10,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.047
Benzo(a)pyrene	2	20	500	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.068
Benzo(b)fluoranthene	20	200	10,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.15
Benzo(ghi)perylene	NA	NA	NA	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.06
Benzo(k)fluoranthene	200	2,000	100,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.048
Chrysene	2,000	20,000	100,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.091
Dibenz(a,h)anthracene	2	20	1,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.013
Fluoranthene	3,000	30,000	70,000	< 0.0049	0.0092	< 0.0050	< 0.0049	0.12
Fluorene	3,000	30,000	70,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	< 0.0050
Indeno(1,2,3-cd)pyrene	20	200	10,000	< 0.0049	< 0.0049	< 0.0050	< 0.0049	0.057
1-Methylnaphthalene	300	400	400	0.01	0.016	0.022	0.018	
2-Methylnaphthalene	300	3,000	7,000	0.017	0.028	0.041	0.028	0.011
Naphthalene	30	90	3,000	0.0083	0.012	0.046	0.013	
Phenanthrene	NΛ	NΛ	NA	0.0065	0.041	0.0083	0.0085	0.089
Pyrene	3,000	20,000	50,000	< 0.0049	0.007	< 0.0050	< 0.0049	0.11

Samples analyzed using EPA SW-846 Method 8270C

mg/kg = milligrams per kilogram

NA = Not Available

PAH = Polynuclear Aromatic Hydrocarbons
(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

BOLD = Indicates Detection

Sample No. Sample Depth (feet)	R2 Soil Human Health Levels -	R2 Soil Human Health Levels -	R2 Soil Human Health Levels	CS-1	CS-2	CS-3	CS-4	CS-5	CS-6	CS-7
Date Sampled	Long Term -	Long Term -	Short Term -	4/30/2024	4/30/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation ⁽¹⁾	50372127001	50372127002	50372127020	50372127003	50372127004	50372127005	50372127006
PCB-1016	6	50	100	< 0.11	< 0.098	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
PCB-1221	3	8	500	< 0.11	< 0.098	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
PCB-1232	2	7	500	< 0.11	< 0.098	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
PCB-1242	3	10	600	< 0.11	< 0.098	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
PCB-1248	3	9	600	< 0.11	< 0.098	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
PCB-1254	2	10	30	< 0.11	< 0.098	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
PCB-1260	3	10	600	< 0.11	< 0.098	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10

Samples analyzed using EPA SW-846 Method 8082

mg/kg = milligrams per kilogram

PCBs = Polychlorinated Biphenyls

(I) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

BOLD = Indicates Detection

Exceeds R2 Soil Human Health Levels - Long Term - Residential

Exceeds R2 Soil Human Health Levels - Long Term - Commercial
Exceeds R2 Soil Human Health Levels - Short Term - Excavation

Sample No. Sample Depth (feet) Date Sampled	R2 Soil Human Health Levels - Long Term -	R2 Soil Human Health Levels - Long Term -	R2 Soil Human Health Levels Short Term -	CS-8 5/1/2024	CS-9 5/1/2024	CS-10 5/1/2024	CS-11 5/1/2024	CS-12 5/1/2024	CS-13 5/1/2024	CS-14 5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation(1)	50372127007	50372127008	50372127009	50372127010			
PCB-1016	6	50	100	< 0.10	< 0.51	< 0.10	< 0.10	< 0.10	< 0.099	< 0.10
PCB-1221	3	8	500	< 0.10	< 0.51	< 0.10	< 0.10	< 0.10	< 0.099	< 0.10
PCB-1232	2	7	500	< 0.10	< 0.51	< 0.10	< 0.10	< 0.10	< 0.099	< 0.10
PCB-1242	3	10	600	< 0.10	< 0.51	< 0.10	< 0.10	< 0.10	< 0.099	< 0.10
PCB-1248	3	9	600	< 0.10	< 0.51	< 0.10	< 0.10	< 0.10	< 0.099	< 0.10
PCB-1254	2	10	30	< 0.10	< 0.51	< 0.10	< 0.10	< 0.10	< 0.099	< 0.10
PCB-1260	3	10	600	< 0.10	< 0.51	< 0.10	< 0.10	< 0.10	< 0.099	< 0.10

Samples analyzed using EPA SW-846 Method 8082

Samples analyzed using EFA SW-oHO MICHIGUI 0002
mg/kg = milligrams per kilogram
PCBs = Polychlorinated Biphenyls
(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM
Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

BOLD = Indicates Detection

				Dup-1						
Sample No.	R2 Soil	R2 Soil	R2 Soil	(CS-14)	CS-15	CS-16	CS-17	CS-18	CS-19	CS-20
Sample Depth (feet)	Human Health Levels -	Human Health Levels -	Human Health Levels							
Date Sampled	Long Term -	Long Term -	Short Term -	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024	5/1/2024
Lab Sample No.	Residential ⁽¹⁾	Commercial ⁽¹⁾	Excavation(1)	50372127014	50372127021	50372127015	50372127016	50372127017	50372127018	50372127019
PCB-1016	6	50	100	< 0.10	< 0.099	< 0.098	< 0.10	< 0.099	< 0.098	< 0.099
PCB-1221	3	8	500	< 0.10	< 0.099	< 0.098	< 0.10	< 0.099	< 0.098	< 0.099
PCB-1232	2	7	500	< 0.10	< 0.099	< 0.098	< 0.10	< 0.099	< 0.098	< 0.099
PCB-1242	3	10	600	< 0.10	< 0.099	< 0.098	< 0.10	< 0.099	< 0.098	< 0.099
PCB-1248	3	9	600	< 0.10	< 0.099	< 0.098	< 0.10	< 0.099	< 0.098	< 0.099
PCB-1254	2	10	30	< 0.10	< 0.099	< 0.098	< 0.10	< 0.099	< 0.098	< 0.099
PCB-1260	3	10	600	< 0.10	< 0.099	< 0.098	< 0.10	< 0.099	< 0.098	< 0.099

Samples analyzed using EPA SW-846 Method 8082

mg/kg = milligrams per kilogram

PCBs = Polychlorinated Biphenyls

(1) Indiana Department of Environmental Management Remediation Risk-Based Closure Guide (R2), IDEM Published Levels Table 1: Human Health: Standard Exposure Scenarios, March 1, 2024.

ATTACHMENT 1

KERAMIDA STANDARD OPERATING PROCEDURES (SOPS)

STANDARD OPERATING PROCEDURES FOR NOTE TAKING AND LOG BOOK ENTRIES

1.0 PURPOSE

1.1. The purpose of the SOP is to ensure the accuracy and development of Field Notes taken by KERAMIDA Staff.

2.0 SCOPE

2.1. Those documents created by KERAMIDA required for technical work product generation are covered by this SOP.

3.0 MATERIALS

Permanently-bound log (or field) book (no spiral-bound log books) Black ballpoint pen Pencil

4.0 RESPONSIBILITY

KERAMIDA staff or subcontractors under KERAMIDA direction taking notes and creating log book entries.

5.0 DEFINITIONS

- 5.1 Be sure that log book and field form entries are LEGIBLE and contain accurate and inclusive documentation of project field activities.
- 5.2 Provide sufficient detail to enable others to reconstruct the activities observed.
- 5.3 Thoroughly describe all field activities while on-Site. Be objective, factual and thorough. Records should contain sufficient information so that reconstruction of field activities can be conducted without depending upon memory. Language should be factual and free of personal feelings, interpretation, and from terminology that might be considered subjective or inappropriate.
- 5.4 Note or refer to other field forms being used to record information (e.g. groundwater sampling sheets, boring logs, operation and maintenance (O & M) forms).
- 5.5 Describe problems, delays, any unusual occurrences (such as wrong equipment or breakdowns) along with the resolutions and recommendations that resulted.
- 5.6 Fully document any deviations from or changes to the work plan.
- 5.7 Describe the weather and changes in the weather, particularly during sampling events.
- 5.8 Sketch a map of the facility or area on-site where activities are occurring, especially the location of sampling points. Put a north arrow on the map. If notes or measurements are being recorded on an aerial photograph or other map, note this in

Responsible Personnel: All		Revision Date: 9-May-16
Name: SOP Note Taking & Log Book Entries	Revision Number: 0	Page 1 of 4

the field book. Provide measurements of buildings, roads or other structures. Measurements for sample locations should be taken from known reference points, such as a corner of a building, telephone pole, corner of property or intersection as shown on the map or sketch. The measurements for boring and well locations must be recorded in the cardinal directions (north, south, east or west) from a known reference points on the sketch or map. Example: KB-1 is located 5 feet north and 20 feet west from the northwest corner of the building.

- 5.9 During sampling activities, record all information pertaining to the sampling event. Include descriptive locations and diagrams of the sampling locations, time, sampling media, planned laboratory analyses, sampling procedure, equipment used, sizes and types of containers, preservation used and any resulting reactions, sampling ID (especially for duplicate samples), shipping procedures (record airbill numbers), and addresses.
- 5.10 Note documentation or disposal procedures for all equipment, samples and protective clothing and how effectively each is performed.
- 5.11 If possible, photograph all sampling locations and areas of interest. Maintain a photographic log in the field log book with this information: Date, time, photographer, name of site, general compass direction the photographer is facing, description of the subject taken, and sequential number of the photograph.
- 5.12 Record the names and affiliations of key personnel on-site each day.
- 5.13 List all field meters used (e.g., photoionization detector (PID), organic vapor analyzer (OVA), pH, conductivity, model numbers), and field equipment (e.g. hand auger, 7822DT Geoprobe track rig, excavator). Record field measurements, including distances, monitoring and testing instrument readings and calibration activities.
- 5.14 Record proposed work schedules and changes in current schedules in the log book.
- 5.15 Describe Client-specific field procedures or site security measures.
- 5.16 REMEMBER, ALL FIELD NOTES MAY BE PRESENTED IN COURT.

6.0 PROCEDURE

- 6.1 KERAMIDA administration will issue a field book to each personnel conducting field activities. Each field book will be assigned a number which will be recorded on a list along with the owner's name and issue date. The field book number will be written at the top of the spine of the book. Field books are the property of KERAMIDA.
- 6.2 The user of the field book will put their last name on the spine and front cover of the book. The date of the first entry will also be placed on the front cover. After the field book is completely filled with entries, the last entry date will also be place on the front cover.
- On the first page of the field book, the user will put their name, KERAMIDA Inc., their office address, office phone number, and "Reward for return of this book. Call 1-800-508-8034."

Responsible Personnel: All		Revision Date: 9-May-16
Name: SOP Note Taking & Log Book Entries	Revision Number: 0	Page 2 of 4

- Use blue or black waterproof or indelible ink (e.g. Sharpie® or ball point pens felttip pens should not be used) to record entries. If extreme weather conditions do not allow for the use of ballpoint pen, use pencil but note the reason.
- 6.5 If not pre-numbered, number each page of the field book.
- Start a new page for each day of field activity. On the top line of each page, write the date, the KERAMIDA project number and the user's initials. Start the daily entry with the name of the project, name of Site, address of Site, purpose (e.g. groundwater sampling, delineation, remediation system O&M), weather conditions (e.g. sunny, spotty showers, snow), average temperature (e.g. 70s, 30s), names of KERAMIDA personnel on-Site, company names of subcontractors and the names of their personnel.
- 6.7 Summarize activities as they occur throughout the day. Enter the time in military time (e.g., 0830 or 1530) or regular time (e.g., 8:30 AM or 2:45 PM) in the left column of each page when an entry is recorded in the field book.
- 6.8 If a mistake is made in an entry, cross out the mistake with one line and initial the end of the line.
- 6.9 At the end of the daily entry put a slash through the remaining lines on the page.
- 6.10 Make a copy or scan a copy of your field notes and provide a copy to the Project Manager on/or before the next business day after the field activities are completed. For long-term projects, copies of notes should be provided on a weekly basis.
- 6.11 A copy of the field notes should be saved to the project folder by the Project Manager or administrative support staff.

7.0 REFERENCE DOCUMENTS

None referenced.

8.0 RECORDS

Maintenance of field notes shall comply with KERAMIDA document repository (centralized database) and retention policies. At the completion of the project, all original field logbooks and records will be store in the project files in accordance with project procedures. Often, project files lifecycles are controlled by contractual agreements with Clients.

9.0 REVISION HISTORY

Revision Date	Nature of Change	Review and Approval (VP Level or Higher)	Review and Approval (President)*
8/20/15	Original Issue	KGB	N/A

Responsible Personnel: All		Revision Date: 9-May-16
Name: SOP Note Taking & Log Book Entries	Revision Number: 0	Page 3 of 4

*Reviewer and Approver at VP Level or Higher determine if SOP requires President's Review and Approval.

Responsible Personnel: All		Revision Date: 9-May-16
Name: SOP Note Taking & Log Book Entries	Revision Number: 0	Page 4 of 4

SOIL SAMPLING USING HAND TROWEL

1.0 PURPOSE

1.1. To obtain soil samples using a stainless steel hand trowel or similar device in a consistent manner that meets the objectives of the sampling and analysis plan and/or are consistent with regulatory guidance and industry standards.

2.0 SCOPE

2.1. Collection of soil samples from the ground surface, stockpiles, shallow excavations, excavator buckets, or similar locations using a stainless steel hand trowel or similar device.

3.0 MATERIALS

Field Log Book

Hand trowels (stainless steel)

Munsel chart

Nitrile or latex gloves

Photoionization detector (PID) or flame ionization detector (FID)

Plastic bags

Plastic sheeting

Appropriate Personal Protective Equipment (PPE)

Sample kit (cooler, containers, and ice)

Sample labels and indelible marker

Shovel

4.0 RESPONSIBILITY

KERAMIDA staff or subcontractors under KERAMIDA direction collecting samples with a hand trowel or similar device.

5.0 DEFINITIONS

N/A

6.0 PROCEDURE

- 6.1 Wear clean nitrile or latex gloves and other personal protective equipment in accordance with the site-specific Health & Safety Plan (HASP).
- 6.2 Place a clean piece of plastic sheeting over the work area.
- 6.3 Classify soil samples using the KERAMIDA Soil Description System. Classify the soil samples for lithology, moisture content, odor, staining, color (identify with Munsel Chart) and any other significant characteristic.

Responsible Personnel: All		Revision Date: 11/9/15
Name: Hand Trowel Procedures	Revision Number: 0	Page 1 of 3

- Once the sample is classified, split the sample into two equal portions (longitudinally if it is a soil core): one for field screening and the other for laboratory screening. Place one portion of the sample into a new, clean and labeled plastic bag for field screening and seal the bag; place the other portion of the sample into a new, clean and labeled sample container obtained from the laboratory and seal the container.
- 6.5 Immediately place the laboratory container sample on ice in a cooler. Allow the field screening sample to sit for 10 to 15 minutes to allow organic vapors to equilibrate in the air space of the bag. All field screening samples must be treated identically to ensure accurate comparisons. For example, if one field screening sample is placed in the sun to warm then all samples are placed in the sun.
- 6.6 Field screen the volatilized sample using an appropriate, calibrated photoionization detector (PID) or a flame-ionization detector (FID) depending on the suspected contaminants. FID instruments are more sensitive to the presence of heavier organic compounds such as polynuclear aromatic hydrocarbons. Ensure the selected instrument is properly calibrated in accordance with the methods presented in its respective operations manual. At a minimum, the instrument should be "bump checked" once per day. The samples are field screened by inserting the PID or FID probe into the plastic bag, while the bag remains closed. Record the maximum reading on the boring log and/or in the field log book.
- 6.7 At the completion of the field screening process, determine which, if any, of the sample intervals will be sent to the laboratory for analysis. All samples that are not sent to the laboratory will be disposed of in accordance with the site-specific Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP) and/or KERAMIDA's SOP for Management of Investigation Derived Waste.
- 6.8 Keep detailed notes on the field boring log or in field logbook per KERAMIDA's Field SOP for Note Taking and Log Book Entries.

7.0 REF. DOCUMENTS

Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), KERAMIDA's Field SOP for Note Taking and Log Book Entries, and KERAMIDA's SOP for Management of Investigation Derived Waste

8.0 RECORDS

N/A

Responsible Personnel: All		Revision Date: 11/9/15
Name: Hand Trowel Procedures	Revision Number: 0	Page 2 of 3

9.0 REVISION HISTORY

Revision Date	Nature of Change	Review and Approval (VP Level or Higher)	Review and Approval (President)*
8/20/15	Original Issue	KGB	N/A

^{*}Reviewer and Approver at VP Level or Higher determines if SOP requires President's Review and Approval.

Responsible Personnel: All		Revision Date: 11/9/15
Name: Hand Trowel Procedures	Revision Number: 0	Page 3 of 3

FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

1.0 PURPOSE

1.1. Collection of appropriate field quality assurance/quality control (QA/QC) samples that meet the objectives of the Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), and/or regulatory guidance.

2.0 SCOPE

- 2.1. Collection of field QA/QC samples.
- 2.2. These procedures may not be applicable for all circumstances. For instance, some states or EPA regions may have more stringent or different QA/QC requirements, which should be followed in those cases. Also, always check the QA/QC requirements for the specific regulatory program of interest (e.g., VRP, LUST). Reference the QAPP for any site-specific requirements, including those of the client.

3.0 MATERIALS

Ice and cooler

Sample containers

Sample container labels

Indelible marker or pen

Clear tape

Laboratory deionized water

Non-phosphate detergent (Liquinox or Alconox)

Pesticide grade solvent (isopropanol, acetone, or hexane) in a spray bottle

(optional, reference QAPP)

Clean sampling equipment

Chain-of-custody forms

Custody seals

Gloves

4.0 RESPONSIBILITY

KERAMIDA staff or subcontractors under KERAMIDA direction collecting field sample.

5.0 <u>DEFINITIONS</u>

N/A

6.0 PROCEDURE

6.1. Select the appropriate containers for the field Quality Assurance/Quality Control (QA/QC) samples from those provided by the analytical laboratory. Refer to KERAMIDA's Sample Container, Preservatives, and Holding Times SOP to

Responsible Personnel: All		Revision Date: 11/10/15
Name: Field QAQC Sampling Procedure	Revision Number: 0	Page 1 of 3

determine the appropriate bottles to use. As an alternative, contact the analytical laboratory for this information.

6.2. Field QA/QC samples can include the following:

Trip Blanks
Field Blanks
Duplicate samples
Equipment Blanks
Matrix spike/matrix spike duplicates

- 6.3. Ensure that pre-prepared volatile organic compound (VOC) trip blanks are provided by the analytical laboratory for all projects where VOCs are analytes. Trip blanks should accompany the sample bottles from the analytical laboratory to the site and accompany the sample containers at all times during the sampling event. Submit one trip blank for each batch of samples, or for each day of sampling activities, to the analytical laboratory for analysis of VOCs only.
- 6.4. Collect one set of duplicate samples for every 20 samples of each matrix (e.g., soil groundwater, and surface water) collected during each independent sampling event. Collect duplicates by equally dividing the material (e.g., soil, sediment, ground water) into two sample aliquots. Fill the sample bottles for solids (e.g., soil) by alternating between the two sample bottle sets. Please follow the procedures outlined in KERAMIDA's Soil Sampling SOP.
- 6.5. Collect groundwater duplicates by alternately filling the two sample bottle sets from the same sampling vessel (e.g., bailer). Please follow the procedures outlined in KERAMIDA's Ground Water Sampling SOP. The analysis of field duplicate samples should mirror that being conducted on the collected samples. Reference the Sampling and Analysis Plan for a complete list of analytical parameters.
- 6.6. Collect a matrix spike/matrix spike duplicate at a rate of one per 20 samples of each matrix (soil, groundwater, and surface water) each independent sampling event, when required by the project Work Plan/ QAPP. Collect the matrix spike/matrix spike duplicate by equally dividing the material (e.g., soil, sediment, ground water) into the three sample aliquots. Fill the sample bottles for solids (e.g., soil) by alternating between the three sample bottle sets.
- 6.7. One equipment blank should be collected in the field at a rate of one per type of equipment per decontamination event not to exceed one per day. If dedicated sampling equipment is used, reference the QAPP for any site-specific equipment blank requirements. Typically equipment blanks are not necessary for this type of sampling. If field decontamination of sampling equipment is required, prepare the equipment blanks after the equipment has been used and field-decontaminated at least once. Prepare the equipment blanks by filling or rinsing the precleaned equipment with analyte-free water (deionized) and collecting the rinsate in the appropriate sample containers. The samples should be labeled, preserved, and filtered (if required) in the same manner as the collected environmental samples. Equipment blank analysis should mirror environmental sample analysis. Decontamination of the equipment following equipment blank procurement is not required.

Responsible Personnel: All		Revision Date: 11/10/15
Name: Field QAQC Sampling Procedure	Revision Number: 0	Page 2 of 3

6.8. Collect one field blank in the field at a rate of one per every 20 samples. Prepare field blanks by filling the appropriate sample container with deionized water. Field blank analysis should mirror environmental sample analysis. Reference the QAPP to determine the need for field equipment blanks.

7.0 REF. DOCUMENTS

Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), KERAMIDA specific sampling SOPs, and KERAMIDA's Sample Container, Preservatives, and Holding Times SOP

8.0 RECORDS

N/A

9.0 REVISION HISTORY

Revision Date	Nature of Change	Review and Approval (VP Level or Higher)	Review and Approval (President)*
8/20/15	Original Issue	KGB	N/A

^{*}Reviewer and Approver at VP Level or Higher determines if SOP requires President's Review and Approval.

Responsible Personnel: All		Revision Date: 11/10/15
Name: Field QAQC Sampling Procedure	Revision Number: 0	Page 3 of 3

CREATING AND FILLING OUT A CHAIN OF CUSTODY RECORD

1.0 PURPOSE

1.1. The Chain of Custody (COC) record is an appropriate format to record important data associated with each individual sample. Normally, a COC is used to record three types of information: field information, laboratory information, and the people who handle the sample.

2.0 SCOPE

 KERAMIDA technical work product pertaining to field sampling to be sent for laboratory analysis.

3.0 MATERIALS

Chain of Custody Form Writing Utensil

4.0 RESPONSIBILITY

KERAMIDA staff or subcontractors under KERAMIDA direction engaging in sampling in the field.

5.0 **DEFINITIONS**

Chain of Custody (COC) is a written legal document used to track the transfer of a sample(s) from person to person.

A sample number is a unique number given to a sample.

6.0 PROCEDURE

6.1 Creating the COC: A COC is created for each sampling event. A COC has three sections: field information, lab information, and the signatures of the people who handle the sample. The KERAMIDA COC is a two-page carbon less copy document, consisting of a white sheet and a yellow sheet.

Responsible Personnel: All		Revision Date: 5/9/16
Name: Soil Gas Sample Collection Procedure	Revision Number: 0	Page 1 of 3

- 6.2 Field Information: The COC contains places to enter the following field information: project number, sample number, sampling date/time, sample matrix, preservatives, grab or composite sample. It is imperative that there be only one sample with a particular sample number per study number so as to prevent duplicates in EM Branch databases.
- 6.3 Laboratory Information: The COC contains places to enter the following information: selected laboratory, requested analysis, QA/QC level, detection level, requested turn-around-time, and comments to the laboratory. The laboratory will record the sample temperature on the COC at the time they take custody and sign the COC.
- 6.4 Signature: The COC contains places for all people who handle the sample(s) to sign his/her name. This is a record of persons who had custody of the sample(s) during all steps of the process from sample collection, sample storage and transport to the laboratory. There are signature lines to relinquish custody of the sample and to receive custody of the sample.
- 6.5 Filling out the chain of custody: The person collecting the sample and preparing the COC signs the COC to relinquish the sample(s) either to other KERAMIDA personnel, a courier, or when it is delivered to the laboratory. The person who transports the sample to the laboratory signs the COC last. In case there are additional steps in the process requiring another person or persons to take custody of the sample, the form has additional lines for signatures. All signatures must be in ballpoint pen and are followed by a date and time that the COC was signed. The line at the bottom of the page is provided for personnel from the laboratory to sign for receiving the sample. No erroneous information may be erased on the COC. Errors must be lined out and initialed, and the correction written in.
- 6.6 Sample Collection: The COC is initiated at the commencement of sample collection activities. If a team is involved in the collection of samples, the senior team member will assume custody responsibility including signing the COC.
- 6.7 Sample Delivery: Once the samples are delivered to the laboratory, the laboratory personnel will sign and date the next blank "received by" line located at the bottom of the COC. The laboratory will retain the white original and KERAMIDA will retain the yellow carbonless copy. The white original will be returned to KERAMIDA with the certificate of analysis.

7.0 REF. DOCUMENTS

N/A

8.0 RECORDS

N/A

Responsible Personnel: All		Revision Date: 5/9/16
Name: Soil Gas Sample Collection Procedure	Revision Number: 0	Page 2 of 3

9.0 REVISION HISTORY

Revision Date	Nature of Change	Review and Approval (VP Level or Higher)	Review and Approval (President)*
8/20/15	Original Issue	KGB	N/A

^{*}Reviewer and Approver at VP Level or Higher determines if SOP requires President's Review and Approval.

Responsible Personnel: All		Revision Date: 5/9/16
Name: Soil Gas Sample Collection Procedure	Revision Number: 0	Page 3 of 3

SOP Development, Approval and Control

1.0 PURPOSE

1.1. The purpose of this procedure is to establish methods for the development approval and control of SOPs created for internal operations at KERAMIDA.

2.0 SCOPE

2.1. Only those documents created by KERAMIDA and required for technical work product generation are covered by this SOP.

3.0 MATERIALS

Current SOP Input from staff

4.0 RESPONSIBILITY

It is the responsibility of the Managing Principal to ensure that all requirements of this procedure are carried out.

5.0 **DEFINITIONS**

N/A

6.0 PROCEDURE

- 6.1. Any personnel can request creation of or revision to an SOP document by submitting their request to their immediate supervisor.
- 6.2. Senior Project Mangers or higher level personnel will be responsible for reviewing requests, and authoring or revising SOPs. Delegation of authoring may be assigned to other personnel, but ultimate responsibility for content and quality rests with the Senior Project Manager assigned responsibility for the SOP.
- 6.3. All SOP documents will be reviewed for content legibility and format then approved for adequacy by a Vice President or higher level personnel prior to issue. The reviewer/approver at VP or higher level will determine if review and approval is required by the President. Evidence of approval will be the availability of the document in the appropriate database on the intranet system. Review and approval will also be recorded in 9.0, Revision History.

Responsible Personnel: All		Revision Date: 8/20/15
Name: SOP Development, Approval and	Revision Number: 0	Page 1 of 2
Control		

- 6.4. Once a document has been approved it will be dated and issued as a pdf in 'read only' format with an accurate file path appended to the footer of the last page of each SOP.
- 6.5. Non controlled copies will be available at needed locations.
- 6.6. All issued documents will be reviewed and reissued at least annually by a Vice President responsible for the area service being addressed by the SOP
- 6.7. Any documents no longer valid will be obsolete and removed from the database or watermarked 'obsolete'.
- 6.8. All hard copies of controlled documents of external origin will be identified and distribution will be controlled.

7.0 REF. DOCUMENTS

None

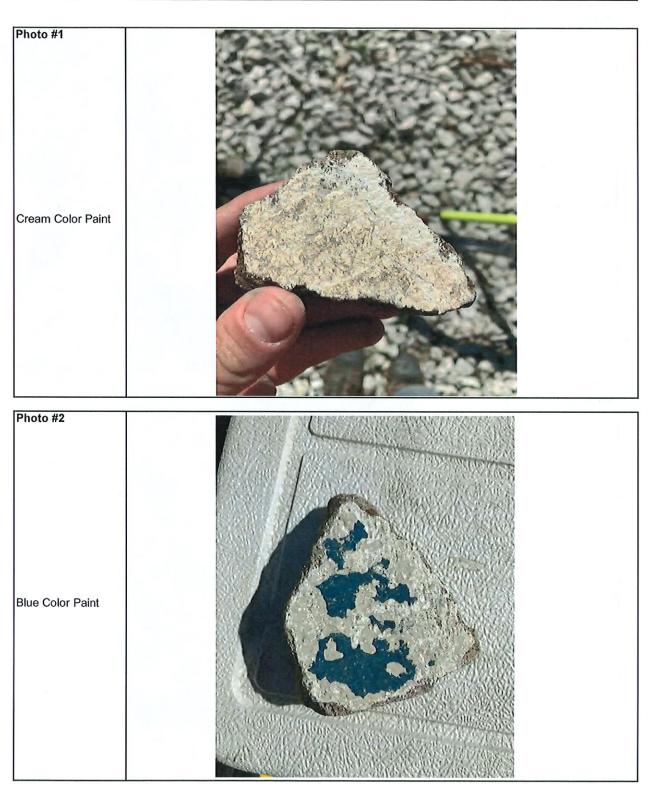
8.0 RECORDS

N/A

9.0 REVISION HISTORY

Revision Date	Nature of Change	Review and Approval (VP Level or Higher)	Review and Approval (President)*
8/20/15	Original Issue	KGB	N/A

^{*}Reviewer and Approver at VP Level or Higher determines if SOP requires President's Review and Approval.


Responsible Personnel: All		Revision Date: 8/20/15
Name: SOP Development, Approval and Control	Revision Number: 0	Page 2 of 2

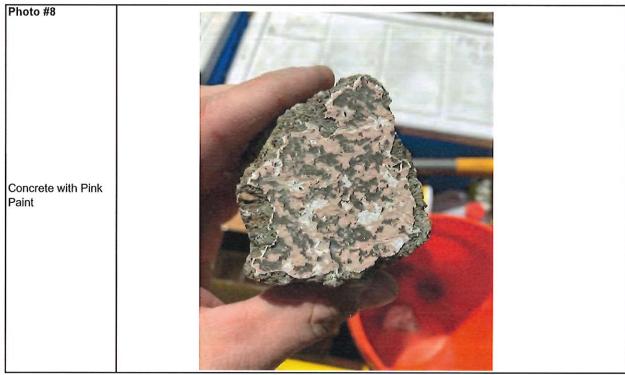
ATTACHMENT 2

PHOTOGRAPHS

Project:	Project :	#
Frost Brown Todd LLC		
Soil and Concrete Sampling	226	386

Project:	Project #
Frost Brown Todd LLC	
Soil and Concrete Sampling	22686

Project:		Project #
Frost Brown Todd LLC	1 40 2	
Soil and Concrete Sampling		22686



Project:	Project #
Frost Brown Todd LLC	
Soil and Concrete Sampling	22686

ATTACHMENT 3 LABORATORY ANALYTICAL REPORTS

May 08, 2024

Ms. Sara Guss Keramida 401 North College Avenue Indianapolis, IN 46202

RE: Proje

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372022

Dear Ms. Guss:

Enclosed are the analytical results for sample(s) received by the laboratory on May 01, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regina Bedel regina.bedel@pacelabs.com

Regina K Bill

(317)228-3100 Project Manager

Enclosures

CERTIFICATIONS

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226

Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204
Texas Certification #: T104704355
Washington Dept of Ecology #: C1081
Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372022

ab ID	Sample ID	Matrix	Date Collected	Date Received
0372022001	SS-1	Solid	04/30/24 10:25	05/01/24 12:15
0372022002	SS-2	Solid	04/30/24 10:30	05/01/24 12:15
0372022003	SS-3	Solid	04/30/24 10:35	05/01/24 12:15
372022004	SS-4	Solid	04/30/24 10:40	05/01/24 12:15
372022005	SS-5	Solid	04/30/24 10:45	05/01/24 12:15
372022006	SS-6	Solid	04/30/24 10:50	05/01/24 12:15
372022007	SS-7	Solid	04/30/24 10:55	05/01/24 12:15
372022008	SS-8	Solid	04/30/24 11:00	05/01/24 12:15
72022009	SS-9	Solid	04/30/24 11:05	05/01/24 12:15
72022010	SS-10	Solid	04/30/24 11:10	05/01/24 12:15
372022011	SS-11	Solid	04/30/24 11:15	05/01/24 12:15
372022012	SS-12	Solid	04/30/24 11:25	05/01/24 12:15
372022013	SS-13	Solid	04/30/24 11:30	05/01/24 12:15
372022014	SS-14	Solid	04/30/24 11:35	05/01/24 12:15
372022015	SS-15	Solid	04/30/24 11:40	05/01/24 12:15
72022016	DUP-1	Solid	04/30/24 08:00	05/01/24 12:15

SAMPLE ANALYTE COUNT

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50372022001	SS-1	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022002	SS-2	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022003	SS-3	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022004	SS-4	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022005	SS-5	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022006	SS-6	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022007	SS-7	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022008	SS-8	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022009	SS-9	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022010	SS-10	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022011	SS-11	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022012	SS-12	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022013	SS-13	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022014	SS-14	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022015	SS-15	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50372022016	DUP-1	EPA 6010	JPK	1	PASI-I
		SM 2540G	QAK	1	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372022

Lab Sample ID Method	Client Sample ID	Result	Unito	Donast Limit	Analimad	O116
vietnoa	Parameters		Units	Report Limit	Analyzed	Qualifiers
0372022001	SS-1					
EPA 6010	Lead	349	0 0		05/07/24 01:40	read and
SM 2540G	Percent Moisture	13.9	%	0.10	05/07/24 12:00	N2
0372022002	SS-2					
EPA 6010	Lead	169	0 0		05/07/24 01:42	
SM 2540G	Percent Moisture	19.8	%	0.10	05/07/24 12:00	N2
0372022003	SS-3					
EPA 6010	Lead	190	0 0	1.2	05/07/24 01:44	
SM 2540G	Percent Moisture	28.9	%	0.10	05/07/24 12:00	N2
0372022004	SS-4					
EPA 6010	Lead	122	0 0	1.1	05/07/24 01:45	
SM 2540G	Percent Moisture	21.4	%	0.10	05/07/24 12:00	N2
0372022005	SS-5					
EPA 6010	Lead	120	mg/kg	1.3	05/07/24 01:47	
SM 2540G	Percent Moisture	23.8	%	0.10	05/07/24 12:00	N2
0372022006	SS-6					
EPA 6010	Lead	120	mg/kg	1.3	05/07/24 01:49	
SM 2540G	Percent Moisture	25.6	%	0.10	05/07/24 12:00	N2
0372022007	SS-7					
PA 6010	Lead	123	mg/kg	1.2	05/07/24 01:51	
SM 2540G	Percent Moisture	25.2		0.10	05/07/24 12:00	N2
0372022008	SS-8					
PA 6010	Lead	11:	mg/kg	1.2	05/07/24 02:03	
SM 2540G	Percent Moisture	22.7			05/07/24 12:00	N2
0372022009	SS-9					
PA 6010	Lead	109	mg/kg	1.3	05/07/24 02:04	
SM 2540G	Percent Moisture	25.			05/07/24 12:00	N2
0372022010	SS-10					
EPA 6010	Lead	104	mg/kg	1.3	05/07/24 02:06	
SM 2540G	Percent Moisture	20.7			05/07/24 12:01	N2
0372022011	SS-11					
EPA 6010	Lead	92.9	mg/kg	12	05/07/24 02:08	
SM 2540G	Percent Moisture	24.3	• •		05/07/24 12:01	N2
0372022012	SS-12					
PA 6010	Lead	91.0	mg/kg	12	05/07/24 02:09	
M 2540G	Percent Moisture	15.8			05/07/24 12:01	N2
0372022013	SS-13					- T-
PA 6010	Lead	60.2	mg/kg	1.1	05/07/24 02:11	
SM 2540G	Percent Moisture	17.4			05/07/24 02:11	N2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50372022014	SS-14					
EPA 6010	Lead	76.3	mg/kg	1.2	05/07/24 02:18	
SM 2540G	Percent Moisture	20.0	%	0.10	05/07/24 12:01	N2
50372022015	SS-15					
EPA 6010	Lead	80.3	mg/kg	1.1	05/07/24 02:20	
SM 2540G	Percent Moisture	17.3	%	0.10	05/07/24 12:01	N2
50372022016	DUP-1					
EPA 6010	Lead	76.0	mg/kg	1.1	05/07/24 02:21	
SM 2540G	Percent Moisture	19.8	%	0.10	05/07/24 12:01	N2

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372022

Date: 05/08/2024 12:53 PM

•									
Sample: SS-1	Lab ID: 503	72022001	Collected: 04/30/2	4 10:25	Received: 05	6/01/24 12:15 I	Matrix: Solid		
Results reported on a "dry weight"	' basis and are adj	usted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Meth	od: EPA 601	O Preparation Meth	nod: EP	A 3050				
	Pace Analytica	Services -	ndianapolis						
Lead	345	mg/kg	1.1	1	05/05/24 16:18	05/07/24 01:40	7439-92-1		
Percent Moisture	Analytical Method: SM 2540G								
	Pace Analytica	Services -	ndianapolis						
Percent Moisture	13.9	%	0.10	1		05/07/24 12:00		N2	

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Parameters

Sample: SS-2 Lab ID: 50372022002

Report Limit

Collected: 04/30/24 10:30 Received: 05/01/24 12:15

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Analyzed

CAS No.

Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Pace Analytical Services - Indianapolis

Units

Lead

169 mg/kg 1.1

DF

Prepared

05/05/24 16:18 05/07/24 01:42 7439-92-1

19.8

Results

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/08/2024 12:53 PM

Percent Moisture

%

0.10 1 05/07/24 12:00

N2

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372022

Date: 05/08/2024 12:53 PM

Sample: SS-3	Lab ID: 50	372022003	Collected:	04/30/2	4 10:35	Received: 05	5/01/24 12:15	Matrix: Solid	
Results reported on a "dry v	weight" basis and are a	djusted for p	ercent moist	ure, sa	mple si	ize and any dilut	tions.		
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP		ethod: EPA 60 cal Services -		on Meth	od: EP/	A 3050			un es
Lead	190	mg/kg		1.2	1	05/05/24 16:18	05/07/24 01:44	7439-92-1	
Percent Moisture		Analytical Method: SM 2540G Pace Analytical Services - Indianap							
Percent Moisture	28.5	%		0.10	1		05/07/24 12:00		N2

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Sample	55-4

50372022

SS-4	Lab I

ID: 50372022004

Collected: 04/30/24 10:40 Received: 05/01/24 12:15 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters**

Results

Units

Report Limit

Prepared

Analyzed

CAS No.

Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Pace Analytical Services - Indianapolis

Lead

122

21.4

05/05/24 16:18 05/07/24 01:45 7439-92-1

Percent Moisture

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/08/2024 12:53 PM

mg/kg

0.10

05/07/24 12:00

N2

N2

05/07/24 12:00

ANALYTICAL RESULTS

Project:

Percent Moisture

Date: 05/08/2024 12:53 PM

22686 FBT-Soil + Concrete

23.8

Pace Project No.: 50372022

Sample: SS-5	Lab ID: 503	72022005	Collected: 04/3	0/24 10:	45 Received: 05	5/01/24 12:15 N	Matrix: Solid	
Results reported on a "dry weig	tht" basis and are ad	justed for per	rcent moisture,	sample	size and any dilu	tions.		
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met Pace Analytica		0 Preparation M	ethod: E	PA 3050			
Lead	120	mg/kg	1	3 1	05/05/24 16:18	05/07/24 01:47	7439-92-1	
Percent Moisture	Analytical Met Pace Analytica							

0.10

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Sample: SS-6

Lab ID: 50372022006

Collected: 04/30/24 10:50 Received: 05/01/24 12:15

Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Results

Units

Report Limit

Prepared

Analyzed

CAS No.

Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Pace Analytical Services - Indianapolis

Lead

120

25.6

mg/kg

1.3

05/05/24 16:18 05/07/24 01:49 7439-92-1

Percent Moisture

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/08/2024 12:53 PM

Parameters

0.10

05/07/24 12:00

N2

N2

05/07/24 12:00

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

25.2

Pace Project No.: 50372022

Percent Moisture

Date: 05/08/2024 12:53 PM

Sample: SS-7	Lab ID: 503	72022007	Collected: 04/	0/24 1	0:55	Received: 05	/01/24 12:15	Matrix: Solid	
Results reported on a "dry weig	ht" basis and are ad	justed for per	cent moisture	samp	le si	ize and any dilut	ions.		
Parameters	Results	Units	Report Lim	t D	F	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP		hod: EPA 6010 al Services - In		1ethod:	: EPA	A 3050			
Lead	123	mg/kg	1	.2	1	05/05/24 16:18	05/07/24 01:5	1 7439-92-1	
Percent Moisture	•	Analytical Method: SM 2540G Pace Analytical Services - Indianapolis							

0.10

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Parameters

Sample: SS-8

Lab ID: 50372022008

Collected: 04/30/24 11:00 Received: 05/01/24 12:15 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Results

Units

Report Limit

Prepared

Analyzed

CAS No.

Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Pace Analytical Services - Indianapolis

Lead

113 mg/kg

22.7

05/05/24 16:18 05/07/24 02:03 7439-92-1

Percent Moisture

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/08/2024 12:53 PM

%

0.10

05/07/24 12:00

N2

N₂

05/07/24 12:00

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

25.1

Pace Project No.: 50372022

Percent Moisture

Date: 05/08/2024 12:53 PM

Sample: SS-9	Lab ID: 503	372022009	Collected: 04/30/2	24 11:05	Received: 05	5/01/24 12:15 M	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are ad	justed for pe	rcent moisture, s	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met Pace Analytic		Preparation Met ndianapolis	hod: EP	A 3050			
Lead	105	mg/kg	1.3	1	05/05/24 16:18	05/07/24 02:04	7439-92-1	
Percent Moisture		Analytical Method: SM 2540G Pace Analytical Services - Indianapolis						

0.10

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Parameters

Sample: SS-10

Lab ID: 50372022010

Results

Collected: 04/30/24 11:10 Received: 05/01/24 12:15 Matrix: Solid

Prepared

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Report Limit

DF

Analyzed

CAS No.

Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Pace Analytical Services - Indianapolis

Units

Lead

104 mg/kg

1.3

05/05/24 16:18 05/07/24 02:06 7439-92-1

Percent Moisture

Analytical Method: SM 2540G

20.7

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/08/2024 12:53 PM

0.10

05/07/24 12:01

N₂

N2

05/07/24 12:01

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

24.3

Pace Project No.: 50372022

Percent Moisture

Date: 05/08/2024 12:53 PM

Sample: SS-11	Lab ID: 503	72022011	Collected: 04/3	/24 11:1	5 Received: 05	5/01/24 12:15	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are ad	justed for pe	rcent moisture,	sample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me Pace Analytic		0 Preparation M	ethod: EF	PA 3050			
Lead	92.9	mg/kg	1.	! 1	05/05/24 16:18	05/07/24 02:08	3 7439-92-1	
Percent Moisture	Analytical Me Pace Analytic							*

0.10

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Parameters

Sample: SS-12

Lab ID: 50372022012

Collected: 04/30/24 11:25 Received: 05/01/24 12:15

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Results

Units

Report Limit

Prepared

Analyzed

CAS No.

Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Pace Analytical Services - Indianapolis

Lead

91.0

15.8

mg/kg

%

1.2

05/05/24 16:18 05/07/24 02:09 7439-92-1

Percent Moisture

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/08/2024 12:53 PM

0.10

05/07/24 12:01

N2

N2

05/07/24 12:01

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

17.4

Pace Project No.: 50372022

Percent Moisture

Date: 05/08/2024 12:53 PM

Sample: SS-13	Lab ID: 503	72022013	Collected: 04/30/	24 11:30	0 Received: 05	/01/24 12:15	Matrix: Solid	
Results reported on a "dry weight	ght" basis and are ad	justed for pe	rcent moisture, s	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met		0 Preparation Met	thod: EF	PA 3050			
Lead	60.2	mg/kg	1.1	1	05/05/24 16:18	05/07/24 02:1	1 7439-92-1	
Percent Moisture	Analytical Mel							

0.10

N2

05/07/24 12:01

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

20.0

Pace Project No.:

Percent Moisture

Date: 05/08/2024 12:53 PM

50372022

Sample: SS-14	Lab ID: 503	72022014	Collected: 04/30/2	24 11:3	5 Received: 05	/01/24 12:15 N	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	ions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met Pace Analytic		Preparation Met ndianapolis	hod: Ef	PA 3050			
Lead	76.3	mg/kg	1.2	1	05/05/24 16:18	05/07/24 02:18	7439-92-1	
Percent Moisture	Analytical Me Pace Analytic							

0.10

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372022

Date: 05/08/2024 12:53 PM

Sample: SS-15	Lab ID: 503	72022015	Collected: 0	4/30/2	4 11:40	Received: 05	/01/24 12:15	Matrix: Solid	
Results reported on a "dr	y weight" basis and are adj	usted for pe	ercent moistu	ire, sai	mple si	ize and any dilut	ions.		
Parameters	Results	Units	Report L	imit_	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met Pace Analytica		**************************************	n Meth	od: EP/	A 3050			
Lead	80.3	mg/kg		1.1	1	05/05/24 16:18	05/07/24 02:20	7439-92-1	
Percent Moisture	Analytical Met Pace Analytica								
Percent Moisture	17.3	%		0.10	1		05/07/24 12:01		N2

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

Sample: DUP-1

Lab ID: 50372022016

Report Limit

Collected: 04/30/24 08:00 Received: 05/01/24 12:15 Matrix: Solid

Prepared

CAS No.

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

DF

Analyzed

Qual

Parameters 6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Pace Analytical Services - Indianapolis

Units

Lead

76.0

19.8

Results

mg/kg

1.1

05/05/24 16:18 05/07/24 02:21 7439-92-1

Percent Moisture

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/08/2024 12:53 PM

0.10

05/07/24 12:01

N2

QUALITY CONTROL DATA

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

QC Batch:

788025

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372022008, 50372022009, 50372022010, 50372022011, 50372022012, 50372022013, 50372022014,

50372022001, 50372022002, 50372022003, 50372022004, 50372022005, 50372022006, 50372022007,

50372022015, 50372022016

METHOD BLANK: 3604892

Matrix: Solid

Associated Lab Samples:

50372022001, 50372022002, 50372022003, 50372022004, 50372022005, 50372022006, 50372022007, 50372022008, 50372022009, 50372022010, 50372022011, 50372022012, 50372022013, 50372022014,

50372022015, 50372022016

Parameter

Units

Reporting

Limit

Analyzed

Qualifiers

Lead

Lead

Lead

mg/kg

Units

mg/kg

ND

Blank

Result

1.0 05/07/24 01:35

LABORATORY CONTROL SAMPLE: 3604893

Parameter

mg/kg

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3604894

123

61.3

3604895

47.9

169

96

MSD

80-120

% Rec

Max

RPD Qual

50372022007 Parameter Units Result

MS Spike

Conc.

60.8

MSD

Spike Conc.

50

MS Result 185

MSD Result

MS % Rec

% Rec 102

Limits 75 75-125 **RPD**

9 20

Date: 05/08/2024 12:53 PM

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

QC Batch:

788478

Analysis Method:

SM 2540G

QC Batch Method:

SM 2540G

Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372022001, 50372022002, 50372022003, 50372022004, 50372022005, 50372022006, 50372022007, 50372022008, 50372022009, 50372022010, 50372022011, 50372022012, 50372022013, 50372022014, 5037202014, 503720202014, 50372022014, 5037202014, 5037202014, 5037202014, 5037202014, 5037202014, 5037202014, 5037202014, 5037202014, 5037202014, 5037202014, 5037202014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 50372002014, 5

Units %

50372022015, 50372022016

SAMPLE DUPLICATE:

Date: 05/08/2024 12:53 PM

Percent Moisture

Parameter

3606867

50372022007	Dup		Max	
Result	Result	RPD	RPD	Qualifiers
25.2	25.2	0	10	N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372022

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/08/2024 12:53 PM

N2

The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372022

Date: 05/08/2024 12:53 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
50372022001	SS-1	EPA 3050	788025	EPA 6010	788427
50372022002	SS-2	EPA 3050	788025	EPA 6010	788427
50372022003	SS-3	EPA 3050	788025	EPA 6010	788427
50372022004	SS-4	EPA 3050	788025	EPA 6010	788427
50372022005	SS-5	EPA 3050	788025	EPA 6010	788427
50372022006	SS-6	EPA 3050	788025	EPA 6010	788427
50372022007	SS-7	EPA 3050	788025	EPA 6010	788427
50372022008	SS-8	EPA 3050	788025	EPA 6010	788427
50372022009	SS-9	EPA 3050	788025	EPA 6010	788427
50372022010	SS-10	EPA 3050	788025	EPA 6010	788427
50372022011	SS-11	EPA 3050	788025	EPA 6010	788427
50372022012	SS-12	EPA 3050	788025	EPA 6010	788427
50372022013	SS-13	EPA 3050	788025	EPA 6010	788427
50372022014	SS-14	EPA 3050	788025	EPA 6010	788427
50372022015	SS-15	EPA 3050	788025	EPA 6010	788427
50372022016	DUP-1	EPA 3050	788025	EPA 6010	788427
50372022001	SS-1	SM 2540G	788478		
50372022002	SS-2	SM 2540G	788478		
50372022003	SS-3	SM 2540G	788478		
50372022004	SS-4	SM 2540G	788478		
50372022005	SS-5	SM 2540G	788478		
50372022006	SS-6	SM 2540G	788478		
50372022007	SS-7	SM 2540G	788478		
50372022008	SS-8	SM 2540G	788478		
50372022009	SS-9	SM 2540G	788478		
50372022010	SS-10	SM 2540G	788478		
50372022011	SS-11	SM 2540G	788478		
50372022012	SS-12	SM 2540G	788478		
50372022013	SS-13	SM 2540G	788478		
50372022014	SS-14	SM 2540G	788478		
50372022015	SS-15	SM 2540G	788478		
50372022016	DUP-1	SM 2540G	788478		

CHAIN OF CUSTODY RECORD

WO#:50372022

Project No.	Project Name					,									Λ	nalyses]	
00.444	Project Name FBT -	Soil A	Coner	te	5.,	mple	^					T	T		Т	TT			T	1	
22686	Reportion SAFA (V 44									i								İ	MATRIX	.]
Sampled by: KERA	MIDAInc	Sapplers P	tim & Sign	11)				, ,			-	1								SW	`[
Bruste	minami.		Kyle	K	[Ferry	, f	4	مار	_			000	1							GW WW	
QA/QC Levil		Project St	are: IA)							7	9								Soil	Communats
Detection Level:	Ra	Insta Zor	, F<7			٠.,	al Ta	epe of	Coo	at inc	.	-								Air Waste	
Ditternal Lette.		1		Ϊ	T	Ħ		Ť	Ì	71	٦	CCC				1 1			1	Oil	
		l		ρ.			اک	3	ž	5		Y]
Sample 1	D/Description	Date	Time	Semi	Gmb	덮	Ž	H.SO.	ŝ	Capres	ăl								-		
55-		13.2	-		1	m				ī	- 1	1								301	001
55-7	3	11	1030							1		1									002
55.3)		1035	Π	V	П	\exists			1		7						П	Τ	П	003
55-6	-1	П	140						1	(\top					Π	004
55 - 5	-	П	045		V		\neg		T	t	1	7			T						005
55.L		11	เบรบ		./					ì	1	7							_		006
55.7		17	1655		V				5	3	1	7								TT -	MS/MS) 007
35- 8		17	Iku		$\overline{\mathcal{I}}$				1	1	1	7				11					008
55-9	·		1105		V			_ -		ī	1,	7		П	T	\Box	1				009
5's - 10		17	1110		J			_				7				17	17.0000				010
Š\$-1(1115				\neg	\neg	1	T	7	7	1		\neg					<u> </u>	011
\$5-10			1135		7					i	1	7	\Box	П	_ _						012
55 1	3	V	1130		V							7	1-			11			1	1	013
Relinquished by: S		174	Received	15	ign/f	Jate/	Lung	L :	91	24	Ti	Celinop	ishrd	ny: S	ត្ត្រា/ស	re/Tie		S	/i/2 /2	7	Received feat July Sego/Date/Timer 5/11/2-1
KN 12			12 J		P		4	40	~	u^{t}	1	1	<u>/-</u> -		10		Ma	46	/2	15	M Ma - 1213
Relinquished by: S	gn/Date/Time		Received	by: S	Nage)με/`	Time				ľ	telinqı	ished	hya S	gu/D.	te/Tiu-	e (Received for Lab: Sign/Date/Titue
	· •	I) No me	ोहर्च एक्ट	itanic	ar will	Берн	erlor	Lan	ny ste	e lab	prati	.y wit	hout h	FRA	MIDA	's aud.o	niratio	<1			Sumple Condition: Bestle Intact) Yes/No
1.31. N. 18		 Please (If analy 															maedi	welv			Fidd Filtered: Yes/No COU Scals Present & Intact? Yes/No
na nac 51-		4) Hecqu	oust dans																		VOC Free of Hestique) Yes/No See
Requestof analysis f Field / Lab (circle		Other Rei	marks.																		YOC Preservall YedNo 5CHR Temperature upon Receipt: Sumples on ice? YedNo

CHAIN OF CUSTODY RECORD

sheri Qof_Q

Project No. Project Nam	° 12-									******	I				٨	alyse	٠,										
22641	* F67 - 5	zil r	Conn	·(c	5.	107	ردا				Γ	Γ		T		1											
4-400 Wayne	CON G	~~45	5																	1	ŀ	ATRIX					
Sampled by: KERAMID Show	5	uplear Tr	Zr & Sign	1/		1/	1	1/			0			- 1								SW GW					
Brigher	12/		Kyle	Krai	mer	14	し				3					1						W.W.		Сэван	rate		
δγ∖δετε <u>γε</u> <u>Τ</u> ΩΣ	ľ	roject Sta	w.LA]3			- 1								Soil Air		1. V P. (1)			
Detection Level: R2	1	ime Zoni	Es	7		1 418	diye	sof C	entai	ners												Waste					
				1		П			3,65	Γ	1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00											Oil					
				Comp	井	HC	ģ ģ	S N.	prexe	Other	1			1							1						
Sample ID/Description		Date	Time DO=	ů	Ö	[티	토		:5	Ó	١,	-	\vdash				-	-	-		-	ا ن				Λ.	14
55-14	fi	30.24			1	-		1	1	_	۲	-	$\vdash \vdash$	-		-	+-		\vdash		-	<u>' نو</u>				0.	
55-15			11340	_	✓,	∤┈┼		4	4	ļ	K	<u> </u>	-			- -	-		-								16
DUP-1		V_{-}			~	\sqcup	-	4	11	-	Ľ	 	\sqcup			-	 	-				~					
						-	_ _	-	 _	-	-				4	- -	-	-			-						
						-	_	-			-		\vdash	+		- -	-	-									
						-		-	1	-	-	\vdash		\dashv		-	-	-			+						
						\vdash	- -	+	1	-	 	-			+		-	\vdash									
								-	-	 -	 	-	\sqcup	-		-	+	\vdash									
						\sqcup		٠	-	 	ــ	-						-	$\left - \right $				ļ				
A VI. TAN A VII. TAN A VI.						\square			-	_	-	\vdash		-			-	ļ			+						
						-	- -	- -	\vdash	-	-	╁			- -	-		-	$\vdash \vdash$								
		-		\vdash		\square	- -	+	-	-	-	-				+	-	-			_						
Relinquished by: Sign/Date/Tir	11° 5/1/31		Regions	by: S	iou/t)arc/1	ine	٦,	10	21	Rel	I.	100	n: S	igg/D	ate/1	inte	1		ζ	7,1	24	Received for Lab:	Ng1/Dat	e/Timr		
Vel K		7	Herived — C	Ĩr	5	7		Pa	6.0	7				-					Pa	ر	2	1215	Received for Late		5/1/24	123	3
Relinquished by: Sign/Date/Tit			Received					1						ŋ: S	ξn/D	ate/T	ime		 				Received for Lab:				-
Lab Nome: PACE	i) 2\	No nat	had substratily KE	(Autio	n wil IDA∃	libe pe	rform	al by	the l	alsais Birti	Story Sand	scish de de	out K	TRA	MID/	Vs 40 tion	thoria	zatios	1				Sample Condition:		mass? Yes. trred? Yes		
Due Date: 51 anderd LAT		If analy	sis cannot	bece	orduc	ted wi	thin re	quire	dia	hing	tim?	i, ole	ase no	aify 1	ŒRA	MID,	A intr	nedia	ıcly				COC Scale Present VOC Free of Hea	& Inter) Yes/Ne		
Respected analysis filter type:	<u> </u>) Meeguz War Ren	ued detec uatks:	tion	anits	Ome	d be ac	hieve	d, pl	341	Outac	R Kl	KASI	шэх	butte	anie	<u>Y</u>	~~~					VOC Preservid?	Yo/Ne		Sec	
Field / Lab (circle one)																							Lemperature upon Samples on ice?			SCUI	۲,

T-1N-Q-290 rev.26, 30Apr2024

Pace

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and initials of person examining contents	s: [137M	5///	1/24 19:13			
1. Courier: EIFED EX EUPS EDLIENT VIPACE				🗍 Βսնե	le Bags	
2. Custody Seal on Cooler/Box Present: Yes	□ No		, [None	L) Other		
(If yes)Seals Intact:		were prese	ent) 6. Ice Type: Wet 🗆 Blue 🗔 Non-			
3. Thermometer: 12345678 A(B)CD			7. Was the PM notified of out of temp cooler?:	□yes	ONo	
4. Cooler Temperature(s): [n.6/0.7]			Cooler temp should be above freezing to 6°C			
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECE	IVED (use Co	mments belo	w to add more) 8. EZ Bottle Order? Liyes MNo			
			If yes but not on COC what Is the EZ Bottle Order Number?:			
All	discrepand	ies will be	written out in the comments section below.			
#B	Yes	No		Yes	No	N/A
USDA Regulated Solls? (HJ, ID, NY, WA, OR,CA, NM, TX, DK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		X	All containers needing acid/base preservation have been pH <u>CHECKED</u> ? Exceptions: VOA, coliform, LLHg, OSG, RAD CHEM, and any container with a septum cap or preserved with HCI.			
Short Hold Time Analysis (48 hours or less)? Analysis:		×	Ctrote: HN03 (<2) H2S04 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form			>
ime 503SA TC placed in Freezer or Short Holds To Lab	Time:	I	Volt 18 de la constant de la constan	Present	Absent	N/A
			Residual Chlorine Check (SVOC 625 PesUPCB 608)			X
ush TAT Requested (4 days or less):		X	Residual Chlorine Check (Total/Amenable/Free Cyanide)			×
Custody Signatures Present?	У		Headspace Wisconsin Sulfide?			>
Containers Inlact?	X		Headspace in VOA Vials (>6mm): See Containter Count form for details	<u> Freser:</u>	Atsent	La VOA Valb Sees
ample Label (IDs/Dates/Times) Match COC? scept Tos, which only require sample ID	<u>\</u>		Trip Blank Present?		X	
xtra labels on Terracore Vials? (soils only)	/-		Trip Blank Custody Seals?			
OMMENTS:						
ARTON			A calculation and the calc			
						Pag
AND CONTRACTOR OF THE PROPERTY						

Sample Container Count

" Place a RED dot on containers that are out of conformance "

			DAOH (only) SBS		-	l				AMB	ER G	LASS						PL	.AST	IC					ОТН	IER				Sodum Hydroxida Green	Sedum Hydroddu ZrAc Black
COC Line Item	WGFU	WGKU 8G1U	D) R	DG9H VG9H	VOA VIAL IIS >6mm	VG9U DG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	BP3U	BP3N	8P3F	8638	8648	BP3Z	сезн	CG3F	Synnge Kit			 H2SO4 42		NaOiVZn Ac>9.
1	1															1												SL	 		
2																												1	 	l	
3																											Ш			ļ	
4																												Ш	 	<u> </u>	
5	_																											Ш	 		
6	٧	<u> </u>																										\perp	 		
7)																											\perp	 		
8																										_	Щ	1	 	<u> </u>	
9																												Ш	 		
10	L.																									L				ļ	
11	Ц																											\perp		ļ	
12					i]																l					L	\perp		L	
13 [V I	!																										(J			

Container	Codes

	Glass												
DG9+1	40mL HCl amber voa vial	BG1T	g'ass										
DG9P	40mt TSP amber vial	BGIU	11. unpreserved glass										
DG9S	40ml. H2SO4 amber vial	CG3U	250mL Unpres Clear Glass										
DG9T	40mt. Na Thio amber vial	AGOU	100ml, unpres ember glass										
DG9U	40mL unpreserved amber vial	AG1B	1L HCI ember glass										
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass										
VG9T	40mt. Na Thio. clear vial	AG1T	1L Ha Thiosufale amber glass										
VG9U	40mL unpreserved clear vial	AGIU	1lter unpres amber glass										
1	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass										
MGKL	Boz unpreserved clear jar	AG25	500mL H2SO4 amber glass										
₩GFU	4oz clear solt jar	AG2U	500ml unpresember glass										
JGFU	4oz unpreserved amber wide	AG3S	250mL H2\$O4 amber glass										
сөзн	250mL clear glass HCI	AG3SF	25/mil. 1025/04 emb glass -Bold fittered										
CG3F	250mL clear glass HCI, Field Filter	AG3U	250mL unpres amber glass										
BG1H	1L HCI dear glass	AG38	250mL NaOH amber glass										
BOIS	IL H2SO4 clear glass												

			Plastic
8P18	1L NaOH plastic	9P4L	125mL unpreserved plastic
BPIN	1L HNO3 plastic	GP4I	125mL HNO3 plastic
BP1S	1l. H2SO4 plastic	BP49	125mt. H2SO4 plastic
æω	11. unpreserved plastic		Miscellaneous
3P 1Z	1L NaOH, Zn, Ac	Ι.	Miscenaneous
P2N	500mL HNO3 plastic	Sylin	gs Kit LL Cr+6 sampling kit
P2C	500mL NaOH plastic	ZPLO	Ziploc Bag
P25	500ml. H2SO4 plastic	R	Terracore Kil
P2U	500mL unpreserved plastic	SP51	120mL Coliform Sodium Thiosulfate
PZZ	500mt NaOH, Zn Ac	GN	General Container
38	250mL NaOH plastic	Ų,	Summa Can (sir sample)
	250mt. HNO3 plastic	WT	Water
35	250mL HNO3 plastic field filtered	SL	Solid
3U	250ml, unpreserved plastic		
35	250mL H2SO4 plastic	NAL.	Non-aqueous liquid
32	250mL NaOH, ZnAc plastic	WP	Wipe
P3R	250mL Unpres. FF SO4/OH buffer		

F-IN-Q-270-rev.18, 26Jun2023

Page 30 of 31

COC	PAGE	2	of	2
COC	PAGE	L	of	-

Sample Container Count

" Place a RED dot on containers that are out of conformance "

																												NAMES AND POST OFFICE ADDRESS OF THE PARTY O	**************************************	Summanuscones,	THE PROPERTY OF
			Mion (mb) SBS															-										Haric	Sulfuric	Socium Hydrodda	Bodum Hydrawida/ ZnAc
			DI		VOA					AME	ER G	LASS						PI ,	LAST	iiG						HER.		Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	НЭЭЛ УСВН	VIAL HS >6mm	VGSU	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BPZU	вьзп	BP3N	8P3F	BP3S	8538	BP3Z	CG3H	CG3F	Synnge Kr	Watrix	⊬8¥03 <2	H2504 <2	NaOH >10	NaOH/Zn Ac>9
1	1																										ςL				
2							Ĺ																				1				
3	\mathbb{V}																										7				
4																															
5			<u> </u>											<u> </u>																	
8	<u> </u>							<u> </u>											_												
7	<u> </u>			<u> </u>				<u> </u>																							
8							<u> </u>						<u> </u>																		
8	<u> </u>													<u> </u>																	
10																															
11																											_[
12																ı							ļ	l	ĺ		- 1	- 1	-	ļ	

Container Codes

	Gla	188	
DG9H	40mL HCl amber you vial	BGIT	g'ass
DG9P	40mL TSP amber vist	BG1U	IL unpreserved glass
DG95	40mL H2SO4 amber val	CG3U	250mt Unpres Clear Glass
DG91	40mL Na Thio amber vial	AGOU	100mt unpres amber glass
D/39U	40mL unpreserved amber vial	AG1H	1L HCI amber glass
VG9H	40mt. HCl clear vial	AG18	1L H2SO4 ember glass
VG9T	40mt. Na Thio, clear vist	AGIT	1L Na Thibsulfate amber glass
VG9U	40mt, unpreserved clear vial	AGIU	1Her unixes amber glass
1	40mL w/nexane wipe val	AG2N	500mL HNO3 amber glass
MGKL	Boz unpreserved clear jar	AG25	600mt H2SO4 amber glass
NGFL	4oz dest soil jar	AG2U	600mL unpres ember glass
J3FU	4oz unpreserved amber wide	AG35	250mt H2SO4 amber glass
ССЗН	250mt. clear glass HCI	AG3SF	250mL H2SC4 amo glass sala falarea
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass
BG 111	1L HCI clear glass	AG38	250/nL NaOH amber glass
BOIS	IL H2SO4 clear glass		**************************************

		Plastic
BPIB 1L NaOH plastic	⊕P4L	125ml, unpreserved plastic
BPIN 11. HNO3 plastic	3P47	125mL HNO3 plastic
BP1S 1L H2SO4 plastic	3P45	125mL H2SO4 plastic
BP10 1L unpreserved plastic	Г	Miscellaneous
BPIZ 1L NaOH, Zn, Ac	<u> </u>	
BP2N 500mL HNO3 plastic	Smin	ы Ка LL Cr+6 sampling klt
BP2C 500mL NaOH plastic	ZPLO	Ziploc Bag
8P2S 500mL H2SO4 plastic	R	Terracore Kit
8920 500mL unpreserved plastic	SP6T	120mt. Coliform Sodium Thiosulfate
BP2Z 500mt. NaOH, Zn Ac	GN	General Container
8P39 250mL NaOH plastic	U	Summa Can (air sample)
BP3N 250mL HNO3 plastic	WT	Water
Bp3p 250mt HNO3 plastic field fittered	SL	Solid
BP3U 250mL unpreserved plastic	OL:	Oil
BP3S 250mL H2SO4 ptastic	NAL	Non-aqueous liquid
BP3Z 250ml NaOH, ZnAc plastic	WP	eciW
BP3R 250mt Unpres FF SO4/OH buffer		

Page 31 of 31

May 10, 2024

Ms. Sara Guss Keramida 401 North College Avenue Indianapolis, IN 46202

RE:

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Dear Ms. Guss:

Enclosed are the analytical results for sample(s) received by the laboratory on May 02, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: · Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regina Bedel

regina.bedel@pacelabs.com

Rezina K Bill

(317)228-3100 Project Manager

Enclosures

CERTIFICATIONS

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177

Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019

Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204

Texas Certification #: T104704355

Washington Dept of Ecology #: C1081

Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119

USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
50372127001	CS-1	Solid	04/30/24 13:45	05/02/24 15:40	
50372127002	CS-2	Solid	04/30/24 17:00	05/02/24 15:40	
50372127003	CS-3	Solid	05/01/24 09:35	05/02/24 15:40	
50372127004	CS-4	Solid	05/01/24 09:40	05/02/24 15:40	
50372127005	CS-5	Solid	05/01/24 09:45	05/02/24 15:40	
50372127006	CS-6	Solid	05/01/24 09:50	05/02/24 15:40	
50372127007	CS-7	Solid	05/01/24 09:52	05/02/24 15:40	
50372127008	CS-8	Solid	05/01/24 09:54	05/02/24 15:40	
50372127009	CS-9	Solid	05/01/24 09:56	05/02/24 15:40	
50372127010	CS-10	Solid	05/01/24 10:00	05/02/24 15:40	
50372127011	CS-11	Solid	05/01/24 10:05	05/02/24 15:40	
50372127012	CS-12	Solid	05/01/24 10:40	05/02/24 15:40	
50372127013	CS-13	Solid	05/01/24 10:45	05/02/24 15:40	
50372127014	CS-14	Solid	05/01/24 11:05	05/02/24 15:40	
50372127015	CS-15	Solid	05/01/24 11:20	05/02/24 15:40	
50372127016	CS-16	Solid	05/01/24 11:25	05/02/24 15:40	
50372127017	CS-17	Solid	05/01/24 14:28	05/02/24 15:40	
50372127018	CS-18	Solid	05/01/24 14:35	05/02/24 15:40	
50372127019	CS-19	Solid	05/01/24 14:40	05/02/24 15:40	
50372127020	CS-20	Solid	05/01/24 14:20	05/02/24 15:40	
50372127021	Dup-1	Solid	05/01/24 08:00	05/02/24 15:40	

SAMPLE ANALYTE COUNT

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50372127001	CS-1	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I
		EPA 7471	EAE	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		SM 2540G	QAK	1	PASI-I
50372127002	CS-2	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I
		EPA 7471	EAE	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		SM 2540G	QAK	1	PASI-I
50372127003	CS-3	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I
		EPA 7471	EAE	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		SM 2540G	QAK	1	PASI-I
50372127004	CS-4	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I
		EPA 7471	EAE	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		SM 2540G	QAK	1	PASI-I
50372127005	CS-5	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I
		EPA 7471	EAE	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		SM 2540G	QAK	1	PASI-I
50372127006	CS-6	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I
		EPA 7471	EAE	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		SM 2540G	QAK	1	PASI-I
50372127007	CS-7	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I
		EPA 7471	EAE	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		SM 2540G	QAK	1	PASI-I
50372127008	CS-8	EPA 8082	BJW	8	PASI-I
		EPA 6010	JPK	7	PASI-I

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab ID	Sample ID	1001	Method	Analysts	Analytes Reported	Laboratory
		parties -	EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127009	CS-9		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127010	CS-10		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127011	CS-11		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127012	CS-12		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127013	CS-13		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127014	CS-14		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127015	CS-15		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

Lab ID	Sample ID		Method	Analysts	Analytes Reported	Laboratory
H		 -	SM 2540G	QAK	1	PASI-I
50372127016	CS-16		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127017	CS-17		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127018	CS-18		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127019	CS-19		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127020	CS-20		EPA 8082	BJW	8	PASI-I
			EPA 6010	JPK	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I
50372127021	Dup-1		EPA 8082	BJW	8	PASI-I
			EPA 6010	NWB	7	PASI-I
			EPA 7471	EAE	1	PASI-I
			EPA 8270 by SIM	JCM	20	PASI-I
			SM 2540G	QAK	1	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50372127001	CS-1					
EPA 6010	Arsenic	5.3	mg/kg	1.1	05/07/24 00:22	
EPA 6010	Barium	51.0	mg/kg	1.1	05/07/24 00:22	
EPA 6010	Chromium	18.4	mg/kg	1.1	05/07/24 00:22	
EPA 6010	Lead	4.7	mg/kg	1.1	05/07/24 00:22	
EPA 8270 by SIM	Chrysene	0.0056	mg/kg	0.0053	05/08/24 18:16	
EPA 8270 by SIM	Phenanthrene	0.0060	mg/kg	0.0053	05/08/24 18:16	
SM 2540G	Percent Moisture	5.6	%	0.10	05/09/24 11:48	N2
50372127002	CS-2					
EPA 6010	Arsenic	5.1	mg/kg	0.91	05/07/24 00:24	
EPA 6010	Barium	56.1	mg/kg	0.91	05/07/24 00:24	
EPA 6010	Chromium	10.9	mg/kg	0.91	05/07/24 00:24	
EPA 6010	Lead	3.0	mg/kg	0.91	05/07/24 00:24	
EPA 8270 by SIM	Acenaphthylene	0.0059	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Anthracene	0.0061	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Benzo(a)pyrene	0.0092	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Benzo(b)fluoranthene	0.014	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Benzo(g,h,i)perylene	0.016	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Chrysene	0.020	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Fluoranthene	0.0072	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Fluorene	0.0069	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Phenanthrene	0.019	mg/kg	0.0052	05/08/24 18:31	
EPA 8270 by SIM	Pyrene	0.013	mg/kg	0.0052	05/08/24 18:31	
SM 2540G	Percent Moisture	4.1	%	0.10	05/09/24 11:48	N2
0372127003	CS-3					
EPA 6010	Arsenic	5.0	mg/kg	0.93	05/07/24 00:25	
EPA 6010	Barium	56.3	mg/kg	0.93	05/07/24 00:25	
EPA 6010	Chromium	17.0	mg/kg	0.93	05/07/24 00:25	
EPA 6010	Lead	4.5	mg/kg	0.93	05/07/24 00:25	
EPA 8270 by SIM	Phenanthrene	0.0079	mg/kg	0.0050	05/08/24 18:45	
SM 2540G	Percent Moisture	5.0	%	0.10		N2
0372127004	CS-4					
PA 6010	Arsenic	5.1	mg/kg	0.97	05/07/24 00:27	
EPA 6010	Barium	48.8	mg/kg	0.97	05/07/24 00:27	
EPA 6010	Chromium	16.4	mg/kg	0.97	05/07/24 00:27	
EPA 6010	Lead	4.5	mg/kg	0.97	05/07/24 00:27	
EPA 8270 by SIM	Phenanthrene	0.010	mg/kg		05/08/24 18:59	
SM 2540G	Percent Moisture	4.7	%		05/09/24 11:48	N2
0372127005	CS-5					
EPA 6010	Arsenic	8.6	mg/kg	1.0	05/07/24 00:29	
PA 6010	Barium	32.6	mg/kg		05/07/24 00:29	
EPA 6010	Cadmium	0.55	mg/kg		05/07/24 00:29	
EPA 6010	Chromium	12.0	mg/kg		05/07/24 00:29	
PA 6010	Lead	4.0	mg/kg		05/07/24 00:29	
SM 2540G	Percent Moisture	4.0	%			N2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50372127006	CS-6					
EPA 6010	Arsenic	4.9	mg/kg	0.96	05/07/24 00:30	
EPA 6010	Barium	32.6	mg/kg	0.96	05/07/24 00:30	
EPA 6010	Chromium	8.7	mg/kg	0.96	05/07/24 00:30	
EPA 6010	Lead	3.3	mg/kg	0.96	05/07/24 00:30	
SM 2540G	Percent Moisture	5.0	%	0.10	05/09/24 12:21	N2
50372127007	CS-7					
EPA 6010	Arsenic	3.4	mg/kg	1.0	05/07/24 00:32	
EPA 6010	Barium	29.9	mg/kg	1.0	05/07/24 00:32	
EPA 6010	Chromium	13.2	mg/kg	1.0	05/07/24 00:32	
EPA 6010	Lead	2.7	mg/kg	1.0	05/07/24 00:32	
EPA 8270 by SIM	Pyrene	0.0087	mg/kg	0.0050	05/08/24 19:42	
SM 2540G	Percent Moisture	3.9	%	0.10	05/09/24 12:21	N2
50372127008	CS-8					
EPA 6010	Arsenic	4.5	mg/kg	0.89	05/07/24 00:34	
EPA 6010	Barium	32.3	mg/kg	0.89	05/07/24 00:34	
EPA 6010	Chromium	16.3	mg/kg	0.89	05/07/24 00:34	
EPA 6010	Lead	3.6	mg/kg	0.89	05/07/24 00:34	
EPA 8270 by SIM	Benzo(b)fluoranthene	0.0083	mg/kg	0.0051	05/08/24 19:56	
EPA 8270 by SIM	Chrysene	0.0068	mg/kg	0.0051	05/08/24 19:56	
EPA 8270 by SIM	Fluoranthene	0.0083	mg/kg	0.0051	05/08/24 19:56	
EPA 8270 by SIM	Phenanthrene	0.0061	mg/kg	0.0051	05/08/24 19:56	
EPA 8270 by SIM	Pyrene	0.012	mg/kg	0.0051	05/08/24 19:56	
SM 2540G	Percent Moisture	4.8	%	0.10	05/09/24 12:21	N2
50372127009	CS-9					
EPA 6010	Arsenic	3.7	mg/kg	0.99	05/07/24 00:39	
EPA 6010	Barium	37.4	mg/kg	0.99	05/07/24 00:39	
EPA 6010	Chromium	18.4	mg/kg	0.99	05/07/24 00:39	
	Lead	3.4	mg/kg	0.99	05/07/24 00:39	
EPA 6010 SM 2540G	Percent Moisture	3.8	%	0.10		N2
50372127010	CS-10					
		4.6	mg/kg	1.0	05/07/24 00:41	
EPA 6010	Arsenic	30.6	mg/kg	1.0		
EPA 6010	Barium	9.0	mg/kg	1.0	05/07/24 00:41	
EPA 6010	Chromium	2.3	mg/kg	1.0		
EPA 6010	Lead	0.011	mg/kg	0.0051		
EPA 8270 by SIM	1-Methylnaphthalene			0.0051	05/08/24 20:25	
EPA 8270 by SIM	2-Methylnaphthalene	0.022	mg/kg		05/08/24 20:25	
EPA 8270 by SIM	Naphthalene	0.019	mg/kg	0.0051		NO
SM 2540G	Percent Moisture	3.7	%	0.10	05/09/24 12:21	N2
50372127011	CS-11	# · 6		4.0	05/07/04 00:40	
EPA 6010	Arsenic	5.3	mg/kg	1.0		
EPA 6010	Barium	39.1	mg/kg	1.0		
EPA 6010	Chromium	15.7	mg/kg	1.0		
EPA 6010	Lead	3.3	mg/kg	1.0		
EPA 8270 by SIM	1-Methylnaphthalene	0.0061	mg/kg	0.0049	05/08/24 21:08	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50372127011	CS-11		,			
EPA 8270 by SIM	2-Methylnaphthalene	0.011	mg/kg	0.0049	05/08/24 21:08	
EPA 8270 by SIM	Naphthalene	0.0099	mg/kg	0.0049	05/08/24 21:08	
EPA 8270 by SIM	Phenanthrene	0.0053	mg/kg	0.0049	05/08/24 21:08	
SM 2540G	Percent Moisture	3.8	%	0.10	05/09/24 12:21	N2
0372127012	CS-12					
PA 6010	Arsenic	5.4	mg/kg	0.99	05/07/24 00:51	
EPA 6010	Barium	46.3	mg/kg	0.99	05/07/24 00:51	
EPA 6010	Chromium	11.9	mg/kg	0.99	05/07/24 00:51	
PA 6010	Lead	3.2	mg/kg	0.99	05/07/24 00:51	
PA 8270 by SIM	1-Methylnaphthalene	0.010	mg/kg	0.0049	05/08/24 21:22	
PA 8270 by SIM	2-Methylnaphthalene	0.020	mg/kg	0.0049	05/08/24 21:22	
PA 8270 by SIM	Naphthalene	0.021	mg/kg	0.0049		
M 2540G	Percent Moisture	3.9	%	0.0049	05/08/24 21:22 05/09/24 12:21	N2
0372127013	CS-13				00/00/27 12:21	112
PA 6010	Arsenic	6.1	mg/kg	0.94	05/07/24 00:53	
PA 6010	Barium	33.7	mg/kg	0.94		
PA 6010	Chromium	10.2			05/07/24 00:53	
PA 6010	Lead	6.9	mg/kg	0.94	05/07/24 00:53	
PA 8270 by SIM	1-Methylnaphthalene		mg/kg	0.94	05/07/24 00:53	
PA 8270 by SIM		0.0063	mg/kg	0.0051	05/08/24 21:36	
PA 8270 by SIM	2-Methylnaphthalene Naphthalene	0.011	mg/kg	0.0051	05/08/24 21:36	
M 2540G	Percent Moisture	0.0077	mg/kg	0.0051	05/08/24 21:36	
		2.6	%	0.10	05/09/24 12:22	N2
0372127014	CS-14					
PA 6010	Arsenic	4.9	mg/kg	0.96	05/07/24 00:54	
PA 6010	Barium	35.3	mg/kg	0.96	05/07/24 00:54	
PA 6010	Chromium	7.1	mg/kg	0.96	05/07/24 00:54	
PA 6010	Lead	3.8	mg/kg	0.96	05/07/24 00:54	
PA 8270 by SIM	1-Methylnaphthalene	0.0057	mg/kg	0.0049	05/08/24 21:50	
PA 8270 by SIM	2-Methylnaphthalene	0.010	mg/kg	0.0049	05/08/24 21:50	
PA 8270 by SIM	Naphthalene	0.0089	mg/kg	0.0049	05/08/24 21:50	
M 2540G	Percent Moisture	2.3	%	0.0049	05/09/24 21:50	N2
372127015	CS-15			5	00/00/21 12:22	112
PA 6010	Arsenic	6.4	mg/kg	1.0	05/07/24 00:59	
PA 6010	Barium	38.7	mg/kg	1.0	05/07/24 00:59	
PA 6010	Chromium	10	mg/kg	1.0	05/07/24 00:59	
PA 6010	Lead	5.2	mg/kg			
PA 8270 by SIM	1-Methylnaphthalene	0.019			05/07/24 00:59	
PA 8270 by SIM	2-Methylnaphthalene		mg/kg	0.0051	05/08/24 22:05	
PA 8270 by SIM	Naphthalene	0.034	mg/kg	0.0051	05/08/24 22:05	
PA 8270 by SIM	Phenanthrene	0.014	mg/kg		05/08/24 22:05	
M 2540G	Pringer Pringe	0.021 2.9	mg/kg %	0.0051	05/08/24 22:05	NO
372127016	CS-16	2.8	70	0.10	05/09/24 12:22	N2
PA 6010						
	Arsenic	5.0	mg/kg		05/07/24 01:01	
PA 6010	Barium	37.8	mg/kg	1.0	05/07/24 01:01	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab Sample ID	Client Sample ID	Result	Units	Report Limit	Analyzed	Qualifiers
Method	Parameters	Result	Office		Tilalyzou	
50372127016	CS-16					
EPA 6010	Chromium	5.9		1.0	05/07/24 01:01	
EPA 6010	Lead	4.0		1.0	05/07/24 01:01	
EPA 8270 by SIM	1-Methylnaphthalene	0.010		0.0049	05/08/24 22:19	
EPA 8270 by SIM	2-Methylnaphthalene	0.01		0.0049	05/08/24 22:19	
EPA 8270 by SIM	Naphthalene	0.008		0.0049	05/08/24 22:19	
EPA 8270 by SIM	Phenanthrene	0.006		0.0049	05/08/24 22:19	
SM 2540G	Percent Moisture	2.:	2 %	0.10	05/09/24 12:22	N2
0372127017	CS-17					
EPA 6010	Arsenic	6.	1 mg/kg	0.91	05/07/24 01:03	
EPA 6010	Barium	30.	2 mg/kg	0.91	05/07/24 01:03	
EPA 6010	Chromium	8.	8 mg/kg	0.91	05/07/24 01:03	
EPA 6010	Lead	8.	2 mg/kg	0.91	05/07/24 01:03	
EPA 8270 by SIM	Fluoranthene	0.009	2 mg/kg	0.0049	05/08/24 22:33	
EPA 8270 by SIM	1-Methylnaphthalene	0.01	6 mg/kg	0.0049	05/08/24 22:33	
EPA 8270 by SIM	2-Methylnaphthalene	0.02	8 mg/kg	0.0049	05/08/24 22:33	
EPA 8270 by SIM	Naphthalene	0.01	2 mg/kg	0.0049	05/08/24 22:33	
EPA 8270 by SIM	Phenanthrene	0.04	1 mg/kg	0.0049	05/08/24 22:33	
EPA 8270 by SIM	Pyrene	0.007	0 mg/kg	0.0049	05/08/24 22:33	
SM 2540G	Percent Moisture	3.	0 %	0.10	05/09/24 12:22	N2
0372127018	CS-18					
EPA 6010	Arsenic	4.	5 mg/kg	0.92		
EPA 6010	Barium	30.	4 mg/kg	0.92		
EPA 6010	Chromium	9.	0 mg/kg	0.92		
EPA 6010	Lead	4.	3 mg/kg	0.92		
EPA 8270 by SIM	1-Methylnaphthalene	0.02	2 mg/kg	0.0050		
EPA 8270 by SIM	2-Methylnaphthalene	0.04	1 mg/kg	0.0050		
EPA 8270 by SIM	Naphthalene	0.04	6 mg/kg	0.0050	05/08/24 22:47	
EPA 8270 by SIM	Phenanthrene	0.008	3 mg/kg	0.0050		
SM 2540G	Percent Moisture	2	9 %	0.10	05/09/24 12:22	N2
50372127019	CS-19					
EPA 6010	Arsenic	4		0.99		
EPA 6010	Barium	31	.1 mg/kg	0.99		
EPA 6010	Chromium	7	.9 mg/kg	0.99		
EPA 6010	Lead	8	.9 mg/kg	0.99		
EPA 8270 by SIM	1-Methylnaphthalene	0.01	8 mg/kg	0.0049		
EPA 8270 by SIM	2-Methylnaphthalene	0.02	28 mg/kg	0.0049		
EPA 8270 by SIM	Naphthalene	0.0	3 mg/kg	0.0049		
EPA 8270 by SIM	Phenanthrene	0.008		0.0049		
SM 2540G	Percent Moisture	2	.7 %	0.10	05/09/24 12:22	N2
50372127020	CS-20					
EPA 6010	Arsenic	4	.8 mg/kg	0.97		
EPA 6010	Barium	37	.6 mg/kg	0.97	05/07/24 01:08	
EPA 6010	Chromium	18	.9 mg/kg	0.97		
EPA 6010	Lead	31	.9 mg/kg	0.97		
EPA 8270 by SIM	Anthracene	0.00	95 mg/kg	0.0050	05/08/24 23:16	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50372127020	CS-20					
EPA 8270 by SIM	Benzo(a)anthracene	0.047	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Benzo(a)pyrene	0.068	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Benzo(b)fluoranthene	0.15	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Benzo(g,h,i)perylene	0.060	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Benzo(k)fluoranthene	0.048	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Chrysene	0.091	mg/kg	0.0050		
EPA 8270 by SIM	Dibenz(a,h)anthracene	0.013	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Fluoranthene	0.12	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Indeno(1,2,3-cd)pyrene	0.057	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	1-Methylnaphthalene	0.0061	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	2-Methylnaphthalene	0.011	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Naphthalene	0.0091	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Phenanthrene	0.089	mg/kg	0.0050	05/08/24 23:16	
EPA 8270 by SIM	Pyrene	0.11	mg/kg	0.0050	05/08/24 23:16	
SM 2540G	Percent Moisture	2.8	///www.	0.0050	05/08/24 23:16 05/09/24 12:23	No
0372127021	Dup-1			0.10	00/00/24 12:20	112
EPA 6010	Arsenic	5.4	mg/kg	0.91	05/09/24 13:07	
PA 6010	Barium	43.8	mg/kg	0.91	05/09/24 13:07	
PA 6010	Chromium	7.8	mg/kg	0.91	05/09/24 13:07	
EPA 6010	Lead	4.4	mg/kg	0.91	05/09/24 13:07	
PA 6010	Silver	0.71	mg/kg	0.45	05/09/24 13:07	
PA 8270 by SIM	1-Methylnaphthalene	0.0087	mg/kg	0.0051	05/06/24 23:05	
PA 8270 by SIM	2-Methylnaphthalene	0.016	mg/kg	0.0051	05/06/24 23:05	
PA 8270 by SIM	Naphthalene	0.013	mg/kg	0.0051	05/06/24 23:05	
PA 8270 by SIM	Phenanthrene	0.0084	mg/kg	0.0051	05/06/24 23:05	
SM 2540G	Percent Moisture	2.0	//////////////////////////////////////	0.0031	05/09/24 12:23	N2

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Sample: CS-1	Lab ID: 503		Collected: 04/30/2				atrix: Solid	
Results reported on a "dry weig Parameters	ght" basis and are adj Results	usted for p Units	ercent moisture, sa Report Limit	mple s DF	Prepared	Analyzed	CAS No.	Qua
Taramotoro					DA 2546		-	
3082 PCB Solids			082 Preparation Met	noa: Er	A 3040			
	Pace Analytica	I Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.11	1		05/06/24 23:09		
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.11	1		05/06/24 23:09		
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.11	1		05/06/24 23:09		
PCB-1232 (Aroclor 1242)	ND	mg/kg	0.11	1		05/06/24 23:09		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.11	1	05/06/24 10:57	05/06/24 23:09	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.11	1		05/06/24 23:09		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.11	1	05/06/24 10:57	05/06/24 23:09	11096-82-5	
Surrogates								
Tetrachloro-m-xylene (S)	95	%.	11-126	1	05/06/24 10:57	05/06/24 23:09	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 6	010 Preparation Met	hod: E	PA 3050			
OUTO MET TO	Pace Analytica							
			1.1	1	05/06/24 08:35	05/07/24 00:22	7440-38-2	
Arsenic	5.3	mg/kg		1		05/07/24 00:22		
Barium	51.0	mg/kg	1.1	1		05/07/24 00:22		
Cadmium	ND	mg/kg	0.53			05/07/24 00:22		
Chromium	18.4	mg/kg	1.1	1		05/07/24 00:22		
Lead	4.7	mg/kg	1.1	1		05/07/24 00:22		
Selenium	ND	mg/kg	1.1	1		05/07/24 00:22		
Silver	ND	mg/kg	0.53			05/01/24 00.22	1440 22 1	
7471 Mercury	Analytical Me	thod: EPA 7	471 Preparation Me	thod: E	PA 7471			
,,,	Pace Analytic	al Services	- Indianapolis					
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 19:01	7439-97-6	
			1070 by CIM Dropore	tion M	othod: EPA 3546			
8270 PAH Soil by SIM			3270 by SIM Prepara - Indianapolis	ILIOIT IVI	elliod. Li A 0040			
Assasabibana	ND	mg/kg	0.0053	1	05/07/24 16:25	05/08/24 18:16	83-32-9	
Acenaphthene	ND	mg/kg	0.0053		05/07/24 16:25	05/08/24 18:16	208-96-8	
Acenaphthylene	ND	mg/kg	0.0053			05/08/24 18:16		
Anthracene	ND	mg/kg			05/07/24 16:25	05/08/24 18:16	56-55-3	
Benzo(a)anthracene	ND	mg/kg				05/08/24 18:16		
Benzo(a)pyrene	ND	mg/kg				05/08/24 18:16		
Benzo(b)fluoranthene	ND	mg/kg				05/08/24 18:16		
Benzo(g,h,i)perylene	ND	mg/kg				05/08/24 18:16		
Benzo(k)fluoranthene	0.0056	mg/kg				05/08/24 18:16		
Chrysene	0.0056 ND	mg/kg				5 05/08/24 18:16		
Dibenz(a,h)anthracene	ND ND	mg/kg				5 05/08/24 18:16		
Fluoranthene	ND ND	mg/kg				5 05/08/24 18:16		
Fluorene	ND ND	mg/kg			05/07/24 16:25	5 05/08/24 18:16	193-39-5	
Indeno(1,2,3-cd)pyrene		mg/kg				5 05/08/24 18:16		
1-Methylnaphthalene	ND				05/07/24 16:2!	5 05/08/24 18:16	91-57-6	
2-Methylnaphthalene	ND	mg/kg				5 05/08/24 18:16		
Naphthalene	ND	mg/kg				5 05/08/24 18:16		
Phenanthrene	0.0060	mg/kg	7.0000000000000000000000000000000000000			5 05/08/24 18:16		
Pyrene	ND	mg/kg	0.0053	, 1	00/01/24 10.25	00/00/E1 10.10		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Date: 05/10/2024 03:04 PM

50372127

Sample: CS-1 Results reported on a "dry wei	Lab ID: 503 ight" basis and are ad		Collected: 04/30/2	4 13:49 mple s	5 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Met	nod: EPA 827	0 by SIM Preparati	on Met	hod: EPA 3546			
Surrogates 2-Fluorobiphenyl (S) p-Terphenyl-d14 (S)	67 86	%. %.	16-93 19-115	1		05/08/24 18:16 05/08/24 18:16		
Percent Moisture	Analytical Meth							
Percent Moisture	Pace Analytica 5.6	ll Services - In %	dianapolis 0.10	1		05/09/24 11:48		N2

Project:

22686 FBT-Soil + Concrete

0	Lab ID: 5037	72127002	Collected: 04/30/2	4 17:00	Received: 05/	02/24 15:40 M	atrix: Solid	
Sample: CS-2 Results reported on a "dry weig	Lab ID. 300							
Results reported on a "dry weig	ght" basis and are adj					Analyzad	CAS No.	Qua
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS NO.	— Qua
				. J. CC	A 2546			
8082 PCB Solids			2 Preparation Meth	100: EF	A 3546			
	Pace Analytica	l Services - Ir	idianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.098	1		05/06/24 23:24		
PCB-1010 (Aroclor 1010) PCB-1221 (Aroclor 1221)	ND	mg/kg	0.098	1		05/06/24 23:24		
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.098	1	05/06/24 10:57	05/06/24 23:24	11141-16-5	
PCB-1232 (Aroclor 1242)	ND	mg/kg	0.098	1	05/06/24 10:57	05/06/24 23:24	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.098	1		05/06/24 23:24		
PCB-1248 (Aroclor 1249)	ND	mg/kg	0.098	1	05/06/24 10:57	05/06/24 23:24	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.098	1	05/06/24 10:57	05/06/24 23:24	11096-82-5	
Surrogates								
Tetrachloro-m-xylene (S)	100	%.	11-126	1	05/06/24 10:57	05/06/24 23:24	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 601	0 Preparation Met	hod: El	PA 3050			
**************************************	Pace Analytica	al Services - I	ndianapolis					
	5.1	mg/kg	0.91	1	05/06/24 08:35	05/07/24 00:24	7440-38-2	
Arsenic	56.1	mg/kg	0.91	1		05/07/24 00:24		
Barium	ND	mg/kg	0.46	1	05/06/24 08:35	05/07/24 00:24	7440-43-9	
Cadmium		mg/kg	0.91	1	05/06/24 08:35	05/07/24 00:24	7440-47-3	
Chromium	10.9	mg/kg	0.91	1	05/06/24 08:35	05/07/24 00:24	7439-92-1	
Lead	3.0 ND	mg/kg	0.91	1	05/06/24 08:35	05/07/24 00:24	7782-49-2	
Selenium			0.46	1	05/06/24 08:35	05/07/24 00:24	7440-22-4	
Silver	ND	mg/kg						
7471 Mercury	Analytical Method: EPA 7471 Preparation Method: EPA 7471							
747 I moroury	Pace Analytic							
Morount	ND	mg/kg	0.21	1	05/07/24 09:36	05/07/24 19:03	7439-97-6	
Mercury				dan Ma	thad: EDA 25/6			
8270 PAH Soil by SIM			70 by SIM Prepara	tion Me	ethod: EPA 3546			
	Pace Analytic	al Services -	Indianapolis					
Assaulthono	ND	mg/kg	0.0052	1	05/07/24 16:25	05/08/24 18:31	83-32-9	
Acenaphthene	0.0059	mg/kg	0.0052	1	05/07/24 16:25	05/08/24 18:31	208-96-8	
Acenaphthylene	0.0061	mg/kg	0.0052	1		05/08/24 18:31		
Anthracene	ND	mg/kg	0.0052	1	05/07/24 16:25	05/08/24 18:31	56-55-3	
Benzo(a)anthracene	0.0092	mg/kg	0.0052	1	05/07/24 16:25	5 05/08/24 18:31	50-32-8	
Benzo(a)pyrene	0.014	mg/kg	0.0052			5 05/08/24 18:31		
Benzo(b)fluoranthene	0.016	mg/kg	0.0052	1		5 05/08/24 18:31		
Benzo(g,h,i)perylene	ND	mg/kg	0.0052	1	05/07/24 16:25	5 05/08/24 18:31	207-08-9	
Benzo(k)fluoranthene	0.020	mg/kg	0.0052	. 1		5 05/08/24 18:31		
Chrysene	ND	mg/kg	0.0052		05/07/24 16:25	5 05/08/24 18:31	53-70-3	
Dibenz(a,h)anthracene	0.0072	mg/kg	0.0052		05/07/24 16:25	5 05/08/24 18:3	1 206-44-0	
Fluoranthene	0.0069	mg/kg	0.0052		05/07/24 16:25	5 05/08/24 18:3	1 86-73-7	
Fluorene	0.0003 ND	mg/kg	0.0052		05/07/24 16:29	5 05/08/24 18:3	1 193-39-5	
Indeno(1,2,3-cd)pyrene	ND ND	mg/kg	0.0052		05/07/24 16:2	5 05/08/24 18:3	1 90-12-0	
1-Methylnaphthalene	ND ND	mg/kg	0.0052		05/07/24 16:2	5 05/08/24 18:3	1 91-57-6	
2-Methylnaphthalene	ND ND	mg/kg	0.0052		05/07/24 16:2	5 05/08/24 18:3	1 91-20-3	
Naphthalene		mg/kg	0.0052		05/07/24 16:2	5 05/08/24 18:3	1 85-01-8	
Phenanthrene	0.019	17 ALI VI 17 ALI VI 1	0.0052		05/07/24 16:2	5 05/08/24 18:3	1 129-00-0	
Pyrene	0.013	mg/kg	0.0002					

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

N2

05/09/24 11:48

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

4.1

Pace Project No.:

Percent Moisture

Date: 05/10/2024 03:04 PM

50372127

Sample: CS-2	Lab ID: 503	72127002	Collected: 04/30/2	4 17:0	0 Received: 05	/02/24 15:40 N	∕latrix: Solid				
Results reported on a "dry wei	ght" basis and are adj	usted for pe	ercent moisture, sa	mple s	size and any dilut	ions.					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	70 by SIM Preparati	on Met	thod: EPA 3546						
	Pace Analytical Services - Indianapolis										
Surrogates											
2-Fluorobiphenyl (S)	66	%.	16-93	1	05/07/24 16:25	05/08/24 18:31	321-60-8				
p-Terphenyl-d14 (S)	86	%.	19-115	1	05/07/24 16:25	05/08/24 18:31	1718-51-0				
Percent Moisture	Analytical Method: SM 2540G										
	Pace Analytica	Pace Analytical Services - Indianapolis									

0.10

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-3	Lab ID: 503	72127003	Collected: 05/01/2	4 09:3	5 Received: 05	5/02/24 15:40 N	/latrix: Solid		
Results reported on a "dry wei	ght" basis and are ad	iusted for pe	ercent moisture, sa	mple s	size and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
8082 PCB Solids	Analytical Met	hod: EPA 808	32 Preparation Met	nod: EF	PA 3546				
	Pace Analytica	I Services - I	ndianapolis						
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/06/24 10:57	05/06/24 23:40	12674-11-2		
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/06/24 23:40			
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1		05/06/24 23:40			
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/06/24 23:40			
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/06/24 23:40			
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/06/24 23:40			
PCB-1260 (Aroclor 1260)	ND ND	mg/kg	0.10	1		05/06/24 23:40			
Surrogates	ND	mg/kg	0.10	ŀ	03/00/24 10.37	03/00/24 23.40	11090-02-3		
Tetrachloro-m-xylene (S)	86	%.	11-126	1	05/06/24 10:57	05/06/24 23:40	877-09-8		
6010 MET ICP	Analytical Met	nod: EPA 601	I0 Preparation Meti	nod: EF	PA 3050				
·	Pace Analytica		•						
Avania	•		•	4	05/06/24 08:25	05/07/04 00:05	7440 20 2		
Arsenic	5.0	mg/kg	0.93	1		05/07/24 00:25			
Barium De destrucción	56.3	mg/kg	0.93	1		05/07/24 00:25			
Cadmium	ND	mg/kg	0.47	1		05/07/24 00:25			
Chromium	17.0	mg/kg	0.93	1		05/07/24 00:25			
ead	4.5	mg/kg	0.93	1		05/07/24 00:25			
Selenium	ND	mg/kg	0.93	1		05/07/24 00:25			
Silver	ND	mg/kg	0.47	1	05/06/24 08:35	05/07/24 00:25	7440-22-4		
7471 Mercury	Analytical Met	nod: EPA 747	71 Preparation Meth	nod: EF	PA 7471				
	Pace Analytica	l Services - I	ndianapolis						
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 19:06	7439-97-6		
3270 PAH Soil by SIM	Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546								
,,,	Pace Analytica		•						
Acenaphthene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 18:45	83-32-9		
Acenaphthylene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Anthracene	ND ND	mg/kg	0.0050	1		05/08/24 18:45			
Benzo(a)anthracene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Benzo(a)pyrene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Benzo(b)fluoranthene	ND ND	mg/kg	0.0050	1		05/08/24 18:45			
Benzo(g,h,i)perylene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Benzo(k)fluoranthene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Chrysene	ND ND		0.0050	1		05/08/24 18:45			
Dibenz(a,h)anthracene		mg/kg							
	ND	mg/kg	0.0050	1		05/08/24 18:45			
Fluoranthene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Fluorene	ND	mg/kg	0.0050	1		05/08/24 18:45			
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0050	1		05/08/24 18:45			
I-Methylnaphthalene	ND	mg/kg	0.0050	1		05/08/24 18:45			
2-Methylnaphthalene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Naphthalene	ND	mg/kg	0.0050	1		05/08/24 18:45			
Phenanthrene	0.0079	mg/kg	0.0050	1		05/08/24 18:45			
⊃yrene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 18:45	129-00-0		

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: CS-3

50372127

Lab ID: 50372127003

Collected: 05/01/24 09:35 Received: 05/02/24 15:40 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters**

Results

Units

Report Limit

DF Prepared Analyzed

CAS No.

Qual

8270 PAH Soil by SIM

Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546

Pace Analytical Services - Indianapolis

Surrogates

2-Fluorobiphenyl (S) p-Terphenyl-d14 (S)

Date: 05/10/2024 03:04 PM

65 81

5.0

%. %.

16-93 19-115

05/07/24 16:25 05/08/24 18:45 321-60-8

05/07/24 16:25 05/08/24 18:45 1718-51-0

Percent Moisture

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

0.10

05/09/24 11:48

N2

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-4	Lab ID: 503	72127004	Collected: 05/01/2	24 09:4	0 Received: 05	5/02/24 15:40 N	//atrix: Solid		
Results reported on a "dry weig	ht" basis and are adj	usted for p	ercent moisture, sa	mple :	size and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
8082 PCB Solids	Analytical Meth	nod: EPA 80	82 Preparation Met	hod: Ef	PA 3546				
	Pace Analytica	l Services -	Indianapolis						
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/06/24 10:57	05/06/24 23:55	12674-11-2		
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/06/24 23:55			
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1		05/06/24 23:55			
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/06/24 23:55			
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/06/24 23:55			
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/06/24 23:55			
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/06/24 23:55			
Surrogates	,,,,	g	0.10	•	00/00/21 10:01	00/00/24 20:00	11000 02 0		
Tetrachloro-m-xylene (S)	88	%.	11-126	1	05/06/24 10:57	05/06/24 23:55	877-09-8		
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Met	nod: EF	PA 3050				
	Pace Analytica	l Services -	Indianapolis						
Arsenic	5.1	mg/kg	0.97	1	05/06/24 08:35	05/07/24 00:27	7440-38-2		
3arium	48.8	mg/kg	0.97	1		05/07/24 00:27			
Cadmium	ND	mg/kg	0.49	1		05/07/24 00:27			
Chromium	16.4	mg/kg	0.97	1		05/07/24 00:27			
_ead	4.5	mg/kg	0.97	1		05/07/24 00:27			
Selenium	ND	mg/kg	0.97	1		05/07/24 00:27			
Silver	ND	mg/kg	0.49	1		05/07/24 00:27			
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471				
· · · · · · · · · · · · · · · · · · ·	Pace Analytica		•						
Mercury	ND	mg/kg	0.20	1	05/07/24 09:36	05/07/24 19:08	7439-97-6		
8270 PAH Soil by SIM	Analytical Meth	od: FPA 82	70 by SIM Preparati	on Mei	hod: EPA 3546				
SETOT AIT COIL BY CHIL	Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Pace Analytical Services - Indianapolis								
Acenaphthene	ND	mg/kg	0.0052	1	05/07/24 16:25	05/08/24 18:59	83-32-0		
Acenaphthylene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Anthracene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Benzo(a)anthracene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Benzo(a)pyrene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Benzo(b)fluoranthene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Benzo(g,h,i)perylene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Benzo(k)fluoranthene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Chrysene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Dibenz(a,h)anthracene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Fluoranthene	ND	mg/kg	0.0052	1		05/08/24 18:59			
luorene	ND	mg/kg	0.0052	1		05/08/24 18:59			
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0052	1		05/08/24 18:59			
I-Methylnaphthalene	ND	mg/kg	0.0052	1		05/08/24 18:59			
?-Methylnaphthalene	ND	mg/kg	0.0052	1		05/08/24 18:59			
Vaphthalene	ND ND	mg/kg	0.0052	1		05/08/24 18:59			
Phenanthrene	0.010	mg/kg	0.0052	1		05/08/24 18:59			
Pyrene	ND	mg/kg	0.0052	1	05/07/24 16:25				

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

Sample: CS-4

Date: 05/10/2024 03:04 PM

Lab ID: 50372127004

Collected: 05/01/24 09:40 Received: 05/02/24 15:40

Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Results Units Report Limit DF **Parameters** Prepared Analyzed CAS No. Qual 8270 PAH Soil by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Pace Analytical Services - Indianapolis Surrogates 2-Fluorobiphenyl (S) 64 %. 16-93 05/07/24 16:25 05/08/24 18:59 321-60-8 05/07/24 16:25 05/08/24 18:59 1718-51-0 p-Terphenyl-d14 (S) 84 %. 19-115 **Percent Moisture** Analytical Method: SM 2540G Pace Analytical Services - Indianapolis Percent Moisture 4.7 0.10 05/09/24 11:48 N2

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-5	Lab ID: 503		Collected: 05/01/2				//atrix: Solid			
Results reported on a "dry weig	ght" basis and are ad	iusted for pe	rcent moisture, sa	mple :	size and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua		
3082 PCB Solids	Analytical Met	hod: EPA 808	32 Preparation Meth	nod: Ef	PA 3546					
	Pace Analytica	l Services - I	ndianapolis							
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/06/24 10:57	05/07/24 00:10	12674-11-2			
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/07/24 00:10				
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1		05/07/24 00:10				
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/07/24 00:10				
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/07/24 00:10				
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/07/24 00:10				
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/07/24 00:10				
Surrogates	ND	mg/kg	0.10	•	00/00/24 10:01	03/01/24 00.10	11030-02-3			
etrachloro-m-xylene (S)	83	%.	11-126	1	05/06/24 10:57	05/07/24 00:10	877-09-8			
010 MET ICP	Analytical Met	nod: EPA 601	0 Preparation Meth	nod: Ef	PA 3050					
	Pace Analytica									
Arsenic	8.6	mg/kg	1.0	1	05/06/24 08:35	05/07/24 00:29	7440-38-2			
Barium	32.6	mg/kg	1.0	1		05/07/24 00:29				
Cadmium	0.55	mg/kg	0.51	1		05/07/24 00:29				
Chromium	12.0	mg/kg	1.0	1		05/07/24 00:29				
ead	4.0	mg/kg	1.0	1		05/07/24 00:29				
Selenium	ND		1.0	1		05/07/24 00:29				
Silver	ND ND	mg/kg mg/kg	0.51	1		05/07/24 00:29				
						03/01/24 00.29	1440-22-4			
471 Mercury	•		1 Preparation Meth	nod: EF	PA 7471					
	Pace Analytica	l Services - l	ndianapolis							
Mercury	ND	mg/kg	0.21	1	05/07/24 09:36	05/07/24 19:11	7439-97-6			
270 PAH Soil by SIM	Analytical Met	Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546								
	Pace Analytica	l Services - I	ndianapolis							
cenaphthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 19:13	83-32-9			
cenaphthylene	ND	mg/kg	0.0049	1		05/08/24 19:13				
Inthracene	ND	mg/kg	0.0049	1		05/08/24 19:13				
senzo(a)anthracene	ND	mg/kg	0.0049	1		05/08/24 19:13				
senzo(a)pyrene	ND	mg/kg	0.0049	1		05/08/24 19:13				
lenzo(b)fluoranthene	ND	mg/kg	0.0049	1		05/08/24 19:13				
lenzo(g,h,i)perylene	ND	mg/kg	0.0049	1		05/08/24 19:13				
Benzo(k)fluoranthene	ND	mg/kg	0.0049	1		05/08/24 19:13				
Chrysene	ND	mg/kg	0.0049	1		05/08/24 19:13				
Dibenz(a,h)anthracene		·		1						
fluoranthene	ND ND	mg/kg mg/kg	0.0049 0.0049	1		05/08/24 19:13 05/08/24 19:13				
luorene	ND ND	mg/kg	0.0049	1		05/08/24 19:13				
ndeno(1,2,3-cd)pyrene	ND ND		0.0049			05/08/24 19:13				
		mg/kg		1						
-Methylnaphthalene	ND	mg/kg	0.0049	1		05/08/24 19:13				
-Methylnaphthalene	ND	mg/kg	0.0049	1		05/08/24 19:13				
laphthalene	ND	mg/kg	0.0049	1		05/08/24 19:13				
Phenanthrene	ND	mg/kg	0.0049	1		05/08/24 19:13				
Pyrene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 19:13	129-00-0			

N2

05/09/24 11:49

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Percent Moisture

Date: 05/10/2024 03:04 PM

Sample: CS-5	Lab ID: 503	72127005	Collected: 05/01/2	4 09:4	5 Received: 05	5/02/24 15:40 N	latrix: Solid			
Results reported on a "dry wei	ght" basis and are adj	usted for pe	rcent moisture, sa	mple :	size and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	'0 by SIM Preparati	on Me	thod: EPA 3546					
	Pace Analytical Services - Indianapolis									
Surrogates										
2-Fluorobiphenyl (S)	60	%.	16-93	1	05/07/24 16:25	05/08/24 19:13	321-60-8			
p-Terphenyl-d14 (S)	78	%.	19-115	1	05/07/24 16:25	05/08/24 19:13	1718-51-0			
Percent Moisture	Analytical Meth	nod: SM 2540	OG							
	Pace Analytica	l Services - I	ndianapolis							

0.10 1

4.0 %

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-6 Lab ID: 50372127006 Collected: 05/01/24 09:50 Received: 05/02/24 15:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qι
8082 PCB Solids	Analytical Met	nod: EPA 8082	2 Preparation Meth	od: EF	PA 3546			
	Pace Analytica	l Services - In	dianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/06/24 10:57	05/07/24 00:25	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/07/24 00:25		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1		05/07/24 00:25		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/07/24 00:25		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/07/24 00:25		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/07/24 00:25		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/07/24 00:25		
Surrogates	110	mg/kg	0.10	•	00/00/24 10.07	00/01/24 00:20	11030-02-0	
etrachloro-m-xylene (S)	85	%.	11-126	1	05/06/24 10:57	05/07/24 00:25	877-09-8	
010 MET ICP	Analytical Met	nod: EPA 6010	Preparation Meth	od: EF	PA 3050			
	Pace Analytica		•	/				
Arsenic	4.9	mg/kg	0.96	1	05/06/24 08:35	05/07/24 00:30	7440-38-2	
Barium	32.6	mg/kg	0.96	1		05/07/24 00:30		
Cadmium	ND	mg/kg	0.48	1		05/07/24 00:30		
Chromium	8.7	mg/kg	0.96	1		05/07/24 00:30		
.ead	3.3	mg/kg	0.96	1		05/07/24 00:30		
Selenium	ND	mg/kg	0.96	1		05/07/24 00:30		
Silver	ND	mg/kg	0.48	1		05/07/24 00:30		
7471 Mercury	Analytical Metl Pace Analytica		l Preparation Meth dianapolis	od: EF	PA 7471			
Mercury	ND	mg/kg	0.21	1	05/07/24 09:36	05/07/24 19:13	7439-97-6	
3270 PAH Soil by SIM	Analytical Meti	nod: EPA 8270	by SIM Preparati	on Met	hod: EPA 3546			
	Pace Analytica	l Services - In	dianapolis					
Acenaphthene	ND	mg/kg	0.0052	1	05/07/24 16:25	05/08/24 19:28	83-32-9	
Acenaphthylene	ND	mg/kg	0.0052	1		05/08/24 19:28		
Anthracene	ND	mg/kg	0.0052	1		05/08/24 19:28		
Benzo(a)anthracene	ND	mg/kg	0.0052	1		05/08/24 19:28		
Benzo(a)pyrene	ND	mg/kg	0.0052	1		05/08/24 19:28		
Senzo(b)fluoranthene	ND	mg/kg	0.0052	1		05/08/24 19:28		
Benzo(g,h,i)perylene	ND	mg/kg	0.0052	1		05/08/24 19:28		
		mg/kg	0.0052	1		05/08/24 19:28		
· · · · · · · · · · · · · · · · · · ·	ND	my/kg						
enzo(k)fluoranthene	ND ND			1	05/07/24 16:25	05/08/24 19:28	218-01-9	
Benzo(k)fluoranthene Chrysene		mg/kg	0.0052 0.0052	1 1		05/08/24 19:28 05/08/24 19:28		
enzo(k)fluoranthene chrysene bibenz(a,h)anthracene	ND	mg/kg mg/kg	0.0052		05/07/24 16:25	05/08/24 19:28 05/08/24 19:28 05/08/24 19:28	53-70-3	
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	ND ND ND	mg/kg mg/kg mg/kg	0.0052 0.0052 0.0052	1 1	05/07/24 16:25 05/07/24 16:25	05/08/24 19:28 05/08/24 19:28	53-70-3 206-44-0	
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.0052 0.0052 0.0052 0.0052	1 1 1	05/07/24 16:25 05/07/24 16:25 05/07/24 16:25	05/08/24 19:28 05/08/24 19:28 05/08/24 19:28	53-70-3 206-44-0 86-73-7	
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg	0.0052 0.0052 0.0052 0.0052 0.0052	1 1 1 1	05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25	05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28	53-70-3 206-44-0 86-73-7 193-39-5	
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Cluoranthene Cluorene ndeno(1,2,3-cd)pyrene -Methylnaphthalene	ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0052 0.0052 0.0052 0.0052 0.0052 0.0052	1 1 1 1	05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25	05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28	53-70-3 206-44-0 86-73-7 193-39-5 90-12-0	
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene -Methylnaphthalene Fluothylnaphthalene	ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052	1 1 1 1 1	05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25	05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28	53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6	
Senzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene I-Methylnaphthalene Naphthalene Naphthalene	ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.0052 0.0052 0.0052 0.0052 0.0052 0.0052	1 1 1 1	05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25 05/07/24 16:25	05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28 05/08/24 19:28	53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3	

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: CS-6

Date: 05/10/2024 03:04 PM

50372127

Lab ID: 50372127006

Collected: 05/01/24 09:50 Received: 05/02/24 15:40 Matrix: Solid

Results reported on a "dry weigh	t" basis and are adj	usted for per	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparat	ion Met	thod: EPA 3546			
	Pace Analytica	l Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	64	%.	16-93	1	05/07/24 16:25	05/08/24 19:28	321-60-8	
p-Terphenyl-d14 (S)	86	%.	19-115	1	05/07/24 16:25	05/08/24 19:28	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540	G					
	Pace Analytica	l Services - Ir	ndianapolis					
Percent Moisture	5.0	%	0.10	1		05/09/24 12:21		N2

Project:

Pyrene

Date: 05/10/2024 03:04 PM

22686 FBT-Soil + Concrete

Pace Project No : 50372127

Sample: CS-7	Lab ID: 503	72127007	Collected: 05/01/2	4 09:52	Received: 05	5/02/24 15:40 I	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Met	hod: EPA 80	082 Preparation Meth	od: EP	A 3546			
	Pace Analytica	al Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 16:38	3 12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/08/24 16:38		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 16:38	3 11141-16-5	
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/08/24 16:38		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/08/24 16:38		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/08/24 16:38		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/08/24 16:38		
Surrogates	110	mama	0.10	•	00/07/21 10:02	00/00/21 10:00	11000 02 0	
Tetrachloro-m-xylene (S)	58	%.	11-126	1	05/07/24 15:52	05/08/24 16:38	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	od: EP	A 3050			
	Pace Analytica							
Arsenic	3.4	mg/kg	1.0	1	05/06/24 08:35	05/07/24 00:32	7440-38-2	
Barium	29.9	mg/kg	1.0	1	05/06/24 08:35	05/07/24 00:32	7440-39-3	
Cadmium	ND	mg/kg	0.50	1	05/06/24 08:35	05/07/24 00:32	7440-43-9	
Chromium	13.2	mg/kg	1.0	1		05/07/24 00:32		
Lead	2.7	mg/kg	1.0	1		05/07/24 00:32		
Selenium	ND	mg/kg	1.0	1		05/07/24 00:32		
Silver	ND	mg/kg	0.50	1		05/07/24 00:32		
7471 Mercury	Analytical Met	hod: EPA 74	171 Preparation Meth	od: EP	A 7471			
	Pace Analytica		·					
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 19:16	7439-97-6	
8270 PAH Soil by SIM	Analytical Meth	hod: EPA 82	270 by SIM Preparation	on Meth	nod: EPA 3546			
·	Pace Analytica	l Services -	Indianapolis					
Acenaphthene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 19:42	83-32-9	
Acenaphthylene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 19:42	208-96-8	
Anthracene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 19:42	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 19:42	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 19:42	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0050	1		05/08/24 19:42		
Benzo(g,h,i)perylene	ND	mg/kg	0.0050	1		05/08/24 19:42		
Benzo(k)fluoranthene	ND	mg/kg	0.0050	1		05/08/24 19:42		
Chrysene	ND	mg/kg	0.0050	1		05/08/24 19:42		
Dibenz(a,h)anthracene	ND	mg/kg	0.0050	1		05/08/24 19:42		
Fluoranthene	ND	mg/kg	0.0050	1		05/08/24 19:42		
Fluorene	ND	mg/kg	0.0050	1		05/08/24 19:42		
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0050	1		05/08/24 19:42		
1-Methylnaphthalene	ND ND	mg/kg	0.0050	1		05/08/24 19:42		
2-Methylnaphthalene	ND ND		0.0050	1		05/08/24 19:42		
2-Metnyinaphthalene Naphthalene		mg/kg				05/08/24 19:42		
•	ND	mg/kg	0.0050	1				
Phenanthrene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 19:42	8-10-69	

REPORT OF LABORATORY ANALYSIS

0.0050 1

05/07/24 16:25 05/08/24 19:42 129-00-0

0.0087

mg/kg

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: CS-7

50372127

Lab ID: 50372127007

Collected: 05/01/24 09:52 Received: 05/02/24 15:40 Matrix: Solid

DF

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Results **Parameters**

Units

Report Limit

Prepared

Analyzed

CAS No.

Qual

8270 PAH Soil by SIM

Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546

Pace Analytical Services - Indianapolis

Surrogates

2-Fluorobiphenyl (S) p-Terphenyl-d14 (S)

67 84 %. %.

16-93 19-115

05/07/24 16:25 05/08/24 19:42 321-60-8

05/07/24 16:25 05/08/24 19:42 1718-51-0

Percent Moisture

Analytical Method: SM 2540G

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/10/2024 03:04 PM

3.9

0.10

05/09/24 12:21

N2

Project:

Pyrene

Date: 05/10/2024 03:04 PM

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Sample: CS-8	Lab ID: 503	72127008	Collected: 05/01/2	4 09:5	4 Received: 05	5/02/24 15:40 N	Matrix: Solid	
Results reported on a "dry wei	ght" basis and are ad	justed for p	ercent moisture, sa	mple :	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Met	hod: EPA 80	982 Preparation Meth	nod: Ef	PA 3546			
	Pace Analytica	al Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.51	1	05/07/24 15:52	05/08/24 16:53	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.51	1		05/08/24 16:53		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.51	1		05/08/24 16:53		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.51	1		05/08/24 16:53		
PCB-1248 (Aroclor 1248)	ND ND	mg/kg	0.51	1		05/08/24 16:53		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.51	1		05/08/24 16:53		
PCB-1260 (Aroclor 1260)	ND ND		0.51	1		05/08/24 16:53		
Surrogates	ND	mg/kg	0.51	1	05/07/24 15.52	05/06/24 16:53	11090-02-3	
Fetrachloro-m-xylene (S)	103	%.	11-126	1	05/07/24 15:52	05/08/24 16:53	877-00-8	
Saddinoro in Ayrene (O)	103	70.	11-120	'	33/07/24 13.32	00/00/24 10.53	311-09-0	
010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	od: EF	PA 3050			
	Pace Analytica	al Services -	Indianapolis					
Arsenic	4.5	mg/kg	0.89	1	05/06/24 08:35	05/07/24 00:34	7440-38-2	
Barium	32.3	mg/kg	0.89	1		05/07/24 00:34		
Cadmium	ND	mg/kg	0.45	1		05/07/24 00:34		
Chromium	16.3	mg/kg	0.49	1		05/07/24 00:34		
.ead	3.6	mg/kg	0.89	1		05/07/24 00:34		
Selenium	ND		0.89	1		05/07/24 00:34		
Silver	ND ND	mg/kg	0.69	1				
onvei	ND	mg/kg	0.45	ı	05/00/24 06.35	05/07/24 00:34	7440-22-4	
471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Meth	od: EF	PA 7471			
	Pace Analytica	al Services -	Indianapolis					
Mercury	ND	mg/kg	0.20	1	05/07/24 09:36	05/07/24 19:18	7439-97-6	
3270 PAH Soil by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparation	on Met	hod: EPA 3546			
	Pace Analytica							
Acenaphthene	ND	mg/kg	0.0051	1	05/07/04 16:05	05/00/04 10:56	92.22.0	
cenaphthylene	ND ND		0.0051			05/08/24 19:56		
Anthracene	ND ND	mg/kg	0.0051	1 1		05/08/24 19:56		
	ND ND	mg/kg		1		05/08/24 19:56		
Benzo(a)anthracene		mg/kg	0.0051			05/08/24 19:56		
Benzo(a)pyrene	ND a aasa	mg/kg	0.0051	1		05/08/24 19:56		
Senzo(b)fluoranthene	0.0083	mg/kg	0.0051	1		05/08/24 19:56		
lenzo(g,h,i)perylene	ND	mg/kg	0.0051	1		05/08/24 19:56		
Senzo(k)fluoranthene	ND	mg/kg	0.0051	1		05/08/24 19:56		
Chrysene	0.0068	mg/kg	0.0051	1		05/08/24 19:56		
Dibenz(a,h)anthracene	ND	mg/kg	0.0051	1		05/08/24 19:56		
luoranthene	0.0083	mg/kg	0.0051	1		05/08/24 19:56		
luorene	ND	mg/kg	0.0051	1		05/08/24 19:56		
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0051	1		05/08/24 19:56		
-Methylnaphthalene	ND	mg/kg	0.0051	1		05/08/24 19:56		
-Methylnaphthalene	ND	mg/kg	0.0051	1		05/08/24 19:56		
laphthalene	ND	mg/kg	0.0051	1	05/07/24 16:25	05/08/24 19:56	91-20-3	
Phenanthrene	0.0061	mg/kg	0.0051	1	05/07/24 16:25	05/08/24 19:56	85-01-8	
\	0.040	0	0.0054		05/07/04 40 05	05100101 10 50		

REPORT OF LABORATORY ANALYSIS

0.0051 1

05/07/24 16:25 05/08/24 19:56 129-00-0

0.012

mg/kg

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127 Sample: CS-8

Lab ID: 50372127008 Collected: 05/01/24 09:54 Received: 05/02/24 15:40 Matrix: Solid

Results reported on a "dry weight".	basis and are adju	isted for pei	rcent moisture, sa	mple s	size and any dilui	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	od: EPA 827	0 by SIM Preparati	on Met	thod: EPA 3546			
	Pace Analytical	Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	66	%.	16-93	1	05/07/24 16:25	05/08/24 19:56	321-60-8	
p-Terphenyl-d14 (S)	85	%.	19-115	1	05/07/24 16:25	05/08/24 19:56	1718-51-0	
Percent Moisture	Analytical Meth	od: SM 2540	G					
	Pace Analytical	Services - Ir	ndianapolis					
Percent Moisture	4.8	%	0.10	1		05/09/24 12:21		N2

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-9	Lab ID: 503	72127009	Collected: 05/01/2	24 09:5	6 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	iusted for p	ercent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Met	hod: EPA 80	82 Preparation Met	nod: El	PA 3546			
	Pace Analytica	l Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 17:08	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/08/24 17:08		
PCB-1232 (Aroclor 1232)	ND ND	mg/kg	0.10	1		05/08/24 17:08		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/08/24 17:08		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/08/24 17:08		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/08/24 17:08		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/08/24 17:08		
Surrogates	ND	mg/kg	0.10	'	03/01/24 13.32	03/00/24 17:00	11090-02-3	
Tetrachloro-m-xylene (S)	97	%.	11-126	1	05/07/24 15:52	05/08/24 17:08	877-09-8	
6010 MET ICP	Analytical Met	nod: FPA 60	10 Preparation Meth	nod: FF	PA 3050			
	Pace Analytica		<u>=</u>					
	•		•					
Arsenic	3.7	mg/kg	0.99	1		05/07/24 00:39		
3arium	37.4	mg/kg	0.99	1		05/07/24 00:39		
Cadmium	ND	mg/kg	0.49	1		05/07/24 00:39		
Chromium	18.4	mg/kg	0.99	1		05/07/24 00:39		
_ead	3.4	mg/kg	0.99	1	05/06/24 08:35	05/07/24 00:39	7439-92-1	
Selenium	ND	mg/kg	0.99	1		05/07/24 00:39		
Silver	ND	mg/kg	0.49	1	05/06/24 08:35	05/07/24 00:39	7440-22-4	
7471 Mercury	Analytical Meti	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
•	Pace Analytica	I Services -	Indianapolis					
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 19:25	7439-97-6	
2270 DALI Call by CIM	Applytical Moth	and EDA 92	70 by SIM Proporati	on Mo	thad: EDA 2546			
8270 PAH Soil by SIM	Pace Analytica		70 by SIM Preparati Indianapolis	OII WE	mod: EPA 3546			
A conanhthana	•		•	4	05/07/04 46:05	05/09/24 20:44	92.22.0	
Acenaphthene Acenaphthylene	ND ND	mg/kg	0.0050 0.0050	1		05/08/24 20:11		
, , , ,	ND	mg/kg		1		05/08/24 20:11		
Anthracene	ND	mg/kg	0.0050	1		05/08/24 20:11		
Benzo(a)anthracene	ND	mg/kg	0.0050	1		05/08/24 20:11		
Benzo(a)pyrene	ND ND	mg/kg	0.0050	1		05/08/24 20:11		
Benzo(b)fluoranthene	ND ND	mg/kg	0.0050	1		05/08/24 20:11		
Benzo(g,h,i)perylene	ND ND	mg/kg	0.0050	1		05/08/24 20:11		
Benzo(k)fluoranthene	ND ND	mg/kg	0.0050	1		05/08/24 20:11		
Chrysene	ND	mg/kg	0.0050	1		05/08/24 20:11		
Dibenz(a,h)anthracene	ND	mg/kg	0.0050	1		05/08/24 20:11		
Fluoranthene	ND	mg/kg	0.0050	1		05/08/24 20:11	206-44-0	
Fluorene	ND	mg/kg	0.0050	1		05/08/24 20:11		
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0050	1		05/08/24 20:11	193-39-5	
-Methylnaphthalene	ND	mg/kg	0.0050	1		05/08/24 20:11	90-12-0	
2-Methylnaphthalene	ND	mg/kg	0.0050	1		05/08/24 20:11		
Naphthalene	ND	mg/kg	0.0050	1		05/08/24 20:11		
Phenanthrene	ND	mg/kg	0.0050	1		05/08/24 20:11		
Pyrene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 20:11	129-00-0	

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Sample: CS-9

Lab ID: 50372127009 Collected: 05/01/24 09:56 Received: 05/02/24 15:40 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	od: EPA 827	0 by SIM Preparati	on Me	thod: EPA 3546			
	Pace Analytica	l Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	65	%.	16-93	1	05/07/24 16:25	05/08/24 20:11	321-60-8	
p-Terphenyl-d14 (S)	82	%.	19-115	1	05/07/24 16:25	05/08/24 20:11	1718-51-0	
Percent Moisture	Analytical Meth	od: SM 2540)G					
	Pace Analytica	l Services - Ir	ndianapolis					
Percent Moisture	3.8	%	0.10	1		05/09/24 12:21		N2

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-10	Lab ID: 503	72127010	Collected: 05/01/2	4 10:0	0 Received: 05	5/02/24 15:40 N	Matrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	iusted for p	ercent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3082 PCB Solids	Analytical Met	hod: EPA 80	82 Preparation Meth	nod: El	PA 3546			
	Pace Analytica	l Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 17:23	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/08/24 17:23		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1		05/08/24 17:23		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/08/24 17:23		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/08/24 17:23		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/08/24 17:23		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/08/24 17:23		
Surrogates	110	mgmg	0,10	'	00/01/24 10:02	00/00/24 17:20	11000-02-0	
etrachloro-m-xylene (S)	101	%.	11-126	1	05/07/24 15:52	05/08/24 17:23	877-09-8	
010 MET ICP	Analytical Meta	nod: EPA 60	10 Preparation Meth	nod: EF	PA 3050			
	Pace Analytica							
Arsenic	4.6	mg/kg	1.0	1	05/06/24 08·25	05/07/24 00:41	7440_38_2	
Barium	30.6	mg/kg	1.0	1		05/07/24 00:41		
Cadmium	ND	mg/kg	0.51	1		05/07/24 00:41		
Chromium	9.0	mg/kg	1.0	1		05/07/24 00:41		
.ead	2.3	mg/kg	1.0	1		05/07/24 00:41		
Selenium	ND	mg/kg	1.0	1		05/07/24 00:41		
Silver	ND ND	mg/kg	0.51	1		05/07/24 00:41		
	ND	mg/kg	0.51	•	03/00/24 00:33	03/07/24 00:41	7440-22-4	
471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	od: EF	PA 7471			
	Pace Analytica	l Services -	Indianapolis					
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 19:28	7439-97-6	
3270 PAH Soil by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparation	on Met	thod: EPA 3546			
•	Pace Analytica							
Acenaphthene	ND	mg/kg	0.0051	1	05/07/24 16:25	05/08/24 20:25	83-32-9	
cenaphthylene	ND	mg/kg	0.0051	1		05/08/24 20:25		
Anthracene	ND	mg/kg	0.0051	1		05/08/24 20:25		
Benzo(a)anthracene	ND	mg/kg	0.0051	1		05/08/24 20:25		
senzo(a)pyrene	ND	mg/kg	0.0051	1		05/08/24 20:25		
Benzo(b)fluoranthene	ND	mg/kg	0.0051	1		05/08/24 20:25		
Benzo(g,h,i)perylene	ND	mg/kg	0.0051	1		05/08/24 20:25		
Benzo(k)fluoranthene	ND	mg/kg	0.0051	1		05/08/24 20:25		
Chrysene	ND	mg/kg	0.0051	1				
Dibenz(a,h)anthracene	ND ND	mg/kg	0.0051	1		05/08/24 20:25 05/08/24 20:25		
luoranthene	ND ND	mg/kg	0.0051	1		05/08/24 20:25		
luorene	ND ND	mg/kg	0.0051	1		05/08/24 20:25		
ndeno(1,2,3-cd)pyrene	ND ND	mg/kg	0.0051	1		05/08/24 20:25		
-Methylnaphthalene	0.011		0.0051					
-Methylnaphthalene	0.011	mg/kg		1		05/08/24 20:25		
, ,		mg/kg	0.0051	1		05/08/24 20:25		
laphthalene	0.019	mg/kg	0.0051	1		05/08/24 20:25		
Phenanthrene	ND	mg/kg	0.0051	1		05/08/24 20:25		
Pyrene	ND ,	mg/kg	0.0051	1	05/07/24 16:25	05/08/24 20:25	129-00-0	

N2

05/09/24 12:21

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

3.7

Pace Project No.:

Percent Moisture

Date: 05/10/2024 03:04 PM

50372127

Sample: CS-10	Lab ID: 503	72127010	Collected: 05/01/2	24 10:00	Received: 05	/02/24 15:40 N	//atrix: Solid			
Results reported on a "dry wei	ight" basis and are adj	usted for pe	rcent moisture, sa	mple s	ize and any dilut	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua		
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	'0 by SIM Preparat	ion Met	hod: EPA 3546					
	Pace Analytical Services - Indianapolis									
Surrogates										
2-Fluorobiphenyl (S)	70	%.	16-93	1	05/07/24 16:25	05/08/24 20:25	321-60-8			
p-Terphenyl-d14 (S)	90	%.	19-115	1	05/07/24 16:25	05/08/24 20:25	1718-51-0			
Percent Moisture	Analytical Method: SM 2540G									
	Pace Analytica	l Services - I	ndianapolis							

0.10

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-11	Lab ID: 503	72127011	Collected: 05/01/2	4 10:0	5 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple :	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Meti	nod: EPA 80	82 Preparation Meth	nod: El	PA 3546			
	Pace Analytica	l Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 18:09	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1		05/08/24 18:09		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1		05/08/24 18:09		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/08/24 18:09		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/08/24 18:09		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/08/24 18:09		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/08/24 18:09		
Surrogates			55	·	00,07,21,10.02	00/00/21 10:00	11000 02 0	
Tetrachloro-m-xylene (S)	105	%.	11-126	1	05/07/24 15:52	05/08/24 18:09	877-09-8	
6010 MET ICP	Analytical Meti	nod: EPA 60	10 Preparation Meth	nod: El	PA 3050			
	Pace Analytica		•					
Arsenic	5.3	mg/kg	1.0	1	05/06/24 08:35	05/07/24 00:49	7440-38-2	
Barium	39.1	mg/kg	1.0	1		05/07/24 00:49		
Cadmium	ND	mg/kg	0.50	1		05/07/24 00:49		
Chromium	15.7	mg/kg	1.0	1		05/07/24 00:49		
_ead	3.3	mg/kg	1.0	1		05/07/24 00:49		
Selenium	ND ND	mg/kg	1.0	1		05/07/24 00:49		
Silver	ND	mg/kg	0.50	1		05/07/24 00:49		
7474 Moraum	Analytical Moth		74 Proporation Moth	od: El	οΛ 7 <i>4</i> 74			
7471 Mercury	Pace Analytica		71 Preparation Meth	iou. Er	-A 1411			
	•				05/07/04 00 00	051071044005		
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 19:35	7439-97-6	
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparati	on Me	thod: EPA 3546			
	Pace Analytica	l Services -	Indianapolis					
Acenaphthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:08	83-32-9	
Acenaphthylene	ND	mg/kg	0.0049	1		05/08/24 21:08		
Anthracene	ND	mg/kg	0.0049	1		05/08/24 21:08		
Benzo(a)anthracene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:08	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:08	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:08	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0049	1		05/08/24 21:08		
Benzo(k)fluoranthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:08	207-08-9	
Chrysene	ND	mg/kg	0.0049	1		05/08/24 21:08		
Dibenz(a,h)anthracene	ND	mg/kg	0.0049	1		05/08/24 21:08		
Fluoranthene	ND	mg/kg	0.0049	1		05/08/24 21:08		
Fluorene	ND	mg/kg	0.0049	1		05/08/24 21:08		
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0049	1		05/08/24 21:08		
l-Methylnaphthalene	0.0061	mg/kg	0.0049	1		05/08/24 21:08		
2-Methylnaphthalene	0.011	mg/kg	0.0049	1		05/08/24 21:08		
Naphthalene	0.0099	mg/kg	0.0049	1		05/08/24 21:08		
Phenanthrene	0.0053	mg/kg	0.0049	1		05/08/24 21:08		
Pyrene	ND	mg/kg	0.0049	1	05/07/24 16:25			

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Date: 05/10/2024 03:04 PM

50372127

Sample: CS-11	Lab ID: 503	72127011	Collected: 05/01/2	24 10:0	5 Received: 05	5/02/24 15:40 N	latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for pe	rcent moisture, sa	mple :	size and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparati	ion Me	thod: EPA 3546			
	Pace Analytica	l Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	67	%.	16-93	1	05/07/24 16:25	05/08/24 21:08	321-60-8	
p-Terphenyl-d14 (S)	86	%.	19-115	1	05/07/24 16:25	05/08/24 21:08	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540)G					
	Pace Analytica	ıl Services - Ir	ndianapolis					
Percent Moisture	3.8	%	0.10	1		05/09/24 12:21		N2

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Lab ID: 503	72127012	Collected: 05/01/2	4 10:4	0 Received: 05	5/02/24 15:40 N	Лаtrix: Solid	
nt" basis and are adj	iusted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Met	hod: EPA 80	82 Preparation Meth	od: EF	PA 3546			
Pace Analytica	I Services -	Indianapolis					
ND	ma/ka	0.099	1	05/07/24 15:52	05/08/24 18:24	12674-11-2	
115	mama	0.000	'	00/01/24 10.02	00/00/24 10:24	11000-02-0	
107	%.	11-126	1	05/07/24 15:52	05/08/24 18:24	877-09-8	
Analytical Metl	nod: EPA 60	10 Preparation Meth	od: EF	PA 3050			
Pace Analytica	l Services -	Indianapolis					
5.4	mg/kg	0.99	1	05/06/24 08:35	05/07/24 00:51	7440-38-2	
ND		0.50	1				
ND	mg/kg	0.50	1				
Analytical Meti	nod: EPA 74	71 Preparation Meth	od: EF	PA 7471			
		·					
ND	mg/kg	0.20	1	05/07/24 09:36	05/07/24 19:38	7439-97-6	
Analytical Meth	nod: FPA 82	70 by SIM Preparation	on Met	hod: FPA 3546			
			,,,,,,,,				
ND.	ma/ka	0.0049	1	05/07/24 16:25	05/08/24 21:22	83-32-9	
0.020	mg/kg	0.0049	1		05/08/24 21:22		
	mu/ku	0.0049	1	00/07/24 10:25	UJ/UD/Z4 Z1:ZZ	# 1°0/°0	
0.021 ND	mg/kg mg/kg	0.0049 0.0049	1	05/07/24 16:25	05/08/24 21:22 05/08/24 21:22	91-20-3	
	Results Analytical Meti Pace Analytical ND ND ND ND ND ND ND 107 Analytical Meti Pace Analytical Face Analytical ND 11.9 3.2 ND ND Analytical Meti Pace Analytical ND	Analytical Method: EPA 80 Pace Analytical Services - ND mg/kg Analytical Method: EPA 60 Pace Analytical Services - 5.4 mg/kg 46.3 mg/kg ND mg/kg Analytical Method: EPA 74 Pace Analytical Services - ND mg/kg Analytical Method: EPA 82 Pace Analytical Services - ND mg/kg	Results	Results	Analytical Method: EPA 8082 Preparation Method: EPA 3546 Pace Analytical Services - Indianapolis ND mg/kg 0.099 1 05/07/24 15:52 Analytical Method: EPA 6010 Preparation Method: EPA 3050 Pace Analytical Services - Indianapolis 5.4 mg/kg 0.99 1 05/06/24 08:35 Analytical Method: EPA 6010 Preparation Method: EPA 3050 Pace Analytical Services - Indianapolis ND mg/kg 0.99 1 05/06/24 08:35 ND mg/kg 0.099 1 05/06/24 08:35 ND mg/kg 0.99 1 05/06/24 08:35 ND mg/kg 0.099 1 05/07/24 16:25 ND mg/kg 0.0049 1 05/07/24 16:25 ND mg/kg	Results	Results

N2

05/09/24 12:21

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

3.9

Pace Project No.: 50372127

Percent Moisture

Date: 05/10/2024 03:04 PM

Sample: CS-12	Lab ID: 503	72127012	Collected: 05/01/2	24 10:4	0 Received: 05	5/02/24 15:40 N	latrix: Solid	·			
Results reported on a "dry weig	ght" basis and are adj	usted for pe	rcent moisture, sa	mple :	size and any dilu	tions.					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparat	ion Me	thod: EPA 3546						
	Pace Analytical Services - Indianapolis										
Surrogates											
2-Fluorobiphenyl (S)	63	%.	16-93	1	05/07/24 16:25	05/08/24 21:22	321-60-8				
p-Terphenyl-d14 (S)	85	%.	19-115	1	05/07/24 16:25	05/08/24 21:22	1718-51-0				
Percent Moisture	Analytical Meth	od: SM 2540)G								
	Pace Analytica	l Services - I	ndianapolis								

0.10

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-13	Lab ID: 503	72127013	Collected:	05/01/2	4 10:45	Received: 05	5/02/24 15:40 N	∕latrix: Solid	
Results reported on a "dry weig	tht" basis and are ad	iusted for p	ercent mois	ture, sa	mple si	ze and any dilu	tions.		
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Met	hod: EPA 80	82 Preparat	ion Meth	od: EPA	\ 3546			
	Pace Analytica	al Services -	Indianapolis						
PCB-1016 (Aroclor 1016)	ND	mg/kg	•	0.10	1	05/07/24 15:52	05/08/24 19:09	1267/-11-2	
PCB-1010 (Aroclor 1010)	ND ND	mg/kg		0.10	1		05/08/24 19:09		
PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232)	ND ND	mg/kg		0.10	1		05/08/24 19:09		
PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242)	ND ND	mg/kg		0.10	1		05/08/24 19:09		
PCB-1242 (Aroclor 1242)	ND ND	mg/kg		0.10	1		05/08/24 19:09		
	ND ND	mg/kg		0.10	1		05/08/24 19:09		
PCB-1254 (Aroclor 1254)	ND ND			0.10	1		05/08/24 19:09		
PCB-1260 (Aroclor 1260) Surrogates	ND	mg/kg		0.10	'	05/07/24 15.52	03/00/24 15.05	11090-02-3	
Tetrachloro-m-xylene (S)	99	%.		11-126	1	05/07/24 15:52	05/08/24 19:09	877-09-8	
6010 MET ICP	Analytical Met	hod: FPA 60	10 Preparat	ion Meth	od: FPA	A 3050			
70 10 INE 1 101	Pace Analytica		· ·		L1 /				
	•		mulanapolis						
Arsenic	6.1	mg/kg		0.94	1		05/07/24 00:53		
Barium	33.7	mg/kg		0.94	1		05/07/24 00:53		
Cadmium	ND	mg/kg		0.47	1		05/07/24 00:53		
Chromium	10.2	mg/kg		0.94	1		05/07/24 00:53		
_ead	6.9	mg/kg		0.94	1		05/07/24 00:53		
Selenium	ND	mg/kg		0.94	1		05/07/24 00:53		
Silver	ND	mg/kg		0.47	1	05/06/24 08:35	05/07/24 00:53	7440-22-4	
7471 Mercury	Analytical Met	hod: EPA 74	71 Preparat	ion Meth	od: EPA	A 7471			
• • • • • • • • • • • • • • • • • • •	Pace Analytica		•						
Mercury	ND	mg/kg	,	0.20	1	05/07/24 09:36	05/07/24 19:40	7439-97-6	
•			701 011 5			L EDA 0540			
8270 PAH Soil by SIM	Analytical Met		•	reparati	on Metn	iod: EPA 3546			
	Pace Analytica	al Services -	Indianapolis						
Acenaphthene	ND	mg/kg	(0.0051	1		05/08/24 21:36		
Acenaphthylene	ND	mg/kg	(0.0051	1	05/07/24 16:25	05/08/24 21:36	208-96-8	
Anthracene	ND	mg/kg	(0.0051	1	05/07/24 16:25	05/08/24 21:36	120-12-7	
Benzo(a)anthracene	ND	mg/kg	(0.0051	1	05/07/24 16:25	05/08/24 21:36	56-55-3	
Benzo(a)pyrene	ND	mg/kg	(0.0051	1	05/07/24 16:25	05/08/24 21:36	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	(0.0051	1	05/07/24 16:25	05/08/24 21:36	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	(0.0051	1	05/07/24 16:25	05/08/24 21:36	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	(0.0051	1	05/07/24 16:25	05/08/24 21:36	207-08-9	
Chrysene	ND	mg/kg		0.0051	1	05/07/24 16:25	05/08/24 21:36	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg		0.0051	1		05/08/24 21:36		
Fluoranthene	ND	mg/kg		0.0051	1		05/08/24 21:36		
Fluorene	ND	mg/kg		0.0051	1		05/08/24 21:36		
ndeno(1,2,3-cd)pyrene	ND	mg/kg		0.0051	1		05/08/24 21:36		
1-Methylnaphthalene	0.0063	mg/kg		0.0051	1		05/08/24 21:36		
2-Methylnaphthalene	0.011	mg/kg		0.0051	1	05/07/24 16:25			
Naphthalene	0.0077	mg/kg		0.0051	1		05/08/24 21:36		
Phenanthrene	ND	mg/kg		0.0051	1		05/08/24 21:36		
Pyrene	ND ND	mg/kg		0.0051	1	05/07/24 16:25			

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Percent Moisture

Date: 05/10/2024 03:04 PM

50372127

2.6

0.10

05/09/24 12:22

N2

Sample: CS-13	Lab ID: 503	72127013	Collected: 05/01/2	4 10:4	5 Received: 05	5/02/24 15:40 N	latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for pe	rcent moisture, sa	mple :	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	'0 by SIM Preparati	on Me	thod: EPA 3546			
	Pace Analytica	l Services - I	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	59	%.	16-93	1	05/07/24 16:25	05/08/24 21:36	321-60-8	
p-Terphenyl-d14 (S)	74	%.	19-115	1	05/07/24 16:25	05/08/24 21:36	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540)G					
	Pace Analytica	l Services - I	ndianapolis					

Project:

Pyrene

Date: 05/10/2024 03:04 PM

22686 FBT-Soil + Concrete

Sample: CS-14	Lab ID: 503	72127014	Collected: 05/01/2	4 11:05	Received: 05	5/02/24 15:40 N	//atrix: Solid	
Results reported on a "dry weig								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
, aramotoro					Tropulou	- Thurston		
3082 PCB Solids	Analytical Met	hod: EPA 80	082 Preparation Meth	od: EP	A 3546			
	Pace Analytica	al Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:24	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:24	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:24	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:24	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:24	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:24	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:24	11096-82-5	
Surrogates								
Fetrachloro-m-xylene (S)	105	%.	11-126	1	05/07/24 15:52	05/08/24 19:24	877-09-8	
010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	od: EP	A 3050			
	Pace Analytica	al Services -	Indianapolis					
Arsenic	4.9	mg/kg	0.96	1	05/06/24 08:35	05/07/24 00:54	7440-38-2	
Barium	35.3	mg/kg	0.96	1		05/07/24 00:54		
Cadmium	ND	mg/kg	0.48	1		05/07/24 00:54		
Chromium	7.1	mg/kg	0.96	1		05/07/24 00:54		
ead.	3.8	mg/kg	0.96	1		05/07/24 00:54		
Selenium	ND	mg/kg	0.96	1		05/07/24 00:54		
Silver	ND	mg/kg	0.48	1		05/07/24 00:54		
7474 Moroury	Analytical Mat	had: EDA 7/	71 Preparation Meth	ad: ED	A 7471			
7471 Mercury	Pace Analytica			ou. Er	A 747 I			
	·		·					
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 19:42	7439-97-6	
270 PAH Soil by SIM	Analytical Met	hod: EPA 82	270 by SIM Preparation	on Metl	nod: EPA 3546			
	Pace Analytica	al Services -	Indianapolis					
Acenaphthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:50	83-32-9	
Acenaphthylene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:50	208-96-8	
Anthracene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 21:50	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0049	1		05/08/24 21:50		
Benzo(a)pyrene	ND	mg/kg	0.0049	1		05/08/24 21:50		
Benzo(b)fluoranthene	ND	mg/kg	0.0049	1		05/08/24 21:50		
Benzo(g,h,i)perylene	ND	mg/kg	0.0049	1		05/08/24 21:50		
Benzo(k)fluoranthene	ND	mg/kg	0.0049	1		05/08/24 21:50		
Chrysene	ND	mg/kg	0.0049	1		05/08/24 21:50		
Dibenz(a,h)anthracene	ND	mg/kg	0.0049	1		05/08/24 21:50		
Fluoranthene	ND	mg/kg	0.0049	1		05/08/24 21:50		
luorene	ND ND	mg/kg	0.0049	1		05/08/24 21:50		
ndeno(1,2,3-cd)pyrene	ND ND	mg/kg	0.0049	1		05/08/24 21:50		
-Methylnaphthalene	0.0057	mg/kg	0.0049	1		05/08/24 21:50		
r-Methylnaphthalene 2-Methylnaphthalene	0.0057	mg/kg mg/kg	0.0049	1		05/08/24 21:50		
						05/08/24 21:50		
Naphthalene	0.0089	mg/kg	0.0049	1				
Phenanthrene	ND ND	mg/kg	0.0049	1		05/08/24 21:50		
Jurono	MEX	malka	0 000	1	コルルファンオ イル・クル	コムバロリアフォライ・モハ	320 DO 0	

REPORT OF LABORATORY ANALYSIS

0.0049 1 05/07/24 16:25 05/08/24 21:50 129-00-0

ND

mg/kg

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: CS-14

Date: 05/10/2024 03:04 PM

50372127

Lab ID:	50372127014	Collec
Lab ID:	303/212/014	Collec

cted: 05/01/24 11:05 Received: 05/02/24 15:40 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparat	ion Met	thod: EPA 3546			
	Pace Analytica	l Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	65	%.	16-93	1	05/07/24 16:25	05/08/24 21:50	321-60-8	
p-Terphenyl-d14 (S)	93	%.	19-115	1	05/07/24 16:25	05/08/24 21:50	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540)G					
	Pace Analytica	l Services - Ir	ndianapolis					
Percent Moisture	2.3	%	0.10	1		05/09/24 12:22		N2

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-15	Lab ID: 503	72127015	Collected: 05/01/2	24 11:20	Received: 05	5/02/24 15:40 N	//atrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3082 PCB Solids	Analytical Met	nod: EPA 80	82 Preparation Met	hod: EF	PA 3546			
	Pace Analytica	l Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.098	1	05/07/24 15:52	05/08/24 19:39	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.098	1		05/08/24 19:39		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.098	1		05/08/24 19:39		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.098	1		05/08/24 19:39		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.098	1		05/08/24 19:39		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.098	1		05/08/24 19:39		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.098	1		05/08/24 19:39		
Surrogates	112		0.000	•	00/01/21 10:02	00,00,2110.00	11000 02 0	
Tetrachloro-m-xylene (S)	93	%.	11-126	1	05/07/24 15:52	05/08/24 19:39	877-09-8	
6010 MET ICP	Analytical Meti	nod: EPA 60	10 Preparation Met	hod: EF	A 3050			
	Pace Analytica		•					
	•		•		0=/00/01/05/05			
Arsenic	6.4	mg/kg	1.0	1		05/07/24 00:59		
Barium	38.7	mg/kg	1.0	1		05/07/24 00:59		
Cadmium	ND	mg/kg	0.50	1		05/07/24 00:59		
Chromium	10	mg/kg	1.0	1		05/07/24 00:59		
_ead	5.2	mg/kg	1.0	1		05/07/24 00:59		
Selenium	ND	mg/kg	1.0	1		05/07/24 00:59		
Silver	ND	mg/kg	0.50	1	05/06/24 08:35	05/07/24 00:59	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EP	A 7471			
·	Pace Analytica		•					
Mercury	ND	mg/kg	0.20	1	05/07/24 09:36	05/07/24 19:45	7439-97-6	
3270 PAH Soil by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparati	ion Met	hod: EDA 35/16			
2270 FAIT OON BY SIM	Pace Analytica			OH WE	110d. L1 / 3040			
Acenaphthene	ND	mg/kg	0.0051	1	05/07/24 16:25	05/08/24 22:05	83-33-0	
Acenaphthylene	ND	mg/kg	0.0051	1		05/08/24 22:05		
Anthracene	ND	mg/kg	0.0051	1		05/08/24 22:05		
Benzo(a)anthracene	ND ND	mg/kg	0.0051	1		05/08/24 22:05		
Benzo(a)pyrene	ND ND	mg/kg	0.0051	1		05/08/24 22:05		
Benzo(b)fluoranthene	ND	mg/kg	0.0051	1		05/08/24 22:05		
Benzo(g,h,i)perylene	ND ND		0.0051	1		05/08/24 22:05		
Benzo(k)fluoranthene	ND ND	mg/kg mg/kg	0.0051	1		05/08/24 22:05		
	ND ND			1				
Chrysene		mg/kg	0.0051 0.0051	-		05/08/24 22:05		
Dibenz(a,h)anthracene Fluoranthene	ND ND	mg/kg	0.0051	1 1		05/08/24 22:05 05/08/24 22:05		
-luoranmene -luorene		mg/kg						
	ND ND	mg/kg	0.0051	1		05/08/24 22:05		
ndeno(1,2,3-cd)pyrene	ND 0.010	mg/kg	0.0051	1		05/08/24 22:05		
-Methylnaphthalene	0.019	mg/kg	0.0051	1		05/08/24 22:05		
2-Methylnaphthalene	0.034	mg/kg	0.0051	1		05/08/24 22:05		
Naphthalene	0.014	mg/kg	0.0051	1		05/08/24 22:05		
Phenanthrene	0.021	mg/kg	0.0051	1		05/08/24 22:05		
Pyrene	ND	mg/kg	0.0051	1	05/07/24 16:25	05/08/24 22:05	129-00-0	

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: CS-15

50372127

Lab ID: 50372127015

Results

Collected: 05/01/24 11:20

DF

1

Report Limit

Prepared

Received: 05/02/24 15:40

Matrix: Solid

Analyzed

Qual CAS No.

8270 PAH Soil by SIM

Parameters

Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546

Pace Analytical Services - Indianapolis

Units

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Surrogates

2-Fluorobiphenyl (S) p-Terphenyl-d14 (S)

63 84

%. %.

16-93 19-115

05/07/24 16:25 05/08/24 22:05 321-60-8

05/07/24 16:25 05/08/24 22:05 1718-51-0

Percent Moisture

Analytical Method: SM 2540G

2.9

Pace Analytical Services - Indianapolis

Percent Moisture

Date: 05/10/2024 03:04 PM

0.10

05/09/24 12:22

N2

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-16	Lab ID: 503	72127016	Collected: 05/01/2	24 11:29	5 Received: 05	5/02/24 15:40	Matrix: Solid	
Results reported on a "dry weig	ht" basis and are ad	justed for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Met	hod: EPA 80	82 Preparation Met	hod: EF	PA 3546			
	Pace Analytica	al Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.10	1	05/07/24 15:52	05/08/24 19:54	12674-11-2	
PCB-1221 (Aroclor 1221)	ND ND	mg/kg	0.10	1		05/08/24 19:54		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.10	1		05/08/24 19:54		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.10	1		05/08/24 19:54		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.10	1		05/08/24 19:54		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.10	1		05/08/24 19:54		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.10	1		05/08/24 19:54		
Surrogates	110	mg/ng	0.10	'	00/01/24 10:02	00/00/24 10:04	11030-02-3	
Tetrachloro-m-xylene (S)	100	%.	11-126	1	05/07/24 15:52	05/08/24 19:54	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EF	A 3050			
	Pace Analytica							
Arsenic	5.0	mg/kg	1.0	1	05/06/24 08:35	05/07/24 01:01	7440-38-2	
Barium	37.8	mg/kg	1.0	1		05/07/24 01:01		
Cadmium	ND	mg/kg	0.50	1		05/07/24 01:01		
Chromium	5.9	mg/kg	1.0	1		05/07/24 01:01		
Lead	4.6	mg/kg	1.0	1		05/07/24 01:01		
Selenium	ND	mg/kg	1.0	1		05/07/24 01:01		
Silver	ND	mg/kg	0.50	1		05/07/24 01:01		
7471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Met	nod: EF	A 7471			
,,	Pace Analytica		•					
Mercury	ND	mg/kg	0.20	1	05/07/24 09:36	05/07/24 19:47	7439-97-6	
8270 PAH Soil by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparati	ion Met	hod: FPA 3546			
	Pace Analytica		•		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Acenaphthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:19	83-32-9	
Acenaphthylene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Anthracene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Benzo(a)anthracene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Benzo(a)pyrene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Benzo(b)fluoranthene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Benzo(g,h,i)perylene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Benzo(k)fluoranthene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Chrysene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Dibenz(a,h)anthracene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Fluoranthene	ND	mg/kg	0.0049	1		05/08/24 22:19		
Fluorene	ND	mg/kg	0.0049	1		05/08/24 22:19		
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0049	1		05/08/24 22:19		
1-Methylnaphthalene	0.010	mg/kg	0.0049	1		05/08/24 22:19		
2-Methylnaphthalene	0.017	mg/kg	0.0049	1		05/08/24 22:19		
Naphthalene	0.0083	mg/kg	0.0049	1		05/08/24 22:19		
Phenanthrene	0.0065	mg/kg	0.0049	1	05/07/24 16:25			

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127 Sample: CS-16

Lab ID: 50372127016 Collected: 05/01/24 11:25 Received: 05/02/24 15:40 Matrix: Solid

Results reported on a "dry weig	ht" basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparat	ion Me	thod: EPA 3546			
	Pace Analytica	l Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	60	%.	16-93	1	05/07/24 16:25	05/08/24 22:19	321-60-8	
p-Terphenyl-d14 (S)	85	%.	19-115	1	05/07/24 16:25	05/08/24 22:19	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540	G					
	Pace Analytica	l Services - Ir	ndianapolis					
Percent Moisture	2.2	%	0.10	1		05/09/24 12:22		N2

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-17	Lab ID: 503	72127017	Collected: 05/01/2	24 14:2	8 Received: 05	5/02/24 15:40 N	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, s	ample :	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Met	nod: EPA 80	82 Preparation Met	hod: El	PA 3546			
	Pace Analytica		•					
DCD 1016 (Argolog 1016)	•		·	4	05/07/04 45:50	05/09/24 20:00	10674 11 0	
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.099	1		05/08/24 20:09		
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.099	1		05/08/24 20:09		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.099	1		05/08/24 20:09		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.099	1		05/08/24 20:09		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.099	1		05/08/24 20:09		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.099 0.099	1 1		05/08/24 20:09		
PCB-1260 (Aroclor 1260) Surrogates	ND	mg/kg	0.099	1	05/07/24 15.52	05/08/24 20:09	11090-02-3	
Tetrachloro-m-xylene (S)	197	%.	11-126	1	05/07/24 15:52	05/08/24 20:09	877-09-8	
6010 MET ICP	Analytical Met	nod: FPA 60	10 Preparation Met	hod: Fl	PA 3050			
JOIN HIM! IN!	Pace Analytica		•	u. LI				
	•		*					
Arsenic	6.1	mg/kg	0.91	1		05/07/24 01:03		
Barium	30.2	mg/kg	0.91	1		05/07/24 01:03		
Cadmium	ND	mg/kg	0.45	1		05/07/24 01:03		
Chromium	8.8	mg/kg	0.91	1		05/07/24 01:03		
_ead	8.2	mg/kg	0.91	1		05/07/24 01:03		
Selenium	ND	mg/kg	0.91	1	05/06/24 08:35	05/07/24 01:03	7782-49-2	
Silver	ND	mg/kg	0.45	1	05/06/24 08:35	05/07/24 01:03	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Met	hod: Ef	PA 7471			
•	Pace Analytica		•					
Mercury	ND	mg/kg	0.21	1	05/07/24 09:36	05/07/24 19:57	7439-97-6	
2072 241 0 111 0114	A I I. N. I	EDA 00	70 h. Ola D		B			
8270 PAH Soil by SIM	•		70 by SIM Preparat	ion ivie	mod: EPA 3546			
	Pace Analytica	ll Services -	Indianapolis					
Acenaphthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	83-32-9	
Acenaphthylene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	208-96-8	
Anthracene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	120-12-7	
3enzo(a)anthracene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	207-08-9	
Chrysene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	53-70-3	
luoranthene	0.0092	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	206-44-0	
Fluorene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	193-39-5	
1-Methylnaphthalene	0.016	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	90-12-0	
2-Methylnaphthalene	0.028	mg/kg	0.0049	1		05/08/24 22:33		
Naphthalene	0.012	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	91-20-3	
Phenanthrene	0.041	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	85-01-8	
Pyrene	0.0070	mg/kg	0.0049	1	05/07/24 16:25	05/08/24 22:33	120_00_0	

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-17	Lab ID: 503	72127017	Collected: 05/01/2	4 14:2	8 Received: 05	i/02/24 15:40 N	latrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparati	on Me	thod: EPA 3546			
	Pace Analytica	l Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	65	%.	16-93	1	05/07/24 16:25	05/08/24 22:33	321-60-8	
p-Terphenyl-d14 (S)	82	%.	19-115	1	05/07/24 16:25	05/08/24 22:33	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540	ıG					
	Pace Analytica	l Services - It	ndianapolis					
Percent Moisture	3.0	%	0.10	1		05/09/24 12:22		N2

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-18	Lab ID: 503	72127018	Collected: 05/01/2	24 14:3	5 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Results reported on a "dry weig	ght" basis and are ad	iusted for p	ercent moisture, sa	mple :	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3082 PCB Solids	Analytical Met	hod: EPA 80	82 Preparation Met	hod: Ef	PA 3546			
	Pace Analytica	al Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.098	1	05/07/24 15:52	05/08/24 20:25	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.098	1		05/08/24 20:25		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.098	1		05/08/24 20:25		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.098	1		05/08/24 20:25		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.098	1		05/08/24 20:25		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.098	1		05/08/24 20:25		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.098	1		05/08/24 20:25		
Surrogates		55	******	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Tetrachloro-m-xylene (S)	106	%.	11-126	1	05/07/24 15:52	05/08/24 20:25	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: El	PA 3050			
	Pace Analytica		•					
N	•		•	4	05/06/04 00:05	05/07/04 04:05	7440 00 0	
Arsenic	4.5	mg/kg	0.92	1		05/07/24 01:05		
Barium	30.4	mg/kg	0.92	1		05/07/24 01:05		
Cadmium	ND	mg/kg	0.46	1		05/07/24 01:05		
Chromium	9.0	mg/kg	0.92	1		05/07/24 01:05		
ead	4.3	mg/kg	0.92	1		05/07/24 01:05		
Selenium	ND	mg/kg	0.92	1		05/07/24 01:05		
Silver	ND	mg/kg	0.46	1	05/06/24 08:35	05/07/24 01:05	7440-22-4	
471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Met	hod: El	PA 7471			
	Pace Analytica	al Services -	Indianapolis					
Mercury	ND	mg/kg	0.22	1	05/07/24 09:36	05/07/24 20:00	7439-97-6	
B270 PAH Soil by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparat	ion Me	thod: EPA 3546			
	Pace Analytica							
Acenaphthene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 22:47	83-32-9	
Acenaphthylene	ND	mg/kg	0.0050	1		05/08/24 22:47		
Anthracene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
Benzo(a)anthracene	ND	mg/kg	0.0050	1		05/08/24 22:47		
Benzo(a)pyrene	ND	mg/kg	0.0050	1		05/08/24 22:47		
Benzo(b)fluoranthene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
Benzo(g,h,i)perylene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
Benzo(k)fluoranthene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
Chrysene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
Dibenz(a,h)anthracene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
Fluoranthene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
Fluorantinene	ND ND	mg/kg	0.0050	1		05/08/24 22:47		
ndeno(1,2,3-cd)pyrene	ND ND		0.0050	1		05/08/24 22:47		
* * * * * * * * * * * * * * * * * * * *		mg/kg		1		05/08/24 22:47		
I-Methylnaphthalene	0.022	mg/kg	0.0050					
2-Methylnaphthalene	0.041	mg/kg	0.0050	1		05/08/24 22:47		
Naphthalene	0.046	mg/kg	0.0050	1		05/08/24 22:47		
Phenanthrene	0.0083	mg/kg	0.0050	1		05/08/24 22:47		
Pyrene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 22:47	129-00-0	

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

Sample: CS-18	Lab ID: 50372127018	Collected:	05/01/24 14:35	Received:	05/02/24 15:40	Matrix: Solid
Results reported on a "dry weight" bas	is and are adjusted for p	ercent mois	sture, sample siz	e and any c	lilutions.	

Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparati	on Met	thod: EPA 3546			
	Pace Analytica	l Services - Ir	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	64	%.	16-93	1	05/07/24 16:25	05/08/24 22:47	321-60-8	
p-Terphenyl-d14 (S)	87	%.	19-115	1	05/07/24 16:25	05/08/24 22:47	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540	iG					
	Pace Analytica	l Services - Ir	ndianapolis					
Percent Moisture	2.9	%	0.10	1		05/09/24 12:22		N2

Project:

Pyrene

Date: 05/10/2024 03:04 PM

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Lab ID: 50372127019 Sample: CS-19 Collected: 05/01/24 14:40 Received: 05/02/24 15:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8082 PCB Solids Analytical Method: EPA 8082 Preparation Method: EPA 3546 Pace Analytical Services - Indianapolis PCB-1016 (Aroclor 1016) ND 05/07/24 15:52 05/08/24 20:40 12674-11-2 mg/kg 0.099 1 PCB-1221 (Aroclor 1221) ND mg/kg 0.099 1 05/07/24 15:52 05/08/24 20:40 11104-28-2 PCB-1232 (Aroclor 1232) ND mg/kg 0.099 1 05/07/24 15:52 05/08/24 20:40 11141-16-5 PCB-1242 (Aroclor 1242) ND mg/kg 0.099 1 05/07/24 15:52 05/08/24 20:40 53469-21-9 05/07/24 15:52 05/08/24 20:40 12672-29-6 PCB-1248 (Aroclor 1248) ND ma/ka 0.099 1 PCB-1254 (Aroclor 1254) 0.099 05/07/24 15:52 05/08/24 20:40 11097-69-1 ND mg/kg 1 PCB-1260 (Aroclor 1260) ND 0.099 05/07/24 15:52 05/08/24 20:40 11096-82-5 mg/kg Surrogates Tetrachloro-m-xylene (S) 90 %. 11-126 1 05/07/24 15:52 05/08/24 20:40 877-09-8 Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** Pace Analytical Services - Indianapolis 4.6 0.99 1 05/06/24 08:35 05/07/24 01:06 7440-38-2 Arsenic mg/kg 31.1 0.99 05/06/24 08:35 05/07/24 01:06 7440-39-3 Barium 1 mg/kg Cadmium ND 0.49 1 05/06/24 08:35 05/07/24 01:06 7440-43-9 mg/kg Chromium 7.9 mg/kg 0.99 1 05/06/24 08:35 05/07/24 01:06 7440-47-3 Lead 8.9 mg/kg 0.99 1 05/06/24 08:35 05/07/24 01:06 7439-92-1 Selenium ND mg/kg 0.99 1 05/06/24 08:35 05/07/24 01:06 7782-49-2 Silver ND mg/kg 0.49 05/06/24 08:35 05/07/24 01:06 7440-22-4 Analytical Method: EPA 7471 Preparation Method: EPA 7471 7471 Mercury Pace Analytical Services - Indianapolis ND 0.20 Mercury mg/kg 05/07/24 09:36 05/07/24 20:02 7439-97-6 Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 8270 PAH Soil by SIM Pace Analytical Services - Indianapolis ND 0.0049 1 05/07/24 16:25 05/08/24 23:02 83-32-9 Acenaphthene mg/kg 05/07/24 16:25 05/08/24 23:02 208-96-8 Acenaphthylene ND mg/kg 0.0049 1 ND 0.0049 05/07/24 16:25 05/08/24 23:02 120-12-7 Anthracene mg/kg 1 0.0049 05/07/24 16:25 05/08/24 23:02 56-55-3 ND Benzo(a)anthracene mg/kg 1 ND 0.0049 05/07/24 16:25 05/08/24 23:02 50-32-8 mg/kg 1 Benzo(a)pyrene Benzo(b)fluoranthene ND mg/kg 0.0049 1 05/07/24 16:25 05/08/24 23:02 205-99-2 ND mg/kg 0.0049 05/07/24 16:25 05/08/24 23:02 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene ND mg/kg 0.0049 1 05/07/24 16:25 05/08/24 23:02 207-08-9 05/07/24 16:25 05/08/24 23:02 218-01-9 Chrysene ND mg/kg 0.0049 1 Dibenz(a,h)anthracene 0.0049 05/07/24 16:25 05/08/24 23:02 53-70-3 ND mg/kg Fluoranthene ND mg/kg 0.0049 05/07/24 16:25 05/08/24 23:02 206-44-0 Fluorene ND mg/kg 0.0049 05/07/24 16:25 05/08/24 23:02 86-73-7 Indeno(1,2,3-cd)pyrene ND mg/kg 0.0049 1 05/07/24 16:25 05/08/24 23:02 193-39-5 1-Methylnaphthalene 0.018 mg/kg 0.0049 1 05/07/24 16:25 05/08/24 23:02 90-12-0 2-Methylnaphthalene 0.028 mg/kg 0.0049 1 05/07/24 16:25 05/08/24 23:02 91-57-6 Naphthalene 0.013 0.0049 05/07/24 16:25 05/08/24 23:02 91-20-3 mg/kg 1 Phenanthrene 0.0085 05/07/24 16:25 05/08/24 23:02 85-01-8 mg/kg 0.0049 1 05/07/24 16:25 05/08/24 23:02 129-00-0

REPORT OF LABORATORY ANALYSIS

0.0049

ND

mg/kg

N2

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

2.7

Percent Moisture

Pace Project No.: 50372127

Sample: CS-19	Lab ID: 503	72127019	Collected: 05/01/2	4 14:40	Received: 05	5/02/24 15:40	Matrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparati	on Metl	hod: EPA 3546			
	Pace Analytica	l Services -	Indianapolis					
Surrogates								
2-Fluorobiphenyl (S)	69	%.	16-93	1	05/07/24 16:25	05/08/24 23:02	2 321-60-8	
p-Terphenyl-d14 (S)	86	%.	19-115	1	05/07/24 16:25	05/08/24 23:02	2 1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 254	10G					
	Pace Analytica	l Services -	Indianapolis					

0.10 1

05/09/24 12:22

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: CS-20	Lab ID: 503	72127020	Collected: 05/01/2	24 14:2	0 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Met	nod: EPA 80	82 Preparation Met	hod: EF	PA 3546			
	Pace Analytica	l Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.50	1	05/07/24 15:52	05/08/24 20:55	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.50	1		05/08/24 20:55		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.50	1		05/08/24 20:55		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.50	1		05/08/24 20:55		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.50	1		05/08/24 20:55		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.50	1		05/08/24 20:55		
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.50	1		05/08/24 20:55		
Surrogates	,,,,		0.00	·	00/0//2/ /0/02	00,00,20		
Tetrachloro-m-xylene (S)	104	%.	11-126	1	05/07/24 15:52	05/08/24 20:55	877-09-8	
6010 MET ICP	Analytical Met	nod: EPA 60	10 Preparation Met	hod: EF	PA 3050			
	Pace Analytica							
Araania	•		•	4	05/06/04 00:05	05/07/04 04:00	7440 20 0	
Arsenic	4.8	mg/kg	0.97	1		05/07/24 01:08		
Barium Barium	37.6	mg/kg	0.97	1		05/07/24 01:08		
Cadmium	ND	mg/kg	0.49	1		05/07/24 01:08		
Chromium	18.9	mg/kg	0.97	1		05/07/24 01:08		
_ead	31.9	mg/kg	0.97	1		05/07/24 01:08		
Selenium	ND	mg/kg	0.97	1		05/07/24 01:08		
Silver	ND	mg/kg	0.49	1	05/06/24 08:35	05/07/24 01:08	7440-22-4	
471 Mercury	Analytical Metl	nod: EPA 74	71 Preparation Met	hod: EF	PA 7471			
	Pace Analytica	l Services -	Indianapolis					
Mercury	ND	mg/kg	0.20	1	05/07/24 09:36	05/07/24 20:04	7439-97-6	
B270 PAH Soil by SIM	Analytical Met	nod: FPA 82	70 by SIM Preparat	ion Met	hod: FPA 3546			
DEFO FAIT COIL BY CHIN	Pace Analytica							
Acenaphthene	ND	mg/kg	0.0050	1	05/07/24 16:25	05/08/24 23:16	83-32-9	
Acenaphthylene	ND	mg/kg	0.0050	1		05/08/24 23:16		
Anthracene	0.0095	mg/kg	0.0050	1		05/08/24 23:16		
Benzo(a)anthracene	0.047	mg/kg	0.0050	1		05/08/24 23:16		
Benzo(a)pyrene	0.068	mg/kg	0.0050	1		05/08/24 23:16		
Benzo(b)fluoranthene	0.15	mg/kg	0.0050	1		05/08/24 23:16		
Benzo(g,h,i)perylene	0.060	mg/kg	0.0050	1		05/08/24 23:16		
Benzo(k)fluoranthene	0.048	mg/kg	0.0050	1		05/08/24 23:16		
Chrysene	0.091	mg/kg	0.0050	1		05/08/24 23:16		
Dibenz(a,h)anthracene	0.013	mg/kg	0.0050	1		05/08/24 23:16		
Fluoranthene	0.12	mg/kg	0.0050	1		05/08/24 23:16		
Fluorene	ND	mg/kg	0.0050	1		05/08/24 23:16		
ndeno(1,2,3-cd)pyrene	0.057	mg/kg	0.0050	1		05/08/24 23:16		
1-Methylnaphthalene	0.0061	mg/kg	0.0050	1		05/08/24 23:16		
2-Methylnaphthalene	0.011	mg/kg	0.0050	1		05/08/24 23:16		
Naphthalene	0.0091	mg/kg	0.0050	1		05/08/24 23:16		
Phenanthrene	0.089	mg/kg	0.0050	1		05/08/24 23:16		
Honditaliono	0.003	mg/ng	0.0000		30,01,24 10,20	55,55,27 20,10	50 01 0	

N2

05/09/24 12:23

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

2.8

Pace Project No.: 50372127

Percent Moisture

Date: 05/10/2024 03:04 PM

Sample: CS-20	Lab ID: 503	72127020	Collected: 05/01/2	24 14:2	0 Received: 05	5/02/24 15:40 N	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparat	ion Me	thod: EPA 3546			
	Pace Analytica	l Services - l	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	68	%.	16-93	1	05/07/24 16:25	05/08/24 23:16	321-60-8	
p-Terphenyl-d14 (S)	85	%.	19-115	1	05/07/24 16:25	05/08/24 23:16	1718-51-0	
Percent Moisture	Analytical Meth	nod: SM 2540	og					
	Pace Analytica	l Services - I	ndianapolis					

0.10

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Sample: Dup-1	Lab ID: 503		Collected: 05/			05/02/24 15:40	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture	, sample	size and any e	dilutions.		
Parameters	Results	Units	Report Lim	it DF	Prepare	d Analyzed	CAS No.	Qua
8082 PCB Solids	Analytical Metl	nod: EPA 80	082 Preparation	Method: E	EPA 3546			
	Pace Analytica	l Services -	Indianapolis					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.0	99 1	05/07/24 15	5:52 05/08/24 21:	10 12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.0			5:52 05/08/24 21:		
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.0			5:52 05/08/24 21:		
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.0			5:52 05/08/24 21:		
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.0			5:52 05/08/24 21:		
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.0			5:52 05/08/24 21:		
PCB-1260 (Aroclor 1260)	ND ND	mg/kg	0.0			5:52 05/08/24 21:		
Surrogates	110	mgmg	0.0	,	00/01/24 10	7.02 00/00/24 Z 1.	10 11000 02 0	
Tetrachloro-m-xylene (S)	95	%.	11-1	26 1	05/07/24 15	5:52 05/08/24 21:	10 877-09-8	
	A 1.12 1.84 41	I EDA 00	340 D (1)					
6010 MET ICP			010 Preparation	viethod: E	EPA 3050			
	Pace Analytica	l Services -	Indianapolis					
Arsenic	5.4	mg/kg	0.	91 1	05/08/24 08	3:27 05/09/24 13:	07 7440-38-2	
Barium	43.8	mg/kg		91 1		3:27 05/09/24 13:		
Cadmium	ND	mg/kg		45 1		3:27 05/09/24 13:		
Chromium	7.8	mg/kg		91 1		3:27 05/09/24 13:		
Lead	4.4	mg/kg		91 1		3:27 05/09/24 13:		
Selenium	ND	mg/kg		91 1		3:27 05/09/24 13:		
Silver	0.71	mg/kg		45 1		3:27 05/09/24 13:		
7471 Mercury	•		171 Preparation I	vietnod: E	=PA /4/1			
	Pace Analytica	l Services -	Indianapolis					
Mercury	ND	mg/kg	0.	20 1	05/07/24 09	9:39 05/07/24 20:	12 7439-97-6	
8270 PAH Soil by SIM	Analytical Meth	nod: EPA 82	270 by SIM Prepa	aration M	ethod: EPA 354	6		
•	Pace Analytica		•					
A concept thoma			·	E4 4	05/04/04 40	v.E.O. OE/OC/OA OO	05 00 00 0	
Acenaphthene	ND	mg/kg	0.00			3:52 05/06/24 23:		
Acenaphthylene	ND	mg/kg	0.00			3:52 05/06/24 23:		
Anthracene	ND	mg/kg	0.00			3:52 05/06/24 23: 3:52 05/06/24 23:		
Benzo(a)anthracene	ND	mg/kg	0.00					
Benzo(a)pyrene	ND	mg/kg	0.00			:52 05/06/24 23:		
Benzo(b)fluoranthene	ND	mg/kg	0.00			1:52 05/06/24 23:		
Benzo(g,h,i)perylene	ND	mg/kg	0.00			:52 05/06/24 23:		
Benzo(k)fluoranthene	ND	mg/kg	0.00			:52 05/06/24 23:		
Chrysene	ND ND	mg/kg	0.00			1:52 05/06/24 23:		
Dibenz(a,h)anthracene	ND	mg/kg	0.00			1:52 05/06/24 23:		
Fluoranthene	ND ND	mg/kg	0.00			52 05/06/24 23:		
Fluorene	ND ND	mg/kg	0.00			52 05/06/24 23:		
Indeno(1,2,3-cd)pyrene	ND 0.0007	mg/kg	0.00			:52 05/06/24 23:		
1-Methylnaphthalene	0.0087	mg/kg	0.00			:52 05/06/24 23:		
2-Methylnaphthalene	0.016	mg/kg	0.00			:52 05/06/24 23:		
Naphthalene	0.013	mg/kg	0.00			:52 05/06/24 23:		
Phenanthrene	0.0084	mg/kg	0.00			:52 05/06/24 23:		
Pyrene	ND	mg/kg	0.00	51 1	05/04/24 13	:52 05/06/24 23:	05 129-00-0	

N2

05/09/24 12:23

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

2.0

Pace Project No.:

Percent Moisture

Date: 05/10/2024 03:04 PM

50372127

Sample: Dup-1	Lab ID: 503	72127021	Collected: 05/01/2	24 08:0	0 Received: 05	5/02/24 15:40 N	latrix: Solid	
Results reported on a "dry weight	ght" basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 PAH Soil by SIM	Analytical Meth	od: EPA 827	0 by SIM Preparat	ion Me	thod: EPA 3546			
	Pace Analytica	l Services - I	ndianapolis					
Surrogates								
2-Fluorobiphenyl (S)	60	%.	16-93	1	05/04/24 13:52	05/06/24 23:05	321-60-8	
p-Terphenyl-d14 (S)	81	%.	19-115	1	05/04/24 13:52	05/06/24 23:05	1718-51-0	
Percent Moisture	Analytical Meth	od: SM 2540	og .					
	Pace Analytica	l Services - I	ndianapolis					

0.10

1

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

QC Batch:

788359

Analysis Method:

EPA 7471

QC Batch Method:

EPA 7471

Analysis Description:

7471 Mercury

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006, 50372127007, 50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127014,

50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020

METHOD BLANK: 3606473 Matrix: Solid

Associated Lab Samples:

50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006, 50372127007, 50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127014, 50372127012, 50372127013, 50372127014, 50372127014, 50372127014, 50372127012, 50372127013, 50372127014, 503

50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020

Blank

Reporting

Parameter

Units

Result

Limit

Analyzed

Qualifiers

Mercury mg/kg

ND

0.20 05/07/24 18:56

LABORATORY CONTROL SAMPLE: 3606474

Parameter

Spike

LCS

LCS

% Rec

Mercury

mg/kg

Units

Conc. 0.5 Result 0.53 % Rec 107 Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3606475

3606476

MS

MS

MSD

Max Qual

Parameter Mercury

50372127010 Units Result

MS Spike Conc.

MSD Spike

MSD Result

% Rec

% Rec

% Rec Limits

RPD

RPD

ND 0.54 mg/kg

Conc. 0.52

Result 0.58

0.56 108

75-125

20

Date: 05/10/2024 03:04 PM

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

QC Batch Method:

50372127

QC Batch:

788360

EPA 7471

Analysis Method:

EPA 7471

Analysis Description:

7471 Mercury

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372127021

METHOD BLANK: 3606477

Matrix: Solid

Associated Lab Samples:

50372127021

Blank Result Reporting Limit

Analyzed

Qualifiers

Mercury

Units mg/kg

ND

0.20 05/07/24 20:07

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

3606478

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury

Units mg/kg

50372128006

0.53

106

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3606479

3606480

MSD

MS

MSD

MSD % Rec % Rec Limits

Max RPD

RPD Qual

MS

0.5

Spike Conc.

Result Result

MS % Rec

20 M3

Mercury

Units mg/kg Result Conc. ND 0.53

Spike

0.5

1.1

169

223

75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

QC Batch:

788026

Analysis Method:

EPA 6010

QC Batch Method: EPA 3050

Analysis Description:

6010 MET

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006, 50372127007, 50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127014, 503

50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020

METHOD BLANK: 3604902

LABORATORY CONTROL CAMPLE

Date: 05/10/2024 03:04 PM

Matrix: Solid

Associated Lab Samples:

50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006, 50372127007, 50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127014,

50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	1.0	05/07/24 00:18	
Barium	mg/kg	ND	1.0	05/07/24 00:18	
Cadmium	mg/kg	ND	0.50	05/07/24 00:18	
Chromium	mg/kg	ND	1.0	05/07/24 00:18	
Lead	mg/kg	ND	1.0	05/07/24 00:18	
Selenium	mg/kg	ND	1.0	05/07/24 00:18	
Silver	mg/kg	ND	0.50	05/07/24 00:18	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	50	50.9	102	80-120	***************************************
Barium	mg/kg	50	52.2	104	80-120	
Cadmium	mg/kg	50	48.5	97	80-120	
Chromium	mg/kg	50	50.0	100	80-120	
_ead	mg/kg	50	48.1	96	80-120	
Selenium	mg/kg	50	48.7	97	80-120	
Silver	mg/kg	25	26.2	105	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3604	904		3604905							
Parameter	Units	50372127010 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/kg	4.6	47.9	43.6	55.2	48.5	106	101	75-125	13	20	
Barium	mg/kg	30.6	47.9	43.6	80.5	73.1	104	97	75-125	10	20	
Cadmium	mg/kg	ND	47.9	43.6	46.7	41.2	97	94	75-125	13	20	
Chromium	mg/kg	9.0	47.9	43.6	50.4	46.2	86	85	75-125	9	20	
Lead	mg/kg	2.3	47.9	43.6	39.0	35.1	77	75	75-125	11	20	
Selenium	mg/kg	ND	47.9	43.6	45.5	40.1	95	92	75-125	13	20	
Silver	mg/kg	ND	24	21.8	25.9	23.0	108	106	75-125	12	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

QC Batch Method:

50372127

QC Batch:

788027

EPA 3050

Analysis Method:

EPA 6010

Analysis Description:

6010 MET

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

Date: 05/10/2024 03:04 PM

50372127021

METHOD BLANK: 3604906

Matrix: Solid

Associated Lab Samples: 50372127021

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	1.0	05/09/24 13:04	
Barium	mg/kg	ND	1.0	05/09/24 13:04	
Cadmium	mg/kg	ND	0.50	05/09/24 13:04	
Chromium	mg/kg	ND	1.0	05/09/24 13:04	
Lead	mg/kg	ND	1.0	05/09/24 13:04	
Selenium	mg/kg	ND	1.0	05/09/24 13:04	
Silver	mg/kg	ND	0.50	05/09/24 13:04	

LABORATORY CONTROL SAMPLE:	3604907					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	50	51.9	104	80-120	
Barium	mg/kg	50	51.5	103	80-120	
Cadmium	mg/kg	50	48.4	97	80-120	
hromium	mg/kg	50	52.0	104	80-120	
ead	mg/kg	50	48.1	96	80-120	
elenium	mg/kg	50	49.3	99	80-120	
ilver	mg/kg	25	24.8	99	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3604908				3604909								
		50372128006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	ND ND	194	198	127	128	65	65	75-125	1	20	МЗ
Barium	mg/kg	53.5	194	198	236	243	94	96	75-125	3	20	
Cadmium	mg/kg	ND	194	198	188	186	97	94	75-125	1	20	
Chromium	mg/kg	ND	194	198	198	197	101	98	75-125	1	20	
Lead	mg/kg	5.2	194	198	183	192	92	94	75-125	5	20	
Selenium	mg/kg	ND	194	198	156	157	80	79	75-125	1	20	
Silver	mg/kg	ND	96.9	99.2	95.5	95.3	98	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

QC Batch: 788263 Analysis Method: EPA 8082
QC Batch Method: EPA 3546 Analysis Description: 8082 PCB Solids

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006

METHOD BLANK: 3606186 Matrix: Solid

Associated Lab Samples: 50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	mg/kg	ND	0.10	05/06/24 19:08	
PCB-1221 (Aroclor 1221)	mg/kg	ND	0.10	05/06/24 19:08	
PCB-1232 (Aroclor 1232)	mg/kg	ND	0.10	05/06/24 19:08	
PCB-1242 (Aroclor 1242)	mg/kg	ND	0.10	05/06/24 19:08	
PCB-1248 (Aroclor 1248)	mg/kg	ND	0.10	05/06/24 19:08	
PCB-1254 (Aroclor 1254)	mg/kg	ND	0.10	05/06/24 19:08	
PCB-1260 (Aroclor 1260)	mg/kg	ND	0.10	05/06/24 19:08	
Tetrachloro-m-xylene (S)	%.	109	11-126	05/06/24 19:08	

LABORATORY CONTROL SAMPLE:	3606187					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	mg/kg	0.33	0.31	93	53-125	
PCB-1260 (Aroclor 1260)	mg/kg	0.33	0.32	97	54-134	
Tetrachloro-m-xylene (S)	%.			104	11-126	

MATRIX SPIKE & MATRIX SF	IKE DUPLIC	CATE: 3606	188		3606189							
	_		MS	MSD								
	5	0371785001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1016)	mg/kg	ND	0.42	0.42	0.25	0.29	59	68	10-170	17	20	
PCB-1260 (Aroclor 1260)	mg/kg	ND	0.42	0.42	0.21	0.28	51	65	10-156	25	20	R1
Tetrachloro-m-xylene (S)	%.						70	92	11-126			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

QC Batch:

788559

Analysis Method:

EPA 8082

QC Batch Method:

EPA 3546

Analysis Description:

8082 PCB Solids

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372127007, 50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127012, 50372127013, 50372127012, 50372127013, 50372127012, 50372127012, 50372127013, 50372127012, 50372127012, 50372127013, 50372127012, 50372127012, 50372127013, 50372127012, 50372127012, 50372127013, 50372127012, 50372127012, 50372127013, 50372127012, 503

50372127014, 50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020,

50372127021

METHOD BLANK: 3607201

Matrix: Solid

Associated Lab Samples:

Date: 05/10/2024 03:04 PM

50372127007, 50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127014, 50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020, 50372127019, 50372127019, 50372127020, 50372127019, 50372127019, 50372127020, 50372127019, 50372127019, 50372127019, 50372127020, 50372127019, 50372127019, 50372127019, 50372127020, 50372127019, 503

Blank Reporting	
Parameter Units Result Limit Analyzed Qua	alifiers
PCB-1016 (Aroclor 1016) mg/kg ND 0.10 05/08/24 16:08	
PCB-1221 (Aroclor 1221) mg/kg ND 0.10 05/08/24 16:08	
PCB-1232 (Aroclor 1232) mg/kg ND 0.10 05/08/24 16:08	
PCB-1242 (Aroclor 1242) mg/kg ND 0.10 05/08/24 16:08	
PCB-1248 (Aroclor 1248) mg/kg ND 0.10 05/08/24 16:08	
PCB-1254 (Aroclor 1254) mg/kg ND 0.10 05/08/24 16:08	
PCB-1260 (Aroclor 1260) mg/kg ND 0.10 05/08/24 16:08	
Tetrachloro-m-xylene (S) %. 100 11-126 05/08/24 16:08	

LABORATORY CONTROL SAMPLE:	3607202					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	mg/kg	0.33	0.31	93	53-125	
PCB-1260 (Aroclor 1260)	mg/kg	0.33	0.32	95	54-134	
Tetrachloro-m-xylene (S)	%.			105	11-126	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3607	203		3607204							
			MS	MSD	***	1400	140	MOD	0/ 15		¥4	
		50372127010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1016)	mg/kg	ND	0.34	0.34	0.28	0.30	82	88	10-170	8	20	
PCB-1260 (Aroclor 1260)	mg/kg	ND	0.34	0.34	0.28	0.30	83	87	10-156	5	20	
Tetrachloro-m-xylene (S)	%.						99	108	11-126			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

QC Batch: 788182 QC Batch Method: EPA 3546

Date: 05/10/2024 03:04 PM

Analysis Method: EPA 8270 by SIM
Analysis Description: 8270 Soil PAH by SIM

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50372127021

METHOD BLANK: 3605880 Matrix: Solid

Associated Lab Samples: 50372127021

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1-Methylnaphthalene	mg/kg	ND	0.0050	05/06/24 17:37	
2-Methylnaphthalene	mg/kg	ND	0.0050	05/06/24 17:37	
Acenaphthene	mg/kg	ND	0.0050	05/06/24 17:37	
Acenaphthylene	mg/kg	ND	0.0050	05/06/24 17:37	
Anthracene	mg/kg	ND	0.0050	05/06/24 17:37	
Benzo(a)anthracene	mg/kg	ND	0.0050	05/06/24 17:37	
Benzo(a)pyrene	mg/kg	ND	0.0050	05/06/24 17:37	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	05/06/24 17:37	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	05/06/24 17:37	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	05/06/24 17:37	
Chrysene	mg/kg	ND	0.0050	05/06/24 17:37	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	05/06/24 17:37	
Fluoranthene	mg/kg	ND	0.0050	05/06/24 17:37	
Fluorene	mg/kg	ND	0.0050	05/06/24 17:37	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	05/06/24 17:37	
Naphthalene	mg/kg	ND	0.0050	05/06/24 17:37	
Phenanthrene	mg/kg	ND	0.0050	05/06/24 17:37	
Pyrene	mg/kg	ND	0.0050	05/06/24 17:37	
2-Fluorobiphenyl (S)	%.	68	16-93	05/06/24 17:37	
p-Terphenyl-d14 (S)	%.	87	19-115	05/06/24 17:37	

LABORATORY CONTROL SAMPLE:	3605881					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	mg/kg	0.67	0.51	77	49-116	
2-Methylnaphthalene	mg/kg	0.67	0.49	74	48-116	
Acenaphthene	mg/kg	0.67	0.47	70	48-118	
Acenaphthylene	mg/kg	0.67	0.52	77	50-123	
Anthracene	mg/kg	0.67	0.43	64	45-123	
Benzo(a)anthracene	mg/kg	0.67	0.49	74	52-131	
Benzo(a)pyrene	mg/kg	0.67	0.53	80	56-135	
Benzo(b)fluoranthene	mg/kg	0.67	0.50	76	52-139	
Benzo(g,h,i)perylene	mg/kg	0.67	0.45	67	49-132	
Benzo(k)fluoranthene	mg/kg	0.67	0.52	79	55-134	
Chrysene	mg/kg	0.67	0.46	69	52-127	
Dibenz(a,h)anthracene	mg/kg	0.67	0.47	71	51-137	
luoranthene	mg/kg	0.67	0.48	72	53-136	
luorene	mg/kg	0.67	0.50	75	52-124	
ndeno(1,2,3-cd)pyrene	mg/kg	0.67	0.47	70	49-139	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

LABORATORY CONTROL SAMPLE:	3605881	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	mg/kg	0.67	0.47	71	45-110	
Phenanthrene	mg/kg	0.67	0.48	72	52-124	
Pyrene	mg/kg	0.67	0.55	82	53-129	
-Fluorobiphenyl (S)	%.			66	16-93	
o-Terphenyl-d14 (S)	%.			82	19-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 3605	882		3605883							
			MS	MSD								
	5	0371735011	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	mg/kg	<0.0023	0.73	0.75	0.52	0.60	71	79	20-133	14	20	
2-Methylnaphthalene	mg/kg	<0.0053	0.73	0.75	0.50	0.57	68	76	16-136	13	20	
Acenaphthene	mg/kg	0.010	0.73	0.75	0.49	0.56	65	72	30-119	14	20	
Acenaphthylene	mg/kg	<0.0021	0.73	0.75	0.52	0.60	72	79	34-117	13	20	
Anthracene	mg/kg	0.011	0.73	0.75	0.44	0.51	59	67	16-129	15	20	
Benzo(a)anthracene	mg/kg	< 0.0016	0.73	0.75	0.45	0.52	61	69	20-136	15	20	
Benzo(a)pyrene	mg/kg	< 0.0034	0.73	0.75	0.47	0.54	64	72	20-142	14	20	
Benzo(b)fluoranthene	mg/kg	< 0.0031	0.73	0.75	0.44	0.51	61	68	17-141	14	20	
Benzo(g,h,i)perylene	mg/kg	< 0.0033	0.73	0.75	0.38	0.44	51	59	14-130	16	20	
Benzo(k)fluoranthene	mg/kg	<0.0026	0.73	0.75	0.46	0.53	62	70	19-142	15	20	
Chrysene	mg/kg	< 0.0039	0.73	0.75	0.42	0.49	58	65	22-131	15	20	
Dibenz(a,h)anthracene	mg/kg	<0.0028	0.73	0.75	0.43	0.51	59	.67	27-124	16	20	
Fluoranthene	mg/kg	0.0048J	0.73	0.75	0.46	0.54	63	70	12-155	14	20	
Fluorene	mg/kg	0.0033J	0.73	0.75	0.49	0.57	67	75	25-135	14	20	
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0029	0.73	0.75	0.40	0.47	55	62	18-133	16	20	
Naphthalene	mg/kg	< 0.0052	0.73	0.75	0.49	0.56	67	74	11-130	13	20	
Phenanthrene	mg/kg	< 0.0041	0.73	0.75	0.47	0.55	64	73	11-147	16	20	
Pyrene	mg/kg	0.013	0.73	0.75	0.53	0.62	71	80	11-154	15	20	
2-Fluorobiphenyl (S)	%.						58	63	16-93			
p-Terphenyl-d14 (S)	%.						69	76	19-115			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

QC Batch: 788560 Analysis Method: EPA 8270 by SIM
QC Batch Method: EPA 3546 Analysis Description: 8270 Soil PAH by SIM

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006, 50372127007,

50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127014, 50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020

METHOD BLANK: 3607206 Matrix: Solid

Associated Lab Samples: 50372127001, 50372127002, 50372127003, 50372127004, 50372127005, 50372127006, 50372127007,

50372127008, 50372127009, 50372127010, 50372127011, 50372127012, 50372127013, 50372127014,

50372127015, 50372127016, 50372127017, 50372127018, 50372127019, 50372127020

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	mg/kg	ND	0.0050	05/08/24 17:48	
2-Methylnaphthalene	mg/kg	ND	0.0050	05/08/24 17:48	
Acenaphthene	mg/kg	ND	0.0050	05/08/24 17:48	
Acenaphthylene	mg/kg	ND	0.0050	05/08/24 17:48	
Anthracene	mg/kg	ND	0.0050	05/08/24 17:48	
Benzo(a)anthracene	mg/kg	ND	0.0050	05/08/24 17:48	
Benzo(a)pyrene	mg/kg	ND	0.0050	05/08/24 17:48	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	05/08/24 17:48	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	05/08/24 17:48	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	05/08/24 17:48	
Chrysene	mg/kg	ND	0.0050	05/08/24 17:48	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	05/08/24 17:48	
Fluoranthene	mg/kg	ND	0.0050	05/08/24 17:48	
Fluorene	mg/kg	ND	0.0050	05/08/24 17:48	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	05/08/24 17:48	
Naphthalene	mg/kg	ND	0.0050	05/08/24 17:48	
Phenanthrene	mg/kg	ND	0.0050	05/08/24 17:48	
Pyrene	mg/kg	ND	0.0050	05/08/24 17:48	
2-Fluorobiphenyl (S)	%.	70	16-93	05/08/24 17:48	
p-Terphenyl-d14 (S)	%.	92	19-115	05/08/24 17:48	

LABORATORY CONTROL SAMPLE:	3607207					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	mg/kg	0.67	0.49	74	49-116	
2-Methylnaphthalene	mg/kg	0.67	0.49	74	48-116	
Acenaphthene	mg/kg	0.67	0.49	73	48-118	
Acenaphthylene	mg/kg	0.67	0.55	82	50-123	
Anthracene	mg/kg	0.67	0.46	69	45-123	
Benzo(a)anthracene	mg/kg	0.67	0.55	83	52-131	
Benzo(a)pyrene	mg/kg	0.67	0.59	88	56-135	
Benzo(b)fluoranthene	mg/kg	0.67	0.55	83	52-139	
Benzo(g,h,i)perylene	mg/kg	0.67	0.49	73	49-132	
Benzo(k)fluoranthene	mg/kg	0.67	0.60	90	55-134	
Chrysene	mg/kg	0.67	0.50	76	52-127	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

ABORATORY CONTROL SAMPLE:	3607207					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
benz(a,h)anthracene	mg/kg	0.67	0.53	79	51-137	
uoranthene	mg/kg	0.67	0.52	78	53-136	
uorene	mg/kg	0.67	0.51	76	52-124	
deno(1,2,3-cd)pyrene	mg/kg	0.67	0.52	77	49-139	
phthalene	mg/kg	0.67	0.49	73	45-110	
enanthrene	mg/kg	0.67	0.52	77	52-124	
rene	mg/kg	0.67	0.60	90	53-129	
Fluorobiphenyl (S)	%.			71	16-93	
erphenyl-d14 (S)	%.			92	19-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 3607	208		3607209							
			MS	MSD								
	5	0372127010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	mg/kg	0.011	0.65	0.69	0.50	0.55	74	78	20-133	10	20	
2-Methylnaphthalene	mg/kg	0.022	0.65	0.69	0.49	0.55	72	76	16-136	10	20	
Acenaphthene	mg/kg	ND	0.65	0.69	0.47	0.51	72	74	30-119	7	20	
Acenaphthylene	mg/kg	ND	0.65	0.69	0.52	0.55	80	81	34-117	6	20	
Anthracene	mg/kg	ND	0.65	0.69	0.44	0.48	68	69	16-129	7	20	
Benzo(a)anthracene	mg/kg	ND	0.65	0.69	0.52	0.54	79	79	20-136	5	20	
Benzo(a)pyrene	mg/kg	ND	0.65	0.69	0.55	0.58	85	85	20-142	5	20	
Benzo(b)fluoranthene	mg/kg	ND	0.65	0.69	0.53	0.56	82	81	17-141	5	20	
Benzo(g,h,i)perylene	mg/kg	ND	0.65	0.69	0.45	0.49	69	71	14-130	8	20	
Benzo(k)fluoranthene	mg/kg	ND	0.65	0.69	0.53	0.56	81	81	19-142	5	20	
Chrysene	mg/kg	ND	0.65	0.69	0.48	0.51	73	74	22-131	6	20	
Dibenz(a,h)anthracene	mg/kg	ND	0.65	0.69	0.51	0.53	78	77	27-124	4	20	
Fluoranthene	mg/kg	ND	0.65	0.69	0.51	0.52	78	76	12-155	3	20	
Fluorene	mg/kg	ND	0.65	0.69	0.50	0.54	76	78	25-135	8	20	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.65	0.69	0.49	0.51	75	75	18-133	4	20	
Naphthalene	mg/kg	0.019	0.65	0.69	0.49	0.53	71	75	11-130	9	20	
Phenanthrene	mg/kg	ND	0.65	0.69	0.51	0.54	77	78	11-147	6	20	
Pyrene	mg/kg	ND	0.65	0.69	0.56	0.60	86	87	11-154	6	20	
2-Fluorobiphenyl (S)	%.						70	70	16-93			
p-Terphenyl-d14 (S)	%.						86	88	19-115			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

QC Batch:

788943

Analysis Method:

SM 2540G

QC Batch Method: SM 2540G Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

Date: 05/10/2024 03:04 PM

50372127001, 50372127002, 50372127003, 50372127004, 50372127005

SAMPLE DUPLICATE: 3609253

		50371892001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	9.8	10.0	3	10	N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372127

QC Batch:

788945

Analysis Method:

SM 2540G

QC Batch Method:

SM 2540G

Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

 $50372127006, 50372127007, 50372127008, 50372127009, 50372127010, 50372127011, 50372127012, \\50372127013, 50372127014, 50372127015, 50372127016, 50372127017, 50372127018, 50372127019, \\50372127017, 50372127018, 50372127019, \\50372127019, 50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019, 50372127019, \\50372127019$

50372127020, 50372127021

SAMPLE DUPLICATE: 3609256

Date: 05/10/2024 03:04 PM

50372127010

Dup

Max

Parameter

Units

Result

Result

RPD

RPD

Qualifiers

Percent Moisture

%

3.7

2.9

26

10 N2,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/10/2024 03:04 PM

M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A

complete list of accreditations/certifications is available upon request.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
50372127001	CS-1	EPA 3546	788263	EPA 8082	788350
50372127002	CS-2	EPA 3546	788263	EPA 8082	788350
0372127003	CS-3	EPA 3546	788263	EPA 8082	788350
0372127004	CS-4	EPA 3546	788263	EPA 8082	788350
0372127005	CS-5	EPA 3546	788263	EPA 8082	788350
0372127006	CS-6	EPA 3546	788263	EPA 8082	788350
0372127007	CS-7	EPA 3546	788559	EPA 8082	788740
0372127008	CS-8	EPA 3546	788559	EPA 8082	788740
372127009	CS-9	EPA 3546	788559	EPA 8082	788740
372127010	CS-10	EPA 3546	788559	EPA 8082	788740
372127011	CS-11	EPA 3546	788559	EPA 8082	788740
372127012	CS-12	EPA 3546	788559	EPA 8082	788740
372127013	CS-13	EPA 3546	788559	EPA 8082	788740
372127014	CS-14	EPA 3546	788559	EPA 8082	788740
372127015	CS-15	EPA 3546	788559	EPA 8082	788740
0372127016	CS-16	EPA 3546	788559	EPA 8082	788740
372127017	CS-17	EPA 3546	788559	EPA 8082	788740
0372127018	CS-18	EPA 3546	788559	EPA 8082	788740
0372127019	CS-19	EPA 3546	788559	EPA 8082	788740
372127020	CS-20	EPA 3546	788559	EPA 8082	788740
372127021	Dup-1	EPA 3546	788559	EPA 8082	788740
372127001	CS-1	EPA 3050	788026	EPA 6010	788420
372127002	CS-2	EPA 3050	788026	EPA 6010	788420
372127003	CS-3	EPA 3050	788026	EPA 6010	788420
372127004	CS-4	EPA 3050	788026	EPA 6010	788420
372127005	CS-5	EPA 3050	788026	EPA 6010	788420
372127006	CS-6	EPA 3050	788026	EPA 6010	788420
372127007	CS-7	EPA 3050	788026	EPA 6010	788420
372127008	CS-8	EPA 3050	788026	EPA 6010	788420
372127009	CS-9	EPA 3050	788026	EPA 6010	788420
372127010	CS-10	EPA 3050	788026	EPA 6010	788420
0372127011	CS-11	EPA 3050	788026	EPA 6010	788420
0372127012	CS-12	EPA 3050	788026	EPA 6010	788420
0372127012	CS-12	EPA 3050	788026	EPA 6010	788420
0372127013	CS-14	EPA 3050	788026	EPA 6010	788420
0372127014	CS-15	EPA 3050	788026	EPA 6010	788420
0372127015	CS-16	EPA 3050	788026	EPA 6010	788420
0372127016	CS-16 CS-17	EPA 3050	788026	EPA 6010	788420
0372127017	CS-17 CS-18	EPA 3050	788026	EPA 6010	788420
		EPA 3050	788026	EPA 6010	788420
)372127019)372127020	CS-19 CS-20	EPA 3050	788026	EPA 6010	788420
0372127021	Dup-1	EPA 3050	788027	EPA 6010	788935
0372127001	CS-1	EPA 7471	788359	EPA 7471	788611
0372127002	CS-2	EPA 7471	788359	EPA 7471	788611
0372127003	CS-3	EPA 7471	788359	EPA 7471	788611
0372127004	CS-4	EPA 7471	788359	EPA 7471	788611
0372127005	CS-5	EPA 7471	788359	EPA 7471	788611

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372127

Date: 05/10/2024 03:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
50372127006	CS-6	EPA 7471	788359	EPA 7471	788611
50372127007	CS-7	EPA 7471	788359	EPA 7471	788611
50372127008	CS-8	EPA 7471	788359	EPA 7471	788611
50372127009	CS-9	EPA 7471	788359	EPA 7471	788611
50372127010	CS-10	EPA 7471	788359	EPA 7471	788611
50372127011	CS-11	EPA 7471	788359	EPA 7471	788611
0372127012	CS-12	EPA 7471	788359	EPA 7471	788611
0372127013	CS-13	EPA 7471	788359	EPA 7471	788611
0372127014	CS-14	EPA 7471	788359	EPA 7471	788611
0372127015	CS-15	EPA 7471	788359	EPA 7471	788611
0372127016	CS-16	EPA 7471	788359	EPA 7471	788611
0372127017	CS-17	EPA 7471	788359	EPA 7471	788611
0372127018	CS-18	EPA 7471	788359	EPA 7471	788611
0372127019	CS-19	EPA 7471	788359	EPA 7471	788611
0372127020	CS-20	EPA 7471	788359	EPA 7471	788611
60372127021	Dup-1	EPA 7471	788360	EPA 7471	788612
0372127001	CS-1	EPA 3546	788560	EPA 8270 by SIM	788985
0372127002	CS-2	EPA 3546	788560	EPA 8270 by SIM	788985
0372127003	CS-3	EPA 3546	788560	EPA 8270 by SIM	788985
0372127004	CS-4	EPA 3546	788560	EPA 8270 by SIM	788985
0372127005	CS-5	EPA 3546	788560	EPA 8270 by SIM	788985
0372127006	CS-6	EPA 3546	788560	EPA 8270 by SIM	788985
0372127007	CS-7	EPA 3546	788560	EPA 8270 by SIM	788985
0372127008	CS-8	EPA 3546	788560	EPA 8270 by SIM	788985
0372127009	CS-9	EPA 3546	788560	EPA 8270 by SIM	788985
0372127010	CS-10	EPA 3546	788560	EPA 8270 by SIM	788985
0372127011	CS-11	EPA 3546	788560	EPA 8270 by SIM	788985
0372127012	CS-12	EPA 3546	788560	EPA 8270 by SIM	788985
0372127013	CS-13	EPA 3546	788560	EPA 8270 by SIM	788985
0372127014	CS-14	EPA 3546	788560	EPA 8270 by SIM	788985
0372127015	CS-15	EPA 3546	788560	EPA 8270 by SIM	788985
0372127016	CS-16	EPA 3546	788560	EPA 8270 by SIM	788985
0372127017	CS-17	EPA 3546	788560	EPA 8270 by SIM	788985
0372127018	CS-18	EPA 3546	788560	EPA 8270 by SIM	788985
0372127019	CS-19	EPA 3546	788560	EPA 8270 by SIM	788985
0372127020	CS-20	EPA 3546	788560	EPA 8270 by SIM	788985
0372127021	Dup-1	EPA 3546	788182	EPA 8270 by SIM	788525
0372127001	CS-1	SM 2540G	788943		
0372127002	CS-2	SM 2540G	788943		
0372127003	CS-3	SM 2540G	788943		
0372127004	CS-4	SM 2540G	788943		
0372127005	CS-5	SM 2540G	788943		
0372127006	CS-6	SM 2540G	788945		
0372127007	CS-7	SM 2540G	788945		
0372127008	CS-8	SM 2540G	788945		
0372127009	CS-9	SM 2540G	788945		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Date: 05/10/2024 03:04 PM

50372127

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50372127010	CS-10	SM 2540G	788945		
50372127011	CS-11	SM 2540G	788945		
50372127012	CS-12	SM 2540G	788945		
50372127013	CS-13	SM 2540G	788945		
50372127014	CS-14	SM 2540G	788945		
50372127015	CS-15	SM 2540G	788945		
50372127016	CS-16	SM 2540G	788945		
50372127017	CS-17	SM 2540G	788945		
50372127018	CS-18	SM 2540G	788945		
50372127019	CS-19	SM 2540G	788945		
50372127020	CS-20	SM 2540G	788945		
50372127021	Dup-1	SM 2540G	788945		

GLOBAL EHS & SUSTAINABILITY SERVICES
401 N. College Avenue, Indianapolis, IN 46-202
(317) 685-6600 - FAX (317) 685-6610

CHAIN OF CUSTODY RECORD

Sheet 1 of 2

GLOBAL EHS & SUSTAINABIL 401 N. Callege Avenue, Indianapolis (317) 685-6600 - FAX (317) 685-	IN 46202					CI	HAII	V ()F (CU	STC	DY	REC	COR	RD				WO#:50	372127
Project No. Project Name FB	r- 50il +	Conent	. 5.	mpli	٠,		-				П	A	nalyse	5			_			
226 86 Report to: Sac	64s.								-									маті	50372127	
Sampled by: KERAMIDA Inc. Kyle Kramer K	(Samplers Po	dat & Sign)																SW GW WW		
QA/QC Level IV	Project St	ate; <u>I</u> A	,					十ら										Soil Air	Con	nments
Detection Level: K2	Time Zon	e: Est	- 	# and	Type of	Contai	ners	Ŋ										Waste		
			Comp Grab	, S	H,50,	preserved	Other	RCRA	PCBs	OAHS								Oil		
Sample ID/Description	Place 4/30/14	1345	- 1	Ĕ E	声		1-2-1	.	-		\vdash	-	-	-		_	\vdash	Lorust	1004	
C5-1 C5-3	130/34	1700			++	2	\vdash	1	1	5	\dashv	+	+	-	-		\vdash	Luncet	001	
25-3	5/1/24		<u> </u>		┼├-	2		,	1	7	\vdash	-		├	\dashv		\vdash	\dashv	002	
C5-4	1774	0940	1		+-+	1	\vdash	-	1	7	\vdash	+	+	-	\vdash	+-	\vdash		1003	
		0945	1	_	╁╌┼╴	1	\vdash	-	-	,	\vdash				-	_	$\left - \right $		007	
US-5		0150	1		+	1	┢	,	-	1	╁		-	-			+		006	
(5.7		0152	+;	\vdash	++	2	\vdash	<u>,</u>	-,	7	\vdash		+	\vdash	\vdash	-	\vdash	+	007	
C5-9		0154	1		+-+	1	╁	,	-	7	\vdash	+	+-	-	\vdash		\vdash		100%	-
C5-B		0156	1		┼┼-	1	-	'	-,	-	\vdash		+	\vdash	\dashv		\vdash	\dashv	009	
45-10		1000	1			6	\vdash	-	-	1	\vdash	+	+	\vdash	\vdash	+	\vdash		MS/MS	O10
		1005	1			$\frac{b}{2}$	\vdash	'	-	-	╁	- -	-	\vdash	\dashv	-	\vdash		011	0 (10
(5-11			1			2	\vdash	'	-	$\frac{3}{7}$	\vdash	\dashv	+-		-	-	\vdash	-	017	
(5.12		1040	1		┼├-		\vdash	J	7	$\frac{1}{T}$	\vdash	+	+-	\vdash	-	-	\vdash	+	1033	
C5-13 Relinquished by: Sign/Date/Time 6	12/24	Received b	1	Date/Tir		2			amis	died	by: S	ien/D.	ate/Ti	me	Щ.	亅	1/2	.1 /	Received for Lab; Sign/E	Pate/Time
	342		$\langle \cdot \rangle$	ter		5]2]2 134	2		-		\leq	ign/D.	٠		Dai	57.	4.	นอ -	M. M	S/424 \(\structure\)
Relinquished by: Sign/Date/Time		Received b	y: Sign/I	Jate/Tir		121		Reli	iquis	lied	by: S	gn/D.	arc/Ti	me	1			7-	Received for Labs Sign/L	Pate/ Finne
		1																		
Lab Name: PACE Due Date: 5 Days Requested analysis filter type:	2) Please 3) If anal 4) If requ	ethod substit notify KER ysis cannot b ested detecti marks:	AMIDA i se conduc ion limits	nimedia red with cannot f	tely upo In requi se achiev	n recei red hol red, ple	pt, if so ding ti save con	ampi mes, itacl	le int plea KEI	icgrit ise ne RAN	ty is in otify h AIDA	quest ERA immed	ion MIDA Jiately	inon	rediate		Pag	ues f	COC Scals Present & Int. VOC Free of Headspace?	Filtered? Yes/No act? Yes/No Yes/No S
Field / Lab (circle one)	Privile	ned now	1 Con	fident	10 1	Attor	nes	1)ork	4 F	f.d.	ut,	4.6	L.	أامد	Con	იაი	1 🚣	VOC Preserved? Yes/f Temperature upon Receip Samules on ice? Yes/f	n: SLUIZ

Sheet 2 of 2

CHAIN OF CUSTODY RECORD

(317) 685-	6500 - FAX (317) 685-6610																									
Project No.	Project Name FBT - 5	wil + 6	uncret		5a1	~p1	h.	``						_			Anal	yses			1		_			
29686	PBI- 2 Report to: 5 a.v. G. MIDA line. (S. WITH LANGE	u 55		-				,																MA'	TRIX	
Sampled by: KERA	MIDA luc. (Si	unplers Pi	int & Sign	1)																				S'	W W	
Kyle Krur	m KNK																								W	
QA/QC Level	בס	Project St	ate:IA	J								9												St A		Comments
Detection Level:	K3	Time Zor	e Esi	Γ		# at	id Ty	ης n	l Co	ntain	ers	ج													iste	
Col. I	D/Description	Date	Time	Сощр	Grab	HCI	INO,	H.50.	5035 Kit	Unpreserved	Other	RURA,	Pc65	PAHS										C	711	
	-14	5/1/24		U	7	-	144	-		2	7	1	1	ſ		\exists	\exists					一		Lere	atr	014
	-15	1	1120		J			\dashv		2		J	7	J		\neg								\neg		0.15
	-16		1125		7					2		J	J	J								\neg				016
7.5			1428		J					2		J	7	j	П											017
C5	-18		1435		J					2		1	1	ſ								\neg				Ó 18
	.19		1440		1					à		1	1	J												Ö19
	-30		1420	1						a.		J	J	1	\Box			-								Q20
D-,					1					J		1	7	j												Q21
Y-1	<u> </u>																									
Relinquished by: S Relinquished by: S	Inquished by: Sign/Date/Time 5/2/24 Received by: Sign/Date/Time 5/2/24 Received by: Sign/Date/Time 5/2/24 Received for Lab: Sign/Date/Time 6/2/24 Received for Lab: Si																									
Due Date: 5 k Requested analysis	1) No method substitution will be performed by the laboratory without KERAMIDA's authorization 2) Please notify KERAMIDA immediately upon tercipit, it simple integrity is in question Due Date: 5 Dongs Requested analysis filter type: Field / Lab (circle one) 1) No method substitution will be performed by the laboratory without KERAMIDA's authorization 2) Please notify KERAMIDA immediately 4) If requested detection limits cannot be achieved, please contact KERAMIDA immediately Other Remarks: Prepared at the Request Prepared and Confridential, Atturney Verk Product, of Legal Course of Sample Conditions: Bottle Interest Yes/No Field Please notify KERAMIDA's authorization COC Scalk Present & Interest Yes/No VOC Free of Headspace? Yes/No Compensation upon Receipt: Sample Conditions: Bottle Interest Yes/No Field Piltered Yes/No Coc Scalk Present & Interest Yes/No VOC Free of Headspace? Yes/No Compensation upon Receipt: Sample Conditions: Bottle Interest Yes/No Coc Scalk Present & Interest Yes/No VOC Free of Headspace? Yes/No Compensation upon Receipt: Sample Conditions: Bottle Interest Yes/No Coc Scalk Present & Interest Yes/No VOC Free of Headspace? Yes/No Compensation upon Receipt: Sample Conditions: Bottle Interest? Yes/No VOC Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Compensation upon Receipt: Sample Conditions: Bottle Interest Yes/No Coc Scalk Present & Interest Yes/No VOC Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Voc Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Voc Free of Headspace? Yes/No Coc Scalk Present & Interest Yes/No Voc Free of Headspace? Yes/No Voc Free of Headspace? Yes/No Voc Free of Headspace?											sang imes atac	le int , plea t KEI	iegrit ise ni RAN	ty is i ouify MDA	n qu KER ima	estion AMI nedia	n IDA acly	ina	tedia	ely	z F	کریر ند ا	ui,	t ×	Field Filtered? Yes/No COG Seals Present & Intact? Yes/No VOC Free of Headspace? Yes/No VOC Preserved? Yes/No Jemperature upon Receipt:

\\planc2024\Planc\Planc\K\Keranidi\\2572-6-14-CC6-\COC_2024

Period: 6/14/2@2

Page 71 of 74

F-IN-Q-290 rev.26, 30Apr2024

Pace
1

SAMPLE CONDITION UPON RECEIPT FORM

I. Courier: □ FED EX □UPS □CLIENT ☑PACI	/	JETT [5. Packing Waterial;	☐ Bubbl	-	
2. Custody Seal on Cooler/Box Present: 🔲 Yes	☑ No		None	Other		***************************************
lf yes)Seals Intact: 🔲 Yes 🔲 No (leave blan	k if no seals	were pres	ent) 6. Ice Type: Wet 🗆 Blue 🗀 None			
3. Thermometer: 12345678 (ABC D	EFGH		7. Was the PM notified of out of temp cooler?: Cooler temp should be above freezing to 6°C	□Yes	□No	
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS REC	EIVED (use Co	mments beld	ow to add more) 8. EZ Bottle Order? □ Yes ☑ No If yes but not on COC what is the EZ Bottle Order Number?:			
Al	discrepant	ies will b	e written out in the comments section below.			
	Yes	No		Yes	No	N/A
JSDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, DK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerlo Rico) Short Hold Time Analysis (48 hours or less)?		X	All containers needing acid/base preservation have been pH <u>CHECKED</u> ?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. Circle:			×
Analysis:		X	HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form			
'ime 5035A TC placed in Freezer or Short Holds To Lab	Time:		Residual Chlorine Check (SVOC 625 Pesl/PCB 608)	Present	Absent	N/A X
Rush TAT Requested (4 days or less):		$\square X$	Residual Chlorine Check (Total/Amenable/Free Cyanide)			X
Custody Signatures Present?	X		Headspace Wisconsin Sulfide?			X
Containers Intact?	X		Headspace in VOA Vials (>6mm): See Containter Count form for details	Present	Absent	No VOA Vials Se
Sample Label (IDs/Dates/Times) Match COC? Except TCs, which only require sample ID	X		Trip Blank Present?		Χ	
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody Seals?:			X
CANO IDDEID ON TOTAGOTO TIGIO: (GOILD SINY)						

Sample Container Count

"Place a RED dot on containers that are out of conformance "

			MaOH (only)	l			,																						Nitric	Sulturic	Sodium Hydroxide	Bodium Hydroxide/ ZnAc
			SBS	ł						AMB	ER G	LASS						PL	.AST	IC					OTI	HER		i	Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG10		DG9H VG9H	VOA VIAL HS >6mm	7690 DG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N-	BP2U	врзи	BP3N	врзғ	BP3S	вьзв	ВРЗZ	сезн	CG3F	Syninge Kît		Matrix	HNO3	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1	2																											52				
2				<u> </u>																												
3	Ц																								<u></u>			Ш		<u> </u>		
4																												Ш				<u> </u>
5																												Ш		-		
6		<u> </u>							<u> </u>																			Ш				
7	\perp																											\perp				
8																																
9	6						·																					\perp				
10	6			L														_										\perp				
11	2				<u> </u>																							1				
12		<u> </u>		<u> </u>	L				<u> </u>																			4				
13	\downarrow																										ļ	V				

Container Codes

	Glas	SS	
DG9H	40mL HCI amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AGIT	1L Na Thiosullate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
ı	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKL	Boz unpreserved clear jar	ÁG2S	500ml. H2SO4 amber glass
WGFL	4oz clear soll jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG38	250ml. H2SO4 amber glass
CG3H	250mL clear glass HCI	AG3SF	250mt. H2SO4 amb glass -field fixered
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass
BG1H	1L HCI clear glass	AG3B	250mL NaOH amber glass
8G18	1L H2SO4 clear glass		

			Plastic					
BP1B	1L NaOH plastic	8P4L	125mL unpreserved plastic					
BPIN	1L HNO3 plastic	BP4N	125mL HNO3 plastic					
BP1S	1L H2SO4 plastic	8P45	125mL H2SO4 plastic					
BP1U	1L unpreserved plastic		Miscellaneous					
8P1Z	1L NaOH, Zn, Ac	l	wiscenaneous					
BP2N	500mL HNO3 plastic	Syring	ре Ки LL Cr+6 sampling kit					
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag					
BP2S	500ml H2SO4 plastic	R	Terracore Kit					
BP2U	500mL unpreserved plastic	SP6T	120mL Coliform Sodium Thiosulfate					
BP2Z	500mL NaOH, Zn Ac	GN	General Container					
врзв	250mL NaOH plastic	U	Summa Can (air sample)					
	250mL HNO3 plastic	WT	Water					
BP3F	250mL HNO3 plastic-field filtered	SL	Solid					
врзи	250mL unpreserved plastic	OL.	Oil .					
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid					
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe					
BP3R	250mL Unpres. FF SQ4/OH buffer							

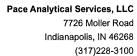
F-IN-Q-270-rev.18, 26Jun2023

COC PAGE 2 of 2

Sample Container Count

** Place a RED dot on containers that are out of conformance **

			MeOH (only)	1																								N≑tric	Suturic	Sodum Hydroxide	Bodium Hydraxide/ ZnAc
			SBS							AMB	ER G	LASS						PL	.AST	IC					OTH	IER		Red	Yellow	Green	Black
COC Line Item	1 75	WGKU BG1U	R	рсэн Усэн	VOA VIAL HB >6mm	769U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	врзг	BP3S	ВРЗВ	BP3Z	сезн	CG3F	Syringe Kît	Matrix	HNO3 √2	H2SO4	NaOH >10	NaOH/Zn Ac>9
1	2																										SL				
2																											I				
3																											П				
4																											П				9
5																											П				
6																															3/3
7	П																														


Container Codes

11

	Glass											
DG9H	40mL HCl amber vos visi	BOIT	glass									
DG9P	40mL TSP amber viai	BGIU	1L unpreserved glass									
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass									
DG9T		AGOU	100mL unpres amber glass									
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass									
VG9H	40mL HCl clear vial	AG15	1L H2SO4 amber glass									
VG9T	40mL Na Thio, clear vial	AG1T	ti. Na Thiosulfate amber glass									
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass									
1	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass									
WGKL	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass									
WGFU	4oz clear soll jar	AG2U	500mL unpres amber glass									
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass									
CG3H	250mL clear glass HCI	AG3SF	250mL H2SO4 amb glass -field filtered									
	250mL clear glass HCl, Field Filter		250mL unpres amber glass									
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass									
BG1S	1L H2SO4 clear glass											

			Plastic
BPIB	1L NaOH plastic	8P4L	125mL unpreserved plastic
BP1N	1L HNO3 plastic	8P4N	125mL HNO3 plastic
BP15	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
BP1U	1L unpreserved plastic		Miscellaneous
BP1Z	1L NaOH, Zn, Ac	L	Miscenarieous
BP2N	500mL HNO3 plastic	Syrin	ge Kil LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
BP28	500mL H2SO4 plastic	R	Terracore Kit
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	General Container
врзв	250mL NøOH plastic	U	Summa Can (air sample)
BP3N	250mL HNO3 plastic	WT	Water
BP3F	250mL HNO3 plastic-field filtered	SL	Solid
BP3U	250mL unpreserved plestic	OL:	OII
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous Ilquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
BP3R	250mL Unpres. FF SO4/OH buffer		

F-IN-Q-270-rev. 18, 26Jun 2023

May 10, 2024

Ms. Sara Guss Keramida 401 North College Avenue Indianapolis, IN 46202

RE:

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Dear Ms. Guss:

Enclosed are the analytical results for sample(s) received by the laboratory on May 02, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

· Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regina Bedel

regina.bedel@pacelabs.com

Regina K Bill

(317)228-3100

Project Manager

Enclosures

CERTIFICATIONS

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372128

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268
Illinois Accreditation #: 200074
Indiana Drinking Water Laboratory #: C-49-06
Kansas/TNI Certification #: E-10177
Kentucky UST Agency Interest #: 80226
Kentucky WW Laboratory ID #: 98019
Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Washington Dept of Ecology #: C1081 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372128

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50372128001	PS-1-1	Solid	05/01/24 11:40	05/02/24 15:40
50372128002	PS-1-2	Solid	05/02/24 09:30	05/02/24 15:40
50372128003	PS-1-3	Solid	05/02/24 10:35	05/02/24 15:40
50372128004	PS-2-1	Solid	05/01/24 13:50	05/02/24 15:40
50372128005	PS-2-2	Solid	05/02/24 09:40	05/02/24 15:40
50372128006	PS-2-3	Solid	05/02/24 11:05	05/02/24 15:40
50372128007	PS-3-1	Solid	05/01/24 14:00	05/02/24 15:40
50372128008	PS-3-2	Solid	05/02/24 09:50	05/02/24 15:40
50372128009	PS-3-3	Solid	05/02/24 12:08	05/02/24 15:40
50372128010	PS-4-1	Solid	05/01/24 14:05	05/02/24 15:40
50372128011	PS-4-2	Solid	05/02/24 10:00	05/02/24 15:40
50372128012	PS-4-3	Solid	05/02/24 12:30	05/02/24 15:40
50372128013	PS-5-1	Solid	05/01/24 14:15	05/02/24 15:40
50372128014	PS-5-2	Solid	05/02/24 10:10	05/02/24 15:40
50372128015	PS-5-3	Solid	05/02/24 12:40	05/02/24 15:40
50372128016	Dup-1	Solid	05/02/24 08:00	05/02/24 15:40

SAMPLE ANALYTE COUNT

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50372128001	PS-1-1	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128002	PS-1-2	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128003	PS-1-3	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128004	PS-2-1	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128005	PS-2-2	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128006	PS-2-3	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128007	PS-3-1	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128008	PS-3-2	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128009	PS-3-3	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128010	PS-4-1	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128011	PS-4-2	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128012	PS-4-3	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128013	PS-5-1	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128014	PS-5-2	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128015	PS-5-3	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I
50372128016	Dup-1	EPA 6010	NWB	7	PASI-I
		EPA 7471	EAE	1	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372128

ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0372128001	PS-1-1					
PA 6010	Barium	739	mg/kg	4.0	05/09/24 13:09	
PA 6010	Chromium	15.2	mg/kg	4.0	05/09/24 13:09	
PA 6010	Lead	93.4	mg/kg	4.0	05/09/24 13:09	
PA 7471	Mercury	0.32	mg/kg	0.21	05/07/24 20:14	
372128002	PS-1-2					
PA 6010	Barium	201	mg/kg	4.0	05/09/24 13:11	
PA 6010	Chromium	16.7	mg/kg	4.0	05/09/24 13:11	
PA 6010	Lead	87.1	mg/kg	4.0	05/09/24 13:11	
PA 7471	Mercury	0.35	mg/kg	0.20	05/07/24 20:17	
372128003	PS-1-3					
PA 6010	Barium	412	mg/kg	4.0	05/09/24 13:13	
PA 6010	Chromium	11.9	mg/kg	4.0	05/09/24 13:13	
PA 6010	Lead	55.6	mg/kg	4.0	05/09/24 13:13	
PA 7471	Mercury	0.29	mg/kg	0.20	05/07/24 20:19	
0372128004	PS-2-1					
PA 6010	Barium	43.7	mg/kg	3.9	05/09/24 13:14	
PA 6010	Chromium	4.0	mg/kg	3.9	05/09/24 13:14	
PA 7471	Mercury	0.80	mg/kg	0.21	05/07/24 20:26	
372128005	PS-2-2					
PA 6010	Barium	69.5	mg/kg	4.0	05/09/24 13:16	
PA 6010	Lead	4.4	mg/kg	4.0	05/09/24 13:16	
PA 7471	Mercury	2.5	mg/kg	0.42	05/07/24 23:00	
372128006	PS-2-3					
PA 6010	Barium	53.5	mg/kg	3.9	05/09/24 13:21	
PA 6010	Lead	5.2	mg/kg	3.9	05/09/24 13:21	
372128007	PS-3-1					
PA 6010	Arsenic	133	mg/kg	4.0		
PA 6010	Barium	1210	mg/kg	4.0	05/09/24 13:30	
PA 6010	Cadmium	2.8	mg/kg	2.0	05/09/24 13:30	
PA 6010	Chromium	17.7	mg/kg	4.0	05/09/24 13:30	
PA 6010	Lead	102	mg/kg	4.0	05/09/24 13:30	
PA 6010	Silver	2.5	mg/kg	2.0	05/09/24 13:30	
PA 7471	Mercury	2.9	mg/kg	0.61	05/07/24 23:02	
372128008	PS-3-2					
PA 6010	Arsenic	18.4	mg/kg		05/09/24 13:32	
PA 6010	Barium	143	mg/kg	4.0		
PA 6010	Chromium	136	mg/kg	4.0	05/09/24 13:32	
PA 6010	Lead	60.1	mg/kg	4.0	05/09/24 13:32	
PA 6010	Silver	2.1	mg/kg	2.0	05/09/24 13:32	
PA 7471	Mercury	12.1	mg/kg	2.1	05/07/24 23:37	
0372128009	PS-3-3					

SUMMARY OF DETECTION

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0372128009	PS-3-3					
EPA 6010	Barium	2940	mg/kg	4.0	05/09/24 13:34	
EPA 6010	Chromium	12.9	mg/kg	4.0	05/09/24 13:34	
EPA 6010	Lead	87.1	mg/kg	4.0	05/09/24 13:34	
EPA 7471	Mercury	3.5	mg/kg	0.63		
0372128010	PS-4-1					
EPA 6010	Barium	42.9	mg/kg	4.0	05/09/24 13:36	
EPA 6010	Cadmium	2.9	mg/kg	2.0	05/09/24 13:36	
EPA 6010	Chromium	48.9	mg/kg	4.0	05/09/24 13:36	
EPA 6010	Lead	184	mg/kg	4.0	05/09/24 13:36	
EPA 7471	Mercury	13.6	mg/kg	2.1	05/07/24 23:39	
0372128011	PS-4-2					
EPA 6010	Barium	44.9	mg/kg	3.8	05/09/24 13:38	
EPA 6010	Cadmium	2.1	mg/kg	1.9	05/09/24 13:38	
EPA 6010	Chromium	36.2	mg/kg	3.8	05/09/24 13:38	
EPA 6010	Lead	109	mg/kg	3.8	05/09/24 13:38	
EPA 7471	Mercury	10.9	mg/kg			
0372128012	PS-4-3					
EPA 6010	Barium	53.5	mg/kg	3.8	05/09/24 13:43	
PA 6010	Chromium	48.7	mg/kg	3.8	05/09/24 13:43	
EPA 6010	Lead	141	mg/kg	3.8	05/09/24 13:43	
PA 7471	Mercury	5.7	mg/kg	1.1	05/07/24 23:21	
0372128013	PS-5-1					
EPA 6010	Barium	319	mg/kg	4.0	05/09/24 13:45	
PA 6010	Chromium	25.8	mg/kg	4.0	05/09/24 13:45	
PA 6010	Lead	144	mg/kg	4.0	05/09/24 13:45	
PA 7471	Mercury	1.8	mg/kg		05/07/24 23:23	
0372128014	PS-5-2					
PA 6010	Barium	1490	mg/kg	3.8	05/09/24 13:47	
PA 6010	Chromium	7.2	mg/kg	3.8	05/09/24 13:47	
PA 6010	Lead	51.7	mg/kg	3.8	05/09/24 13:47	
EPA 7471	Mercury	3.1	mg/kg	0.63	05/07/24 23:26	
0372128015	PS-5-3					
PA 6010	Barium	68.8	mg/kg	3.8	05/09/24 13:48	
EPA 6010	Chromium	44.1	mg/kg		05/09/24 13:48	
PA 6010	Lead	160	mg/kg		05/09/24 13:48	
PA 7471	Mercury	2.7	mg/kg		05/07/24 23:28	
0372128016	Dup-1		-			
EPA 6010	Arsenic	42.0	mg/kg	3.8	05/09/24 13:50	
PA 6010	Barium	42.4	mg/kg		05/09/24 13:50	
PA 6010	Chromium	11.7	mg/kg		05/09/24 13:50	
PA 6010	Lead	72.5	mg/kg		05/09/24 13:50	
	Silver	1.9	mg/kg	5.6	00/00/ET 10.00	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372128

Sample: PS-1-1

Lab ID: 50372128001

Collected: 05/01/24 11:40 Received: 05/02/24 15:40

Matrix: Solid

ht" basis							
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	nod: EPA 6010	Preparation Meth	nod: EF	PA 3050			
Pace Analytica	l Services - Ir	dianapolis					
ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:09	7440-38-2	
739	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:09	7440-39-3	
ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:09	7440-43-9	
15.2	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:09	7440-47-3	
93.4	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:09	7439-92-1	
ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:09	7782-49-2	
ND	mg/kg	2.0	. 1	05/08/24 08:27	05/09/24 13:09	7440-22-4	
Analytical Meth	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Pace Analytica	l Services - Ir	dianapolis					
0.32	mg/kg	0.21	1	05/07/24 09:39	05/07/24 20:14	7439-97-6	
	Analytical Meth Pace Analytica ND 739 ND 15.2 93.4 ND ND Analytical Meth Pace Analytica	Analytical Method: EPA 6010 Pace Analytical Services - In ND mg/kg 739 mg/kg ND mg/kg 15.2 mg/kg 93.4 mg/kg ND mg/kg ND mg/kg ND mg/kg ND mg/kg Analytical Method: EPA 747	Results Units Report Limit Analytical Method: EPA 6010 Preparation Method: Analytical Services - Indianapolis ND mg/kg 4.0 739 mg/kg 4.0 ND mg/kg 2.0 15.2 mg/kg 4.0 93.4 mg/kg 4.0 ND mg/kg 4.0 Analytical Method: EPA 7471 Preparation Method: Analytical Services - Indianapolis	Results Units Report Limit DF Analytical Method: EPA 6010 Preparation Method: EF Pace Analytical Services - Indianapolis ND mg/kg 4.0 1 739 mg/kg 4.0 1 ND mg/kg 2.0 1 15.2 mg/kg 4.0 1 93.4 mg/kg 4.0 1 ND mg/kg 4.0 1 ND mg/kg 4.0 1 Analytical Method: EPA 7471 Preparation Method: EF Pace Analytical Services - Indianapolis	Results Units Report Limit DF Prepared Analytical Method: EPA 6010 Preparation Method: EPA 3050 Pace Analytical Services - Indianapolis ND mg/kg 4.0 1 05/08/24 08:27 739 mg/kg 4.0 1 05/08/24 08:27 ND mg/kg 2.0 1 05/08/24 08:27 15.2 mg/kg 4.0 1 05/08/24 08:27 93.4 mg/kg 4.0 1 05/08/24 08:27 ND mg/kg 4.0 1 05/08/24 08:27 ND mg/kg 4.0 1 05/08/24 08:27 ND mg/kg 2.0 1 05/08/24 08:27 Analytical Method: EPA 7471 Preparation Method: EPA 7471 Pace Analytical Services - Indianapolis	Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 6010 Preparation Method: EPA 3050 Pace Analytical Services - Indianapolis ND mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 739 mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 ND mg/kg 2.0 1 05/08/24 08:27 05/09/24 13:09 93.4 mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 ND mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 ND mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 ND mg/kg 2.0 1 05/08/24 08:27 05/09/24 13:09 Analytical Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Pace Analytical Services - Indianapolis	Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 6010 Preparation Method: EPA 3050 Pace Analytical Services - Indianapolis ND mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 7440-38-2 739 mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 7440-39-3 ND mg/kg 2.0 1 05/08/24 08:27 05/09/24 13:09 7440-43-9 15.2 mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 7440-47-3 93.4 mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 7439-92-1 ND mg/kg 4.0 1 05/08/24 08:27 05/09/24 13:09 7782-49-2 ND mg/kg 2.0 1 05/08/24 08:27 05/09/24 13:09 7440-22-4 Analytical Method: EPA 7471 Preparation Method: EPA 7471 Pace Analytical Services - Indianapolis

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Date: 05/10/2024 09:10 AM

Sample: PS-1-2	Lab ID: 503	72128002	Collected: 05/02/2	4 09:3	0 Received: 05	5/02/24 15:40	Matrix: Solid	
Results reported on a "wet-wei	ight" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EF	PA 3050			
	Pace Analytica	l Services -	Indianapolis					
Arsenic	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:11	7440-38-2	
Barium	201	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:11	7440-39-3	
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:11	7440-43-9	
Chromium	16.7	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:11	7440-47-3	
Lead	87.1	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:11	7439-92-1	
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:11	7782-49-2	
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:11	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
-	Pace Analytica	l Services -	Indianapolis					
Mercury	0.35	mg/kg	0.20	1	05/07/24 09:39	05/07/24 20:17	7439-97-6	

05/07/24 09:39 05/07/24 20:19 7439-97-6

ANALYTICAL RESULTS

Project:

Mercury

Date: 05/10/2024 09:10 AM

22686 FBT-Soil + Concrete

0.29

mg/kg

Pace Project No.: 50372128

Sample: PS-1-3	Lab ID: 503	72128003	Collected: 05/02	24 10:3	5 Received: 05	5/02/24 15:40	Matrix: Solid				
Results reported on a "wet-wei	ight" basis										
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
6010 MET ICP	Analytical Met	nod: EPA 60°	10 Preparation Me	thod: Ef	PA 3050						
	Pace Analytica	Services -	Indianapolis								
Arsenic	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:13	3 7440-38-2				
Barium	412	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:13	7440-39-3				
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:13	7440-43-9				
Chromium	11.9	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:13	3 7440-47-3				
Lead	55.6	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:13	7439-92-1				
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:13	7782-49-2				
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:13	3 7440-22-4				
7471 Mercury	Analytical Met	nod: EPA 74	71 Preparation Me	thod: El	PA 7471						
-	Pace Analytical Services - Indianapolis										

0.20 1

Project:

7471 Mercury

Date: 05/10/2024 09:10 AM

Mercury

22686 FBT-Soil + Concrete

Pace Project No.:

50372128

Sample: PS-2-1	Lab ID: 503	72128004	Collected: 05/01/2	24 13:5	0 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Results reported on a "wet-wei	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: El	PA 3050			
	Pace Analytica	al Services -	Indianapolis					
Arsenic	ND	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:14	7440-38-2	
Barium	43.7	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:14	7440-39-3	
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:14	7440-43-9	
Chromium	4.0	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:14	7440-47-3	
Lead	ND	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:14	7439-92-1	
Selenium	ND	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:14	7782-49-2	
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:14	7440-22-4	

Analytical Method: EPA 7471 Preparation Method: EPA 7471

0.21

05/07/24 09:39 05/07/24 20:26 7439-97-6

Pace Analytical Services - Indianapolis

mg/kg

0.80

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: PS-2-2

Date: 05/10/2024 09:10 AM

50372128

Lab ID: 50372128005

Collected: 05/02/24 09:40 Received: 05/02/24 15:40 Matrix: Solid

Results reported on a "wet-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0 Preparation Met	hod: EF	PA 3050			
	Pace Analytica	l Services - Ir	ıdianapolis					
Arsenic	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:16	7440-38-2	
Barium	69.5	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:16	7440-39-3	
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:16	7440-43-9	
Chromium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:16	7440-47-3	
Lead	4.4	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:16	7439-92-1	
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:16	7782-49-2	
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:16	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Met	hod: EF	PA 7471			
	Pace Analytica	l Services - Ir	ndianapolis					
Mercury	2.5	mg/kg	0.42	2	05/07/24 09:39	05/07/24 23:00	7439-97-6	

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Date: 05/10/2024 09:10 AM

Sample: PS-2-3

o.: 50372128

Lab ID: 50372128006 Collected: 05/02/24 11:05 Received: 05/02/24 15:40 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 601	0 Preparation Meth	od: EF	A 3050			
	Pace Analytica	l Services - Ir	ndianapolis		•			
Arsenic	ND	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:21	7440-38-2	
Barlum	53.5	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:21	7440-39-3	
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:21	7440-43-9	
Chromium	ND	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:21	7440-47-3	
.ead	5.2	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:21	7439-92-1	
Selenium	ND	mg/kg	3.9	1	05/08/24 08:27	05/09/24 13:21	7782-49-2	
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:21	7440-22-4	
471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meth	od: EP	'A 7471			
	Pace Analytica	l Services - Ir	ndianapolis					
Mercury	ND	mg/kg	0.21	1	05/07/24 09:39	05/07/24 20:34	7439-97-6	

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: PS-3-1

Date: 05/10/2024 09:10 AM

50372128

Lab ID: 50372128007

Collected: 05/01/24 14:00 Received: 05/02/24 15:40

Matrix: Solid

Results reported on a "wet-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 6010	Preparation Met	nod: EF	PA 3050			
	Pace Analytica	l Services - In	dianapolis					
Arsenic	133	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:30	7440-38-2	
Barium	1210	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:30	7440-39-3	
Cadmium	2.8	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:30	7440-43-9	
Chromium	17.7	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:30	7440-47-3	
Lead	102	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:30	7439-92-1	
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:30	7782-49-2	
Silver	2.5	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:30	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Met	hod: EF	PA 7471			
-	Pace Analytica	l Services - Ir	ndianapolis					
Mercury	2.9	mg/kg	0.61	3	05/07/24 09:39	05/07/24 23:02	7439-97-6	

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Date: 05/10/2024 09:10 AM

.: 50372128

Sample: PS-3-2 Lab ID: 50372128008 Collected: 05/02/24 09:50 Received: 05/02/24 15:40 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	D Preparation Met	nod: EF	PA 3050			
	Pace Analytica	l Services - Ir	idianapolis					
Arsenic	18.4	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:32	7440-38-2	
Barium	143	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:32	7440-39-3	
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:32	7440-43-9	
Chromium	136	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:32	7440-47-3	
_ead	60.1	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:32	7439-92-1	
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:32	7782-49-2	
Silver	2.1	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:32	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meti	nod: EF	PA 7471			
	Pace Analytica	l Services - Ir	dianapolis					
Mercury	12.1	mg/kg	2.1	10	05/07/24 09:39	05/07/24 23:37	7439-97-6	

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: PS-3-3

Date: 05/10/2024 09:10 AM

50372128

Lab ID: 50372128009

Collected: 05/02/24 12:08 Received: 05/02/24 15:40 Matrix: Solid

Results reported on a "wet-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	D Preparation Met	hod: EF	PA 3050			
	Pace Analytica	l Services - Ir	ndianapolis					
Arsenic	14.5	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:34	7440-38-2	
Barium	2940	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:34	7440-39-3	
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:34	7440-43-9	
Chromium	12.9	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:34	7440-47-3	
Lead	87.1	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:34	7439-92-1	
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:34	7782-49-2	
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:34	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Met	hod: EF	PA 7471			
	Pace Analytica	I Services - Ir	ndianapolis					
Mercury	3.5	mg/kg	0.63	3	05/07/24 09:39	05/07/24 23:10	7439-97-6	

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Date: 05/10/2024 09:10 AM

Sample: PS-4-1	Lab ID: 503	72128010	Collected: 05/01/2	4 14:0	5 Received: 05	5/02/24 15:40 N	Matrix: Solid	
Results reported on a "wet-wei	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	I0 Preparation Meti	nod: EF	A 3050			
	Pace Analytica	l Services - I	ndianapolis					
Arsenic	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:36	7440-38-2	
Barium	42.9	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:36	7440-39-3	
Cadmium	2.9	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:36	7440-43-9	
Chromium	48.9	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:36	7440-47-3	
Lead	184	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:36	7439-92-1	
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:36	7782-49-2	
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:36	7440-22-4	
7471 Mercury	Analytical Method: EPA 7471 Preparation Method: EPA 7471							
	Pace Analytica	l Services - I	ndianapolis					
Mercury	13.6	mg/kg	2.1	10	05/07/24 09:39	05/07/24 23:39	7439-97-6	

(317)228-3100

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

Date: 05/10/2024 09:10 AM

50372128

Sample: PS-4-2	Lab ID: 503	72128011	Collected: 05/02/2	4 10:0	0 Received: 05	5/02/24 15:40 N	//atrix: Solid	
Results reported on a "wet-wei	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	nod: EPA 60°	10 Preparation MetI	nod: EF	PA 3050			
	Pace Analytica	I Services - I	Indianapolis					
Arsenic	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:38	7440-38-2	
Barium	44.9	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:38	7440-39-3	
Cadmium	2.1	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:38	7440-43-9	
Chromium	36.2	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:38	7440-47-3	
Lead	109	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:38	7439-92-1	
Selenium	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:38	7782-49-2	
Silver	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:38	7440-22-4	
7471 Mercury	Analytical Met	hod: EPA 747	71 Preparation Met	nod: EF	PA 7471			
	Pace Analytica	l Services - I	Indianapolis					
Mercury	10.9	mg/kg	2.0	10	05/07/24 09:39	05/07/24 23:41	7439-97-6	

05/07/24 09:39 05/07/24 23:21 7439-97-6

ANALYTICAL RESULTS

Project:

7471 Mercury

Date: 05/10/2024 09:10 AM

Mercury

22686 FBT-Soil + Concrete

Pace Project No.: 5

50372128

Sample: PS-4-3	Lab ID: 503	72128012	Collected: 05/02/2	24 12:30	0 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Results reported on a "wet-wei	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meti	nod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
	Pace Analytica	l Services - I	ndianapolis					
Arsenic	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:43	7440-38-2	
Barium	53.5	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:43	7440-39-3	
Cadmium	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:43	7440-43-9	
Chromium	48.7	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:43	7440-47-3	
Lead	141	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:43	7439-92-1	
Selenium	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:43	7782-49-2	
Silver	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:43	7440-22-4	

1.1 5

Analytical Method: EPA 7471 Preparation Method: EPA 7471

Pace Analytical Services - Indianapolis

mg/kg

5.7

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: PS-5-1

Date: 05/10/2024 09:10 AM

50372128

Lab ID: 50372128013

Collected: 05/01/24 14:15 Received: 05/02/24 15:40 Matrix: Solid

Results reported on a "wet-weig	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
	Pace Analytica	l Services - Ir	ndianapolis					
Arsenic	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:45	7440-38-2	
Barium	319	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:45	7440-39-3	
Cadmium	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:45	7440-43-9	
Chromium	25.8	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:45	7440-47-3	
Lead	144	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:45	7439-92-1	
Selenium	ND	mg/kg	4.0	1	05/08/24 08:27	05/09/24 13:45	7782-49-2	
Silver	ND	mg/kg	2.0	1	05/08/24 08:27	05/09/24 13:45	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Met	hod: EF	PA 7471			
	Pace Analytica	ıl Services - Ir	ndianapolis					
Mercury	1.8	mg/kg	0.38	2	05/07/24 09:39	05/07/24 23:23	7439-97-6	

ANALYTICAL RESULTS

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Date: 05/10/2024 09:10 AM

Sample: PS-5-2	Lab ID: 503	72128014	Collected: 05/02/2	4 10:1	0 Received: 05	5/02/24 15:40 N	/latrix: Solid	
Results reported on a "wet-wei	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meti	nod: EPA 60	10 Preparation Meth	nod: EF	PA 3050			
	Pace Analytica	l Services -	Indianapolis					
Arsenic	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:47	7440-38-2	
Barium	1490	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:47	7440-39-3	
Cadmium	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:47	7440-43-9	
Chromium	7.2	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:47	7440-47-3	
Lead	51.7	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:47	7439-92-1	
Selenium	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:47	7782-49-2	
Silver	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:47	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
	Pace Analytica	l Services -	Indianapolis					
Mercury	3.1	mg/kg	0.63	3	05/07/24 09:39	05/07/24 23:26	7439-97-6	

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

Pace Project No.: Sample: PS-5-3

Date: 05/10/2024 09:10 AM

50372128

Lab ID: 50372128015

Collected: 05/02/24 12:40 Received: 05/02/24 15:40

Matrix: Solid

Results reported on a "wet-weig	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 601	O Preparation Met	nod: EF	PA 3050			
	Pace Analytica	l Services - Ir	idianapolis					
Arsenic	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:48	7440-38-2	
Barium	68.8	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:48	7440-39-3	
Cadmium	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:48	7440-43-9	
Chromium	44.1	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:48	7440-47-3	
Lead	160	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:48	7439-92-1	
Selenium	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:48	7782-49-2	
Silver	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:48	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Met	nod: EF	PA 7471			
-	Pace Analytica	l Services - Ir	ndianapolis			•		
Mercury	2.7	mg/kg	0.41	2	05/07/24 09:39	05/07/24 23:28	7439-97-6	

ANALYTICAL RESULTS

Project:

22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Sample: Dup-1	Lab ID: 50	372128016	Collected: 05/02/2	4 08:0	0 Received: 05	i/02/24 15:40 N	/latrix: Solid	
Results reported on a "wet-wei	ight" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	thod: EPA 60	10 Preparation Meth	nod: EF	PA 3050			
	Pace Analytic	al Services -	Indianapolis					
Arsenic	42.0	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:50	7440-38-2	
Barium	42.4	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:50	7440-39-3	
Cadmium	ND	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:50	7440-43-9	
Chromium	11.7	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:50	7440-47-3	
Lead	72.5	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:50	7439-92-1	
Selenium	ND	mg/kg	3.8	1	05/08/24 08:27	05/09/24 13:50	7782-49-2	
Silver	1.9	mg/kg	1.9	1	05/08/24 08:27	05/09/24 13:50	7440-22-4	

7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471

ND

Pace Analytical Services - Indianapolis

Mercury

Date: 05/10/2024 09:10 AM

mg/kg

0.20 1

05/07/24 09:39 05/07/24 21:39 7439-97-6

QUALITY CONTROL DATA

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

QC Batch Method:

50372128

QC Batch:

788360 EPA 7471 Analysis Method:

EPA 7471

Analysis Description:

7471 Mercury

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372128001, 50372128002, 50372128003, 50372128004, 50372128005, 50372128006, 50372128007, 50372128008, 50372128009, 50372128010, 50372128011, 50372128012, 50372128013, 50372128014, 503

50372128015, 50372128016

METHOD BLANK: 3606477

Matrix: Solid

Associated Lab Samples:

 $50372128001,\, 50372128002,\, 50372128003,\, 50372128004,\, 50372128005,\, 50372128006,\, 50372128007007,\, 50372128007$ 50372128008, 50372128009, 50372128010, 50372128011, 50372128012, 50372128013, 50372128014,

50372128015, 50372128016

Blank Result

Reporting

Limit

Analyzed

Qualifiers

Mercury

Units mg/kg

ND

0.20 05/07/24 20:07

LABORATORY CONTROL SAMPLE:

Parameter

3606478

Spike

LCS

LCS

% Rec

Limits

MSD

80-120

Parameter Units Conc. Result % Rec 0.5 0.53 106 Mercury mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3606479

50372128006 Parameter Units Result

mg/kg

MS Spike Conc.

MSD Spike Conc.

MS MSD Result

MS % Rec

% Rec % Rec Limits

Max **RPD** Qual

Mercury

Date: 05/10/2024 09:10 AM

ND

0.53 0.5 Result 1.1

3606480

1.3 169

223 75-125

Qualifiers

RPD 18

20 M3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372128

QC Batch: QC Batch Method: 788027

Analysis Method:

EPA 6010

EPA 3050

Analysis Description:

6010 MET

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples:

50372128008, 50372128009, 50372128010, 50372128011, 50372128012, 50372128013, 50372128014,

50372128015, 50372128016

METHOD BLANK: 3604906

Matrix: Solid

Associated Lab Samples:

Date: 05/10/2024 09:10 AM

 $50372128001, 50372128002, 50372128003, 50372128004, 50372128005, 50372128006, 50372128007, \\50372128008, 50372128009, 50372128010, 50372128011, 50372128012, 50372128013, 50372128014, \\$

50372128015, 50372128016

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	1.0	05/09/24 13:04	
Barium	mg/kg	ND	1.0	05/09/24 13:04	
Cadmium	mg/kg	ND	0.50	05/09/24 13:04	
Chromium	mg/kg	ND	1.0	05/09/24 13:04	
Lead	mg/kg	ND	1.0	05/09/24 13:04	
Selenium	mg/kg	ND	1.0	05/09/24 13:04	
Silver	mg/kg	ND	0.50	05/09/24 13:04	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	50	51.9	104	80-120	
Barium	mg/kg	50	51.5	103	80-120	
Cadmium	mg/kg	50	48.4	97	80-120	
Chromium	mg/kg	50	52.0	104	80-120	
Lead	mg/kg	50	48.1	96	80-120	
Selenium	mg/kg	50	49.3	99	80-120	
Silver	mg/kg	25	24.8	99	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3604	908		3604909							
			MS	MSD								
		50372128006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	ND	194	198	127	128	65	65	75-125	1	20	M3
Barium	mg/kg	53.5	194	198	236	243	94	96	75-125	3	20	
Cadmium	mg/kg	ND	194	198	188	186	97	94	75-125	1	20	
Chromium	mg/kg	ND	194	198	198	197	101	98	75-125	1	20	
Lead	mg/kg	5.2	194	198	183	192	92	94	75-125	5	20	
Selenium	mg/kg	ND	194	198	156	157	80	79	75-125	1	20	
Silver	mg/kg	ND	96.9	99.2	95.5	95.3	98	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project:

22686 FBT-Soil + Concrete

Pace Project No.:

50372128

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/10/2024 09:10 AM

M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 22686 FBT-Soil + Concrete

Pace Project No.: 50372128

Date: 05/10/2024 09:10 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50372128001	PS-1-1	EPA 3050	788027	EPA 6010	788935
50372128002	PS-1-2	EPA 3050	788027	EPA 6010	788935
50372128003	PS-1-3	EPA 3050	788027	EPA 6010	788935
50372128004	PS-2-1	EPA 3050	788027	EPA 6010	788935
50372128005	PS-2-2	EPA 3050	788027	EPA 6010	788935
50372128006	PS-2-3	EPA 3050	788027	EPA 6010	788935
50372128007	PS-3-1	EPA 3050	788027	EPA 6010	788935
0372128008	PS-3-2	EPA 3050	788027	EPA 6010	788935
0372128009	PS-3-3	EPA 3050	788027	EPA 6010	788935
0372128010	PS-4-1	EPA 3050	788027	EPA 6010	788935
0372128011	PS-4-2	EPA 3050	788027	EPA 6010	788935
50372128012	PS-4-3	EPA 3050	788027	EPA 6010	788935
0372128013	PS-5-1	EPA 3050	788027	EPA 6010	788935
0372128014	PS-5-2	EPA 3050	788027	EPA 6010	788935
0372128015	PS-5-3	EPA 3050	788027	EPA 6010	788935
0372128016	Dup-1	EPA 3050	788027	EPA 6010	788935
60372128001	PS-1-1	EPA 7471	788360	EPA 7471	788612
0372128002	PS-1-2	EPA 7471	788360	EPA 7471	788612
0372128003	PS-1-3	EPA 7471	788360	EPA 7471	788612
0372128004	PS-2-1	EPA 7471	788360	EPA 7471	788612
0372128005	PS-2-2	EPA 7471	788360	EPA 7471	788612
0372128006	PS-2-3	EPA 7471	788360	EPA 7471	788612
0372128007	PS-3-1	EPA 7471	788360	EPA 7471	788612
50372128008	PS-3-2	EPA 7471	788360	EPA 7471	788612
0372128009	PS-3-3	EPA 7471	788360	EPA 7471	788612
0372128010	PS-4-1	EPA 7471	788360	EPA 7471	788612
0372128011	PS-4-2	EPA 7471	788360	EPA 7471	788612
0372128012	PS-4-3	EPA 7471	788360	EPA 7471	788612
0372128013	PS-5-1	EPA 7471	788360	EPA 7471	788612
0372128014	PS-5-2	EPA 7471	788360	EPA 7471	788612
0372128015	PS-5-3	EPA 7471	788360	EPA 7471	788612
0372128016	Dup-1	EPA 7471	788360	EPA 7471	788612

REPORT OF LABORATORY ANALYSIS

Sheet 1 of 2

SEKFRAM	EKERAMIDA							ert.	1414	LOR CLICTORY DEC	OBD		Sheet 1 of 2
GLOBAL EHS & SUSTAINABILE 401 N. College Avenue, Indianapolis, (317) 685-6620 - FAX (317) 685-6	ITY SERVICES IN 46202						,	∪H/	MIN	OF CUSTODY REC	OKD		WO#:50372128
roject No. Project Name FBT	5011	·	- 5		مائ				7_	Analyses		\Box	EL B E LET T) SE E 11 [E 1 E 1
	Guss	breme	. 3			L			-			MATR	50372128
nuled by KERAMIDA Inc.	(Samplers Pri	im & Sign))						-			sw	i i
Kyle Krame Kod MOCLEVEL_III	LIL		-						١,			GW WW	
A/QC Level LT	Project Sta	nei	N_						1	I		Soil	Comments
									. ફિ	ş [‡]		Air Waste	
tection Level: DJ_	Time Zone	: <u>FS)</u>	, –		# and) ype c	of Con	g	– l	1 1 1 1		Oil	
					2		ž	8	MC DA	실			
Sample ID/Description	Date	Time	Com	Srab	E N	1,50	5035 Kit	Uppreserv		쬐		Concrete	
P5-1-1	5/124	1140		1			Ť		J	<i>J</i>		Paint	001
P5-1-2	5/2/24	930		1	\neg			1	1,	<i>]</i>			002
P5-1-3	1	1035		J				ī	1,	,			903
P5-2-1	5/1/24	1350		1	- -			1	17	7			004
P5-2-2	5/2/24	940		1	\top		\Box	1	1,				0.05
P5-2-3	1.	1105		J	_			3	J			11	006 MS/MSD
P5-3-1	7/1/24	1400		1		_		1	17				007
P5-3-2	5/2/24	950		7			\sqcap	1	J	J			008
P5-3-3		1284)		7		1		ı	1				009
P3-4-1	5/1/24	1405		1				i	7	1			00 010
P5-4-2	5/2/24	1000		J	\neg			1	\ \	J			
P5-4-3	J	1230		1				T	J				011 013 012
P5-5-1	5/1/24	1415		1				1	J			11	014 013
linquished by: Sign/Date/Time 6	12/24	Received	by: Si	gn/1)	atc/Ti	ne	3/2	12	Re	Relinquished by: Sign/Date/Tin	5/2	124	Received for Laby Sign/Date/Tinte
41 R- 1	1342	K	<u></u>		pro		Pa	w	11	Leria	fac '	1540	M 5/2/24 15:40
linquished by: Sign/Date/Time		Received	by; Si	gn/D	Pate/Ti	me			Re	Celinquished by: Sign/Date/Tin	ie V		Received for Lab: Sign/Date/Time
th Name: PACE	2) Please (3) If analy	notify KEI ais cannot	RAMII be cor	DA ii nduct	mmedi. ed witl	itely uj iin reg	pon re nired l	ccipt, roldin	if sam ig time	ory without KERAMIDA's authorable integrity is in question mes, please notify KERAMIDA i uact KERAMIDA immediately	immediately		Sample Condition: Bottle Intact? Yes/No COC Seals Present & Intact? Yes/No VOC Free of Headspace? Yes/No
ne Date: 5 De 32 equested analysis filter type:	Other Rei	narks:								Work Roduct, of	ared at the	Request	VOC Preserved? Yes/No
ield / Lab (circle one) 7	Privile.	ed and	1 C.	whi	dent	141	AH.	مامد	u h	Nork Robust, . F.	Leval Com	. I A	Temperature upon Receipt: SCWR

CHAIN OF CUSTODY RECORD

(317) 685-6600 · FAX (317) 685-6610																
Project No. Project Name FBT - Sail	1-7 1	5.	جاراء			_	r - r		٨	nalyse	5		T 1	\Box		
22686 Report to:			<u>C</u> 4			-										
Sera Ques	W n 41					-			1			1		N.	ATRIX SW	
Sampled by: KERAMIDA Inc. (Sample	ers Print & Sigi /					Ι.						1			GW.	
Myle Marter 12/1 11			1			-	i								ww	Comments
Sampled by: KERAMIDA Inc. (Sample Vyle Krarer Lyl M. QA/QC Level IN Proj	ret State:	J				Metals									Soil Air	
Detection Level: P. Tim	e Zone: E5	<u> </u>	# and	Type of Co	ntainers	┨ .						l			Waste	
		Comp	D S	H ₂ SO.	Unpreserve Orher	PLEA				:			-		, Oîl	
	124 1010	$\frac{\sigma}{J}$	工工	표명	70	1	\vdash	\dashv	-	-	+	\dashv	+-+	Ť	PaixL	014
P3-5-3	1240	$-\frac{3}{J}$	+	++	-	J		\dashv	H	+	+-		++	+	1	015
	1	$\frac{1}{7}$	+-	+ -	-	1		-		+-	╁	\dashv	++	+	1.	016
Nup*			╁┼	+	` -			\dashv			╁	\dashv	+	+	₩_	010
			++	111							$\dagger \dagger$	\top	++	+		
		\vdash		\Box					-	1	+	1	11	_		
				11		-					1	\top	11	1		
						1				┪	\top	\dashv		7		
			1 1	1						\top	\Box	\neg	111	7		
										1	\Box	1		1		
														7		
						T							III	T		
Relinquished by: Sign/Date/Time 5/2/24	Received	hy: Sign/	Date/Tir	Pa	7924 (13)	Reli	nquis Ze	hed by:	Sign/D	are/T	ime	PSC	12/2	15	` 40	Received for Lab: Sign/Date/Time 5/1/14 15:40
Relinfuished by: Sign/Date/Time	Received	by: Sign/					,	hed by:	.,							Received for Lab: Sign/Date/Time
	No method subs Please notify KE										lioriza	ition				Sample Condition: Bottle Intact? Yes/No Field Filtered? Yes/No
Due Date: 5 1255	f analysis canno f requested detector for Remarks: Aleyed Av	i be condu ction limit	cted with s cannor l	in required be achieved	l holding l, please :	times ontac	, pleas i KEB	e notify	KERA Vimme	MIDA	Ý			دورب سخ د ا		COC Seals Present & Intact? Yes/No VOC Pree of Headspace? Yes/No VOC Preserved? Yes/No Temperature upon Receipt: Samples on ict? Yes/No

F-IN-Q-290-rev.26, 30Apr2024

SAMPLE CONDITION UPON RECEIPT FORM

NOW/JE No no seals w		nt) 6. Ice Type: Wet Blue None 7. Was the PM notified of out of temp cooler?:	□ Bubbl □ Other □ Yes		
no seals w	ere prese	6. Ice Type: Wet Blue None 7. Was the PM notified of out of temp cooler?:			
	ere prese	7. Was the PM notified of out of temp cooler?:	□Yes	Пио	
FGH			□Yes	□No	
		Cooler temp should be above freezing to 6°C			
D (use Com	ments belov	v to add more) 8. EZ Bottle Order? Yes No			
	6-100 6-21 (1-10) 1-10 (1-10)	If yes but not on COC what is the EZ Bottle Order Number?:			
crepancie	s will be	written out in the comments section below.			
Yes	No		Yes	No	N/A
	×	CHECKED?: Exceptions: VOA, collform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI.			
	X	HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form			X
ime:			Present	Absent	N/A
		Residual Chlorine Check (SVOC 625 Pest/PCB 608)			<u>×</u>
	X	Residual Chlorine Check (Total/Amenable/Free Cyanide)			X
X		Headspace Wisconsin Sulfide?			X
X		Headspace In VOA Vials (>6mm): See Containter Count form for details	Present	Absent	No VCA Vials Sen
×		Trip Blank Present?		Χ.	
		Trip Blank Custody Seals?.			<u> </u>
ir	repancie Yes	crepancies will be Yes No X A A A A A A A A A A A A	what is the EZ Bottle Order Number?: crepancies will be written out in the comments section below. Yes No All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, colliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form ne: Residual Chlorine Check (SVOC 625 Pest/PCB 608) X Residual Chlorine Check (Total/Amenable/Free Cyanide) Headspace Wisconsin Sulfide? Headspace In VOA Vials (>6mm): See Containter Count form for details Trip Blank Present?	what Is the EZ Bottle Order Number?: Present What Is the EZ Bottle Order Number?: Present What Is the EZ Bottle Order Number?: Present What Is the EZ Bottle Order Number?: Yes All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, colliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form Residual Chlorine Check (SVOC 625 Pest/PCB 608) Residual Chlorine Check (Total/Amenable/Free Cyanide) Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present?	what is the EZ Bottle Order Number?: Present All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, colliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. Circle: HN03 (<2) H2S04 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form Residual Chlorine Check (SVOC 625 Pest/PCB 608) Residual Chlorine Check (Total/Amenable/Free Cyanide) Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present?

COC PAGE $\sqrt{}$ of $\sqrt{}$

Sample Container Count

** Place a RED dot on containers that are out of conformance **

			MeOH (only)	!											l														Nitric	Sulfuric	Sodum Hydroxide	Bodium Hydroxida/ ZnAn
			SBS							AMB	ER G	LASS						PL	_AST	IC				ļ	ОТІ	HER			Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	DG9H VG9H	VOA VIAL HS ≻6mm	7690 DG9U	VG9T	AGOU	AG1H	AG10	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	врзг	BP3S	вьзв	BP3Z	ССЗН	CG3F	Syringe Kit		Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >Đ
1	١																											sL				
.2										L																		Ш				
3	\perp	<u> </u>																								<u> </u>		Ш				İ
4		<u> </u>			<u> </u>														 							<u> </u>		Ш				
5	V				<u> </u>			<u> </u>	<u> </u>																			Ц				1
6	<u>3</u>	<u> </u>																										Ш				
7	<u> </u>		ļ																													
8	4		ļ						L																			\perp				
9		,																										4				
10	\bot														_												_	Ц				
11	_																						_					\perp				
12	4	L	L	L	L												l											4				
131	V																										1	U)				

Container Codes

	Glas	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber viai	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber viai	CG3U	250mL Unpres Clear Glass
DG9T		AGOU	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCI amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
1	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKU	8oz unpreserved clear jar	AG28	500mL H2SO4 amber glass
WGFU	4oz clear soll jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber gless
CG3H	250mL clear glass HCI	AG3SF	250mt, H2SO4 emb glass -field fittered
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass		

P			Plastic
BP1B	1L NaOH plastic	BP4L	125mt_unpreserved plastic
BP1N	1L HNO3 plastic	8P4N	125mL HNO3 plastic
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
BP1U	1L unpreserved plastic		Miscellaneous
8P1Z	1L NaOH, Zn, Ac		Miscellaneous
BP2N	500mL HNO3 plastic	Syrire	ge Kit LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
BP28	500mL H2SO4 plastic	R	Terracore Kit
BP2U	500mL unpreserved plastic	SP6T	120mL Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	General Container
врзв	250mL NaOH plastic	J	Summa Can (air sample)
BP3N	250mL HNO3 plastic	WT	Water
BP3F	250mL HNO3 plastic-field filtered	SL	Solid
врзи	250mL unpreserved plastic	OL:	Oil
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
BP3R	250mL Unpres, FF SO4/OH buffer		

F-IN-Q-270-rev.18, 26Jun2023

coc	PAGE	2	of	2
	, , , ,	·	٠.	

Sample Container Count

** Place a RED dot on containers that are out of conformance **

			MeOH (enty)				,								1													Nitric	Sulfuric	Sodkim Hydroxida	Sotkum Hydroxide/ ZnAc	The same of the same of
			SBS							AMB	ER G	LASS						PL	.AST	iC					OTH	IER.		Red	Yellow	Green	Black	The second second
COC Line Item	Ö	WGKU BG1U	R	DG9H VG9H	VOA VIAL HS >6mm	VG9U DG9U	VG9T	AGOU	АС1Н	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N_	BP2U	врзи	BP3N	BP3F	BP3S	вьзв	BP3Z	ССЗН	CG3F	Synnge Kit	Matrix	HNO3 ≺2	H2SO4	NaOH >10	NaOH/Zri Ac >9	
1													Γ			1											ςL					
2																											1					-
3	V																										\overline{V}					
4																																
5																																
6																																
7																																

Container Codes

10 11 12

	Glas	3S	
DG9H	40mt. HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCI clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio, clear vial	AGIT	tt. Na Thiosulate amber glass
VG9U	40mL unpreserved clear vial	AG1U	fliter unpres amber glass
	40mL w/hexane wipe vial	AG2N	500ml. HNO3 amber glass
WGKL	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
WGFU	4oz clear soll jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass
CG3H	250mL clear glass HCt	AG3SF	250mL H2SO4 emb glass -field filtered
CG3F	250mL clear glass HCl, Field Filler	AG3U	250mL unpres amber glass
BG1H	1L HCI clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass		

			Plastic
BPIB	1L NaOH plastic	BP4.	125mL unpreserved plastic
BP1N	1L HNO3 plastic	BPAN	125mL HNO3 plastic
BP1S	1L H2SO4 plastic	8P45	125mL H2SO4 plastic
BP1U	1L unpreserved plastic	Г	Miscellaneous
BP1Z	1L NaOH, Zn, Ac	l	Miscenaneous
BP2N	500mL HNO3 plastic	Syrin	ge Kil LL Cr+6 sampling kil
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
BP2S	500mt H2SO4 plastic	R	Terracore Kit
BP2U	500mL unpreserved plastic	SP51	120mL Coliform Sodium Thiosulfate
8P2Z	500mL NaOH, Zn Ac	GN	General Container
BP3B	250ml. NaOH plastic	٦	Summa Can (air sample)
	250mL HNO3 plastic	WT	Water
BP3F	250mL HNO3 plastic-field filtered	SL	Solid
BP3U	250mL unpreserved plastic	OL:	Oil
BP35	250mL H2SO4 plastic	NAL	Non-squeous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
BP3R	250mL Unpres. FF SO4/OH buffer		

F-IN-Q-270-rev.18, 26Jun2023

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50]

401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name:

FBT SOIL AND CONCRETE SAMPLING

Customer PO: EMSL Sales Rep: 22686 Jeromy Bish

Received: Reported: 05/02/2024 14:44 05/09/2024 16:48

Analytical Results

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	t Prep Method	Analytical Method
Sample: PS-1-1/CONCRETE PAINT		Lims	Refer	ence ID:	CC52174-01	Matrix: Wipe			Sampled: 05	/01/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1	0,50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:04	GB/GB	SW846 3546	SW846-8082A
Sample: PS-1-2/CONCRETE PAINT		Lims	Refer	ence ID:	CC52174-02	Matrix: Wipe			Sampled: 05	/02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A

Sara Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50]

401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com **Project Name:**

FBT SOIL AND CONCRETE SAMPLING

Customer PO:

22686

EMSL Sales Rep:

Jeromy Bish

Received: Reported: 05/02/2024 14:44 05/09/2024 16:48

Analytical Results (Continued)

Analyte	Result	Q DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
Sample: PS-1-2/CONCRETE PAINT (Continued)		Lims Refe	rence ID:	CC52174-02	Matrix: Wipe			Sampled: 05	6/02/24 00:00:00
Aroclor-1242	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:27	GB/GB	SW846 3546	SW846-8082A
Sample: PS-1-3/CONCRETE PAINT		Lims Refe	rence ID:	CC52174-03	Matrix: Wipe			Sampled: 05	6/02/24 00:00:00
Aroclor-1016	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50	1	0.50	µg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A

Jain Of Sille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

LIMS Reference ID: CC52174

EMSL Customer ID: KERA50

EMSL Order ID: 162452174

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50]

401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name: FBT SOIL AND CONCRETE SAMPLING

 Customer PO:
 22686

 EMSL Sales Rep:
 Jeromy Bish

 Received:
 05/02/2024
 14:44

 Reported:
 05/09/2024
 16:48

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
Sample: PS-1-3/CONCRETE PAINT (Continued)		Lims	Refere	ence ID:	CC52174-03	Matrix: Wipe			Sampled: 05/	02/24 00:00:00
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 12:51	GB/GB	SW846 3546	SW846-8082A
Sample: PS-2-1/CONCRETE PAINT		Lims	Refere	ence ID:	CC52174-04	Matrix: Wipe			Sampled: 05/	01/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:15	GB/GB	SW846 3546	SW846-8082A

Sara Of Dille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com EMSL Order ID: 162452174 LIMS Reference ID: CC52174

EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600

sguss@keramida.com

Project Name: Customer PO:

FBT SOIL AND CONCRETE SAMPLING

EMSL Sales Rep:

22686 Jeromy Bish

Received: Reported: 05/02/2024 14:44 05/09/2024 16:48

utical Boculta

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	t Prep Method	Analytical Method
Sample: PS-2-1/CONCRETE PAINT (Continued)		Lims	Refere	ence ID:	CC52174-04	Matrix: Wipe			Sampled:	05/01/24 00:00:00
Sample: PS-2-2/CONCRETE PAINT		Lims	Refere	nce ID:	CC52174-05	Matrix: Wipe			Sampled:	05/02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 13:38	GB/GB	SW846 3	546 SW846-8082A
Sample: PS-2-3/CONCRETE PAINT		Lims	Refere	ence ID:	CC52174-06	Matrix: Wipe			Sampled:	05/02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 3	546 SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 3	546 SW846-8082A

Sana Och Dille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name: FBT SOIL AND CONCRETE SAMPLING

 Customer PO:
 22686

 EMSL Sales Rep:
 Jeromy Bish

 Received:
 05/02/2024
 14:44

 Reported:
 05/09/2024
 16:48

Analytical Results

(Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	t Prep Method	Analytical Method
Sample: PS-2-3/CONCRETE PAINT (Continued)		Lims	Refere	ence ID:	CC52174-06	Matrix: Wipe		1. 1	Sampled: 0	5/02/24 00:00:00
Aroclor-1232	<0.50		1	0,50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1242	<0.50		1	0,50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1254	<0.50		1	0,50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 14:50	GB/GB	SW846 354	6 SW846-8082A
Sample: PS-3-1/CONCRETE PAINT		Lims	Refere	ence ID:	CC52174-07	Matrix: Wipe			Sampled: 0	5/01/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 354	6 SW846-8082A

Sara A Dille Laboratory Manager or other approved signatory

Jana Of Dille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50]

401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com **Project Name:**

FBT SOIL AND CONCRETE SAMPLING

Customer PO:

22686 Jeromy Bish

EMSL Sales Rep: Received:

05/02/2024 14:44

Reported:

05/09/2024 16:48

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	t Prep Method	Analytical Method
Sample: PS-3-1/CONCRETE PAINT (Continued)		Lims I	Reference	e ID:	CC52174-07	Matrix: Wipe			Sampled: 05	01/24 00:00:00
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:14	GB/GB	SW846 3546	SW846-8082A
Sample: PS-3-2/CONCRETE PAINT		Lims I	Reference	e ID:	CC52174-08	Matrix: Wipe			Sampled: 05	02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1 .	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Arocior-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A

Same Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name:

FBT SOIL AND CONCRETE SAMPLING

 Customer PO:
 22686

 EMSL Sales Rep:
 Jeromy Bish

 Received:
 05/02/2024
 14:44

 Reported:
 05/09/2024
 16:48

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analys Initials	t Prep Method	Analytical Method
Sample: PS-3-2/CONCRETE PAINT (Continued)		Lims	Refere	nce ID:	CC52174-08	Matrix: Wipe	······		Sampled: 05/	02/24 00:00:00
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 15:37	GB/GB	SW846 3546	SW846-8082A
Sample: PS-3-3/CONCRETE PAINT		Lims	Refere	nce ID:	CC52174-09	Matrix: Wipe			Sampled: 05/	02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:01	GB/GB	SW846 3546	SW846-8082A
Sample: PS-4-1/CONCRETE PAINT		Lims	Refere	nce ID:	CC52174-10	Matrix: Wipe			Sampled: 05/	01/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A

Sara A Dille Laboratory Manager or other approved signatory

Sara Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50]

401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com **Project Name:**

FBT SOIL AND CONCRETE SAMPLING

Customer PO:

22686

EMSL Sales Rep:

Jeromy Bish

Received:

05/02/2024 14:44

Reported:

05/09/2024 16:48

Analytical Results

(Continued)

Analyte	Result	Q	OF RI	. Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analys Initials	t Prep Method	Analytical Method
Sample: PS-4-1/CONCRETE PAINT (Continued)		Lims F	eference ID:	CC52174-10	Matrix: Wipe			Sampled: 05	/01/24 00:00:00
Aroclor-1221	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1 0,50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1 0,50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:25	GB/GB	SW846 3546	SW846-8082A
Sample: PS-4-2/CONCRETE PAINT		Lims F	eference ID:	CC52174-11	Matrix: Wipe			Sampled: 05	/02/24 00:00:00
Aroclor-1016	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1 0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1 0,50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1 0,50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 3546	SW846-8082A

Sara Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com **Project Name:** FBT SOIL AND CONCRETE SAMPLING

 Customer PO:
 22686

 EMSL Sales Rep:
 Jeromy Bish

 Received:
 05/02/2024
 14:44

 Reported:
 05/09/2024
 16:48

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
Sample: PS-4-2/CONCRETE PAINT (Continued)		Lims	Refere	nce ID:	CC52174-11	Matrix: Wipe			Sampled: 0	5/02/24 00:00:00
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 16:48	GB/GB	SW846 354	6 SW846-8082A
Sample: PS-4-3/CONCRETE PAINT		Lims	Refere	ence ID:	CC52174-12	Matrix: Wipe			Sampled: 0	5/02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 354	6 SW846-8082A

Sara A Dille Laboratory Manager or other approved signatory

Sara Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com **Project Name:**

FBT SOIL AND CONCRETE SAMPLING

Customer PO:

22686

EMSL Sales Rep:

Jeromy Bish

Received:

05/02/2024 14:44

Reported:

05/09/2024 16:48

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
Sample: PS-4-3/CONCRETE PAINT (Continued)		Lims	Refer	ence ID:	CC52174-12	Matrix: Wipe			Sampled: 05/	02/24 00:00:00
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:12	GB/GB	SW846 3546	SW846-8082A
Sample: PS-5-1/CONCRETE PAINT		Lims	Refere	ence ID:	CC52174-13	Matrix: Wipe			Sampled: 05/	01/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	µg/100 cm²	05/06/24 17:19	05/08/24 17:35	GB/GB	SW846 3546	SW846-8082A

Sample: PS-5-2/CONCRETE PAINT

Sara a Dille

Lims Reference ID:

CC52174-14 Matrix: Wipe

Sampled: 05/02/24 00:00:00

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name:

FBT SOIL AND CONCRETE SAMPLING

Customer PO: EMSL Sales Rep:

Jeromy Bish

22686

Received: Reported: 05/02/2024 14:44 05/09/2024 16:48

Analytical Results

(Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analys Initials	t Prep Method	Analytical Method
Sample: PS-5-2/CONCRETE PAINT (Continued)	Sample: PS-5-2/CONCRETE PAINT (Continued)		Lims Reference ID: CC52174-14			Matrix: Wipe			Sampled: 0	5/02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1221	<0,50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1242	<0.50		1	0.50	µg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 17:59	GB/GB	SW846 354	6 SW846-8082A
Sample: PS-5-3/CONCRETE PAINT		Lims	Refer	ence ID:	CC52174-15	Matrix: Wipe			Sampled: 0	5/02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 354	6 SW846-8082A

Jane apille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name:

FBT SOIL AND CONCRETE SAMPLING

Customer PO: EMSL Sales Rep:

22686 Jeromy Bish

Received:

05/02/2024 14:44

Reported:

05/09/2024 16:48

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analyst Initials	Prep Method	Analytical Method
Sample: PS-5-3/CONCRETE PAINT (Continued)		Lims Reference		ence ID: CC52174-15		Matrix: Wipe			Sampled: 05	05/02/24 00:00:00
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 18:22	GB/GB	SW846 3546	SW846-8082A
Sample: DUP-1/CONCRETE PAINT		Lims	Refere	nce ID:	CC52174-16	Matrix: Wipe			Sampled: 05/	02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A

Jane Of Pille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name: FBT SOIL AND CONCRETE SAMPLING
Customer PO: 22686

 Customer PO:
 22686

 EMSL Sales Rep:
 Jeromy Bish

 Received:
 05/02/2024
 14:44

 Reported:
 05/09/2024
 16:48

Analytical Results

(Continued)

Analyte	Result	Q D	F RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analysi Initials	t Prep Method	Analytical Method
Sample: DUP-1/CONCRETE PAINT (Continued)		Lims Re	ference ID:	CC52174-16	Matrix: Wipe			Sampled: 05	/02/24 00:00:00
Aroclor-1260	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:14	GB/GB	SW846 3546	SW846-8082A
Sample: PS-2-3 MS/CONCRETE PAINT		Lims Re	eference ID:	CC52174-17	Matrix: Wipe			Sampled: 05	/02/24 00:00:00
Aroclor-1016	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1221	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1232	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1242	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1248	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1254	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1260	<0.50	1	0,50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1262	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A
Aroclor-1268	<0.50	1	0.50	μg/100 cm²	05/06/24 17:19	05/09/24 07:38	GB/GB	SW846 3546	SW846-8082A

Sara Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202

Indianapolis, IN 4620 (317) 685-6600 sguss@keramida.com Project Name:

FBT SOIL AND CONCRETE SAMPLING

Customer PO:

22686

EMSL Sales Rep: Received: Jeromy Bish

Reported:

05/02/2024 14:44 05/09/2024 16:48

Analytical Results (Continued)

Analyte	Result	Q	DF	RL	Units	Prepared Date/Time	Analyzed Date/Time	Prep/Analysi Initials	t Prep Method	Analytical Method
Sample: PS-2-3 MS/CONCRETE PAINT (Continued)		Lims	Refere	nce ID:	CC52174-17	Matrix: Wipe			Sampled: 0	5/02/24 00:00:00
Sample: PS-2-3 MSD/CONCRETE PAINT		Lims	Refere	nce ID:	CC52174-18	Matrix: Wipe			Sampled: 0	5/02/24 00:00:00
Aroclor-1016	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1221	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1232	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1242	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1248	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1254	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1260	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1262	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A
Aroclor-1268	<0.50		1	0.50	μg/100 cm²	05/06/24 17:19	05/08/24 19:35	GB/GB	SW846 354	6 SW846-8082A

Jana Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name: FBT SOIL AND CONCRETE SAMPLING
Customer PO: 22686

EMSL Sales Rep: Jeromy Bish
Received: 05/02/2024 14:44
Reported: 05/09/2024 16:48

Certified Analyses included in this Report

Analyte	CAS#	Certifications
SW846-8082A in Wipe		
Aroclor-1016	12674-11-2	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1221	11104-28-2	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1232	11141-16-5	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1242	53469-21-9	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1248	12672-29-6	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1254	11097-69-1	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1260	11096-82-5	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1262	37324-23-5	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH
Aroclor-1268	11100-14-4	16-A2LA Chemistry,16-CA ELAP,16-FLDOH,16-NJDEP,16-NYDOH

Sara Offille

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com

EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50] 401 North College Avenue
Indianapolis, IN 46202
(317) 685-6600
sguss@keramida.com

Project Name:

FBT SOIL AND CONCRETE SAMPLING

Customer PO:

22686

EMSL Sales Rep: Received: Jeromy Bish

Reported:

05/02/2024 14:44 05/09/2024 16:48

List of Certifications

Code	Description	Number	Expires
16-OHDOH	Ohio - Lead in Paint Chips, Wipes, Soil and Air	E10040	05/03/2024
16-NYDOH	New York Potable Water, Metals Solid and Hazardous Waste - Asbestos	12130	04/01/2024
16-NJDEP	New Jersey Metals, Organics and Inorganics in DW PCBs	IN002	06/30/2024
16-MO	Missouri Drinking Water	10180	03/31/2026
16-IN Metals/As	Indiana Lead and Metals and Asbestos in Drinking Water	C-49-09	12/31/2026
16-IN Colilert/H	Indiana Colilert and HPC	M-49-06	12/31/2026
16-FLDOH	Florida Asbestos and Metals in Drinking Water, PCBs	E871170	06/30/2024
16-CA ELAP	California Metals in DW, Chemistry and Bulk Asbestos in Hazardous Waste	2575	06/30/2024
16-AIHA LAP	EMSL Analytical, Inc. Indianpolis, IN AIHA-LAP, LLC-ELLAP/IHLAP Accredited	157245	06/01/2025
16-A2LA Food	A2LA Food Microbiology	2845.11	07/31/2024
16-A2LA Chemis	A2LA Environmental and Chemistry	2845.25	07/31/2024

Please see the specific Field of Testing (FOT) on $\underline{www.emsl.com} < \underline{http://www.emsl.com} > \underline{for a complete listing of parameters for which EMSL is certified.}$

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted."

6340 Castleplace Drive, Indianapolis, IN, 46250 Telephone: 317.803.2997 Fax:317.803.3047 IndianapolisLab@emsl.com / www.Emsl.com EMSL Order ID: 162452174 LIMS Reference ID: CC52174 EMSL Customer ID: KERA50

Attention: Sara Guss

Keramida Environmental, Inc. [KERA50]

401 North College Avenue Indianapolis, IN 46202 (317) 685-6600 sguss@keramida.com Project Name: FBT SOIL AND CONCRETE SAMPLING
Customer PO: 22686

Customer PO: 22686 **EMSL Sales Rep:** Jeromy Bish

Received: 05/02/2024 14:44 **Reported:** 05/09/2024 16:48

Notes and Definitions

Item	Definition
(Dig)	For metals analysis, sample was digested.
[2C]	Reported from the second channel in dual column analysis.
DF	Dilution Factor
MDL	Method Detection Limit.
ND	Analyte was NOT DETECTED at or above the detection limit.
Q	Qualifier
RL	Reporting Limit

Measurement of uncertainty and any applicable definitions of method modifications are available upon request. Per EPA NLLAP policy, sample results are not blank corrected.

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted."

Industrial Hygiene Chain of Custody EMSL Order Number (Lab Use Only):

EMSL Analytical, Inc. 6340 Castleplace Dr.

Indianapolis, IN 46250 PHONE: (317) 803-2997

LARGRATORY (PRODUCTS)	THANNING			1427	UAN	<u> </u>				FAX: (317) 803-3047
Report To Cont	act Name: Sara Guss				Bill To	Company	: KERAMII	DA Inc.		Client ID #:
Company Name	: KERAMIDA Inc.				Attent	ion To: F	Accounting			
Street: 401 N.	College Ave				Street	: 401 N. (
City: Indianapo	lis State/Province	; IN	Zip/Postal Cod	le: 46202	City: Ir	ndianapolis	3	State/Prov	ince: IN	Zip/Postal Code: 46202
Phone : 317-75	0-5334 Fax:				Phone	: 317-685	-6600		Fax:	
Project Name:	FBT Soil and Concrete	Sampling		Email Resul	ts To: ^S	uss@kera	mida.com		U.S. State wh	ere Samples Collected: ^{IN}
# Samples in Sh	ipment: 18 D	_{ent:} 5/2/24	Purchase O				By (Signatur	Λ.	- Distur	
Turnaround	I Time (TAT) - Please C	heck: If No	Selection Ma	de, Standard	2 Week	IIIW TAT	Apply	Media Typ	e:	
2 Week	1 Da		Other (Ca		Manufactu		Lot #:			
Client Sample ID	Location/Description	Analyte / Method	Media	Flow (Ipm)	Sample On	Time Off	Volume / Area	Sample Type	Sample Date	Comments
PS-1-1	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/1/24	
PS-1-2	Concrete paint	PCBs*	Wipe				100 cm2	✓ Area☐ Personal	5/2/24	
PS-1-3	Concrete paint	PCBs*	Wipe				100 cm2	Area Personal	5/2/24	
PS-2-1	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/1/24	
PS-2-2	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/2/24	
PS-2-3	Concrete paint	PCBs*	Wipe				100 cm2		5/2/24	MS/MSD
PS-3-1	Concrete paint	PCBs*	Wipe				100 cm2		5/1/24	
PS-3-2	Concrete paint	PCBs*	Wipe			1 - 150	100 cm2	Area Personal	5/2/24	
	SH and OSHA methods requ	ire field blank					it the proper i	number of fiel	d blanks and d	
Released By	Sara Guss			Date 5/2/2024	RECE	eived By	<u> </u>			5/2/) 4 2990
	04.0 0400				\rightarrow			The Control of the Co		11/27 - WILL
Comments: 'EPA SW-846 3540	Privileged and Confidenti C/8082A	al, Attorney	Nork Product,	Prepared at	the Requ	uest of Leg	gal Counsel			
and being a second	The second second		Page 1	of 2 pag	ies			· · · · · · · · · · · · · · · · · · ·		

Industrial Hygiene Chain of Custody EMSL Order Number (Lab Use Only):

52144

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX: (856) 858-3502

Additional Pages of the	Chain of Custody	are only necessar	y if needed for additiona	l sample information
-------------------------	------------------	-------------------	---------------------------	----------------------

Client Sample ID	Location/Description	Analyte / Method	Media	Flow (lpm)	Sampl On	e Time Off	Volume / Area	Sample Type	Sample Date	Comments
PS-3-3	Concrete paint	PCBs*	Wipe				100 cm2	Area Personal	5/2/24	
PS-4-1	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/1/24	
PS-4-2	Concrete paint	PCBs*	Wipe				100 cm2		5/2/24	
PS-4-3	Concrete paint	PCBs*	Wipe				100 cm2		5/2/24	
PS-5-1	Concrete paint	PCBs*	Wipe				100 cm2		5/1/24	
PS-5-2	Concrete paint	PCBs*	Wipe				100 cm2	Area Personal	5/2/24	
PS-5-3	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/2/24	
DUP-1	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/2/24	
PS-2-3 MS	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/2/24	
PS-2-3 MSD	Concrete paint	PCBs*	Wipe				100 cm2	☑ Area ☐ Personal	5/2/24	
								Area Personal		
								Area Personal		
								Area Personal		
								Area Personal		
Comments:										

Frage 2 of 2 pages