REVIEW OF TOXICITY BIOMONITORNG REPORT Environmental Toxicology, NPDES Permitting Program/OWQ | Biomonitoring Review Report: IDEM/100/29/334/119/2024 Document Date: 04/242024 | | | | | | <u>24</u> | | | | | |--|--|---|--|--|--|-------------------------------|------------------|---------------------------------|--------------------|----------| | Discharger: BP Products North America Inc | | | | <u>c</u> | NPDES | S No. | INO | 0000108 | | | | City: Whitin | | | | unty: | Lake | | Stat | | Zip: | 46394 | | I. Background Information: (To be Completed by the Testing Lab.) | | | | | | | | | | | | A. Test Material: | | | | | | | | | | | | Effluent/W. Water: Whole Effluent Outfall No(s): 005 | | | | | | | <u>05</u> | | | | | Grab/Composite: | 24-hr (| Composit | e Date | (s) Effl | uent Co | ollected | 1: <u>03/04/</u> | 2024 03/06 | 6/2024 03 | /08/2024 | | Concentrations Used: | Cont | rol, 0.675 | %, 1.359 | %, 2.7% | 5, 5.4%, | 10.8% | Dilı | ition Facto | or: <u>>0</u> . | .50 | | | <u>21.6, 43.2%</u> | | | | | | | | | | | Dilution Water: | | eiving W | | | | onstitut | | Perrier | | | | Name of Receiving Wat | er Bod | y: <u>Lal</u> | ke Michig | an and L | ake Geor | ge Te | est Date(| (s): <u>03/05/2</u> | 2024-03/ | 12/2024 | | | | | | | | | | 03/05/2 | 2024-03/ | 12/2024 | | B. Testing Laborator | y:] | Enviro Sc | ience In | ıc. | | | | | | | | City: | | <u>Stow</u> | | | | | State | \underline{OH} | Zip <u>4</u> 4 | 1224 | | Responsible Pe | rson(s) |) : | | | | | | | | | | Study Dire | ctor/Ma | mager: | Alexa | ndria Ti | te, Aqua | tic Bio | logist | | | | | Technical | | | Initial | | re, raque | | - Sie | | | | | Phone | No. | | (330) | 688-01
 11) | | | | | | | | | | | | | | | | | | | C. Toxicity Test Con | ducted | : | | | | | | | | | | Acute Tes | t : | | | | | | Short-T | erm Chro | onic Test | : | | | dubia/ | reticular / | ta | | 1. | Cerio | daphnia | dubia / re | ticulate | | | 2. Daphnia magi | a or D | . pulex | | | | Survi | val & Re | production | n test | | | ✓ 3. Pimephales prediction of the predicti | omelas | (FH. min | now) | <u>~</u> | 2. | Pime | phales pi | romelas (I | FH. minn | ow) | | 4. Other: Larval Survival & Growth test | | | | | | | | | | | | 4. Otner: | | | | | | Larva | d Surviva | al & Grow | tn test | | | 4. Otner: | | | | Г | 3. | | | | | owth | | 4. Other: | | | | | | Selen | astrum c | al & Grow
c <i>apricorni</i> | utum Gro | | | | | klist: | | | | Selen | astrum c | capricorni | utum Gro | | | | | klist: | | Day | | Selen | astrum c | capricorni | utum Gro | | | | | klist: | 3 | Day
4 | | Selen | astrum c | capricorni | utum Gro | | | D. Chemical Analyse Parameter | s Chec | | 3 | | 4. | Selen
Other | astrum o | capricorni | utum Gro | | | D. Chemical Analyse | s Chec | 2 | 3 | | 4.
5 | Selen
Other | astrum c | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | s Chec | 2 | 3 | | 4.
5 | Selen
Other | astrum c | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: D.O. Initial Final | s Chec | 2 | 3 | | 4.
5 | Selen
Other | astrum o | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: D.O. Initial Final | 1 \frac{\sqrt{\sq}}}}}}}}} \scrt{\sq}}}}}}}}}}}} \signignignigned{\sqrt{\sq}}}}}}}} \sqrt{\sqrt{\sqrt{\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sinitita}}}}}}}}} \signignignigned{\sqrt{\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sinitita}}}}}}}}}} \signignignigned | | 3 | | 5
\frac{\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | Selen
Other | astrum c | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: D.O. Initial Final pH Initial | 1 \frac{\sqrt{\sq}}}}}}}}} \scrt{\sq}}}}}}}}}}}} \signtimeseptrimeseptrimese{\sqrt{\sq}}}}}}}}}}} \signtimesept\signtifta\sqrt{\sint{\sint{\sint{\sint{\sinq}}}}}}}}}} \sintili | 2 | 3
<u>√</u>
<u>√</u>
<u>√</u> | | 5
\frac{\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | Selen
Other | astrum c | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: D.O. Initial Final pH Initial Final | 1
\frac{\sqrt{\sq}}}}}}}}} \scrt{\sq}}}}}}}}}}}} \signtimeseptrimeseptrimese{\sqrt{\sq}}}}}}}}}}} \signtimesept\signtifta\sqrt{\sint{\sint{\sint{\sint{\sinq}}}}}}}}}} \sintili | 2
<u>√</u>
<u>√</u>
<u>√</u>
<u>√</u> | <u>√</u> | 4
\frac{\frac}}}}}}{\frac{\fir}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\ | 5
\frac{\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | Selen Other 6 √ √ √ √ ✓ ✓ ✓ | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | 1 \frac{\sqrt{\sq}}}}}}}}} \scrt{\sq}}}}}}}}}}}} \signtimeseptrimeseptrimese{\sqrt{\sq}}}}}}}}}}} \signtimesept\signtifta\sqrt{\sint{\sint{\sint{\sint{\sinq}}}}}}}}}} \sintili | 2
<u>√</u>
<u>√</u>
<u>√</u>
<u>√</u> | <u>√</u> |
4
\frac{\frac}}}}}}{\frac{\fir}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\frac{\frac{\f | 5
\frac{\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | Selen Other 6 √ √ √ √ ✓ ✓ ✓ | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | s Chec | 2 | 3
V / V | | 4.
5 | Selen
Other | astrum c | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | 1 \frac{\sqrt{\sq}}}}}}}}} \scrt{\sq}}}}}}}}}}}} \signtimeseptrimeseptrimese{\sqrt{\sq}}}}}}}}}}} \signtimesept\signtifta\sqrt{\sint{\sint{\sint{\sint{\sinq}}}}}}}}}} \sintili | 2
<u>√</u>
<u>√</u>
<u>√</u>
<u>√</u> | <u>√</u> | 4
\frac{\frac}}}}}}{\frac{\fir}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\frac{\frac{\f |
5
\frac{\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | Selen Other 6 √ √ √ √ ✓ ✓ ✓ | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: D.O. Initial Final pH Initial Final Alkalinity: Hardness: Conductivity: Chlorine: | 1 | 2
'
'
'
'
'
' | ✓
✓
✓
✓
— | 4
'
'
'
'
'
' | 5
V
V
V
V
V
V
V
V | 6 | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | 1 | 2
'
'
'
'
'
' | ✓
✓
✓
✓
— | 4
'
'
'
'
'
' | 5
V
V
V
V
V
V
V
V | 6 | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | 1 | 2
'
'
'
'
'
' | ✓
✓
✓
✓
— | 4
'
'
'
'
'
' | 5
V
V
V
V
V
V
V
V | 6 | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | 1 | 2
'
'
'
'
'
' | ✓
✓
✓
✓
— | 4
'
'
'
'
'
' | 5
V
V
V
V
V
V
V
V | 6 | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: D.O. Initial Final pH Initial Final Alkalinity: Hardness: Conductivity: Chlorine: 2. Test Sample: D.O. Initial Final pH Initial | 1 | 2
'
'
'
'
'
' | ✓
✓
✓
✓
— | 4
'
'
'
'
'
' | 5
V
V
V
V
V
V
V
V | Selen Other 6 √ √ √ √ ✓ ✓ ✓ | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: | 1 | 2
<u>√</u>
<u>√</u>
<u>√</u>
<u>√</u> | ✓
✓
✓
✓
— | 4
\frac{\frac}}}}}}{\frac{\fir}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\frac{\frac{\f | 5
V
V
V
V
V
V
V
V | 6 | 7 | capricorni | utum Gro | | | D. Chemical Analyse Parameter 1. Control: D.O. Initial Final pH Initial Final Alkalinity: Hardness: Conductivity: Chlorine: 2. Test Sample: D.O. Initial Final pH Initial Final Alkalinity: | 1 | 2
'
'
'
'
'
' | <u>√</u> | 4
'
'
'
'
'
' | 5
\frac{\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | 6 | 7 | capricorni | ent | | ### II. Daphnia or <u>Ceriodaphnia</u> Toxicity Test Information (To be Completed by the Testing Lab.) #### A. Data Analyses: | Statistical Test Method Use | d | Comment | | | | | | |--|---
--|--|--|--|--|--| | Normality test: | Shapiro-Wilk's Test | Failed. Indicates Non-Normal Distribution for Reprod. | | | | | | | Homogeneity test: | Bartlett's Test_ | Failed. Indicates Un-Equal Variances for Reprod. | | | | | | | | <u>Dunnett's Test</u>
Bonferroni Adj t Test | Providence and the control of co | | | | | | | | Steel's Many-One rank 'I | | | | | | | | 3. Are the Critical Value 4. Other: | Fisher's Exact Test
es of Significance Provid | Passed. No Significant Difference for Survival led? Yes | | | | | | | B. Toxicity Test Results: | | | | | | | | | 1. Acute:
LC ₅₀ (48-hr): ≥43 | .2% Effluent (2.32 TU _c) | | | | | | | | 2. Chronic: | | | | | | | | | NOEC: Surviv | ral 43.2% (2.32 TU₀) | Reproduction $\frac{43.2\% (2.32 \text{ TU}_c)}{\text{IC}_{25} = 43.2\%}$ Growth (2.32 TU_c) | | | | | | | LOEC: Surviv | | Reproduction Growth | | | | | | | Chiome value. Surviv | 'aı | Keproduction Growin | | | | | | | C. Permit Limits Requires | nent: | | | | | | | | 1. Acute:
LC ₅₀ (48-hr): <u>9.0</u> 9 | 9% Effluent = 11 TUa | | | | | | | | 2. Chronic: | | | | | | | | | NOEC: Survival
LOEC: Survival | - | eproduction 2.7% (37 TU _c) Growth
eproduction Growth | | | | | | | D. Reference Toxicant Data: | | | | | | | | | Reference Toxicant: Test Date: Results: Acceptable Range: E. Permit Limits Compliance | Sodium chloride (Nat
Febtuary 20 - 26, 202
IC ₂₅ = 0336 g/L NaCl,
Within Laboratory | 4 | | | | | | | E. Termit Limits Comphance | . (10 be completed t | y IDEM Statt Only) | | | | | | | Pass (LC ₅₀ [48-hr]) Pass (NOEC/Surviva Pass (NOEC/Reprod) Pass (NOEC/Growth | 2.32 TUc | Fail (LC ₅₀ [48-hr]) Fail (NOEC/Survival) Fail (NOEC/Reprod) Fail (NOEC/Growth) | | | | | | | Is the Test Acceptable? | Yes <u>✓</u> No | Reason | | | | | | # III. Fathead Minnow (Pimephales) Toxicity Test Information (To be Completed by the Testing Lab.) | A. Data Analyse | S | |-----------------|---| |-----------------|---| | | | *************************************** | | | | | | |--|--|--|---|--|--|--|--| | Statistical Test M | Iethod Used | Comment | | | | | | | Normality test:
Homogeneity test: | Shapiro-Wilk's Test | Passed. Indicates Normal Distribution for Growth. Passed. Indicates Equal Variance for Growth. | | | | | | | Significance test: | Bartlett's Test | Passed, Indicates Equal Va | riance for Growth. | | | | | | 1. Parametric | Dunnett's Test | Passed. No Significant Difference for Growth. Passed. No Significant Difference for Survival. | | | | | | | 2. Non-Parametric | 2. Non-Parametric Bonferroni Adj t Test | | rassed. No significant difference for Survival. | | | | | | 4 0.4 | Values of Significance | | | | | | | | B. Toxicity Test Results: | | | | | | | | | 1. Acute: | | | | | | | | | LC ₅₀ (96-hr): ≥ | 43.2% Effluent (2.32 TU | (c) | | | | | | | 2. Chronic: | | | | | | | | | NOEL: Sur | vival 43.2% (2.32TU | Reproduction | Growth 21.6% (4.6 TU IC25 = 41.469 | | | | | | LOEL: Sur-
Chronic Value: Sur- | vival | Reproduction | Growth | | | | | | C. Permit Limits Requ | iirement: | | | | | | | | 1. Acute: LC ₅₀ (96-hr): 9. | 09% Effluent = 11 TUa | | | | | | | | 2. Chronic: | | | | | | | | | NOEL: Survival
LOEL: Survival | | Z. Sommer and S. San | cowth <u>2.7% (37 TU.)</u>
cowth | | | | | | D. Reference Toxicant Da | nta: | | | | | | | | Reference Toxican Test Date: Results: Acceptable Range: | Febtuary 20 - 27, 2 $IC_{25} = 0.969$ g/L Nac | 2024 | | | | | | | E. Permit Limits Complia Pass (LC50) Pass (NOEL/Surv Pass (NOEL/Repr Pass (NOEL/Grow | 2.32 TU _c [
rival) 2.32 TU _c [
rod.) | pleted by IDEM Staff Only) Fail (LC50) Fail (NOEL/Survival) Fail (NOEL/Reprod.) Fail (NOEL/Growth) | | | | | | | Is the Test Acceptable | ? Yes ⊻ N | o Reason | | | | | | ## IV. GLP and QA/QC Compliance: (To be completed by IDEM Staff Only) | | A. Does the Biomonitoring Report provide? 1. GLP Compliance Statement: 2. QA/QC Compliance Statement: 3. Were the required GLPs followed? 4. If not, the Report lacks what major informations. | Yes
Yes
Yes | <u>√</u> <u>√</u> <u>√</u> | No
No
No | = | | |------------------------|--|--|--|--|--|---| | | B. Laboratory Raw Data Sheets: 1. Does the Report enclose raw data sheets? 2. Does the raw data sheets provide essential information? 3. If not, the Report lacks what major information? | Yes
Yes | <u>√</u>
<u>√</u> | No
No | | _ | | sh pr an to 43 ef T in | V. Comments and Recommentary (To be Completed by IDEM Stages March 2024) in the Quarterly testing whole effluent from how any acute or chronic toxicity to Ceriodaphnia due to comelas. The 48-hr and the 96-hr LC50 to both the test so and acceptable as compared to 9.09% effluent (11 Toxicity. Likewise, the NOEC for Ceriodaphnia dubia Society. Likewise, the NOEC for Ceriodaphnia dubia Society. Likewise, and 21.6% effluent (4.6 TUc) results for Growth, and acceptable as compared to 2.7% efforts the facility NPDES permit. | m BP P bia or t pecies v Tua) W Survival as for S pectivel | roduct to Fathe was >4. ET com and Re turvival | ead minn 3.2% effl mpliance eproducti l and Gro n an <u>IC25</u> | ow, Pimeph
luent (2.32 I
limit for a
on Survival
with was 43
= 41.46% | rales
FUc)
cute
was
.2%
(2.4 | | Reviewe
Signatu | So Hair | Envir | <u>C/</u>
onmen | 12 / | 2024
cologist | | Electronic copy: 1. Jerry Dittmer, BC, NPDES Permits Branch, OWQ Richard Hamilton, SC, NPDES Permits Branch, OWQ Updated: SMG: 00/2016