Permittee/Location Huntington WWTP Huntington, IN	Permit Number: IN0023132 Huntington Co			Outfall Number: 001				
Laboratory Name and Contact: Biomonitor Michael Britton			Report <u>Due</u> Date:			Report Date: May 2024		
WETT Reporting Frequency or Type: (mark one) Monthly Quarterly			Semi- annual X	Annual	TRE	Post TRE	First (per Reporting Frequency)	

Test Organism	Test	Endpoint [1]	Units	Result	Compliance Value in TUs	Pass/Fail	Reporting
Ceriodaphnia	7-day Survival	NOTOC : I	%	100			
dubia	and Reproduction	NOEC Survival	TUc	1			
	Definitive	NOTC Depared vetices	%	100			
	Static-Renewal	NOEC Reproduction	TUc	1			Labarrata m. Dana mt
		ICSE De ave dustion	%	100			Laboratory Report
		IC25 Reproduction	TUc	1			
		40 - 1050	%	>100			
		48 hr. LC50	TUa	<1			
		Toxicity (acute)	TUa	<1	1	Pass	Laboratory Report <u>and</u> NetDMR (Parameter Code 61425)
		Toxicity (chronic)	TUc	1	1.5	Pass	Laboratory Report <u>and</u> NetDMR (Parameter Code 61426)
	T	T	1	T	T		.
Pimephales promelas	7-day Larval Survival and	NOEC Survival	%	100			
promeius	Growth		TU _c	1			
	Definitive	NOEC Growth	%	100			
	Static-Renewal		TU _c	1			Laboratory Report
		IC25 Growth	%	100			Laboratory moport
			TU _c	1			
		96 hr. LC50	%	>100			
		30111. 2030	TUa	<1			
		Toxicity (acute)	TUa	<1	1	Pass	Laboratory Report <u>and</u> NetDMR (Parameter Code 61427)
		Toxicity (chronic)	TUc	1	1.5	Pass	Laboratory Report <u>and</u> NetDMR (Parameter Code 61428)

8802 West Washington Street Indianapolis, IN 46231 (317) 297-7713

Whole Effluent Toxicity Test

HUNTINGTON WASTEWATER TREATMENT PLANT

IN0023132

Huntington, Indiana

April 2024

GLP (Good Laboratory Practices)COMPLIANCE STATEMENT

Project Name: <u>Huntington Wastewater Treatment Plant</u>

Project Date: April 2024

This project has been conducted under GLP standards, as stated in 40 CFR Part 160, with the following exceptions:

Quality Assurance Officer

Greg R. Bright

Date: 5/9/24

Michæl Britton

Project Director Date: 5/9/24

Other Participating Personnel:

Mukang'andu Ng'andwe Arizona Fox

Copies of the raw data and final report are maintained in the archives of Biomonitor for five years from the date of completion.

Section 1
Executive Summary

Biomonitor conducted whole effluent toxicity testing for the Huntington, IN Wastewater Treatment Plant in Huntington, IN during April 2024. The purpose of the testing was to fulfill the biomonitoring requirement for the NPDES permit.

Three samples were collected April 21-25, 2024. The water flea, *Ceriodaphnia dubia*, and Fathead minnow, *Pimephales promelas*, were used as the test organisms.

A total of six toxicity endpoints were measured. The following results were obtained:

Ceriodaphnia dubia test

48-hr LC ₅₀	>	100% effluent	TU _a <	1.0
NOEL for survival	=	100% effluent	TU _c =	1.0
NOEL for reproduction	=	100% effluent	TU _c =	1.0

Pimephales promelas test

48-hr LC ₅₀		>	100% effluent	TU _a <	1.0
NOEL for survival	:	=	100% effluent	TU _c =	1.0
NOEL for growth	:	=	100% effluent	TU _c =	1.0

The acute toxicity limits in the NPDES permit require the 48 and/or 96-hr LC_{50} to be greater than 100% effluent (a TU_a not to exceed 1.0). The effluent samples passed the acute toxicity limits during this testing period for both species.

The chronic toxicity limits in the NPDES permit require a NOEL (No Observable Effect Level) of 67% effluent (a TU_c not to exceed 1.5). According to the NPDES permit, there was not a "Demonstration of Toxicity" during this sampling period.

Section 2
Introductory Information

Table I General

Permit number: IN0023132

Toxicity testing requirements: Fathead minnow larval survival and growth test

Ceriodaphnia survival and reproduction test

Plant location: Huntington Wastewater Treatment Plant

20 Hitzfield Street Extended Huntington, Indiana 46750

Name of receiving water body: Wabash River

Name of WET testing laboratory: Biomonitor

8802 West Washington St. Indianapolis, IN 46231

(317) 297-7713

Table II Plant Operations

Type of discharger: Publicly owned treatment works

Wastewater consists of treated sanitary and industrial wastes

Type of waste treatment: Activated sludge

Design flow: 7.5 – MGD

Volume of wastewater flow during the sampling period: April 21, 2024 5.25 MGD

April 23, 2024 9.20 MGD April 25, 2024 6.72 MGD

Table III Source of effluent and dilution water

I. Effluent samples

Sampling point: Outfall 001

Collection dates and times: April 21, 2024 11:59 p.m.

April 23, 2024 11:59 p.m. April 25, 2024 11:59 p.m.

Sample collection: 24-hour composite samples

Physical and chemical data: See Tables 9 and 15

II. Dilution water samples

Source: Moderately Hard Synthetic Water (MHSW)

Collection date and time: N/A

Pretreatment: None

Physical and chemical data: See Tables 9 and 15

Section 3
Test Methods and Results

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

Table IV METHODOLOGY Ceriodaphnia Survival and Reproduction Test

Toxicity test method used: Ceriodaphnia survival and reproduction test

Endpoints of test: Survival and reproduction

(LC₅₀, NOEL, and LOEL)

Reference method: EPA-821-R-02-013

Deviations from method: Test was completed in six days because control

animals produced an average of greater than 15

young per female by day six.

Date and time test initiated: April 23, 2024 10:30 a.m.

Date and time test terminated April 29, 2024 10:17 a.m.

Type of test chambers: Polyethylene 30 ml

Volume of solution used per chamber: 15 ml

Number of organisms per chamber: 1

Number of replicate chambers per 10

treatment:

Test temperature range: 25°C (no deviations)

Table V ORGANISMS USED Ceriodaphnia Survival and Reproduction Test

Scientific name: Ceriodaphnia dubia

Age: <24 hours

<u>Life stage:</u> neonates

Mean length and weight: Not applicable

<u>Source</u> Laboratory culture in moderately hard reconstituted

water

<u>Diseases and treatment</u> Not applicable

Table VI RESULTS Ceriodaphnia Survival and Reproduction Test

Raw Data: See Table 8

<u>LC₅₀ or NOEL obtained:</u> 48-hr LC₅₀ = greater than 100% effluent

NOEL for survival = 100% effluent

NOEL for reproduction = 100% effluent

Control survival was 100% after six days. Control reproduction averaged greater than 15 per surviving

female.

Methods used to calculate endpoints: Fisher's Exact Test for the survival endpoint.

Dunnett's Test for the reproduction endpoint.

No calculations necessary for the acute endpoint.

Table VII QUALITY ASSURANCE Ceriodaphnia Survival and Reproduction Test

Reference Toxicant used and source: Copper chloride, reagent grade, from Carolina

Biological

<u>Date and time of most recent test:</u> April 23-30, 2024

<u>Dilution water used in test:</u> Moderately hard synthetic water

Results: $48-hr LC_{50} = 80 \mu g/L as Cu$

NOEL (reproduction) = $40 \mu g/L$ as Cu

LOEL (reproduction) = $80 \mu g/L$ as Cu

<u>Comparison to recommended range:</u> Within the laboratory control range for both acute

and chronic endpoints (see attachment)

Table VIII TEST DATA Ceriodaphnia Survival and Reproduction Test

Effluent	Day		ı	Numl	oer o	f You	ng R	eproc	duced	ł		Young	Total Live
Concentration	Day No.					Repl	icate					Per	Breeders
Concentration	INO.	Α	В	С	D	E	F	G	Н	I	J	Female	breeders
	1	0	0	0	0	0	0	0	0	0	0		10
	2	0	0	0	0	0	0	0	0	0	0		10
	3	0	0	0	3	2	0	3	3	0	2		10
Control	4	2	3	3	4	5	1	7	6	2	7	16.3	10
	5	6	5	7	8	0	6	0	0	4	0		10
	6	6	8	9	0	9	10	11	12	3	6		10
	1	0	0	0	0	0	0	0	0	0	0		10
	2	0	0	0	0	0	0	0	0	0	0		10
	3	2	0	0	4	2	0	4	4	2	4		10
8.5%	4	8	3	4	9	5	4	7	4	6	6	18.0	10
	5	0	7	6	0	6	7	0	0	0	0		10
	6	0	11	11	0	0	13	11	10	7	13		10
	1	0	0	0	0	0	0	0	0	0	0		10
	2	0	0	0	0	0	0	0	0	0	0		10
	3	2	4	3	3	3	0	4	4	3	4		10
17%	4	7	0	5	8	5	4	0	7	8	0	20.8	10
	5	0	10	0	8	0	8	7	0	0	7		10
	6	0	13	11	0	9	13	15	12	15	6		10

Table VIII (cont.) TEST DATA Ceriodaphnia Survival and Reproduction Test

Effluent	Day		ſ	Numb	oer o	f You	ng R	eproc	Number of Young Reproduced								
Concentration	No.		Replicate									Per	Total Live Breeders				
Concentration	140.	Α	В	С	D	E	F	G	Н	-	J	Female	Dieeueis				
	1	0	0	0	0	0	0	0	0	0	0		10				
	2	0	0	0	0	0	0	0	0	0	0		10				
	3	4	0	4	2	2	2	4	4	3	4		10				
33%	4	7	3	8	8	7	4	5	0	6	9	22.7	10				
	5	6	7	0	9	0	8	0	8	0	0		10				
	6	0	11	12	0	11	13	12	12	16	16		10				
	1	0	0	0	0	0	0	0	0	0	0		10				
	2	0	0	0	0	0	0	0	0	0	0		10				
	3	4	4	0	2	4	0	4	4	0	5		10				
67%	4	0	0	3	8	7	4	8	8	2	0	23.6	10				
	5	7	9	9	8	0	9	0	0	7	7		10				
	6	13	14	11	0	13	17	10	13	10	12		10				
	1	0	0	0	0	0	0	0	0	0	0		10				
	2	0	0	0	0	0	0	0	0	0	0		10				
	3	4	4	4	4	3	0	5	4	4	4		10				
100%	4	7	0	8	9	6	6	9	8	0	8	24.0	10				
	5	6	8	0	9	0	6	0	0	6	0		10				
	6	0	12	15	0	12	17	13	16	9	14		10				

Table IX WATER CHEMISTRY Ceriodaphnia Survival and Reproduction Test

Effluent Concentration	D.O. <u>Range</u> mg/L	Temp. Range °C	pH <u>Range</u> S.U.	Alk. Range CaCO ₃	Hardness Range CaCO ₃	Cond. <u>Range</u> μS
CONTROL	7.9 – 8.4	25	7.7 – 8.1	40-	100-120	320-350
8.5%	7.9 – 8.5	25	7.7 – 8.0			340-370
33%	7.8 – 8.7	25	7.6 – 8.0			450-460
100%	7.5 – 9.4	25	7.5 – 8.2	120-180	225-300	690-730

FATHEAD MINNOW LARVAL SURVIVAL AND GROWTH TEST

Table X METHODOLOGY Fathead Minnow Larval Survival and Growth Test

<u>Toxicity test method used:</u> 7-day fathead minnow larval survival and growth

test

Endpoints of test: 96-hr LC₅₀ and no observable effect level (NOEL) for

survival and growth. TUc for survival and growth.

Reference method: EPA-821-R-02-013

<u>Deviations from method:</u> No Deviations

<u>Date and time test initiated:</u> April 23, 2024 10:00 a.m.

<u>Date and time test terminated</u> April 30, 2024 10:00 a.m.

<u>Type of test chambers:</u> Polyethylene 300 ml

Volume of solution used per chamber: 250 ml

Number of organisms per chamber: ten

Number of replicate chambers per four

treatment:

<u>Test temperature range:</u> 25°C (no deviations)

Table XI ORGANISMS USED Fathead Minnow Survival and Growth Test

<u>Scientific name:</u> Pimephales promelas

Age: <24 hours

<u>Life stage:</u> larvae

Mean length and weight: Not applicable

<u>Source</u> Biomonitor Lab Cultures

Diseases and treatment Not applicable

Table XII RESULTS

Fathead Minnow Larval Survival and Growth Test

Raw Data: See Table 14

<u>LC₅₀ or NOEL obtained:</u> 96-hr $LC_{50} = >100\%$ effluent

NOEL for survival = 100% effluent

NOEL for growth = 100% effluent

Control survival and growth fell within the acceptable

range

Methods used to calculate

endpoints:

Dunnett's Test for the growth endpoint.

Steel's Many-One Rank Test was required for the survival

endpoint because the homogeneity of variance

assumption could not be met.

No calculations needed for the acute endpoint.

Table XIII QUALITY ASSURANCE

Fathead Minnow Larval Survival and Growth Test

Reference Toxicant used and source: Potassium chloride, reagent grade,

from Sigma-Aldrich

Date and time of most recent test: April 23-30, 2024

<u>Dilution water used in test:</u> Moderately Hard Synthetic Water

Results: 96-hr $LC_{50} = 1189 \text{ mg /L as KCl}$

NOEL (growth) = 1000 mg/L as KCl

LOEL (growth) = 2000 mg/L as KCl

<u>Comparison to recommended range:</u> Within the laboratory control range for both acute

and chronic endpoints (see attachment)

Table XIV TEST DATA Fathead Minnow Larval Survival and Growth Test

Effluent Concentration	<u>% Su</u>	ırvival in E	ach Repli	<u>cate</u>	<u>Average Dry Weight (μg) in Each</u> <u>Replicate</u>				
Concentration	Α	В	С	D	Α	В	С	D	
Control	100	100	100	100	240	340	340	370	
8.5%	100	100	100	100	350	310	340	370	
17%	100	100	100	100	290	320	330	320	
33%	90	100	100	100	280	300	310	290	
67%	100	100	100	100	360	320	350	320	
100%	100	100	100	100	420	390	320	330	

Table XV WATER CHEMISTRY Fathead Minnow Larval Survival and Growth Test

Effluent Concentration	D.O. <u>Range</u> mg/L	Temp. Range °C	pH <u>Range</u> S.U.	Alk. Range CaCO ₃	Hardness Range CaCO ₃	Cond. <u>Range</u> μS
CONTROL	6.6 – 8.4	25	7.7 – 8.2	40-	100-120	350-
8.5%	6.5 – 8.5	25	7.7 – 8.2			360-370
33%	5.8 – 8.7	25	7.6 – 8.2			460-470
100%	4.8 – 9.4	25	7.5 – 8.1	120-180	225-300	710-750

8802 W. Washington Street Indianapolis, IN 46231 317-297-7713 www.biomonitor.com

SAMPLE SUMMARY AND CHAIN OF CUSTODY

CLIENT NAME:	Hunti	ngton WWTP			
PURPOSE OF SAMPLE:	Whole	e Effluent Toxicity			
SAMPLE IDENTIFICATION	N:	Huntington – 1	Mor	nday	Apr. 2024
DESCRIPTION: Outfall	l				
DATE SAMPLE COLLECT	ED:	Start Date 4-21-202	t	Start Time 12:01AM	
		End Date	4	End Time	
NAME OF PERSON COLLE	ECTIN	G SAMPLE: Trome	w Li	vernais	
SAMPLE VOLUME:		8 Liters			
NUMBER OF CONTAINER	S:	Two, HDPE			
SAMPLE STORAGE: 4	^v C	Refrigerated/iced			
PRESERVATIVES:	_	none			
Relinquished by:					
Date: 4/22/24		Time	: <u>08</u>	600	_
Received by: Robota	·				
Date 4-22-24		Time	: <u>[0</u>	.20 c	_
Relinquished by:	<u> </u>	TL			
Date: 42	yu	Time	(O	,20 c	_
Received by:					-
Date:		Time	:		_
TEMP: 9.2 °C					
COMMENTS: Flow	5.25	MG			

8802 W. Washington Street Indianapolis, IN 46231 317-297-7713 www.biomonitor.com

SAMPLE SUMMARY AND CHAIN OF CUSTODY

CLIENT NAME:	Huntington WWTP			
PURPOSE OF SAMPLE:	Whole Effluent Toxici	ty		
SAMPLE IDENTIFICATION	N: Huntington – 2	We	dnesday	Apr. 2024
DESCRIPTION: Outfal	I			
DATE SAMPLE COLLECT	ED: Start Date	4-23-2024	Start Time 12:01 Am	1
	End Date4	-23-2024	End Time 11:59 PI	1
NAME OF PERSON COLLI	ECTING SAMPLE:	TONY ADAMS		
SAMPLE VOLUME:	8 Liters			
NUMBER OF CONTAINER	S: Two, HDPE	FL	OW 9,20 MG	
SAMPLE STORAGE: 4	Refrigerated/ic	ed		
PRESERVATIVES:	none			
Relinquished by:	'y L	· · · · · · · · · · · · · · · · · · ·		
Date:	4-24,24	Time: §	100 PM	_
Received by: Poda				
Date: 4-24-2	.024	Time: 8	oo AM	_
Date: 4-24-2 Relinquished by: 83	ola			
Date: $4/24/2$	-024	Time: (O	1.45 a-	
Received by:	C.K.			
Date:	2424	Time:(-45	
гемр: <u>6</u> ° С	· · · · · · · · · · · · · · · · · · ·			

COMMENTS:

8802 W. Washington Street Indianapolis, IN 46231 317-297-7713 www.biomonitor.com

SAMPLE SUMMARY AND CHAIN OF CUSTODY

CLIENT NAME:	Huntington WWTP			
PURPOSE OF SAMPLE:	Whole Effluent Tox	icity		
SAMPLE IDENTIFICATION	: Huntington -	-3 Frida	ay	Apr. 2024
DESCRIPTION: Outfall				
DATE SAMPLE COLLECTE	ED: Start Date _	4-25-2024	Start Time_	12:01AM
	End Date	4-25-2024	End Time	11:59PM
NAME OF PERSON COLLE	CTING SAMPLE:	Angie Bruba	ker	
SAMPLE VOLUME:	8 Liters			
NUMBER OF CONTAINERS	S: Two, HDPE			
SAMPLE STORAGE: 4	Refrigerated	/iced	low 6.72	MG
PRESERVATIVES:	none		J. 7 -	. ,
Relinquished by:	e Bubak	ie.		
Date: 4-26-24		Time: <u>ψ</u> ν	го АМ	
Received by: Received by:	la			
Date: 4-26-	24	Time: 9:00	AM	
Relinquished by: folk	····			
Date: 4-26-24	<i>_A</i>	Time: <i>[C</i>	:30AM	
Received by:	the			
Date: 426	124	Time: 0	:30c	
TEMP:°C	1			

COMMENTS:

Ceriodaphnia dubia

Reference Toxicant - Copper sulfate/chloride as Cu

Dilution Water - Moderately Hard Reconstituted Water

Date	LC ₅₀	NOEL	LOEL	IC ₂₅
mm/yy	48-hr μg/L	μg/L (repro.)	μg/L (repro.)	μg/L (repro.)
07/21	98	40	80	50
08/21	87	40	80	23
09/21	92	40	80	49
10/21	73	40	80	52
11/21	113	40	160	59
12/21	75	40	80	48
2/22	105	40	80	54
3/22	75	40	80	51
4/22	113	40	80	57
5/22	95	40	80	30
6/22	113	40	80	41
7/22	75	40	80	33
8/22	86	40	40	30
9/22	80	40	80	32
11/22	70	40	80	40
12/22	77	40	80	48
1/23	75	40	80	48
2/23	86	40	80	52
4/23	80	40	80	37
5/23	80	40	80	39
06/23	113	40	160	59
07/23	75	40	80	55
09/23	80	40	80	15
10/23	113	40	80	58
11/23	86	40	80	50
01/24	99	40	40	30
02/24	86	40	80	48
03/24	80	40	80	48
04/24	80	40	80	51
Average	88	Mode 40	80	44
St. Dev.	14			11
Upper Limit	116	80	160	67
Lower Limit	60	20	40	22

Pimephales promelas

Reference Toxicant - Potassium chloride

Dilution Water - Moderately Hard Reconstituted Water

Date	LC ₅₀	NOEL	LOEL	IC ₂₅
mm/yy	96-hr mg/L	mg/L (grwth)	mg/L (grwth)	mg/L (grwth)
11/21	1129	1000	2000	939
12/21	1129	500	1000	810
02/22	812	500	1000	612
03/22	946	500	1000	707
04/22	917	500	1000	703
05/22	1110	1000	2000	1223
06/22	856	500	1000	710
07/22	1130	500	1000	736
08/22	1093	500	1000	925
09/22	1278	1000	2000	950
11/22	1035	500	1000	684
12/22	1053	1000	2000	805
01/23	795	500	1000	664
02/23	1091	500	1000	741
04/23	1231	1000	2000	1121
05/23	1189	1000	2000	1110
06/23	951	500	1000	669
07/23	1091	500	1000	1091
09/23	1000	500	1000	702
10/23	1124	500	1000	768
11/23	1253	500	1000	849
01/24	1128	500	1000	699
02/24	952	1000	2000	798
03/24	1189	500	1000	908
04/24	1189	1000	2000	1037
Average	1067	<u>Mode</u> 500	1000	838
St. Dev.	131			166
Upper Limit	1328	1000	2000	1171
Lower Limit	806	250	500	506

Client:	Hunti	ngton WWTP
Project #		
Analysts:	M	MB, MN, AF
	Start Date:	4/23/2024
tes	Start Time:	0801
Test Dates	End Date:	4/29/2024
• •		
	End Time:	
Template #		<u> </u>

0 = Number of Live Young / = Test Organism Dead y = Male M = Lost or Missing

Comments:

Row 10	Day S	1 2 3 4 5 6 7	0 0 2 7 0	0 0 4 8 0	0 0 4 0 9	0 0 13	0 0 4•1 0 7	0 0 H 0 7
Row 9	bay	1 2 3 4 5 6 7	0 0 4 0 9 8	0 0 3 5 0 0	0 0 0 2 7	0 0 0 0 0 0	0 0 0 2 4 3	0 0 3 8 0
Row &	Aeq	1 2 3 4 5 6 7	0 0 4 4 0 0	0 0 4 4 0 0 13	0 0 4 8 0	0 0 4 7 0	0 0 3 5+1 0 12	0 0 4 0 8
Row 7	Day	1 2 3 4 5 6	0 0 4 5 0	0 0 1 7 0	0 0 3 7 0	0 0 5 4 0	0 0 4 0 7	0 0 나 왕 0 10
Row 6	Day	1 2 3 4 5 6 7	0 0 7 4 8 13	0 0 0 0	0 0 0 4 8 13	0 0 0 4 9	0 0 0 1	0 0 7 17 13
Row S	Day	1 2 3 4 5 6 7	0 0 2 5 0	0 0 4 7 0 13	0 0 3 5 0 9	0 0 2 5 0	0 0 2 3 0	0 0 3 9 0

7 1 0 2 0
0 0 4 4 0 0 9 8 14 17
0 0 3 7
0 0 0 3 5 5
0 0 3 7

	Discharger:	::		Huntington WWTP	n WWTP			Ā	Analyst:			MM	MMB, MN, AF	
	Location:			Huntington, IN	ton, IN		Test St	Test Start- Date/Time:	/Time:			4/23/24	_	1030
	Date Sam	Date Sample Collected:	ted:	4/5	4/21,23,25/24	4	Test Si	Test Stop- Date/Time:	/Time:			4/29/24	_	1017
						Rep	Replicate					No. of	No. of	Vallogner
Conc.	Day	1	7	3	4	5	9	7	<u></u>	6	9	Young	Z Z Z) H
	-	0	0	0	0	0	0	0	0	0	0	0	10	0.0
	7	0	0	0	0	0	0	0	0	0	0	0	10	0.0
	e	0	0	0	3	2	0	3	3	0	2	13	10	1.3
Control	4	2	33	3	4	2	1	7	9	2	7	40	10	4.0
	2	9	5	7	8	0	9	0	0	4	0	36	10	3.6
	9	9	8	6	0	6	10	11	12	33	9	74	10	7.4
	Total	14	16	19	15	16	17	21	21	6	15	163	10	16.3
														202
		\$45. 18.				Repl	Replicate					No. of	No. of	Young ner
Conc.	Day	-	7	3	4	2	9	7	8	9	a	Young	Adults	Adult
		0	0	0	0	0	0	0	0	0	0	0	10	0.0
	7	0	0	0	0	0	0	0	0	0	0	0	10	0.0
	æ	2	0	0	4	2	0	4	4	2	4	22	10	2.2
8.5%	4	8	3	4	6	5	4	7	4	9	9	56	10	5.6
	2	0	7	9	0	9	7	0	0	0	0	26	10	2.6
	9	0	11	11	0	0	13	11	10	4	13	9/	10	7.6

5 6 7 8 9 10 Young Adults Adults 0 0 0 0 0 10 0.0 3 0 0 0 0 10 0.0 3 0 4 4 3 4 30 10 0.0 5 4 0 7 8 0 44 10 4.4 0 8 7 0 0 7 40 10 4.4 9 13 15 12 15 6 94 10 9.4	6 7 8 9 10 Young Adults Adults 0 0 0 0 0 10 0.0 0 4 4 3 4 30 10 3.0 4 0 7 8 0 44 10 4.4 8 7 0 0 7 40 10 4.0 13 15 12 15 6 94 10 9.4 25 26 23 26 17 208 17 208	
0 0 0 0 0 0 10 0 0 0 0 0 10 0 4 4 3 4 30 10 4 0 7 8 0 44 10 8 7 0 0 7 40 10 13 15 12 6 94 10	0 0 0 0 0 0 10 0 0 0 0 0 10 0 4 4 3 4 30 10 4 0 7 8 0 44 10 8 7 0 0 7 40 10 13 15 12 15 6 94 10 25 26 23 26 17 208 10	2 3 4
0 0 0 0 0 0 10 0 4 4 3 4 30 10 4 0 7 8 0 44 10 8 7 0 0 7 40 10 13 15 12 15 6 94 10	0 0 0 0 0 0 10 0 4 4 4 3 4 30 10 4 0 7 8 0 44 10 8 7 0 0 7 40 10 13 15 12 15 6 94 10 25 26 23 26 17 208 10	0 0 0
0 4 4 3 4 30 10 4 0 7 8 0 44 10 8 7 0 7 40 10 13 15 12 15 6 94 10	0 4 4 3 4 30 10 4 0 7 8 0 44 10 8 7 0 0 7 40 10 13 15 12 15 6 94 10 25 26 23 26 17 208 10	0 0 0
4 0 7 8 0 44 10 8 7 0 0 7 40 10 13 15 12 15 6 94 10	4 0 7 8 0 44 10 8 7 0 0 7 40 10 13 15 12 15 6 94 10 25 26 23 26 17 208 10	4 3 3
8 7 0 0 7 40 10 13 15 12 15 6 94 10	8 7 0 0 7 40 10 13 15 12 15 6 94 10 25 26 23 26 17 208 10	0 5 8
13 15 12 15 6 94 10	13 15 12 15 6 94 10 25 26 23 26 17 208 10	0 0 8
	25 26 23 26 17 208 10	11 0
	25 26 23 76 17 208 40	

18.0

Total

						Rep	Replicate					No. of	No. of	Young ner
Conc.	ved	-	2	C	4	2	9	/		6	10	Young		
	Ser Co	0	0	0	0	0	0	0	0	C	c	C	101	
	7	0	0	0	0	0	0	0	0	0	-	0	2 2	
	3	4	0	4	2	2	2	4	4	3	4	29	2 2	2.0
33%	4		ж	8	8	7	4	2	0	9	0	25	2 2) -
?	5	9	7	0	6	c	α	c	×	c	٥	30		\;;
	٠	,	,	, ;	,	,	٩		٥			88	10	3.8
	0		11	77	0		13	12	12	16	16	103	10	10.3
	Total	17	21	24	19	70	27	21	24	25	29	227	10	22.7
	_					•			5	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	lige.			
						Kep -	Keplicate					No. of	No. of	Young per
Conc.	Day	-	7	m	4	2	ø	7	8	6	10	Young	Adults	Adult
		0	0	0	0	0	0	0	0	0	0	0	10	0.0
	2	0	0	0	0	0	0	0	0	0	0	0	10	0.0
	m	4	4	0	2	4	0	4	4	0	5	27	10	2.7
%29	4	0	0	3	8	7	4	8	8	2	0	40	10	4.0
	5	7	6	6	8	0	6	0	0	7	7	56	10	5.6
	9	13	14	11	0	13	17	10	13	10	12	113	10	11.3
	Total	24	27	23	18	24	30	22	25	19	24	236	10	23.6
						Rep	Replicate					a y	**************************************	
Conc.	Day	-	7	'n	4	· •	9		∞	6	ę) LOV		
		0	0	0	0	0	0	0	0	0	0	0	10	0.0
	2	0	0	0	0	0	0	0	0	0	0	0	10	0.0
	m	4	4	4	4	3	0	5	4	4	4	36	10	3.6
100%	7	7	0	8	6	9	9	6	8	0	8	61	10	6.1
	25	9	8	0	6	0	9	0	0	9	0	35	10	3.5
	9		12	15	0	12	17	13	16	6	14	108	10	10.8
		ļ												
	lotal	17	24	27	22	21	53	27	28	19	56	240	10	24.0

File: ceriorep Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

INTERVAL	<-1.5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
EXPECTED OBSERVED	4.020 6	14.520 11	22.920 22	14.520 19	4.020 2

Calculated Chi-Square goodness of fit test statistic = 4.2628
Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Huntington 4.24

File: ceriorep Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance

Calculated H statistic (max Var/min Var) = 2.62 Closest, conservative, Table H statistic = 12.1 (alpha = 0.01)

Used for Table H ==> R (# groups) = 6, df (# reps-1) = 9 Actual values ==> R (# groups) = 6, df (# avg reps-1) = 9.00

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

SUMMARY OF FISHERS EXACT TESTS

GROUP	IDENTIFICATION	NUMBER EXPOSED	NUMBER DEAD	SIG (P=.05)
1 2 3 4 5	CONTROL 8.5% 17% 33% 67% 100%	10 10 10 10 10	0 0 0 0 0	

File: ceriorep Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP IDENTIFICATIO	N N	MIN	MAX	MEAN
1 contro 2 8.5 3 17 4 33 5 67 6 100	% 10 % 10 % 10 % 10	9.000 10.000 9.000 17.000 18.000	21.000 24.000 27.000 29.000 30.000 29.000	16.300 18.000 20.800 22.700 23.600 24.000

Huntington 4.24

File: ceriorep Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

1 control 12.678 3.561 1.126 2 8.5% 24.222 4.922 1.556 3 17% 32.178 5.673 1.794 4 33% 14.011 3.743 1.184 5 67% 12.267 3.502 1.108 6 100% 16.667 4.082 1.291

Huntington 4.24

File: ceriorep Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
B etwe en	5	497.200	99.440	5.326
Within (Error)	54	1008.200	18.670	
Total	59	1505.400		

Critical F value = 2.45 (0.05,5,40)

Since F > Critical F REJECT Ho: All groups equal

File: ceriorep Transform: NO TRANSFORMATION

	DUNNETTS TEST - TA	BLE 1 OF 2	Ho:Control <tr< th=""><th>eatment</th><th></th></tr<>	eat me nt	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	sig
1 2 3 4 5	control 8.5% 17% 33% 67% 100%	16.300 18.000 20.800 22.700 23.600 24.000	16.300 18.000 20.800 22.700 23.600 24.000	-0.880 -2.329 -3.312 -3.778 -3.985	

Dunnett table value = 2.31 (1 Tailed Value, P=0.05, df=40,5)

Huntington 4.24
File: ceriorep Transform: NO TRANSFORMATION

	DUNNETTS TEST -	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	control	- 0			
2	8.5%	10	4.464	27.4	-1,700
3	17%	10	4.464	27.4	-4.500
4	33%	10	4.464	27.4	-6.400
5	67%	10	4.464	27.4	-7.300
6 	100% 	10 	4.464	27.4	-7.700

Discharger:	Huntington WWTP	Test Dates:	4/23/24 -4/ <i>2</i> 9/24
Location:	Huntington, IN	Analysts:	MMB, MN, AF

					Day	ng Albania		3 2 680	1
Conc:	Control	1	2	3	4	5	6	7	Remarks
Temp.		25	25	25	25	25	25	25	
D.O.	Initial	8.4	7.9	8.4	8.3	7.9	7.7		Template A
4.5	Final	8.1	8.3	8.4	8.1	8.1	8.1		
pН	Initial	7.8	8.0	7.8	7.7	8.0	8.1		
	Final	7.7	7.8	7.7	7.8	7,4	8.0		
Alkalini	ity	40		40		40	V 1 4 1 5		
Hardne	SS	120	4.75 - 1	00		100	1.4		
Conduc	tivity	350		320		330			<u> </u>
Chlorin	e								

					Day				
Conc:	8.5%	1	2	3	4	5	6	7	Remarks
Temp.		25	25	25	25	25	25	25	
D.O.	Initial	8.5	4.0	8.4	8.3	7.9	4.0		
15.	Final	8.1	8.3	8,4	8.0	8.1	8.1		
pН	Initial	7.8	4.0	7.8	77	7.5	8.0		
	Final	7,7	7.8	7.7	7.8	7.8	8.0		
Alkalini	ty								
Hardne	SS								
Conduc	tivity	370		340		350			
Chlorine	е -								

					Day				
Conc: 1	7%	1	2	3	4	5	6	7	Remarks
Temp.		25	25	25	25	25	25	25	
D.O.	Initial	8.6	8.0	8.4	8.3	8.0	8.1		
	Final	8.1	8.3	8.4	7.9	8,0	8.1		
pH	Initial	7.7	8.0	7.8	7.7	7,9	4.0		
-11	Final	7.7	7.8	7.7	7.8	7.8	0.8		
Alkalinity									
Hardness									
Conductiv	ity	370		370		390			
Chlorine	6. i		12.						

Discharger:	Huntington WWTP	Test Dates:	4/23/24 - 4/29/24
Location:	Huntington, IN	Analysts:	MMB, MN, AF

	_ A	t							_
	33%	1 1 1 1 1 1			Day			100	
Conc:	-34%	1	2	3	4	5	6	7	Remarks
Temp.		25	25	25	25	25	25	25	
D.O.	Initial	2.7	8.(8.6	8.3	8.2	4.2		
	Final	8.0	8.7	9.3	7.8	7.7	8.0		
рĦ	Initial	7.7	7.9	7.7	7.6	7.8	7.7		
	Final	7,8	7.8	7.7	7.8	7,9	8.0		
Alkalin	ity								
Hardne	ess								
Condu	ctivity	460		450		450			
Chlorin	ne ·						de la		

	- a. A.	Ł							
V	ファマ%~				Day		Marka a sa ing		
Conc: 1	38%	1	2	3	4	5	6	7	Remarks
Temp.	Wilder Co.	25	25	25	25	25	25	25	
D.O.	Initial	\$.9	8.4	8.6	8.5	8.6	8.4		
	Final	7,9	8.2	8.3	7.6	73. 8	8.0		
рĦ	Initial	7.6	7.8	7.6	7.6	7.8	78		
	Final	7.8	7.9	7.7	7.9	3.9	8.1		
Alkalinity					1.192.04, 669.0				
Hardness					13/20		1		
Conductiv	vity	590		590		560			
Chlorine									

			grand in	Day				
Conc: 100%	1	2	3	4	5	6	7	Remarks
Temp.	25	25	25	25	25	25	25	
D.O. Initial	9.4	8.8	9.2	89	8.8	8.8		
Final	7.8	8.2	8.2	7.5	7.7	7.9		
pH Initial	7.6	7.7	7.5	7.5	プ ・チ	7,7		
Final	7.9	8.1	8,0	7,9	4.4	8.2		
Alkalinity	180		120		150			
Hardness	300		275	.Drift.	225	1.424.5		
Conductivity	710		730	Contract separate and con-	690			
Chlorine	N.D.		20	111.08.41	ND			
Ammonia	N.D.		1.0		0.5			

Discharger: Huntington WWTP Test Dates 4/23/24 -4/30/24

Location: Huntington, IN Analysts: MMB, MN, AF

CONTRACT.			No.	Survi	ving (Organi	sms		
		. Bus .v.			Day	es Curtal tasses			
Conc:	Rep.#	1	2	3	4	5	6	7	Remarks
	Α	10	10	10	10	10	10	10	
Control	В	6	lo	10	10	10	10	10	
Control	С	10	lo	10	10	lo	10	0	
1 (a) 1 (a)	D	10	10	10	lo	10	10	10	
	A	10	10	10	10	10	10	0	
8.50%	В	10	10	10	10	10	10	16	
0.30%	C	10	10	10	10	10	10	10	
	D	10	10	lo	10	10	10	10	
140.0	L A	10	10	10	10	10	10	0	
17.0%	В	10	10	10	10	10	10	10	
17.076	C	10	10	10	10	10	10	_0_	
	D	10	10	10	10	10	10	10	
	Α	10	9	٩	9	٩	9	9	
34%	В	10	10	lo	lo	10	10	10	
3	<u></u>	10	10	10	10	10	10	10	
	0	10	10		10	10	10	lo	
	Α	10	10	10	10	اه	10	10	
68%	В	10	10	10	10	เอ	lo	10	····
"7"	C	10	10	10	10	10	10	10	
	0	10	10	10	10	10	10	ļo	
	A	10	10	10	10	10	10	10	
100%	В	ſο	10	10	10	10	10	10	
	С	10	10	10	10	10	10	10	Hade to be the second of the s
	0	10	10	10	10	10	10	10	

Comments: Start Time: 1000

FHM Source: L.C.

File: fhmsurv Transform: ARC SINE(SOUARE ROOT(Y))

Shapiro Wilks test for normality

D = 0.020

W = 0.465

Critical W (P = 0.05) (n = 24) = 0.916Critical W (P = 0.01) (n = 24) = 0.884

Data FAIL normality test. Try another transformation.

Warning - The two homogeneity tests are sensitive to non-normal data and should not be performed.

Huntington 4.24

File: fhmsurv Transform: ARC SINE(SQUARE ROOT(Y))

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. Additional transformations are useless.

File: fhmsurv Transform: ARC SINE(SQUARE ROOT(Y))

Critical values use k = 5, are 1 tailed, and alpha = 0.05

Discharge: Location: Analyst:

Huntington WWTP Huntington, IN MMB, MN, AF

Test Date(s):
Weighing Date:

4/23-30/24 5/1/24

Drying Temp (°C): Drying Time (h):

100 9

Remarks																								
Mean dry wgt of larvae (g)	0.240	0.340	0.340	0.370	0.350	0.310	0.340	0.370	0.290	0.320	0.330	0.320	0.280	0.300	0.310	0.290	0.360	0.320	0.350	0.320	0.420	0.390	0.320	0.330
No. of larvae	10	10	10	10	10	10	10	10	10	10	10	10	6	10	10	10	10	2	5	101	12	10	10	10
Total dry wgt of larvae (mg)	2.40	3.40	3.40	3.70	3.50	3.10	3.40	3.70	2.90	3.20	3.30	3.20	2.80	3.00	3.10	2.90	3.60	3.20	3.50	3.20	4.20	3.90	3.20	3.30
Dry wgt: foll and larvae (g)	0.91560	0.92140	0.91700	0.92720	0.92020	0.92040	0.92600	0.92730	0.92600	0.91550	0.91800	0.91700	0.92080	0.92360	0.92460	0.91920	0.92230	0.91610	0.92530	0.91640	0.92150	0.91540	0.92150	0.91980
Wgt. of boat (g)	0.91320	0.91800	0.91360	0.92350	0.91670	0.91730	0.92260	0.92360	0.92310	0.91230	0.91470	0.91380	0.91800	0.92060	0.92150	0.91630	0.91870	0.91290	0.92180	0.91320	0.91730	0.91150	0.91830	0.91650
Rep. No.	A	В	J	۵	4	8	J	۵	۷	8	J	٥	∢	8	٥	٥	A	8	၁	۵	A	В	ပ	۵
Conc		Control				Conc. 8 5%				Saic:	27%			: S S	33%			:: 89	67%			3	100%	Control Control

File: fhm_grow Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

INTERVAL	<-1.5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
EXPECTED	1.608	5.808	9.168	5.808	1.608
OBSERVED	0	8	8	8	0

Calculated Chi-Square goodness of fit test statistic = 5.0194
Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Huntington 4.24

File: fhm grow Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance

Calculated H statistic (max Var/min Var) = 19.35
Closest, conservative, Table H statistic = 184.0 (alpha = 0.01)

Used for Table H ==> R (# groups) = 6, df (# reps-1) = 3 Actual values ==> R (# groups) = 6, df (# avg reps-1) = 3.00

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

File: fhm grow Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	control	4	0.240	0.370	0.323
2	8.5%	4	0.310	0.370	0.343
3	17%	4	0.290	0.330	0.315
4	3 3 %	4	0.280	0.310	0.295
5	67%	4	0.320	0.360	0.338
6	100%	4	0.320	0.420	0.365
					

Huntington 4.24

File: fhm_grow Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM
1 2 3 4 5	control 8.5% 17% 33% 67% 100%	0.003 0.001 0.000 0.000 0.000 0.002	0.057 0.025 0.017 0.013 0.021 0.048	0.028 0.012 0.009 0.006 0.010 0.024

Huntington 4.24

File: fhm_grow Transform: NO TRANSFORMATION

ANOVA TABLE

COURCE				
SOURCE	DF 	SS 	MS	F
Between	5	0.012	0.002	2.000
Within (Error)	18 -	0.021	0.001	
Total	23	0.033		

Critical F value = 2.77 (0.05,5,18)

Since F < Critical F FAIL TO REJECT Ho: All groups equal

File: fhm grow Transform: NO TRANSFORMATION

DUNNETTS TEST - TABLE 1 OF 2 Ho:Control<Treatment ______ TRANSFORMED MEAN CALCULATED IN MEAN ORIGINAL UNITS T STAT SIG 0.323 control

GROUP IDENTIFICATION 0.323 0.343 8.5% 0.343 -0.894 17% 0.315 33% 0.295 67% 0.338 100% 0.365 3 0.315 0.295 1.230 0.338 -0.671 0.365 -1.901 ______

Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5)

Huntington 4.24

Transform: NO TRANSFORMATION File: fhm grow

	DUNNETTS TEST -	TABLE 2 OF	2 но:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	control	4			
2	8.5%	4	0.054	16.7	-0.020
3	17%	4	0.054	16.7	0.008
4	33%	4	0.054	16.7	0.027
5	67%	4	0.054	16.7	-0.015
6	100%	4	0.054	16.7	-0.043

Discharger:	Huntington WWTP	Test Dates:	4/23/24 -4/30/24
Location:	Huntington, IN	Analysts:	MMB, MN, AF

				Day				
Conc : Control	1	2	3	4	5	6	7	Remarks
Temp.	25	25	25	25	25	25	25	
D.O. Initial	8.4	7.7	7.7	4.0	7.6	7.5	7.7	
Final	7.0	7.0	6.8	6.9	٦-١	6.6	7.2	
pH Initial	7.8	₹.0	8.0	8.2	4.0	79	8.1	
Final	7.9	7.9	7.8	8.2	7.8	8.0	77.	
Alkalinity	40	7 3 4 7 1 2 To	40		40			
Hardness	120		100	7.74.34.3	100			
Conductivity	350		350		350		- 10 (5) (1) (1) (1)	
Chlorine							5 million	

				Day	Y Jan Daniel	The state		
Conc: 8.5%	1	2	3	4	5	6	7	Remarks
Temp.	25	25	25	25	25	25	25	
D.O. Initial	8.5	77.8	7.8	8.0	£.£	76	7.8	
Final	6.9	4.9	6.8	6.9	J-0	6.5	7.0	
pH Initial	7.8	8.0	7.9	8.1	3.9	7,9	8.0	
Final	7.9	7,9	7.8	8.2	7.8	8.0	7.7	
Alkalinity				ad the same of				
Hardness								
Conductivity	370		360		370			
Chlorine						11.1		

				Day	401 ye		1 00 00 00 00 00 00 00 00 00 00 00 00 00	
Conc: 17%	1	2	3	4	5	6	7	Remarks
Temp.	25	25	25	25	25	25	25	
D.O. Initial	8.6	7.9	J-61	8.1	7.4	7.7	7.9	
Final	6.9	6.8	6.7	6.8	6.9	6.4	6.7	
pH Initial	7.7	7.9	7.4	8.1	7.9	7.8	7.9	
Final	7.9	7.9	7.8	8.2	7.\$	7,9	7.6	
Alkalinity								
Hardness		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1000		
Conductivity	370		390		400			
Chlorine								

4/23/24 -4/30/24 **Huntington WWTP** Test Dates: Discharger: MMB, MN, AF Huntington, IN Analysts: Location:

	33%		de de la la						
Conc:	34%	1	2	3	4	5	6	7	Remarks
Temp.		25	25	25	25	25	25	25	
D.O.	Initial	8.7	8.0	8.1	4.2	4.0	7.8	% .o	
	Final	6.8	4.7	6.5	65	6.8	6.2	5.8	
рH	Initial	7.7	7.8	7.8	8.0	7.8	4.4	7.8	
	Final	7.9	7.4	7.7	4.2	7.7	7.9	7.6	
Alkalin	ity								
Hardne	ess				1000				
Condu	ctivity	460		470		470			
Chlorin	ne .								

	, Ai	£							
67°	/₀ ┌ा								
Conc: -68%		1	2	3	4	5	6	7	Remarks
Temp.		25	25	25	25	25	25	25	
D.O. Init	ial	8.9	8.4	8.2	8.3	8.2	7.9	8.1	
Fin		6.7	6.5	6.0	5.9	6.5	6.0	5.5	
pH Init	ial	7.(0	7.7	7.6	7.9	4٠٠	7.6	7.8	
Fin	al	7.8	7.8	7.7	4.1	7.7	7.8	7.5_	
Alkalinity									
Hardness	7 494 . 10 00 70								
Conductivity	This	<u>570</u>		620	A MENTAL AND	610			
Chlorine			* 14 C. C.						

Conc: 100%	Day							
	1	2	3	4	5	6	7	Remarks
Temp.	25	25	25	25	25	25	25	
D.O. Initial	9.4	8.8	8.4	4.4	8.5	8.1	8.2	
Final	6.6	6.3	<u> ქ.ე</u>	5.7	5.8	5.6	4.8	
pH Initial	7.6	76	76	7.8	7.6	7.6	7.7	
Final	7.8	7.8	7,6	8.1	7.6	7.8	7.5	
Alkalinity	180		120		150	1.50		
Hardness	300		275		225			
Conductivity	710		750	1 (W. 1.1.) 1 (V. 1.1.)	750			
Chlorine	N.D.		り	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N·D.			
Ammonia	11.8.		1.0	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.5			