# LAWRENCEBURG, IN - 2023 CONSUMER CONFIDENCE REPORT



Share and learn about your drinking water with your children. For an interactive Water Cycle Diagram go online to: https://water.usgs.gov/edu/watercycle-kids-adv.html

#### Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

### Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

## You can get involved... Do you know about Water Conservation?

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature.

- Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- Visit www.epa.gov/watersense for more information.

#### Where does my water come from?

Beneath Lawrenceburg is a portion of an aquifer known as the Great Miami Aquifer which provides drinking water for Lawrenceburg and many other surrounding communities. Aquifer Definition: Layer of water-bearing permeable rock, sand, or gravel capable of providing significant amounts of water.

#### Source water assessment and protection:

Protection of drinking water is everyone's responsibility. Here are a few ways you can help:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public sewer system.

• Dispose of chemicals properly; take used motor oil to a recycling center.

Lawrenceburg's Groundwater Well(s) 1, 2, and 3 are located in the Lawrenceburg Fairgrounds and Well 4 is located on US 50 at the Water Treatment Plant Site. All wells were active for some or all of 2023 and provided raw water to the Drinking Water Plant for treatment.

#### Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

#### **Additional Information for Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lawrenceburg Municipal Utilities is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we monitored for the period of 2014 through 2023. Please note that most of the contaminants we regularly monitor for are not found in your drinking water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, much of our data, though representative, will be from years other than 2023. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below:

Contact: Lawrenceburg Municipal Utilities Director of Utilities Water Superintendent

230 Walnut St Billy Kinnett Garrett Cavanaugh 812-532-3500 bkinnett@lmu-in.net gcavanaugh@lmu-in.net

# **Unit Descriptions**

| <u>Term</u> | Important Drinking Water Definitions                                                                                                                                                                                                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| РРМ         | Parts Per Million, or milligrams per liter (mg/L)                                                                                                                                                                                                |
| РРВ         | Parts Per Billion, or micrograms per liter (ug/L)                                                                                                                                                                                                |
| NA          | Not Applicable                                                                                                                                                                                                                                   |
| ND          | Not Detected                                                                                                                                                                                                                                     |
| NR          | Monitoring Not Required, but recommended                                                                                                                                                                                                         |
| MCLG        | Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.                                                                       |
| MCL         | Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water.<br>MCLs are set as close to the MCLGs as feasible using the best available treatment technology.                                                |
| π           | Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.                                                                                                                                         |
| AL          | Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.                                                                                                  |
| MRDLG       | Maximum Residual Disinfection Level Goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. |
| MRDL        | Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water.<br>There is convincing evidence that addition of a disinfectant is necessary for control of microbial<br>contaminants.                       |
| MNR         | Monitored Not Regulated                                                                                                                                                                                                                          |
| MPL         | State Assigned Maximum Permissible Level                                                                                                                                                                                                         |
| Variances   | State or EPA permission not to meet an MCL or a treatment technique under certain conditions                                                                                                                                                     |

Variances State or EPA permission not to meet an MCL or a treatment technique under certain conditions and Exemptions

| Contaminants M                             | MCLG<br>or<br>ARDLG                      | MCL,<br>TT, | Detect      |          | Your Water Quality Table |                |               |                                                                                                                                    |  |  |  |  |  |  |  |  |
|--------------------------------------------|------------------------------------------|-------------|-------------|----------|--------------------------|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                            | ARDLG                                    |             | In<br>Your  |          |                          | Sample<br>Date | Violation     | Typical Source                                                                                                                     |  |  |  |  |  |  |  |  |
| Disinfectants & Disir                      | INDLO                                    | or<br>MRDL  | Water       | Low      | High                     | Date           |               |                                                                                                                                    |  |  |  |  |  |  |  |  |
|                                            | Disinfectants & Disinfection By-Products |             |             |          |                          |                |               |                                                                                                                                    |  |  |  |  |  |  |  |  |
| (There is convincing e                     | evidence t                               | hat additic | on of a dis | sinfecta | nt is nec                | essary for     | control of mi | crobial contaminants)                                                                                                              |  |  |  |  |  |  |  |  |
| Chlorine (as Cl2)<br>(ppm)                 | 4                                        | 4           | 1           | 1        | 1.3                      | 2023           | No            | Water additive used to control microbes                                                                                            |  |  |  |  |  |  |  |  |
| Haloacetic Acids<br>(HAA5) (ppb)           | NA                                       | 60          | 7           | 7.40     | 7.40                     | 2023           | No            | By-product of drinking water chlorination                                                                                          |  |  |  |  |  |  |  |  |
| TTHMs [Total<br>Trihalomethanes]<br>(ppb)  | NA                                       | 80          | 20          | 20.2     | 20.2                     | 2023           | No            | By-product of drinking water disinfection                                                                                          |  |  |  |  |  |  |  |  |
| <b>Inorganic Contamina</b>                 | ants                                     |             |             |          |                          |                |               |                                                                                                                                    |  |  |  |  |  |  |  |  |
| Fluoride (ppm)                             | 4                                        | 4           | .706        | .7       | .8                       | 2023           | No            | Erosion of natural deposits; Water<br>additive which promotes strong teeth;<br>Discharge from fertilizer and aluminum<br>factories |  |  |  |  |  |  |  |  |
| Nitrate (ppm)<br>[measured as<br>Nitrogen] | 10                                       | 10          | .845        | .8       | .8                       | 2023           | No            | Runoff from fertilizer use; Leaching from<br>septic tanks, sewage; Erosion of natural<br>deposits                                  |  |  |  |  |  |  |  |  |
| Sodium<br>(optional) (ppm)                 | NA                                       |             | 143         | NA       | NA                       | 2020           | No            | Erosion of natural deposits; Leaching                                                                                              |  |  |  |  |  |  |  |  |
| Radioactive Contami                        | inants                                   |             |             |          |                          |                |               |                                                                                                                                    |  |  |  |  |  |  |  |  |

| Radium           |  |
|------------------|--|
| (combined        |  |
| 226/228) (pCi/L) |  |

0

1.2

No

|                                                       | Y                   | <u>ou</u> | r W           | ater                  | Qual                         | ity T                         | ab        | le co        | ontinue                   | d                  |                   |
|-------------------------------------------------------|---------------------|-----------|---------------|-----------------------|------------------------------|-------------------------------|-----------|--------------|---------------------------|--------------------|-------------------|
| Contaminants                                          | MCLG                | AL        | Your<br>Water | Sample<br>Date        | # Samples<br>Exceeding<br>AL | Exceeds<br>AL                 |           |              | Typical                   | Source             |                   |
| Inorganic Cont                                        | aminants            |           |               |                       |                              |                               |           |              |                           |                    |                   |
| Copper -<br>action level at<br>consumer taps<br>(ppm) | 1.3                 | 1.3       | 0.172         | 2023                  | 0                            | No                            |           |              | ousehold p<br>ural deposi | lumbing syst<br>ts | tems;             |
| Inorganic Cont                                        | aminants            |           |               |                       |                              |                               |           |              |                           |                    |                   |
| Lead - action<br>level at<br>consumer taps<br>(ppb)   | 0                   | 15        | 5.35          | 2023                  | 0                            | No                            |           |              | ousehold p<br>ural deposi | lumbing syst<br>ts | tems;             |
| Contaminants                                          | MCLG<br>or<br>MRDLG |           |               | MCL, TT<br>or<br>MRDL | ,                            | Detect<br>In<br>Your<br>Water | Ra<br>Low | inge<br>High | Sample<br>Date            | Violation          | Typical<br>Source |
| Microbiologica                                        | l Contamir          | nants     |               |                       |                              |                               |           |              |                           |                    |                   |
|                                                       |                     | Ro        | utine and     | repeat san            | ples are total               |                               |           |              |                           |                    |                   |

| Contaminants                                            | or<br>MRDLG | or<br>MRDL                                                                                                                                                                                                                                                               | Your<br>Water | Low | High | Date | Violation | Source                                   |
|---------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|------|------|-----------|------------------------------------------|
| Microbiologica                                          | l Contamina | ants                                                                                                                                                                                                                                                                     |               |     |      |      |           |                                          |
| E. coli<br>(RTCR) - in<br>the<br>distribution<br>system | 0           | Routine and repeat samples are total<br>coliform positive and either is E. coli -<br>positive or system fails to take repeat<br>samples following E. coli positive<br>routine sample or system fails to<br>analyze total coliform positive repeat<br>sample for E. coli. | 0             | NA  | NA   | 2023 | No        | Human<br>and<br>Animal<br>Fecal<br>Waste |



In the following pages, LMU has provided a listing of dozens of contaminants that have been monitored for, but not detected, in your drinking water over the most recent monitoring compliance cycle(s). In providing this additional data, we hope to make it apparent to our customers the measures we take through routine sampling/monitoring to ensure the safety of drinking water. It is a duty of the utmost importance that we are providing a safe, reliable and high-quality product for all our customers as well as the guests of our community. We are fortunate to have this excellent groundwater resource and we shall continue to be diligent in our efforts to protect it.

|                                                                                 | l    | <b>Jndete</b>       | cted          | Conta     | minants                                                                                                                                   |  |  |  |  |  |
|---------------------------------------------------------------------------------|------|---------------------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| The following contaminants were monitored for, but not detected, in your water. |      |                     |               |           |                                                                                                                                           |  |  |  |  |  |
| Contaminants                                                                    | MCLG | MCL, TT,<br>or MRDL | Your<br>Water | Violation | Typical Source                                                                                                                            |  |  |  |  |  |
| 1,1,1-Trichloroethane<br>(ppb)                                                  | 200  | 200                 | ND            | No        | Discharge from metal degreasing sites and other factories                                                                                 |  |  |  |  |  |
| 1,1,2-Trichloroethane<br>(ppb)                                                  | 3    | 5                   | ND            | No        | Discharge from industrial chemical factories                                                                                              |  |  |  |  |  |
| 1,1-Dichloroethylene<br>(ppb)                                                   | 7    | 7                   | ND            | No        | Discharge from industrial chemical factories                                                                                              |  |  |  |  |  |
| 1,2,4-Trichlorobenzene<br>(ppb)                                                 | 70   | 70                  | ND            | No        | Discharge from textile-finishing factories                                                                                                |  |  |  |  |  |
| 1,2-Dichloroethane (ppb)                                                        | 0    | 5                   | ND            | No        | Discharge from industrial chemical factories                                                                                              |  |  |  |  |  |
| 1,2-Dichloropropane (ppb)                                                       | 0    | 5                   | ND            | No        | Discharge from industrial chemical factories                                                                                              |  |  |  |  |  |
| 2,4,5-TP (Silvex) (ppb)                                                         | 50   | 50                  | ND            | No        | Residue of banned herbicide                                                                                                               |  |  |  |  |  |
| 2,4-D (ppb)                                                                     | 70   | 70                  | ND            | No        | Runoff from herbicide used on row crops                                                                                                   |  |  |  |  |  |
| Alachlor (ppb)                                                                  | 0    | 2                   | ND            | No        | Runoff from herbicide used on row crops                                                                                                   |  |  |  |  |  |
| 1,2-Dichloropropane (ppb)                                                       | 0    | 5                   | ND            | No        | Discharge from industrial chemical factories                                                                                              |  |  |  |  |  |
| 2,4,5-TP (Silvex) (ppb)                                                         | 50   | 50                  | ND            | No        | Residue of banned herbicide                                                                                                               |  |  |  |  |  |
|                                                                                 |      |                     |               |           |                                                                                                                                           |  |  |  |  |  |
| 2,4-D (ppb)                                                                     | 70   | 70                  | ND            | No        | Runoff from herbicide used on row crops                                                                                                   |  |  |  |  |  |
| Alachlor (ppb)                                                                  | 0    | 2                   | ND            | No        | Runoff from herbicide used on row crops                                                                                                   |  |  |  |  |  |
| Alpha emitters (pCi/L)                                                          | 0    | 15                  | ND            | No        | Erosion of natural deposits                                                                                                               |  |  |  |  |  |
| Antimony (ppb)                                                                  | 6    | 6                   | ND            | No        | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.                                       |  |  |  |  |  |
| Arsenic (ppb)                                                                   | 0    | 10                  | ND            | No        | Erosion of natural deposits; Runoff from orchards;<br>Runoff from glass and electronics production wastes                                 |  |  |  |  |  |
| Atrazine (ppb)                                                                  | 3    | 3                   | ND            | No        | Runoff from herbicide used on row crops                                                                                                   |  |  |  |  |  |
| Barium (ppm)                                                                    | 2    | 2                   | ND            | No        | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits                                                |  |  |  |  |  |
| Benzene (ppb)                                                                   | 0    | 5                   | ND            | No        | Discharge from factories; Leaching from gas storage tanks and landfills                                                                   |  |  |  |  |  |
| Benzo(a)pyrene (ppt)                                                            | 0    | 200                 | ND            | No        | Leaching from linings of water storage tanks and distribution lines                                                                       |  |  |  |  |  |
| Beryllium (ppb)                                                                 | 4    | 4                   | ND            | No        | Discharge from metal refineries and coal-burning<br>factories; Discharge from electrical, aerospace, and<br>defense industries            |  |  |  |  |  |
| Cadmium (ppb)                                                                   | 5    | 5                   | ND            | No        | Corrosion of galvanized pipes; Erosion of natural<br>deposits; Discharge from metal refineries; runoff<br>from waste batteries and paints |  |  |  |  |  |
| Carbofuran (ppb)                                                                | 40   | 40                  | ND            | No        | Leaching of soil fumigant used on rice and alfalfa                                                                                        |  |  |  |  |  |
| Carbon Tetrachloride<br>(ppb)                                                   | 0    | 5                   | ND            | No        | Discharge from chemical plants and other industrial activities                                                                            |  |  |  |  |  |
| Chlordane (ppb)                                                                 | 0    | 2                   | ND            | No        | Residue of banned termiticide                                                                                                             |  |  |  |  |  |
| Chlorobenzene<br>(monochlorobenzene)<br>(ppb)                                   | 100  | 100                 | ND            | No        | Discharge from chemical and agricultural chemical factories                                                                               |  |  |  |  |  |
| Chromium (ppb)                                                                  | 100  | 100                 | ND            | No        | Discharge from steel and pulp mills; Erosion of natural deposits                                                                          |  |  |  |  |  |
| Cyanide (ppb)                                                                   | 200  | 200                 | ND            | No        | Discharge from plastic and fertilizer factories;<br>Discharge from steel/metal factories                                                  |  |  |  |  |  |
| Dalapon (ppb)                                                                   | 200  | 200                 | ND            | No        | Runoff from herbicide used on rights of way                                                                                               |  |  |  |  |  |
| Di (2-ethylhexyl) adipate<br>(ppb)                                              | 400  | 400                 | ND            | No        | Discharge from chemical factories                                                                                                         |  |  |  |  |  |

| Di (2-ethylhexyl) phthalate<br>(ppb) | 0         | 6                   | ND            | No             | Discharge from rubber and chemical factories                                                                            |
|--------------------------------------|-----------|---------------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------|
| Dibromochloropropane<br>(DBCP) (ppt) | 0         | 200                 | ND            | No             | Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards                                   |
| Dichloromethane (ppb)                | 0         | 5                   | ND            | No             | Discharge from pharmaceutical and chemical factories                                                                    |
| Dinoseb (ppb)                        | 7         | 7                   | ND            | No             | Runoff from herbicide used on soybeans and vegetables                                                                   |
|                                      | Unde      | tected              | Con           | tamina         | ants ~ cont'd                                                                                                           |
| The following contaminant            | s were mo | nitored for, b      | ut not det    | tected, in you | ır water.                                                                                                               |
| Contaminants                         | MCLG      | MCL, TT,<br>or MRDL | Your<br>Water | Violation      | Typical Source                                                                                                          |
| Diquat (ppb)                         | 20        | 20                  | ND            | No             | Runoff from herbicide use                                                                                               |
| Endothall (ppb)                      | 100       | 100                 | ND            | No             | Runoff from herbicide use                                                                                               |
| Endrin (ppb)                         | 2         | 2                   | ND            | No             | Residue of banned insecticide                                                                                           |
| Ethylbenzene (ppb)                   | 700       | 700                 | ND            | No             | Discharge from petroleum refineries                                                                                     |
| Ethylene Dibromide<br>(EDB) (ppt)    | 0         | 50                  | ND            | No             | Discharge from petroleum refineries                                                                                     |
| Heptachlor (ppt)                     | 0         | 400                 | ND            | No             | Residue of banned pesticide                                                                                             |
| Heptachlor epoxide (ppt)             | 0         | 200                 | ND            | No             | Breakdown of heptachlor                                                                                                 |
| Hexachlorobenzene (ppb)              | 0         | 1                   | ND            | No             | Discharge from metal refineries and agricultural chemical factories                                                     |
| Hexachlorocyclopentadien<br>e (ppb)  | 50        | 50                  | ND            | No             | Discharge from chemical factories                                                                                       |
| Lindane (ppt)                        | 200       | 200                 | ND            | No             | Runoff/leaching from insecticide used on cattle, lumber, gardens                                                        |
| Mercury [Inorganic] (ppb)            | 2         | 2                   | ND            | No             | Erosion of natural deposits; Discharge from<br>refineries and factories; Runoff from landfills;<br>Runoff from cropland |
| Methoxychlor (ppb)                   | 40        | 40                  | ND            | No             | Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock                                         |
| Oxamyl [Vydate] (ppb)                | 200       | 200                 | ND            | No             | Runoff/leaching from insecticide used on apples, potatoes and tomatoes                                                  |
| Pentachlorophenol (ppb)              | 0         | 1                   | ND            | No             | Discharge from wood preserving factories                                                                                |
| Picloram (ppb)                       | 500       | 500                 | ND            | No             | Herbicide runoff                                                                                                        |
| Selenium (ppb)                       | 50        | 50                  | ND            | No             | Discharge from petroleum and metal refineries;<br>Erosion of natural deposits; Discharge from mines                     |
| Simazine (ppb)                       | 4         | 4                   | ND            | No             | Herbicide runoff                                                                                                        |
| Styrene (ppb)                        | 100       | 100                 | ND            | No             | Discharge from rubber and plastic factories;<br>Leaching from landfills                                                 |
| Tetrachloroethylene (ppb)            | 0         | 5                   | ND            | No             | Discharge from factories and dry cleaners                                                                               |
| Thallium (ppb)                       | 0.5       | 2                   | ND            | No             | Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories                               |
| Toluene (ppm)                        | 1         | 1                   | ND            | No             | Discharge from petroleum factories                                                                                      |
| Toxaphene (ppb)                      | 0         | 3                   | ND            | No             | Runoff/leaching from insecticide used on cotton and cattle                                                              |
| Trichloroethylene (ppb)              | 0         | 5                   | ND            | No             | Discharge from metal degreasing sites and other factories                                                               |
| Uranium (ug/L)                       | 0         | 30                  | ND            | No             | Erosion of natural deposits                                                                                             |
| Vinyl Chloride (ppb)                 | 0         | 2                   | ND            | No             | Leaching from PVC piping; Discharge from plastics factories                                                             |
| Xylenes (ppm)                        | 10        | 10                  | ND            | No             | Discharge from petroleum factories; Discharge from chemical factories                                                   |

| cis-1,2-Dichloroethylene<br>(ppb)   | 70  | 70  | ND | No | Discharge from industrial chemical factories |
|-------------------------------------|-----|-----|----|----|----------------------------------------------|
| o-Dichlorobenzene (ppb)             | 600 | 600 | ND | No | Discharge from industrial chemical factories |
| p-Dichlorobenzene (ppb)             | 75  | 75  | ND | No | Discharge from industrial chemical factories |
| trans-1,2-Dichloroethylene<br>(ppb) | 100 | 100 | ND | No | Discharge from industrial chemical factories |

"Our system collected samples under the U.S. EPA Unregulated Contaminants Monitoring Rule (UCMR) for 29 PFAS compounds and Lithium. This monitoring is being conducted so the EPA can receive occurrence data for these compounds to determine what additional compounds may need to be regulated in drinking water. We collected samples in June 2023 and did not detect any of the compounds. If you would like to view our results, contact our office at 812-532-3500 or email gcavanaugh@lmu-in.net.



Lawrenceburg Municipal Utilities 230 Walnut St. Po Box 4198 Lawrenceburg, IN 47025