

Office of Water Quality Total Maximum Daily Load Program

Total Maximum Daily Load for Escherichia coli (E. coli) in the Highland-Pigeon Creek Watershed and Total Phosphorous for Hurricane Creek, Gibson, Pike, Vanderburgh, Posey, and Warrick Counties

Prepared by:

Office of Water Quality – TMDL Program Indiana Department of Environmental Management 100 N. Senate Avenue Indianapolis, IN 46204

July 28, 2011

Table of Contents

Introduction	3
Background	3
Water Quality Standards and Numeric Targets	6
Source Assessment	8
Watershed Characterization	8
Land Use	
National Pollutant Discharge Elimination System (NPDES) Permitted Dischargers	8
Combined Sewer Overflows (CSO) and Sanitary Sewer Overflows (SSO)	10
Confined Feeding Operations (CFOs) and Concentrated Animal Feeding Operations (CAFOs)	11
Linkage Analysis and E. coli and phosphorus Load Duration Curves	
TMDL Development	24
Allocations	24
Wasteload Allocations	25
Load Allocations	25
Margin of Safety	26
Seasonality	26
Monitoring	26
Reasonable Assurance Activities	
Watershed Projects	
Storm Water General Permit Rule 13	31
Confined Feeding Operations and Concentrated Animal Feeding Operations	31
319 Projects Conducted in the Highland Pigeon Watershed	31
TMDLs	32
Potential Future Activities	
Conclusion	
References	35

Tables and Figures

Table 1: Impaired Assessment Units in the Highland-Pigeon Creek Watershed Table 2: Hurricane Creek TMDL Summary Table 3: Sandy Creek TMDL Summary Table 4: West Fork Creek TMDL Summary Table 5: Clear Fork Ditch-Pigeon Creek TMDL Summary Table 6: Snake Run-Pigeon Creek TMDL Summary Table 7: Smith Fork-Pigeon Creek TMDL Summary Table 8: Big Creek TMDL Summary Table 9: Clear Branch-Pigeon Creek TMDL Summary Table 10: Barnes Ditch-Pigeon Creek TMDL Summary Table 11: Headwaters Bluegrass Creek TMDL Summary Table 12: Headwaters Locust Creek TMDL Summary Table 13: Locust Creek TMDL Summary Table 14: Kleymeyer Park-Pigeon Creek TMDL Summary Table 15: East Creek-Ohio River TMDL Summary Table 16: Bayou Creek TMDL Summary Table 17: Cypress Slough TMDL Summary Table 18: McFadden Creek TMDL Summary Table 19: NPDES Permits in the Highland-Pigeon Creek Watershed Table 20: CFOs and CAFOs in the Highland-Pigeon Creek Watershed

Figure 1: Highland-Pigeon Creek Watershed Figure 2: Streams in the Highland-Pigeon Creek Watershed

- Figure 3: Sample Sites in the Highland-Pigeon Creek Watershed
- Figure 4: Land use in the Highland-Pigeon Creek Watershed
- Figure 5: NPDES Permitted Facilities in the Highland-Pigeon Creek Watershed
- Figure 6: CSO/SSO Outfalls in the Highland-Pigeon Creek Watershed
- Figure 7: Confined Feeding Operations in the Highland-Pigeon Creek Watershed
- Figure 8: 12-Digit HUCs in the Highland-Pigeon Creek Watershed

Attachments

- A. Bacteria Data for Highland-Pigeon Creek Watershed TMDL
- B. Water Quality Graphs for the Highland-Pigeon Creek Watershed TMDL
- C. Load Duration Curves for the Highland-Pigeon Creek Watershed TMDL
- D. Precipitation Graphs for Impaired Sites in the Highland-Pigeon Creek Watershed TMDL
- E. Load Reductions for the Highland-Pigeon Creek Watershed TMDL
- F. Third-Party Data for the Highland-Pigeon Creek Watershed
- G. Nutrient Data for Highland-Pigeon Creek Watershed TMDL
- H. Reassessment notes for the Highland-Pigeon Creek Watershed TMDL
- I. Response to Public Comments

Indiana Department of Environmental Management Total Maximum Daily Load Program

Total Maximum Daily Load for *Escherichia coli* (*E. coli*) in the Highland-Pigeon Creek Watershed and Total Phosphorous for Hurricane Creek, Gibson, Pike, Vanderburgh, Posey, and Warrick Counties

Introduction

Section 303(d) of the Federal Clean Water Act and the United States Environmental Protection Agency's (USEPA's) Water Quality Planning and Management Regulations (Title 40 of the Code of Federal Regulations (CFR), Part 130) require states to develop Total Maximum Daily Loads (TMDLs) for waterbodies that are not meeting Water Quality Standards (WQS). TMDLs provide states a basis for determining the pollutant reductions necessary from both point and nonpoint sources to restore and maintain the quality of their water resources. The purpose of these TMDLs are to identify the sources and determine the allowable levels of *E. coli* bacteria and total phosphorus that will result in the attainment of the applicable WQS for *E. coli* and targets for total phosphorus in the Highland-Pigeon Creek watershed in Gibson, Vanderburgh, Posey, Warrick, and Pike Counties in Indiana.

Background

In 2006, the portion of the Highland-Pigeon Creek watershed (Figure 3) flowing from Warrick Ditch to an unnamed tributary downstream, near site 2 and 13, was listed on Indiana's 303(d) list as impaired for *E. coli*. A reassessment of the reaches within the Highland-Pigeon Creek watershed, using data collected during the 2007, 2009/2010 sampling seasons, was completed by IDEM during the development of the Highland-Pigeon Creek TMDLs. This reassessment indicated that additional assessment units of the Highland-Pigeon Creek watershed were impaired for both *E. coli* and total phosphorous.

Recently IDEM began using the high resolution National Hydrography Dataset (NHD) created by USGS. Previously IDEM could only view streams at medium resolution (1:100,000 scale). The high-resolution streams are at the 1:24,000 scale, which allows for a more detailed view of the watershed. These high-resolution waters have always been present; however, they have not been visible in electronic maps until now.

This TMDL will address approximately eleven hundred fifty-six (1156) stream miles, of this three hundred and ninety-nine (399) stream miles are impaired in the Highland-Pigeon Creek watershed in Gibson, Vanderburgh, Posey, Warrick, and Pike Counties. Recreational uses are impaired by elevated levels of *E. coli* during the recreational season and aquatic habitat is impaired for phosphorus. The Highland-Pigeon Creek watershed is an eight digit Hydrologic Unit Code (HUC) unto itself (05140202), and is divided into twenty-four 12-digit HUC subwatersheds (Figure 8). The Highland-Pigeon Creek watershed is in southwest Indiana and sits on the Ohio River bordering Indiana and Kentucky (Figure 1). Figure 2 depicts all the waters in the watershed (unimpaired and not assessed). The red segments are impaired and the blue segments are the remaining unimpaired or non-assessed portion of the watershed. The impaired portions of the Highland-Pigeon Creek will be placed on the 303(d) list in 2012 in category 4e. The fifty-four (54) impaired assessment units (Table 1) for this TMDL are located in the Highland-Pigeon Creek basin hydrologic unit code 05140202 (Figure 3).

		TMDL			
County	Stream Name	Site Number	AUID*	Segment length**	Impairment
			-		E. coli
			INE0211_02	10.88	TP***
	Hamisson Cousts	2 0			E. coli
	Hurricane Creek	2, 8	INE0211_T1001	5.41	TP***
					E. coli
			INE0211_T1003	3.85	TP***
	Pigeon Creek	4	INE0214_02	14.45	E. coli
	Pigeon Creek	6	INE0216_01	9.89	E. coli
			INE0212_01	22.7	E. coli
			INE0212_01A	0.41	E. coli
	Sand Creek	3	INE0212_02	2.99	E. coli
	Sand Creek	5	INE0212_02A	0.84	E. coli
			INE0212_T1001	20.36	E. coli
Gibson			INE0212_T1002	3.66	E. coli
Gibsoli			INE0217_01	1.62	E. coli
			INE0217_02	6.38	E. coli
	Smith Fork	10	INE0217_T1001	12.86	E. coli
			INE0217_T1002	3.99	E. coli
			INE0217_T1005	7.22	E. coli
	Unnamed Trib to Big Creek	13	INE0222_T1002	7.23	E. coli
		5, 7	INE0213_01	15.94	E. coli
			INE0213_02	6.97	E. coli
	West Fork Pigeon Creek		INE0213_T1001	7.59	E. coli
			INE0213_T1002	13.25	E. coli
			INE0213_T1003	3.88	E. coli
			INE0213_T1004	9.74	E. coli
			INE0213_T1005	5.68	E. coli
			INE0263_01	13.34	E. coli
	Cypress Slough	32	INE0263_02	16.39	E. coli
Posey	Cypress Slough	52	INE0263_T1001	2.58	E. coli
TOSCY			INE0263_T1002	2.65	E. coli
	McFadden	29	INE0263_T1005	10.07	E. coli
		2)	INE0264_01	11.92	E. coli
	Bayou Creek	33	INE0261_01	10.48	E. coli
		55	INE0265_T1008	1.51	E. coli
	Carpentier Creek	28	INE0241_T1003	7.02	E. coli
			INE0241_T1004	1.21	E. coli
			INE0233_01	15.42	E. coli
Vanderburgh			INE0235_01	5.08	E. coli
			INE0234_01	5.23	E. coli
	Locust Creek	24, 25	INE0234_T1001	1.38	E. coli
			INE0234_T1002	1.33	E. coli
			INE0234_T1003	6.61	E. coli
			INE0234_T1004	0.67	E. coli

Table 1: Impaired Assessment Units in the Highland-Pigeon Creek Watershed

			INE0234_T1005	6.48	E. coli
			INE0234_T1006	2.95	E. coli
			INE0234_T1007	0.94	E. coli
	Pigeon Creek- Kleymeyer Park	21	INE0231_02	13.55	E. coli
			INE0236_02	3.62	E. coli
	Unnamed Tributary- Bayou Creek	35	INE0261_T1003	13.59	E. coli
	Bluegrass Creek	27	INE0233_T1001	1.48	E. coli
			INE0231_T1001	2.83	E. coli
			INE0232_01	13.33	E. coli
Warrick	Diggon Creak	16	INE0223_01	26.21	E. coli
	Pigeon Creek	16	INE0223_02	26.21	E. coli
	Diason Croals	19 10	INE0224_01	13.5	E. coli
	Pigeon Creek	18, 19	INE0224_T1002	10.63	E. coli

*AUID: Assessment Unit ID

**Segment Length: Length of the Segment

***TP: Total Phosphorous

IDEM conducted a survey of the Highland-Pigeon Creek watershed for *E. coli* in 2007 and for nutrients in September 2009, October 2009, and May 2010. Sites were sampled for *E. coli* September 4, 2007 through October 2, 2007 (Figure 3; Attachment A & G). *E. coli* sample sites were sampled five (5) times, evenly spaced over a thirty (30) day period in accordance with the Water Quality Standard to determine a geometric mean.

Water quality data collected in the Highland-Pigeon Creek watershed during the 2007-2010 sampling period were reassessed by IDEM's 303(d)/305(b) Coordinator in March 2011 (Attachment I). Of the thirty-five (35) sites which were sampled for water quality between 2007-2010, thirteen (13) sites, Sites 1, 9, 11, 12, 14, 15, 20, 22, 23, 26, 30, 31, and 34 did not violate the monthly geometric mean for *E. coli* (125 MPN/100 mL). All other sites sampled violated the *E. coli* geometric mean of 125 MPN¹ (Most Probable Number)/100 mL. Sites 1, 9, 14, 15, 30, and 34 did not violate the single sample maximum of 235 MPN/ 100 mL. All other sites violated the single sample maximum of 235 MPN/ 100 mL at least once and overall the single sample maximum was violated 41.7% of the time.

Twenty-nine (29) sites were sampled three times in 2009-2010 for nitrogen and phosphorus. Several sites (1, 14, 30, and 34) were not included from the original 35 due to accessibility limitations. Review of the water quality sampling data from 2009-2010 revealed that the nitrogen benchmark of 10 mg/L was not exceeded. At this time, there are no water quality impairments related to nitrogen in the Highland-Pigeon Creek watershed. Eighteen (18) sites had single exceedances of the phosphorous benchmark 0.30 mg/L but only one site (Site 8, Assessment Units INE0211_02, INE0211_T1001, and INE0211_T1003) had multiple exceedances in a single sample which triggers an impairment according to IDEM's listing criteria and could be then reassessed as impaired for total phosphorus. Nitrogen at this location was at the benchmark of 10 mg/l and therefore triggered an impairment. There are no load reductions for Nitrogen at this site. The sample result is equal to the target value of 10 mg/l therefore, no reductions are necessary. This indicates that the stream is not capable of receiving any additional nitrogen. A nutrient

¹ 1 MPN (most probable number) = 1 cfu (colony forming unit)

impairment is triggered when there are two or more exceedances in a single sample of total phosphorous, total nitrogen, or dissolved oxygen.

Water quality data collected by IDEM's Assessment Branch in 2005 indicated high levels of *E. coli* in the Highland-Pigeon Creek watershed. Violations ranged from 248 MPN/100 mL to greater than 2420 MPN/100 mL (Figure 2; Attachment B). Eight of the ten samples taken in April and May of 2005 at both sites (TMDL Sites 2 and 13) exceed the single sample maximum.

The TMDL development schedule corresponds with IDEM's basin-rotation water quality monitoring schedule. To take advantage of all available resources for TMDL development, impaired waters are scheduled according to the basin-rotation schedule unless there is a significant reason to deviate from this schedule. Waterbodies can be scheduled based on the following:

- 1) Waterbodies may be given a high or low priority for TMDL development depending on the specific designated uses that are not being met, or in relation to the magnitude of the impairment.
- 2) TMDL development of waterbodies where other interested parties, such as local watershed groups, are working on alleviating the water quality problem may be delayed to give these other actions time to have a positive impact on the waterbody. If water quality standards still are not met, then the TMDL process will be initiated.
- 3) TMDLs that are required due to water quality violations relating to pollutant parameters where no EPA guidance is available, may be delayed to give EPA time to develop guidance.

This TMDL was scheduled based on the data available from the IDEM basin-rotation schedule, additional water quality sampling within the Highland-Pigeon Creek watershed, and a local request from the Vanderburgh County Soil and Water Conservation District (SWCD) for watersheds they are proposing to implement a watershed management plan (Personal Communication N. Duckworth, Vanderburgh County SWCD, 2007).

A data request to all counties and known watershed groups was made however, the only additional data received was from Vanderburgh County SWCD and the Pigeon Creek Canoeist group which provided Hoosier Riverwatch *E. coli* data. Hoosier Riverwatch data, although useful for education and local decision making purposes, does not meet the rigor to be used for IDEM's listing or de-listing purposes. However, the data can be used to validate the data collected by IDEM against data collected by local groups to determine whether or not the data are in the same range. For example, IDEM data is much more rigorous and can return values to the tenths, where as Hoosier Riverwatch data are limited to groups of 50, i.e. 50 cfu's, 100 cfu's, 150 cfu's, etc.

Water Quality Standards and Numeric Targets

One of the designated uses for the waterbodies in the Highland-Pigeon Creek watershed is for total body contact during the recreational season, April 1 through October 31. The WQS for *E. coli* is 125 per one hundred milliliters as a 30-day geometric mean based on not less than five samples equally spaced over a thirty-day period. High concentrations of *E. coli* may limit the use of the water body for recreation; *E. coli* is an indicator species of fecal contamination, which may contain other microorganisms that are harmful to human health.

327 IAC 2-1-6(d) (3) establishes the full body contact recreational use *E. coli* WQS for all waters in the non-Great Lakes system as follows:

(3) For full body contact recreational uses, *E. coli* bacteria shall not exceed the following:

(A) One hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean based on not less than five (5) samples equally spaced over a thirty (30) day period.

(B) Two hundred thirty-five (235) per one hundred (100) milliliters in any one (1) sample in a thirty (30) day period, except that in cases where there are at least ten (10) samples at a given site, up to ten percent (10%) of the samples may exceed two hundred thirty-five (235) cfu or MPN per one hundred (100) milliliters where the:

(i) *E. coli* exceedances are incidental and attributable solely to *E. coli* resulting from the discharge of treated wastewater from a wastewater treatment plant as defined at IC 13-11-2-258; and

(ii) criterion in clause (A) is met. However, a single sample shall be used for making beach notification and closure decisions. If a geometric mean cannot be calculated because five (5) equally spaced samples are not available, then the criterion stated in clause (B) must be met.

The sanitary wastewater *E. coli* effluent limits from point sources in the non-Great Lakes system during the recreational season, April 1 through October 31, are also covered under 327 IAC 2-1-6(d)(4) and 327 IAC 2-1-6(d)(5).

(4) For demonstrating compliance with wastewater treatment requirements, sanitary wastewater dischargers shall ensure the following:

(A) The concentration of *E. coli* in the undiluted discharge does not exceed one hundred twenty-five (125) cfu or MPN per one hundred (100) milliliters as a geometric mean of the effluent samples taken in a calendar month.

(B) Not more than ten percent (10%) of all samples when not less than ten (10) samples are taken and analyzed for *E. coli* in a calendar month exceed two hundred thirty-five (235) cfu or MPN per one hundred (100) milliliters as a daily maximum. Under this clause, the calculation of ten percent (10%) of the samples taken shall be limited to the lowest whole number result.

(5) Effluent limits to implement the criteria in subdivision (3) during the recreational season shall be established in NPDES permits by incorporating the following that are to be applied to the undiluted discharge:

(A) The concentration of *E. coli* in the undiluted discharge shall not exceed one hundred twenty-five (125) cfu or MPN per one hundred (100) milliliters as a geometric mean of the effluent samples taken in a calendar month.

(B) Not more than ten percent (10%) of all samples in a calendar month exceed two hundred thirty-five (235) cfu or MPN per one hundred (100) milliliters as a daily maximum. Under this clause, the calculation of ten percent (10%) of the samples taken shall be limited to the lowest whole number result.

Aquatic Habitat Use total phosphorus water quality target

High phosphorus concentrations can impact both recreation and the aquatic community. While phosphorus is a nutrient that is needed for plant growth, excessive inputs can lead to algae blooms that affect aesthetics of the water body and impair its support of swimming. High levels of photosynthesis (from algae or plants) can lead to supersaturation of dissolved oxygen during the day, since a by-product of photosynthesis is oxygen. At night, the plants and algae do not produce

oxygen, but they still use oxygen for cellular respiration, and therefore oxygen concentrations can drop. When the plants and algae decompose, the decomposition process can lower oxygen levels in the water, at times so low that aquatic life, such as macroinvertebrates and fish, suffers. The water quality target for total phosphorous should not exceed 0.30 mg/L.

Source Assessment

Watershed Characterization

The description of the study area, its topography, and other particulars are as follows:

Waters in the Highland-Pigeon Creek watershed flow south and southwest from the headwaters to the Ohio River. The waters in Highland-Pigeon Creek watershed flow through five (5) Indiana Counties. The watershed is located in Vanderburgh County (30.8%); Gibson County (27.7%), Warrick County (24.3%), Posey County (17.0%) and Pike County (0.3%) (Figure 1).

Land Use

Land use information was assembled in 1992 using the Gap Analysis Program (GAP). In 1992, approximately 67.3% of the land use in the Highland-Pigeon Creek watershed was agriculture. The remaining land use for the Highland-Pigeon Creek watershed consisted of approximately 15.3% Forest, 6.1% Wetland, 1.9% Water, and 9.4% Urban (Figure 4). Site visits during the sampling events confirm that this watershed is still primarily agricultural with mixtures of forest and wetland uses and some additional suburban growth along the city limits.

Future Growth:

According to the 2010 Census data (U.S. Census, 2010), There has been a slight positive growth rate. Vanderburgh County increased population by 7,781 or 4.33% from 2000 to 2010. Posey County decreased in population by 1,151 or -4.44% from 2000 to 2010. Warrick County increased population by 7,305 or 12.24% from 2000 to 2010. Gibson County increased population by 1,003 or 2.99% from 2000 to 2010. Pike County only accounts for 0.3% of the watershed and was not included in the future growth portion of the TMDL.

IDEM acknowledges that the U.S. Census data is county wide and may not accurately reflect the growth rate/potential within the Highland Pigeon Creek watershed, but does include the data as recognition that there is potential for future growth.

Source Discussion (Point and Nonpoint sources for *E. coli* and total phosphorus)

Point Sources for E. coli

National Pollutant Discharge Elimination System (NPDES) Permitted Dischargers

There are nineteen (19) NPDES permitted facilities in the Highland-Pigeon Creek watershed (Figure 5, Table 2). Thirteen (13) dischargers have *E. coli* limits in their permits. The remaining six (6) do not have a sanitary component and are currently not required to monitor or report nitrogen and phosphorous levels. Facilities that do not discharge *E. coli* are not required to have a WLA for *E. coli*. IDEM currently does not require a total phosphorous limit on facilities that do not discharge to a lake watershed. IDEM is currently working on nutrient standards. Following is a list of the NPDES facilities, including their permit numbers and a summary of violations.

- Air Liquide Industries (IN0001970): *E. coli* permitted facility: has no reported *E. coli* violations in the past 5 years.
- Chandler Municipal WWTP (IN0020435): *E. coli* permitted facility: reported one *E. coli* violation in 2004, 2005, 2006, two *E. coli* violations in 2007 and three *E. coli* violations in 2008.
- Elberfeld Municipal WWTP (IN0020788): *E. coli* permitted facility: reported two *E. coli* violations in 2008.
- Haubstadt Municipal WWTP (IN0021482): *E. coli* permitted facility: has no reported *E. coli* permit violations in the past five years.
- Town of Fort Branch WWTP (IN0022896): *E. coli* permitted facility: has no reported violations in the previous three years for *E. coli*. Fort Branch monitors for Total Nitrogen and has had no values above 0.5 mg/L over the previous five years.
- KOA Kampground (IN0029963): *E. coli* permitted facility: has reported *E. coli* violations during all of the 2008 recreational season and two violations in 2006. The 2008 permit renewal includes monitoring and limits for Ammonia-nitrogen.
- Mount Vernon WWTP (IN0035696): *E. coli* permitted facility: has no reported *E. coli* permit violations in the past 5 years.
- Mount Vernon Transfer Term LLC (IN0049760) Does not have a sanitary component to their discharge. This facility is currently not required to monitor or report nitrogen and phosphorous levels.
- Midstates Rubber Production (IN0004880) Does not have a sanitary component to their discharge. This facility is currently not required to monitor or report nitrogen and phosphorous levels.
- AC Ranch Mobile Home Park (IN0039608): *E. coli* permitted facility: has no reported *E. coli* permit violations in the past 5 years.
- Creekside Court Mobile Home Park WWTP (IN0039616): *E. coli* permitted facility: has no reported *E. coli* or TRC permit violations in the past 5 years.
- Lynnville Municipal WWTP (IN0040282): *E. coli* permitted facility: has no reported *E. coli* permit violations in the past 5 years.
- Harbortown Subdivision Sanitary (IN0109924): *E. coli* permitted facility: has no reported *E. coli* or TRC permit violations in the past 5 years.
- Twin Lakes Mobile Home Park (IN0044491): *E. coli* permitted facility: has *E. coli* violations throughout 2006.
- GAF Building Materials Mfg Crop (IN0051667 Does not have a sanitary component to their discharge. This facility is currently not required to monitor or report nitrogen and phosphorous levels.
- MARRS Elementary School (IN0055255): *E. coli* permitted facility: reported two *E. coli* violations a year in 2006, 2007, and 2008.
- Indiana Hardwoods Inc-Non-Sanitary (IN0058530)-Permit is set to expire April 2011. This facility is currently not required to monitor or report nitrogen and phosphorous levels.
- Tin Lizzie Car Wash-Non-Sanitary (IN0059838)-Permit expired in 2008. This facility is currently not required to monitor or report Nitrogen and Phosphorous levels.
- Industrial Services Mgt Inc-Non-Sanitary (IN0060160)-This facility is currently not required to monitor or report Nitrogen and Phosphorous levels.

Municipal Separate Storm Sewer Systems (MS4): Storm Water General Permit Rule 13

There are five (5) municipal separate storm sewer system (MS4) communities in Vanderburgh County: University of Southern Indiana (INR040028), Vanderburgh County (INR040030), City of Evansville (INR040057), Ivy Tech State College-Southwest (INR040060), and University of Evansville (INR040058).

There are three (3) municipal separate storm sewer system (MS4) communities in Warrick County: Town of Chandler (INR40053), Warrick County (INR040065), and Town of Newburgh (INR040062). The Town of Newburgh MS4 does not fall within the Highland-Pigeon Creek watershed addressed in this TMDL.

There are no municipal separate storm sewer system (MS4) communities in Gibson, Posey, or Pike Counties.

Guidelines for MS4 permits and timelines are outlined in Indiana's Municipal Separate Storm Sewer System (MS4) Rule 13 (327 IAC 15-13-10 and 327 IAC 15-13-11)

Sec. 10. If a total maximum daily load (TMDL) is approved for any water body into which an MS4 conveyance discharges, the MS4 operator must review and appropriately modify Parts B and C of their Storm Water Quality Management Plan (SWQMP) if the TMDL includes requirements for control of storm water discharges under the jurisdiction of the MS4 operator.

IDEM recognizes that these MS4 communities can be sources of *E. coli* and more information needs to be collected. As part of the permit process these systems will be better defined and will continuously work towards meeting the water quality standard, which is the limit of this TMDL. This process will take several permitting cycles and it is anticipated that in the future, MS4 permits will meet the water quality standards.

Combined Sewer Overflows (CSO) and Sanitary Sewer Overflows (SSO)

There are three CSO/SSO communities in the Highland-Pigeon Creek watershed, Evansville (CSO), Mount Vernon (CSO), and Fort Branch (CSO).

Fort Branch was previously an SSO community but has closed their SSO and is no longer considered an SSO community. There are no other SSO communities in this watershed.

Evansville is developing an Integrated Overflow Control Plan (IOCP) to control CSOs and eliminate SSOs in accordance with requirements in a federal consent decree (3:09CV128 WTL-WGH). Under the terms of the decree, Evansville will evaluate different CSO control alternatives and submit the IOCP no later than November 30, 2012 (Email communication J Garrad, Evansville Water & Sewer Utility, June 2012).

Mount Vernon has completed Phase I of their Long Term Control Plan (LTCP). The city should be in the process of acquiring construction permits for Phase II. To date, Mount Vernon has three CSO's (002-004), CSO 004 has been permanently closed (Personal Communication: T. Trinkle, IDEM-OWQ, 2011). CSO's 002 and 003 are still in use and will be addressed through further compliance with their Long Term Control Plan.

Fort Branch has a CSO. In 2007, Fort Branch had a revoke/reissue permit, which reflected an upgrade to their facility and elimination of the one SSO. Therefore, Fort Branch is no longer an SSO community, but for purposes of this TMDL, it was important to discuss this community's effort (Personal Communication: J. House, IDEM-OWQ, 2011).

Confined Feeding Operations (CFOs) and Concentrated Animal Feeding Operations (CAFOs)

There are five (5) active CFOs and three (3) active CAFOs within the Highland-Pigeon Creek watershed (Table 20). In addition, it was noted during the sampling runs and a watershed tour that there are many unpermitted small operations present in the watershed. These operations, due to their small size, are not regulated under the CFO or CAFO regulations. These operations may still have an impact on the water quality and the *E. coli* and phosphorus impairment. No specific information on these small livestock operations is currently available for the Highland-Pigeon Creek watershed however; it is believed that these small livestock operations may be a source of the *E. coli* and phosphorous impairments.

Point Sources for Total phosphorus:

Wastewater Treatment Plants (WWTP): Wastewater treatment facilities may contribute phosphorus loads to surface waters through facility discharges of treated wastewater. Permitted treatment facilities must discharge treated wastewater according to their National Pollutant Discharge Elimination System (NPDES) permit.

WWTP KOA Kampground (IN0029963): Phosphorus inputs from the KOA Kampground may contribute phosphorus loading to the Hurricane Creek subwatershed.

Indiana has yet to establish a Water Quality Standard for nutrients, to include phosphorous. Indiana is currently working on a nutrient standard, therefore characterization of the effluent from the WWTP for phosphorus has not been established. It is recommended that nutrient monitoring be added to the facilities within the Highland-Pigeon Creek watershed, that influence the phosphorus impaired segment, for their next permit renewal

Nonpoint sources for E. coli:

Wildlife is a known source of *E. coli* in waterbodies. Many animals spend time in or around waterbodies. Deer, geese, ducks, raccoons, turkeys, and other warm-blooded animals all create potential sources of *E. coli*. Wildlife contributes to the potential impact of contaminated runoff from animal habitats, such as urban park areas, forest, and rural areas.

Failing septic tanks are known sources of *E. coli* and nutrients and can impair waterbodies. All the counties in the watershed follow the state IAC 16-1-4-9 and IAC 36-1-6-2 rules regarding septic systems. Failures are typically identified through complaints and through the sale of older properties that have not passed inspection. Effluents from failing septic tanks can leach into groundwater or pond at the surface where they can be washed into surface waters via stormwater runoff events.

Gibson County issued 60 new septic permits and inspected 44 in 2009 and 74 new septic permits were issued and 48 inspections were completed in 2010 (Personal Communication B. Dye General Sanitarian Gibson County Health Department, 2011).

Vanderburgh County issued 26 new septic permits and 38 repair inspections in 2009 and 36 new septic permit inspections and 44 repair inspections were completed in 2010 (Personal Communication T. Wildeman, 2011).

Posey County issued 38 new permit inspections and nine repairs in 2009 and 47 new septic inspections and 19 repair inspections were completed in 2010 (Personal Communication D. Shafer 2011).

Warrick County issued 46 new permits, 7 repair order permits and 41 inspections with 6 of those being repair inspections in 2009 and 40 new septic permits, 15 repair order permits, and 64 inspections with 12 of those being repair inspections were completed in 2010 (Personal Communication J. Ayscue, 2011).

Pike County has less than two square miles in the Highland-Pigeon Creek TMDL watershed and a visual survey of the 2005 aerial photographs revealed three homes in the watershed but not close enough to a stream to be of any effect. Therefore, Pike County is not considered to have any impact in the Highland-Pigeon Creek watershed TMDL due to failing septic systems.

Small livestock operations: Smaller animal facilities, especially the non-CFO and non-CAFO facilities, may add *E. coli* to surface waters via wastewater from the facilities, near-stream pastures, manure spreading onto fields, and livestock with access to stream environments. Runoff from pastures and livestock operations can also be potential agriculture sources of bacteria and nutrients. For example, animals grazing in pasturelands deposit manure directly upon the land surface and, even thought a pasture may be relatively large and animal densities low, the manure will often be concentrated near the feeding and watering areas in the field. These areas can quickly become barren of land cover, increasing the possibility of erosion and contaminated runoff during a storm event. Mid-sized animal facilities are regulated by IDEM as Confined Feeding Operations (CFO), which are required to have no discharge to waters of the State.

Stormwater runoff from agricultural land use practices: Runoff from agricultural lands (feedlots, pastures and fields) can contain significant amounts of bacteria. Manure spread onto fields is often a source, and can be exacerbated by field-tile drainage lines, which channelize the stormwater flows and reduce the time available for bacteria to die-off. Land applied manure may also reach surface waters via overland runoff and via macropore/preferential flow pathways. Stormwater runoff related to manure stockpiles and manure storage facilities can also contribute *E. coli* to stream environments in the Highland-Pigeon Creek watershed.

Unrestricted livestock access to streams: Livestock with access to stream environments may add bacteria directly to the surfaces waters or resuspend particles that had settled on the stream bottom. Direct deposit of animal wastes can result in very high localized bacteria counts and can also contribute to downstream impairments. Smaller animal facilities may add bacteria to surface waters via wastewater from these facilities or stormwater runoff from near-stream pastures.

Urban Runoff: Runoff from urban areas (urban, residential, commercial or industrial land uses) can contribute *E. coli* to local water bodies. Stormwater from urban areas, which drain impervious surfaces, may introduce bacteria to surface waters. Urban bacteria sources can include wildlife or pet wastes.

Nonpoint sources for total phosphorus:

Internal loading: The release of phosphorus from stream bottom sediments, the release of phosphorus via physical disturbance from benthic fish (rough fish, ex. carp), and the release of phosphorus from decaying pondweeds, can all contribute internal phosphorus loading to surface waters in the Highland-Pigeon Creek watershed.

Agricultural sources (Pasture and Open Lands): Phosphorus may be added via surface runoff from upland areas which are being used for agricultural purposes (ex. grasslands, croplands etc.). Other potential agricultural sources are related to stormwater runoff which can mobilize nutrients to surface waters from sources such as: livestock manure, fertilizers, decaying vegetation and organic soil particles.

Cropland can be a source of both sediments and nutrients. Accumulation of nutrients, to include nitrogen and phosphorous, on cropland occurs from decomposition of residual crop material, fertilization with chemical (e.g. anhydrous ammonia) and manure fertilizers, atmospheric deposition, wildlife excreta, irrigation water, and application of waste products from municipal and industrial wastewater treatment facilities. The majority of nutrient loading from cropland occurs from fertilization with commercial and manure fertilizers (USEPA, 2003). Use of manure for nitrogen supplementation often results in excessive phosphorous loads relative to crop requirements (USEPA, 2003)

Livestock Sources: Phosphorus may be added from livestock sources via the mobilization and transportation of phosphorus laden materials from feeding, holding and manure storage areas.

Non-regulated stormwater runoff: Non-regulated stormwater runoff can add phosphorus to the watershed. The sources of phosphorus in stormwater include: decaying vegetation (leaves, grass clippings, etc.), domestic and wild animal wastes, soil particles, atmospheric deposited particles, phosphorus containing fertilizers, and other anthropogenic derived nutrients.

Inadequate Septic Systems: Phosphorus may be added to the surface waters in the Highland-Pigeon Creek watershed from failing septic systems. Age, construction and use of septic systems can vary throughout a watershed and influence the nutrient contribution from these systems. It is likely that those systems that are sited closer to the surface waters are more likely to contribute nutrients than those systems sited further away from surface waters.

Stream channel erosion: Phosphorus may be added to surface waters by soil erosion from stream bottoms and streambanks. Phosphorus may be attached to eroded streambank materials and may be mobilized through the transport of sediment and suspended solids.

Linkage Analysis and E. coli and phosphorus Load Duration Curves

The linkage between the *E. coli* concentrations and phosphorus in the Highland-Pigeon Creek watershed and the potential sources provides the basis for the development of this TMDL. The linkage is defined as the cause and effect relationship between the selected indicators and the sources. Analysis of this relationship allows for estimating the total assimilative capacity of the stream and any needed load reductions. Analysis of the data for the Highland-Pigeon Creek watershed indicates that a significant amount of the *E. coli* and phosphorus load enters the Highland-Pigeon Creek watershed through both wet (nonpoint) and dry (point) weather sources.

To investigate further the potential sources mentioned above, an *E. coli* and phosphorus load duration curve analysis, as outlined in an unpublished paper by Cleland (2002), was developed for each of the 35 (29 for phosphorus due to site accessibility) sampling sites in the Highland-Pigeon Creek watershed (Attachments B, C, D). The method considers how stream flow conditions relate to a variety of pollutant loadings and their sources (point and nonpoint).

In order to develop a load duration curve, continuous flow data is required. The USGS gage for the Big Creek near Wadesville, Indiana (03378550) located in an adjacent watershed was used as a proxy. There are no USGS gage stations within the TMDL watershed. The Wadesville gage offers a watershed similar in size to individual 12-digit HUCs in the larger Highland-Pigeon Creek watershed. In addition to similar size, the topography of the Wadesville gage's watershed is similar to the Highland-Pigeon Creek watershed. The Highland-Pigeon Creek watershed is unique in that there are multiple outfalls to the Ohio River and not a singular point discharging to the Ohio River.

The flow data is used to create flow duration curves, which display the cumulative frequency of distribution of the daily flow for the period of record. The flow duration curve relates flow values measured at the gage station to the percent of time that those values are met or exceeded. Flows are ranked from extremely low flows, which are exceeded nearly 100 percent of the time, to extremely high flows, which are rarely exceeded. Flow duration curves are then transformed into load duration curves by multiplying the flow values along the curve by applicable water quality criteria values for pollutants and appropriate conversion factors. The load duration curves are conceptually similar to the flow duration curves in that the x-axis represents the flow recurrence interval and the y-axis represents the allowable load of the water quality parameter. The curve representing the allowable load of E. coli was calculated using the geometric mean standard of 125 E. coli MPN per 100 ml. The curve representing the total phosphorous load was calculated using 0.03 mg/l. The final step in the development of a load duration curve is to add the water quality pollutant data to the curves. Pollutant loads are estimated from the data as the product of the pollutant concentrations, instantaneous flows measured at the time of sample collection, and appropriate conversion factors. In order to identify the plotting position of each calculated load, the recurrence interval of each instantaneous flow measurement was defined. Water quality pollutant monitoring data are plotted on the same graph as the load duration curve so as to provide a graphical display of the water quality conditions in the waterbody. The pollutant monitoring data points that are above the target line exceed the water quality standards (WOS); those that fall below the target line meet the WQS (Cleland, 2002 and Mississippi DEQ, 2002).

Flow regimes in the load duration curve are broken down into five categories.

Very High Flows: Flows in this area are 90% greater than what is seen most of the time. These flows represent flooding or near flooding stages of a stream. These flows are exceeded 0 - 10 % of the time.

Higher Flows: Flows in this range, to the local observer, might be indicated as near bank full conditions. These flows are exceeded 10 - 40 % of the time.

"Normal" Flows": Normal flows are the "typical" flows an observer would see on an "average" day. These flows are exceeded 40 - 60% of the time.

Lower Flows/Drier Conditions: To the observer, these conditions are seen when the stream begins to "dry up" or have less than "average" type flows. These flows are exceeded 60 -90 % of the time.

Very Low Flows: Flows in this range are the lowest of all flows, typically seen in drought-like conditions or even no water at times. These flows correspond are exceeded 90 -100 % of the time, where all flows recorded are typically higher than these flows.

Load duration curves were created for all the sampling sites in the Highland-Pigeon Creek watershed (Figure 3, Attachment B, C, D). These sampling sites were intensively sampled for *E. coli* September through October 2007. In addition to *E. coli* sampling, sites were sampled three times in 2009/2010 for Total Nitrogen and Total Phosphorous. The data indicate that the largest exceedances of the *E. coli* WQS were prevalent during wet weather events (noted by diamonds above the curve on the far left side of the figure in Attachment C). Dry weather contributions were also a source of *E. coli* to the Highland-Pigeon Creek watershed (noted by the diamonds above the curve on right side of the figure in Attachment C). However, the dry weather contributions were less influential in this watershed as indicated by the diamonds on the right side of the graph being near or under the WQS target line.

Impaired segments are listed in the Tables 2 - 18 and include the following information: impaired segment ID, drainage area, sampling sites, listed segments, land use, NPDES facilities, MS4 community, CSO communities, CFO's, Load Allocations, Wasteload Allocations, and Margin of Safety values for *E. coli*, and Total Phosphorous. For simplicity, the last three bolded numbers of the HUC in each table correlate to the three-digit code in Figure 8.

Upstream Characteristics					
Drainage Area			16.26 square mi	les	
TMDL Sample Site			2, 8		
Listed Segments		INE0211_02.	INE0211_T1001	, INE0211_T1003	
Land Use	Agricultur	e: 88.6% Forest:	5.7% Urban: 4.6	5% Water: 0.2% W	Vetland: 1.0%
NPDES Facilities		KOA	Kampground (IN	10029963)	
		Haubstadt 1	Municipal WWT	P (IN0021482)	
MS4 Communities			NA		
CSO Communities			NA		
CAFOs			NA		
CFOs			NA		
	TMDL	E. coli Allocation	ns (billion MPN/	day)	
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows
	Flows	Conditions	Flows	Conditions	
LA	1540.18	192.97	47.62	3.43	.55
WLA	3.86	3.86	3.86	3.86	3.86
MOS (10%)	171.56	21.87	5.72	.81	.49
TMDL =					
LA+WLA+MOS	1715.60	218.70	57.20	8.10	4.90
	TMDL	Allocations Phos		day)	-
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows
	Flows	Conditions	Flows	Conditions	
LA	742.66	94.49	24.64	3.29	0.27
WLA*	2.04	2.04	2.04	2.04	2.04
MOS (10%)	82.7	10.7	2.9	.59	.25
TMDL =					
LA+WLA+MOS	827.40	107.23	29.55	5.92	2.56
*TP WLA is estimated on the 0.3 mg/L benchmark. It is recommended that the facilities monitor for total					
phosphorous in their next permit cycle pending any new nutrient WQS to determine if there is any					
contribution to the impairment from the facilities.					

Table 2: Hurricane Creek TMDL Summary (HUC12- 051402020**101**)

Table 3: Sandy Creek TMDL Summary (HUC12- 051402020**102**)

Upstream Characteristics						
Drainage Area		•	17.49 square mi	les		
TMDL Sample Site			3			
Listed Segments	INE	0212_01, INE02	12_01A, INE02	212_02, INE0212	2_02A,	
		INE0212	2_T1001, INE0	212_T1002		
Land Use	Agriculture	: 90.4% Forest: 7	.9% Urban: 0.9%	% Water: 0.01% V	Wetland: 0.9%	
NPDES Facilities			NA			
MS4 Communities			NA			
CSO Communities			NA			
CAFOs			NA			
CFOs			NA			
	TMDL	E. coli Allocation	ns (billion MPN/o	day)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows	
	Flows	Conditions	Flows	Conditions		
LA	1544.04	196.74	51.39	7.2	0.9	
WLA	NA	NA	NA	NA	NA	
MOS (10%)	171.56	21.86	5.71	.80	.10	
TMDL =						
LA+WLA+MOS	1715.60	218.60	57.10	8.00	1.00	

Table 4: West Fork Creek TMDL Summary (HUC12- 051402020**103**)

Upstream Characteristics						
Drainage Area		*	29.79 square mi	les		
TMDL Sample Site			5,7			
Listed Segments	INE02	13_01, INE0213	3_02, INE0213_	_T1001. INE0213	3_T1002,	
	Π	NE0213_T1003,	INE0213_T10	04, INE0213_T1	005	
Land Use	Agriculture	e: 95.0% Forest:	1.3% Urban: 3.1	% Water: 0.2% W	/etland: 0.4%	
NPDES Facilities		Town of Fo	ort Branch WWT	P (IN0022896)		
MS4 Communities			NA			
CSO Communities		Town of	of Fort Branch-Or	ne (1) SSO		
CAFOs			NA			
CFOs		Clay Hill Turke	y Farm ID# 4522	2 (22,000 Turkeys)		
	TMDL	E. coli Allocation	s (billion MPN/c	lay)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows	
	Flows	Conditions	Flows	Conditions		
LA	1544.1	196.8	51.5	7.26	0.96	
WLA	3.0	3.0	3.0	3.0	3.0	
MOS (10%)	171.90	22.20	6.00	1.14	.44	
TMDL =						
LA+WLA+MOS	1719.00	222.00	60.50	11.40	4.40	

Table 5: Clear Fork Ditch-Pigeon Creek TMDL Summary (HUC12- 051402020**104**)

Upstream Characteristics						
Drainage Area			17.74 square mi	les		
TMDL Sample Site			4			
Listed Segments			INE0214_02			
Land Use	Agriculture	e: 90.2% Forest: 3	3.1% Urban: 4.8	% Water: 0.1% W	Vetland: 1.8%	
NPDES Facilities		Midstates Rub	ber Production I	nc (IN0004880)*		
MS4 Communities			NA			
CSO Communities		Mid States I	Rubber Production	on-One (1) SSO		
CAFOs			NA			
CFOs		M&D Michel	Furkeys ID#4524	(52,000 Turkeys)		
	TMDL	E. coli Allocation	s (billion MPN/o	lay)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows	
	Flows	Conditions	Flows	Conditions		
LA	1544.22	196.92	51.66	7.38	1.08	
WLA	NA	NA	NA	NA	NA	
MOS (10%)	171.58	21.88	5.74	.82	.12	
TMDL =						
LA+WLA+MOS	1715.8	218.8	57.4	8.2	1.2	
*Does not have a sanita	ary component i	n permit.				

Table 6: Snake Run-Pigeon Creek TMDL Summary (HUC12- 051402020**106**)

Upstream Characteristics						
Drainage Area			22.58 square mi	les		
TMDL Sample Site			6, 9			
Listed Segments			INE0216_01			
Land Use	Agriculture	: 86.9% Forest: 8	.5% Urban: 1.39	% Water: 0.04% V	Wetland: 3.2%	
NPDES Facilities			NA			
MS4 Communities			NA			
CSO Communities			NA			
CAFOs	Obert	Legacy Dairy ID	# 6654 (900 Daii	ry Cattle, 80 Dairy	Calves)	
CFOs	Stanley Mic	hel ID# 3981 (18	00 Nursery Pigs,	480 Finishers, 94	Sows, 11 Beef	
	-		Cattle)			
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows	
	Flows	Conditions	Flows	Conditions		
LA	1544.04	196.74	51.39	7.2	0.9	
WLA	NA	NA	NA	NA	NA	
MOS (10%)	171.56	21.86	5.71	.80	.10	
TMDL =						
LA+WLA+MOS	1715.6	218.6	57.1	8.0	1.0	

Table 7: Smith Fork-Pigeon Creek TMDL Summary (HUC12- 051402020**107**)

Upstream Characteristics						
Drainage Area			17.60 square mi	les		
TMDL Sample Site			10			
Listed Segments	INE0217_01,	_ /	E0217_T1001, II 7_T1004, INE02	NE0217_T1002, IN 217_T1005	NE0217_T1003,	
Land Use	Agriculture	: 78.1% Forest: 8	.2% Urban: 0.9%	% Water: 0.7% W	etland: 12.0%	
NPDES Facilities			NA			
MS4 Communities			NA			
CSO Communities			NA			
CAFOs		Schoonover]	Farms ID# 3719	(Finishers 8000)		
CFOs	Jeff Sevier	r Hog Farm ID# 1	75 (200 Nursery	Pigs, 800 Finisher	s, 106 Sows)	
	Schurmeie	r Farms Inc ID# 9	12 (360 Nursery	Pigs, 1600 Finishe	ers, 16 Sows)	
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows	
	Flows	Conditions	Flows	Conditions		
LA	1544.04	196.74	51.39	7.2	0.9	
WLA	NA	NA	NA	NA	NA	
MOS (10%)	171.56	21.86	5.71	.80	.10	
TMDL =						
LA+WLA+MOS	1715.6	218.6	57.1	8.0	1.0	

Table 8: Big Creek TMDL Summary (HUC12- 051402020**202**)

Upstream Characteristics						
Drainage Area		27.13 square miles				
TMDL Sample Site			13			
Listed Segments			INE0222_T100)2		
Land Use	Agriculture	: 64.3% Forest: 1	7.2% Urban: 5.0)% Water: 3.6%	Wetland: 9.8%	
NPDES Facilities			NA			
MS4 Communities			NA			
CSO Communities			NA			
CAFOs			NA			
CFOs			NA			
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows	
	Flows	Conditions	Flows	Conditions		
LA	1544.04	196.74	51.39	7.2	0.9	
WLA	NA	NA	NA	NA	NA	
MOS (10%)	171.56	21.86	5.71	.80	.10	
TMDL =						
LA+WLA+MOS	1715.6	218.6	57.1	8.0	1.0	

Table 9: Clear Branch-Pigeon Creek TMDL Summary (HUC12- 051402020**203**)

Upstream Characteristics						
Drainage Area			35.85 square mi	les		
TMDL Sample Site			16, 17			
Listed Segments		INE0	223_01, INE022	3_T1009		
Land Use	Agriculture:	51.6% Forest: 19	9.4% Urban: 6.29	% Water: 3.7%	Wetland: 19.1%	
NPDES Facilities			NA			
MS4 Communities			NA			
CSO Communities			NA			
CAFOs			NA			
CFOs			NA			
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows	
	Flows	Conditions	Flows	Conditions		
LA	1544.04	196.74	51.39	7.2	0.9	
WLA	NA	NA	NA	NA	NA	
MOS (10%)	171.56	21.86	5.71	.80	.10	
TMDL =						
LA+WLA+MOS	1715.6	218.6	57.1	8.0	1.0	

Table 10: Barnes Ditch-Pigeon Creek TMDL Summary (HUC12- 051402020**204**)

Upstream Characteristics						
Drainage Area			34.85 square mi	les		
TMDL Sample Site			18, 19			
Listed Segments		INE0	224_01, INE0224	4_T1002		
Land Use	Agriculture	e: 71.4% Forest: 9	9.8% Urban: 7.2	% Water: 2.2% W	Vetland: 9.4%	
NPDES Facilities			Aunicipal WWTF	· · · · ·		
			zie Car Wash (IN	,		
		Indiana H	Hardwoods Inc (I	,		
MS4 Communities			Warrick Count	y		
CSO Communities			NA			
CAFOs			NA			
CFOs			NA			
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)		
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows*	
	Flows	Conditions	Flows	Conditions		
LA	1544.27	196.97	51.71	7.43	1.13	
WLA	8.5	8.5	8.5	8.5	8.5	
MOS (10%)	172.53	22.83	6.69	1.77	1.07	
TMDL =						
LA+WLA+MOS	1725.3	228.3	66.9	17.7	10.7	
	*Does not hav	•				
	component in	permit.				

Upstream Characteristics								
Drainage Area	17.83 square miles							
TMDL Sample Site			27					
Listed Segments		INE0	231_01, INE023	1_T1001				
Land Use	Agriculture	: 73.0% Forest: 1	7.4% Urban: 5.7	7% Water: 1.1% V	Wetland: 2.7%			
NPDES Facilities		Elberfeld N	Junicipal WWTI	P (IN0020788)				
MS4 Communities			NA					
CSO Communities			NA					
CAFOs			NA					
CFOs			NA					
	TMDL	E. coli Allocation	ns (billion MPN/o	day)				
Allocation Category	Very High Higher Flow "Normal" Lower Flow Low Flow							
		Flows Conditions Flows Conditions						
LA	1544.06	196.76	51.41	7.22	1.0			
WLA	0.7	0.7 0.7 0.7 0.7 0.7						
MOS (10%)	171.64	171.64 21.94 5.79 0.88 0.18						
TMDL =								
LA+WLA+MOS	1716.4	219.4	57.9	8.8	1.8			

Table 11: Headwaters Bluegrass Creek TMDL Summary (HUC12- 051402020**301**)

 Table 12: Headwaters Locust Creek TMDL Summary

 (HUC12- 051402020304)

Unstream Characteristics								
Upstream Characteristics								
Drainage Area			10.25 square mi	les				
TMDL Sample Site			25					
Listed Segments	INE02	234_01, INE0234_	_T1001, INE0234	4_T1002, INE0234	_T1003,			
	INE023	4_T1004, INE023	34_T1005, INE02	234_T1006, INE02	34_T1007			
Land Use	Agriculture	: 45.8% Forest: 4	8.7% Urban: 2.7	7% Water: 1.3% V	Vetland: 1.6%			
NPDES Facilities			NA					
MS4 Communities			NA					
CSO Communities			NA					
CAFOs	NA							
CFOs	NA							
	TMDL	E. coli Allocation	s (billion MPN/o	lay)				
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows			
	Flows	Conditions	Flows	Conditions				
LA	1544.04	196.74	51.39	7.2	0.9			
WLA	NA	NA NA NA NA						
MOS (10%)	171.56							
TMDL =								
LA+WLA+MOS	1715.6	218.6	57.1	8.0	1.0			

Table 13: Locust Creek TMDL Summary (HUC12- 051402020**305**)

Upstream Characteristics									
Drainage Area	7.65 square miles								
TMDL Sample Site			24						
Listed Segments		IN	E0235_01						
Total Land Use	Ag: 48.2% F	orest: 30.1% Urba	n: 14.4% Water	:: 0.8% Wetlan	d: 6.5%				
Non-MS4 Land use	Ag: 91.44% Fore	st: 85.10% Urban:	90.18% Water	: 90.33% Wetla	and: 81.60%				
NPDES Facilities		AC Ranch Mobile	Home Park (IN	0039608)					
MS4 Communities	City of Evansvi	lle MS4(INR04005	57) (0.655 square	e miles w/in MS	54 8.56%)				
MS4 Land use	Ag: 2.85% For	est: 14.90% Urban	: 9.82% Water:	9.67% Wetlan	d: 18.40%				
CSO Communities		NA							
CAFOs		NA							
CFOs		NA							
	TMDL E. c	oli Allocations (bil	lion MPN/day)						
Allocation	Very High Flows	Higher Flow	"Normal"	Lower Flow	Low Flows				
Category		Conditions	Flows	Conditions					
LA	1411.853	1411.853 179.882 47.056 6.567							
WLA	132.187	132.187 16.858 4.424 0.633 0.094							
MOS (10%)	171.56	171.56 21.86 5.72 0.8 0.1							
TMDL =									
LA+WLA+MOS	1715.6	218.6	57.2	8	1				

 Table 14: Kleymeyer Park-Pigeon Creek TMDL Summary

 (HUC12-051402020306)

		Upstream Char	acteristics					
Drainage Area	27.77 square miles							
TMDL Sample Site			21					
Listed Segments		INI	E0236_01, INE02	236_02				
Total Land Use				Water: 0.9% Wetla				
Non-MS4 Land Use	Ag: 64.97%	5 Forest: 15.74%	Urban 8.13% W	Vater: 97.23% Wet	land: 36.13%			
NPDES Facilities			NA					
MS4 Communities				square miles w/in M				
MS4 Land Use	Ag: 35.03%			Water: 2.77% Wet	land: 63.879%			
CSO Communities		Eva	ansville-Nine (9)	CSOs				
CAFOs		NA						
CFOs	NA							
	TMDL	E. coli Allocation	s (billion MPN/c	lay)				
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows			
	Flows	Conditions	Flows	Conditions				
LA	536.708	68.387	17.863	2.503	0.313			
WLA*	1007.332	1007.332 128.353 33.527 4.697 0.587						
MOS (10%)	171.56	171.56 21.86 5.71 0.8 0.1						
TMDL =								
LA+WLA+MOS	1715.60	218.60	57.10	8.00	1.00			
*65.24% WLA estimat	ed on percent o	f MS4 in watershe	ed					

Upstream Characteristics								
Drainage Area			31.71 square mi	les				
TMDL Sample Site			28					
Listed Segments		INE0241_02, 1	INE0241_T1003	, INE0241_T1004				
Total Land Use	Ag: 32.8	8% Forest: 19.4%	5 Urban: 43.5%	Water: 2.2% Wetl	and: 2.1%			
Non-MS4 Land Use	Ag: 89.83%	Forest: 68.58%	Urban 19.80% \	Water: 90.34% We	tland: 81.06%			
NPDES Facilities			NA					
MS4 Communities	City of Eva	ansville MS4(INR	8040057) (14.25 s	square miles w/in M	/IS4 44.94%)			
MS4 Land Use	Ag: 10.17%	6 Forest: 31.42%	Urban 80.20%	Water: 9.66% Wet	land: 18.94%			
CSO Communities			NA					
CAFOs			NA					
CFOs	NA							
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)				
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows			
	Flows							
LA	850.148	108.325	28.295	3.964	0.496			
WLA	693.892	88.415	23.095	3.236	0.404			
MOS (10%)	171.56	171.56 21.86 5.71 0.8 0.						
TMDL =								
LA+WLA+MOS	1715.6	218.6	57.1	8	1			

Table 15: East Creek-Ohio River TMDL Summary (HUC12- 051402020**401**)

Table 16: Bayou Creek TMDL Summary (HUC12- 051402020**601**)

(110C12-0314020200	J1)							
Upstream Characteristics								
Drainage Area		21.09 square miles						
TMDL Sample Site			33, 35					
Listed Segments		INE0	261_01, INE026	1_T1003				
Total Land Use	Ag: 50.	4% Forest: 41.0%	6 Urban: 4.3%	Water: 0.8% Wetla	and: 3.6%			
Non-MS4 Land Use	Ag: 99.01%	5 Forest: 96.43%	Urban: 81.11%	Water: 97.65% W	etland: 100%			
NPDES Facilities		Twin Lakes	Mobile Home Pa	rk (IN0044491)				
MS4 Communities	City of Eva	ansville MS4(INR	040057) (0.5879	square miles w/in	MS4, 2.79%)			
MS4 Land Use	Ag: 0.999	% Forest: 3.57%	Urban: 18.89%	Water: 2.35% We	tland: 0.0%			
CSO Communities			NA					
CAFOs			NA					
CFOs	NA							
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)				
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows			
	Flows							
LA	1501.014	191.216	50.009	7.052	0.927			
WLA	43.296	5.704	1.651	0.418	0.243			
MOS (10%)	171.59							
TMDL =								
LA+WLA+MOS	1715.9	218.8	57.4	8.3	1.3			

((110012-051402020003)							
Upstream Characteristics								
Drainage Area		25.99 square miles						
TMDL Sample Site			32					
Listed Segments	INE	0263_01, INE026	53_02, INE0263_	T1001, INE0263_	T1002			
Land Use	Agriculture	e: 81.6% Forest: 9	9.7% Urban: 1.4	% Water: 0.2% W	Vetland: 7.0%			
NPDES Facilities		Marrs Ele	ementary School	(IN0055255)				
MS4 Communities			NA					
CSO Communities			NA					
CAFOs			NA					
CFOs		NA						
	TMDL	E. coli Allocation	s (billion MPN/c	lay)				
Allocation Category	Very High	Higher Flow	"Normal"	Lower Flow	Low Flows			
	Flows	Flows Conditions Flows Conditions						
LA	1544.088	1544.088 196.788 51.438 7.29						
WLA	0.042	0.042 0.042 0.042 0.042 0.042						
MOS (10%)	171.57							
TMDL =								
LA+WLA+MOS	1715.7	218.7	57.2	8.1	1.1			

Table 17: Cypress Slough TMDL Summary (HUC12- 051402020**603**)

Table 18: McFadden Creek TMDL Summary (HUC12- 051402020**604**)

(110012-0314020200	3 • /							
Upstream Characteristics								
Drainage Area	20.42 square miles							
TMDL Sample Site			29					
Listed Segments			INE0264_01					
Land Use	Agriculture	e: 89.9% Forest: 5	5.1% Urban: 3.6	% Water: 0.1% W	/etland: 1.3%			
NPDES Facilities		Harbortown S	Subdivision Sanit	ary (IN0109924)				
	C	reekside Court M	obile Home Park	WWTP (IN00396	516)			
		Mount Vernon	Transfer Term L	LC (IN0049760)*				
MS4 Communities			NA					
CSO Communities			NA					
CAFOs		NA						
CFOs		NA						
	TMDL	E. coli Allocation	ns (billion MPN/c	lay)				
Allocation Category	llocation Category Very High Higher Flow "Normal" Lower Flow L							
	Flows	Conditions	Flows	Conditions				
LA	1544.093	196.793	51.443	7.25	0.953			
WLA	0.127	0.127	0.127	0.127	0.127			
MOS (10%)	171.58	171.58 21.88 5.73 0.82 0.12						
TMDL =								
LA+WLA+MOS 1715.8 218.8 57.3 8.2 1.2								
*Does not have a sanitary component in permit and is listed for calculations of flow based on the design								
flow.								

The above tables have listed current NPDES facilities in individual subwatersheds. A "NA" under WLA (Wasteload Allocation) indicates that there are currently no NPDES permitted facilities which could have received a portion of the WLA within that particular subwatershed and therefore, a WLA was not calculated for that subwatershed. Should a NPDES permit be granted to a new facility within any of these subwatersheds, the WLA for that subwatershed can be recalculated to account for the new facility.

To further investigate sources of pollution, *E. coli* counts in Most Probable Number (MPN)/100 mL have been plotted on precipitation graphs (Attachment D). Elevated levels of *E. coli* during and soon after rain events indicate *E. coli* contribution due to runoff. The precipitation data was collected by a weather station in Evansville, IN and managed by the Indiana State Climate Office at Purdue University.

While there are point source contributions, compliance with the numeric *E. coli* WQS and phosphorous numeric targets in the Highland-Pigeon Creek watershed most critically depends on controlling nonpoint sources using best management practices (BMPs). If the *E. coli* and phosphorus inputs can be controlled, then total body contact recreational and aquatic habitat use in Highland-Pigeon Creek watershed will be protected.

TMDL Development

The TMDL represents the maximum loading that can be assimilated by the waterbody while still achieving the Waters Quality Standard. As indicated in the Water Quality Standards and Numeric Targets section of this document, the water quality standard for this *E. coli* TMDL is 125 MPN per one hundred milliliters as a geometric mean based on not less than five samples equally spaced over a thirty-day period from April 1 through October 31. The TP water quality target is 0.30 mg/L. Concurrent with the selection of a numeric concentration endpoint, TMDL development also defines the critical conditions that will be used when defining allowable levels.

Many TMDLs are designed as the set of environmental conditions that, when addressed by appropriate controls, will ensure attainment of WQS for the pollutant. For example, the critical conditions for the control of point sources in Indiana are given in 327 IAC 5-2-11.1(b). In general, the 7-day average low flow in 10 years (Q7, 10) for a stream is used as the design condition for point source dischargers. However, *E. coli* and phosphorous sources to the Highland-Pigeon Creek watershed arise from a mixture of dry and wet weather-driven conditions, and there is no single critical condition that would achieve the *E. coli* WQS or phosphorous benchmark. For this reason, TMDLs were calculated over all of the flow conditions (very high flows to low flows) within the Highland-Pigeon Creek watershed. For the Highland-Pigeon Creek watershed and the contributing sources, there are a number of different allowable loads that will ensure compliance, as long as they are distributed properly throughout the watershed.

For most pollutants, TMDLs are expressed on a mass loading basis (e.g. pounds per day). TP in this project is expressed as a mass loading, lbs/day. For *E. coli* indicators, however, mass is not an appropriate measure because *E. coli* is expressed in terms of organism counts (or resulting concentration) (USEPA, 2001). The geometric mean *E. coli* WQS allows for the best characterization of the watershed. Therefore, this *E. coli* TMDL is concentration-based consistent with 327 IAC 5-2-11.1(b) and 40 CFR, Section 130.2 (i) and the TMDL is equal to the geometric mean *E. coli* WQS for each month of the recreational season (April 1 through October 31).

Allocations

TMDLs are comprised of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include a Margin of Safety (MOS), either implicitly or explicitly, that accounts for uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. Conceptually, this definition is denoted by the equation:

 $TMDL = \sum WLAs + \sum LAs + MOS$

The overall loading capacity is subsequently allocated into the TMDL components of WLAs for point sources, LAs for nonpoint sources, and the MOS. The *E. coli* portion of the TMDL is concentration-based consistent with USEPA regulations at 40 CFR, Section 130.2(i). Phosphorus is based on targets for reduction until such a time when the State of Indiana adopts a nutrient water quality standard.

Wasteload Allocations

As previously mentioned, there are nineteen (19) NPDES permitted facilities in the Highland-Pigeon Creek watershed (Figure 5, Table 2). Thirteen (13) dischargers have *E. coli* limits in their permits. The remaining six (6) do not have a sanitary component and are not currently required to monitor or report nitrogen or phosphorous levels.

Guidelines for MS4 permits and timelines are outlined in Indiana's Municipal Separate Storm Sewer System (MS4) Rule 13 (327 IAC 15-13-10 and 327 IAC 15-13-11). The City of Evansville's MS4 (INR040057) was given an estimated Wasteload Allocation at the Water Quality Standard for *E. coli* for each of the subwatersheds in which the MS4 is located. Since IDEM does not require a GIS shapefile for MS4s and MS4s can modify the boundaries via letter to the MS4 coordinator, the incorporated area of Evansville was used as an approximation for the MS4 boundary. Ivy Tech State College-Southwest (INR040060), and University of Evansville are within the incorporated limits of the City of Evansville and would be included in the WLA.

The University of Southern Indiana (INR040028) is located west of the City of Evansville outside the incorporated area of Evansville, but is less than 0.5% of the watershed and was not calculated into the WLA at this time. Vanderburgh County (INR040030) MS4 is a countywide MS4, but it would not be in the best interest of the countywide MS4 to calculate the entire county as a Wasteload Allocation. If a WLA were calculated for the entire county then all loadings would be under the WLA and nothing remaining for the LA for the MS4 only.

Until such time that more accurate spatial GIS shapefiles are provided, the TMDL is limited to estimates like incorporated areas.

In the event that designated uses and associated water quality criteria applicable to the Highland-Pigeon Creek are revised in accordance with applicable requirements of state and federal law, this TMDL may be revised to be consistent with such revisions.

The WLA is set at the WQS of 125 per one hundred milliliters as a geometric mean based on not less than five samples equally spaced over a thirty-day period from April 1 through October 31.

Indiana has yet to establish a Water Quality Standard for nutrients, to include phosphorous. Indiana is currently working on a nutrient standard; therefore characterization of the effluent from the WWTP for phosphorus has not been established. It is recommended that nutrient monitoring be added to the facilities within the Highland-Pigeon Creek watershed, that influence the phosphorus impaired segment, for their next permit renewal

Load Allocations

The LA for *E. coli* nonpoint sources is equal to the WQS of 125 per one hundred milliliters as a geometric mean based on not less than five samples equally spaced over a thirty-day period from April 1 through October 31. The LA will use the geometric mean of each sampling location to determine the reduction necessary to comply with WQS at each site. The LA for phosphorus is equal to the target (0.3 mg/L TP) and will be based on the highest value of the sample (Attachment D).

Load allocations may be affected by subsequent work in the watershed. It is anticipated that future watershed projects will be useful in continuing to define and address the nonpoint sources of the *E. coli* and phosphorus in the Highland-Pigeon Creek watershed.

Margin of Safety

A Margin of Safety was incorporated into this TMDL analysis. The MOS accounts for any uncertainty or lack of knowledge concerning the relationship between pollutant loading and water quality. The MOS can be either implicit (i.e., incorporated into TMDL analysis through conservative assumptions) or explicit (i.e., expressed in the TMDL as a portion of the loadings). This TMDL uses an implicit MOS by applying a couple of conservative assumptions. First, no rate of decay for *E. coli* was applied. *E. coli* bacteria have a limited capability of surviving outside of their hosts and therefore, a rate of decay normally would be applied. However, applying a rate of decay could result in a discharge limit that would be greater than the *E. coli* WQS, thus no rate of decay was applied. Second, the *E. coli* WQS was applied to all flow conditions. IDEM determined that applying the *E. coli* WQS of 125 per one hundred milliliters to all flow conditions and with no rate of decay for *E. coli* is a more conservative approach that provides for greater protection of the water quality. This adds to the MOS for this TMDL.

Seasonality

Seasonality in the TMDL is addressed by expressing the TMDL in terms of the *E. coli* WQS for total body contact during the recreational season (April 1 through October 31) as defined by 327 IAC 2-1.5-8(e)(2). There is no applicable total body contact *E. coli* WQS during the remainder of the year in Indiana. Because this is a concentration-based TMDL, *E. coli* WQS will be met regardless of flow conditions in the applicable season.

Seasonality is not addressed for total phosphorous. Total phosphorous is applicable year round.

Monitoring

Future *E. coli* monitoring of the Highland-Pigeon Creek watershed will take place during IDEM's nine-year rotating basin schedule and/or once TMDL implementation methods are in place. Monitoring will be adjusted as needed to assist in continued source identification and elimination. IDEM will monitor at an appropriate frequency to determine whether Indiana's 30-day geometric mean value of 125 *E. coli* per one hundred milliliters is being met. When results indicate that the waterbody is meeting the *E. coli* WQS, the waterbody will then be removed from the 303(d) list.

Reasonable Assurance Activities

Reasonable assurance activities are programs that are in place or will be in place to assist in meeting the Highland-Pigeon Creek watershed TMDL allocations and the *E. coli* Water Quality Standard and phosphorous numeric target.

The Vanderburgh County Soil and Water District is very active in projects geared towards improving the water quality in the Highland-Pigeon Creek watershed so much so that they requested a TMDL for the watershed.

Watershed Projects

The Pigeon Highland Watershed Steering Committee began in 1988 and from their direction; a Watershed Management Plan was developed and recently updated. This plan prioritized subwatersheds according to water quality issues and determined actions needed to improve water quality. Locust Creek is a 19,000-acre watershed prioritized by the plan. A Lake and River Enhancement Grant was received by the Vanderburgh County SWCD. Through cooperation with the Natural Resources Conservation Service and the Indiana State Department of Agriculture over \$110,000.00 have been appropriated to local land users for installing practices such as no-till planting, integrated crop management, grade stabilization structures, streambank stabilization and grazing management. Water quality is being monitored through a special project with the University of Southern Indiana Biology Department and Riverwatch.

In addition, continued water quality monitoring is being performed by the Vanderburgh County Soil and Water Conservation District and the Wesselman Nature Society. Both entities have submitted bacteria data for review at various sites along the Pigeon Creek (Attachment F)

Vanderburgh County

Vanderburgh County has received the following funding to improve water quality in 2010:

Local: \$125, 607 Clean Water Indiana: \$22,572 Lake and River Enhancement: \$50,000 Conservation Reserve Program: \$268,975 Wetland Reserve program: \$136,184

The Vanderburgh County Soil and Water Conservation District (SWCD) partnered their efforts together with the Four Rivers Resource Conservation and Development Council (RC&D), The Nature Conservancy, Wesselman Woods Nature Society, and other local organizations, in the acquisition of 127 acres. This land will be used to educate and promote conservation.

The Indiana Department of Natural Resources was interested in selling two tracts of land consisting of 73.9 acres at the intersection of Highway 41 and Waterworks Road. Traylor Brothers, Inc., a business located in the Evansville area, was the owner of a 52.99 acre tract of land that separated the two tracts, and expressed their desire to donate this tract to the Vanderburgh SWCD.

Almost four years ago, the three newly acquired tracts totaling 127 acres, was named "Eagle Slough Natural Area (ESNA)."

A steering committee was developed to organize and complete this project. Committee members are Dave Elgin, Darrell Rice, Bonnie Bittner, Davie Sue Litov, Maurice Berendes, Susan Haislip, Greg Meyer, Harold Allison, Kemper Lease, Cassie Hauswald, Steve Gifford and Allen Pursell.

The Vanderburgh SWCD had two volunteer cleanup days. Twelve tons of debris was hauled from ESNA. Three eagle scouts have completed projects; a visitor kiosk, road sign frame, six duck boxes, and a new 1.3 miles trail. Thanks to a volunteer and funds from the American Nature Photographers Association, we have a photo blind at ESNA Teal Wetlands. Alcoa and Toyota

have generously supplied grants and employees to help with the cleanup days. We are currently building an observation deck with a grant from Alcoa.

ESNA is used for education and getting children in tune with nature from local schools. The red carpet rolled out at Culver Elementary School for the world premiere of a short documentary entitled "Where Waters Wed: Southwestern Indiana". It chronicles the value and abundance of bottomland forests and wetlands in our area. One of the forests/wetland areas chosen for the documentary was Eagle Slough Natural Area. Several Culver students starred in the portion of the movie filmed at the natural area. Culver Elementary School students also made a special trip to the Eagle Slough Natural Area to produce an artistic rendering of the landscape.

Warrick County

Warrick County has received the following funding to improve water quality in 2010: Local: \$52,742 Clean Water Indiana: \$16,610 Wildlife Habitat Cost-Share Program: \$2,805 Conservation Reserve Program: \$344,512 Environmental Quality Incentives Program: \$528,954

The Warrick Soil and Water Conservation District (SWCD) has partnered with neighboring Districts (Vanderburgh, Posey, Gibson, and Pike) on several projects since 2008 to address sediment and nutrient issues and offer reduction solutions.

Initiatives co-sponsored by these Districts include a pond pro workshop, no-till conference, soils quality conference and a corn and soybean day with Purdue Extension. Clean Water Indiana (CWI) grants have enabled these SWCDs to pull in top-notch experts on the subjects at hand, resulting in more conservation practices installed on the ground through information/education/outreach thereby improving water quality. The Warrick SWCD also sent two avid no-till farmers to the National No-Till Conference.

The Vanderburgh SWCD came up with the idea of cost-sharing on an aerial seeding project in the fall of 2010. The goal was to promote cover crops as a sediment and nutrient reduction project. They invited surrounding SWCDs to join them to get more acres seeded. The Warrick County SWCD jumped at the opportunity to partner with the Vanderburgh, Posey and Gibson SWCDs to seed cover crops into standing corn and soybeans on approximately 3,100 acres in southwest Indiana using CWI and matching SWCD funds.

Other partners were drawn in to help with the project. Ed Air, Inc. provided the plane to fly on the seed at \$10 per acre and Land-O-Lakes developed and provided the seed mixture at cost to landowners. Superior Ag ordered and transported the seed to the airstrip. They also coordinated the flights and did all the billings to the farmers, who in turn, paid those bills. Receipts were then submitted to their local SWCDs for reimbursement. NRCS and ISDA staff members also were very helpful in the planning and implementation of the project.

Each SWCD developed its own cost-share rate. The Warrick SWCD paid the entire cost of the aerial application to 10 producers on 783 acres. CWI funds used on the project totaled \$2,147 while the District matched those funds with \$5,604.

Even though this area was experiencing a drought and the seed did not germinate as well as expected in many of those fields until much later, interest among Warrick County's farmers is still high for a program like this in 2011.

The Warrick County SWCD also entered into a Contribution Agreement with NRCS to hire a part-time clerical assistant to help with Farm Bill programs, particularly the Environmental Quality Incentive Program (EQIP) and Conservation Reserve Program (CRP). NRCS matched District and CWI funds to provide salary for 28 hours/week to take full advantage of program cost-share funding rather than leaving unused federal dollars on the table. This in turn drew in a new partner - the Warrick County Storm Water Board. When the District was approached to assist with their education/outreach obligations mandated by IDEM, we were offered limited funding to use to achieve the goals of both the Storm Water Board and the District. This valuable partnership is expected to continue well into the future.

Gibson County

Gibson County has received the following funding to improve water quality in 2010: Local: \$94,691 Clean Water Indiana: \$15,786 Conservation Reserve Program: \$397,146 Environmental Quality Incentives Program: \$13,736 Wildlife Habitat Incentive Program: \$18,012 Wetland Reserve Program: \$137,280

The Gibson County Soil and Water Conservation District (SWCD) partners annually with adjoining counties to make conservation dollars go farther and reach more land users.

They worked collaboratively on projects last 2010 with Posey, Vanderburgh and Warrick SWCDs on several projects including the: Pond Pro Workshop, Soils Quality Conference and the Cover Crop Program. The Clean Water Indiana Grant assisted in funding these worthwhile initiatives.

The Pond Pro Workshop was a day-long event held in Vanderburgh County. The Saturday event was well attended. Many expert speakers were volunteers from NRCS; IDNR; Aquatic Control; Warrick County Extension; Scott Township Fire Department; and Zeimer, Stayman, Weitzel and Shoulders Attorneys at Law.

The Soil Quality Conference, also held in Vanderburgh County, provided land owners with the latest information on how to build soil tilth, reducing nutrient and chemical inputs to increase productivity and profitability. Nationally recognized speakers for the event were David Brandt, Barry Fisher, Ray Archuleta, Mike Sucik and Hans Kok. Speakers also discussed soil properties and looked at scientific and practical aspects of crop production through proper rotations, cover crops and management.

The Gibson County SWCD partnered to sponsor an Aerial Cover Crop Seeding Program for land users in Southwestern Indiana. The seed mixture was provided to land users at cost by Land-O-Lakes to bring operators an opportunity to improve their farming operation and make them more profitable. Districts also partnered with Superior Ag who ordered and transported the seed to Ed Air Strip. Much appreciation also goes to NRCS and ISDA employees for their assistance in coordinating this project. The District cost shared on the seeding cost with funding received from a 2010 CWI grant. Approximately 430 acres were seeded in Gibson County and over 1,000 in southwest Indiana.

The SWCD newsletter, The Conservation Gram, provides information to land users with articles and information from the SWCD, NRCS, FSA, ISDA, Purdue Extension and other conservation

partners. Information also is distributed to the public using the SWCD website, fair exhibit, news releases, flyers and pamphlets. The SWCD staff also supports NRCS with clerical assistance as needed.

The Gibson County SWCD collaboratively assists with the Southwest Regional Envirothon and the Soils Judging Contest for high school students. The District likewise participates in a variety of environmental education activities for youth including: Hoosier Riverwatch training for the Princeton Community High School Advanced Environmental Science class; and a water quality presentation at YMCA Camp Carson for fifth grade students attending the North Gibson School Corporation Youth Coalition.

The SWCD coordinates the annual fourth grade farm fair held at the Gibson County Fairgrounds. A poster contest is held annually for fifth grade students using the soil stewardship theme. The winning poster is forwarded to the state contest.

The Gibson County SWCD joins the southwestern Indiana counties collaborating again this year on a number of important conservation projects.

Posey County

Posey County has received the following funding to improve water quality in 2010: Local: \$87,830 Clean Waters Indiana: \$27,685 Lake and River Enhancement: \$54,000 205j: \$98,723 Conservation Reserve Program: \$220,674 Environmental Quality Incentives Program: \$1,744 Floodplain Easement Program: \$101,166 Wetlands Reserve program: \$1,700,079

The Posey County Soil and Water Conservation District (SWCD) has had great success partnering with surrounding counties on a variety of projects. Most of these initiatives were funded through Clean Water Indiana (CWI) grants. By partnering, they were able to combine resources to bring in well-known speakers and experts. They also were able to broaden their horizons by developing new partnerships with local businesses and offices.

In recent months, the Quad Counties which include Gibson, Vanderburgh, Warrick and Pike, offered a cover crop cost-share program. They also partnered with Purdue Cooperative Extension to offer the Area Corn and Soybean Day. The District hosted a cover crop breakfast and offered a variety of workshops on pond maintenance and soils quality. They also hosted a conservation breakfast.

The cover crop program has been a huge success. The District originally received a 2008 CWI grant for sediment and nutrient reduction. This grant allowed the District to cost-share on cover crops planted either traditionally or by aerial seeding. Of course, people saw the planes and then decided that they too would plant a cover crop.

Posey County ended up with over 1,000 acres of cover crops planted. They spent the original \$10,000 and added District funds to the program. The cover crop program has been such a huge success that the Quad Counties have designated a portion of their 2011 CWI grant funds to this project. They have begun a list of interested parties!

They were able to secure Hans Kok, coordinator, Indiana Conservation Cropping Systems Initiative, as their annual meeting speaker. He did such a great job sharing his message on cover crops, that they have had non-farming residents call the office asking for more information!

Because of their work with the local Area Plan office, the Posey County representatives were able to better understand the District's need for a technician who would work on District projects, as well as USDA conservation projects. The SWCD is now given an annual allotment that has enabled them to hire a part-time technician whose main responsibility is Rule 5. This has been a great asset for the county. It also has increased awareness about the SWCD. They have been able to work with the city of Mt. Vernon on several projects as well. This has been their first experience working with the urban community of the county.

A few years back, they were awarded an Emergency Conservation Assistance Program grant due to extensive flooding and damage to the community. They used these funds for cost-share projects on repairs due to flood damage. An original grant of \$83,005 was spent and they were able to receive an additional \$12,000.

The District is thankful for the grants they receive, the partnerships they are building, and the dedication of their staff and supervisors. They also appreciate the Districts with whom they partner to promote the conservation of their natural resources.

National Pollutant Discharge Elimination System (NPDES) Permitted Dischargers

All permitted dischargers with a sanitary component already have *E. coli* limits and monitoring as part of their current permits. By following the guidelines of their permits, the permitted dischargers will attain WQS and reduction of *E. coli* to the surface waters of the Highland-Pigeon Creek watershed.

Storm Water General Permit Rule 13

Guidelines for MS4 permits and timelines are outlined in Indiana's Municipal Separate Storm Sewer System (MS4) Rule 13 (327 IAC 15-13-10 and 327 IAC 15-13-11). It is difficult to determine the magnitude of the contributions of these MS4 communities as a source of *E. coli* and phosphorous in the Highland-Pigeon Creek watershed. The TMDL recognizes that these MS4 communities can be sources of *E. coli* and phosphorous and more information needs to be collected. As part of the permit process these systems will be better defined and will continuously work towards meeting the water quality standards and numeric targets, which are the limits of this TMDL. This process will take several permitting cycles and it is anticipated that in the future, MS4 permits will meet the water quality standards. It is the goal of IDEM and the MS4 communities to develop best management practices to improve the stormwater quality within their areas. IDEM will continue to work with these facilities to improve water quality.

Confined Feeding Operations and Concentrated Animal Feeding Operations

CFO and CAFO are required to manage manure, litter, and process wastewater pollutants in a manner that does not cause or contribute to the impairment of *E. coli* WQS.

319 Projects Conducted in the Highland Pigeon Watershed

319 Grant #00-86 - "Highland-Pigeon Watershed Management Plan" with data collected with Easygel by coliscan method for *E. coli* and Total Phosphate using a Hach method. Conservation

practices installed 1999-2002 in Gibson county: Filter strips, grassy waterways, and pipe structures; in Posey County: grassy waterways, WASCOB's, filter strips. BMPs during the course of this grant prevented 721 tons of soil, 732 lbs of phosphorous, and 1500 lbs of nitrate were prevented from entering the streams.

319 Grant #7-9 -2003 Pigeon Creek Implementation. This watershed plan applied the following BMPs: filter strips, grassed waterways, and water and sediment control structures.

The projects in Posey County (00-86, 4-127, 7-9, and 3-756) have a total reduction of 5,652 tons of sediment, 7,057 pounds of phosphorous, and 17,675 pounds of nitrogen (Personal Communication, 319 Project Manager B. Ratcliff, 2011)

IDEM Watershed Specialists will be available to assist stakeholders with re-forming a watershed group, facilitating planning activities, and serving as a liaison between watershed planning and TMDL activities in the Highland-Pigeon Creek watershed.

TMDLs

Currently, there are no additional TMDL projects within the Highland-Pigeon Creek Watershed basin. However, an Ohio River TMDL is under development.

Potential Future Activities

Nonpoint source pollution can be reduced by the implementation of Best Management Practices. BMPs are practices used in agriculture, forestry, urban land development, and industry to reduce the potential for damage to natural resources from human activities. A BMP may be structural, that is, something that is built or involves changes in landforms or equipment, or it may be managerial, that is, a specific way of using or handling infrastructure or resources. BMPs should be selected based on the goals of a watershed management plan. Livestock owners, farmers, and urban planners can implement BMPs outside of a watershed management plan, but the success of BMPs would be enhanced if coordinated as part of a watershed management plan. Following are examples of BMPs that may be used to reduce *E. coli* and nutrient runoff:

Riparian Area Management - Management of riparian areas protects streambanks and riverbanks with a buffer zone of vegetation, either grasses, legumes, or trees.

Manure Collection and Storage - Collecting, storing, and handling manure in such a way that nutrients or bacteria do not run off into surface waters or leach down into ground water.

Contour Row Crops - Farming with row patterns and field operations aligned at or nearly perpendicular to the slope of the land.

No-Till Farming - No-till is a year-round conservation farming system. In its pure form, no-till does not include any tillage operations either before or after planting. The practice reduces wind and water erosion, catches snow, conserves soil and water, protects water quality, and provides wildlife habitat. No-till helps control soil erosion and improve water quality by maintaining maximum residue plant levels on the soil surface. These plant residues: 1) protect soil particles and applied nutrients and pesticides from detachment by wind and water; 2) increase infiltration; and 3) reduce the speed at which wind and water move over the soil surface.

Manure Nutrient-Testing - If manure application is desired, sampling and chemical analysis of manure should be performed to determine nutrient content for establishing the proper manure application rate in order to avoid over-application and run-off.

Drift Fences - Drift fences (short fences or barriers) can be installed to direct livestock movement. Identifying small operations where animals have direct access to streams and installing a drift fence parallel to the stream will keep animals out of the stream and prevent direct input of *E. coli* to the stream.

Pet Clean-up / Education - Education programs for pet owners can improve water quality of runoff from urban areas.

Septic System Management/Public Education - Programs for management of septic systems can provide a systematic approach to reducing septic system pollution. Education on proper maintenance of septic systems as well as the need to remove illicit discharges could alleviate some anthropogenic sources of *E. coli*.

Cover crop - Grasses, legumes, forbs, or other herbaceous plants established for seasonal cover and other conservation purposes to help reduce erosion from wind and water, increase soil organic matter, capture and recycle nutrients in the soil profile, and minimize and reduce soil compaction.

Alternative Watering Systems - A process to collect water from spring or seeps to provide water for livestock, wildlife or other agriculture uses.

Low Impact Development - An innovative storm water management approach with a basic principle that is modeled after nature: manage rainfall where it falls using uniformly distributed decentralized micro-scale controls. The goal of LID is to mimic a sit's predevelopment hydrology by using design techniques that infiltrate, filter, store, evaporate, and detain runoff close to its source.

Bioretention System - The bioretention system is an alternative to conventional BMP structures. It is highly applicable to residential uses in community open space or private lots. The bioretention system is very appropriate for treatment of parking lot runoff, roadways where sufficient space accommodates off-line implementation, and pervious areas such as golf courses.

Public Participation

There was a public Kickoff Meeting held on October 13, 2009 at the Vanderburgh County Public Library where the public was invited to submit any additional bacteria or nutrient data and informed of the TMDL process.

There was a public Draft TMDL Meeting held on May 18, 2010 at the Vanderburgh County Public Library.

The public comment period lasted from May 18, 2010 to June 20, 2010.

Conclusion

The sources of *E. coli* to the Highland-Pigeon Creek watershed include both point and nonpoint sources. In order for the Highland-Pigeon Creek watershed to achieve Indiana's *E. coli* WQS, the

wasteload and load allocations for the Highland-Pigeon Creek watershed in Indiana have been set to the *E. coli* WQS of 125 per one hundred milliliters as a geometric mean based on not less than five samples equally spaced over a thirty day from April 1 through October 31. Achieving the wasteload and load allocations for the Highland-Pigeon Creek watershed depends on:

- 1) Nonpoint sources of *E. coli* being controlled by implementing best management practices in the watershed. Point sources should continue to follow their NPDES permits.
- 2) Continuing efforts to protect this watershed.

The sources of total phosphorous to the Highland-Pigeon Creek watershed include both point and nonpoint sources. In order for the Highland-Pigeon Creek watershed to achieve the recommended target of 0.3 mg/L:

- 1) Nonpoint sources of total phosphorous should be controlled by implementing best management practices in the watershed.
- 2) Continuing efforts to educate the public on ways to protect the watershed.

The next phase of this TMDL is to identify and support the implementation of activities that will bring the Highland-Pigeon Creek watershed in compliance with the *E. coli* WQS and achieve the total phosphorous target of 0.3 mg/L. IDEM will continue to work with its existing programs on implementation. In the event that designated uses and associated water quality criteria applicable to the Highland-Pigeon Creek watershed are revised in accordance with applicable requirements of state and federal law, the TMDL implementation activities may be revised to be consistent with such revisions. Additionally, IDEM will work with local stakeholder groups to pursue best management practices that will result in improvement of the water quality in the Highland-Pigeon Creek watershed.

References

Cleland, B. 2002 TMDL Development from the "Bottom Up"-Part II. Using Duration Curves to Connect the Pieces. America's Clean Water Foundation.

Indiana State Climate Office. http://www.agry.purdue.edu/climate/. Accessed 2007.

- Mississippi Department of Environmental Quality. 2002. Fecal Coliform TMDL for the Big Sunflower River, Yazoo River Basin.
- U.S. Census, 2010, County Population data, http://www.census.gov/
- USEPA. 2001. Protocol for Developing Pathogen TMDLs. United States Environmental Protection Agency, 841-R-00-002.

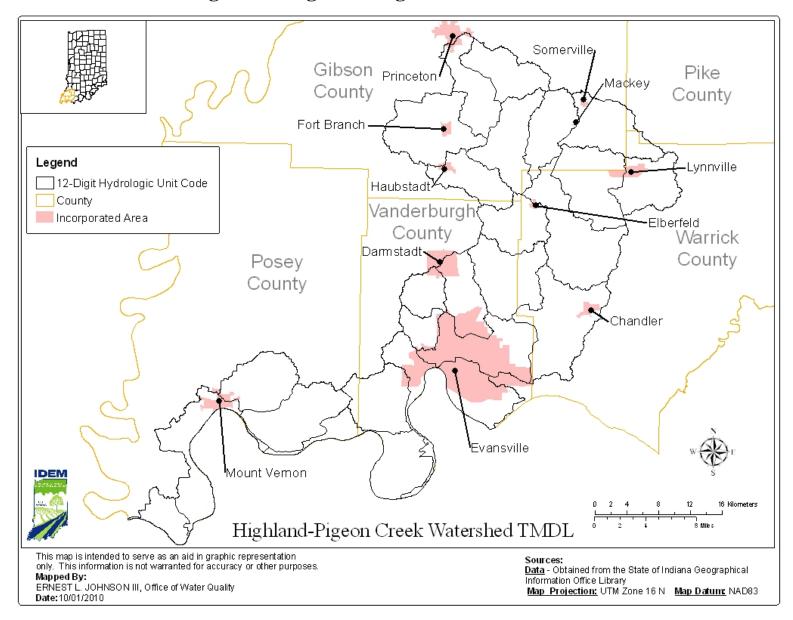

USEPA. 2003. National Management Measures to Control Nonpoint Source Pollution from Agriculture. EPA 841-B-03-004, July 2003

Table 19: NPDES Permits in the Highland-Pigeon Creek Watershed

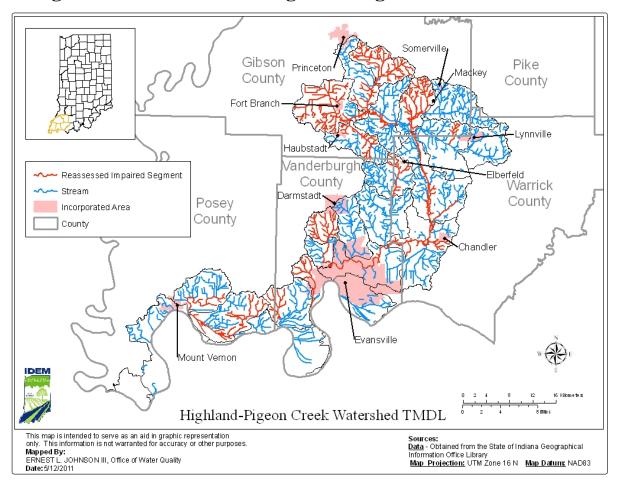
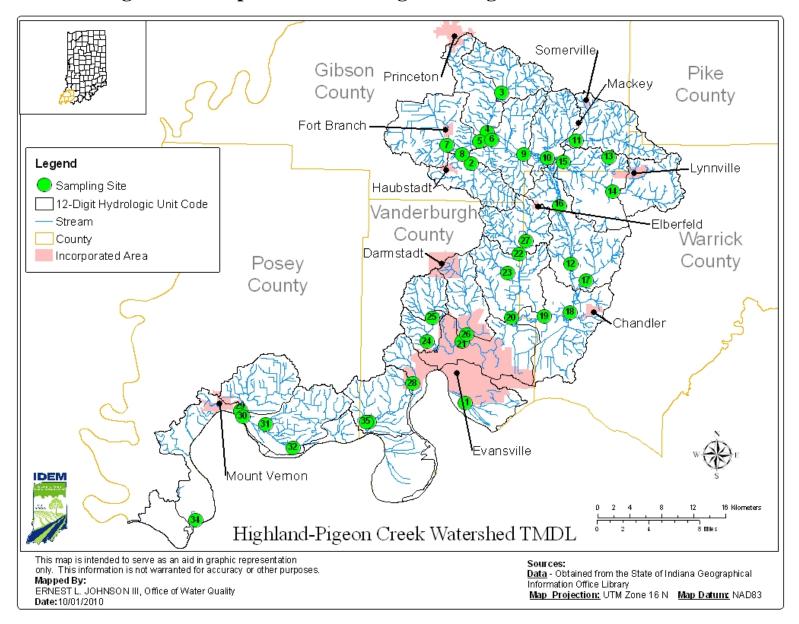
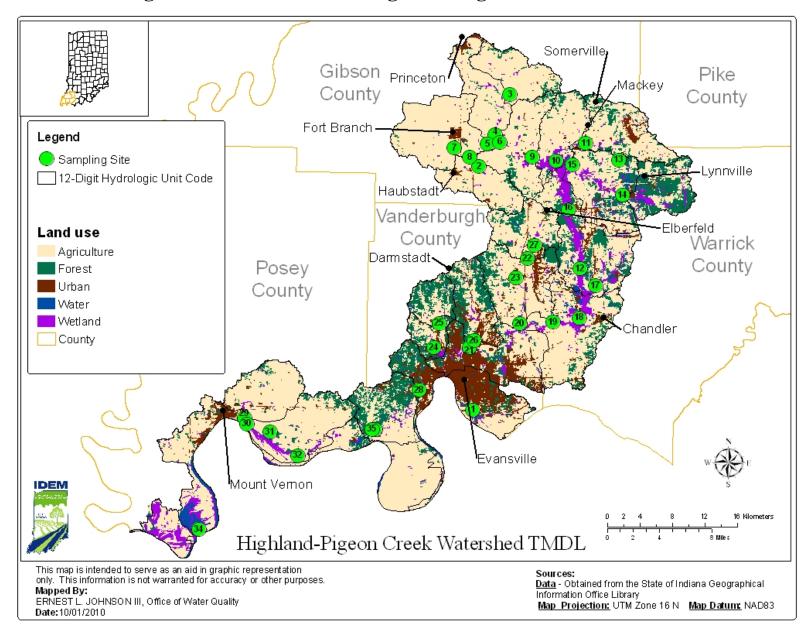

Permit	Name	Receiving Waters	Notes
IN0001970	Air Liquide Industries US LP	Smith Creek (INE0265_T1006)	E. coli
		Unnamed Trib-Dixon/Lewis Ditch	
IN0055255	MARRS Elementary School	(INE0263_T1006)	E.coli
IN0020435	Chandler Municipal WWTP	Whittaker Ditch (INE0237_00)	E. coli
IN0020788	Elberfeld Municipal WWTP	Bluegrass Creek (INE0231_01)	E. coli
		Unnamed Trib-Hurricane Creek	
IN0021482	Haubstadt Municipal WWTP	(INE0211_T1003)	E. coli
		Unnamed Trib-Big Creek	
IN0040282	Lynnville Municipal WWTP	(INE0221_T1006)	E. coli
		Unnamed Trib-Bayou Creek	
IN0044491	Twin Lakes Mobile Home PARK	(INE0261_T1003)	E. coli
		Unnamed Trib-Ohio River	
IN0035696	Mount Vernon WWTP	(INE265_T1003)	E. coli
IN0039608	AC Ranch Mobile Home Park	Locust Creek (INE0235_01)	E. coli
IN0039616	Creekside Court Mobile Home Park	McFadden Creek (INE0264_01)	E. coli
		West Fork Pigeon Creek	
IN0022869	Town of Fort Branch WWTP	(INE0213_01)	E. coli
		Unnamed Trib-McFadden Creek	
IN0109924	Harbortown Subdivision Sanitary	(INE 0264_01)	E.coli
IN0004880	Midstates Rubber Prod INC	Pigeon Creek (INE 214_01)	Non Sanitary
		Unnamed Trib-Ohio River	
IN0051667	GAF BLDG Materials MFG CORP	(INE0265_T1002)	Non Sanitary
		Unnamed Trib-Hurricane Creek	
IN0029963	KOA Kampground	(INE0211_T1001)	E. coli
		Unnamed Trib-Ohio River	
IN0049760	Mount Vernon Transfer TERM LLC	(INE265_T1003)	Non Sanitary
		Unnamed Trib-Pigeon Creek	
IN0058530	Indiana Hardwoods INC	(INE0224_T1005)	Non Sanitary
		Whittaker Ditch	
IN0059838	Tin Lizzie Car Wash	(INE0224_T1002)	Non Sanitary
IN0060160	Industrial Services MGT INC	Smith Creek (INE0265_T1006)	Non Sanitary

Table 20: CFOs and CAFOs in the Highland-Pigeon Creek Watershed


Permit Number	Permit Type	Operation Name	Status	Nursery Pigs	Finishers	Sows	Beef Cattle	Dairy Cattle	Dairy Calves	Turkeys
175	CFO	Jeff Sevier Hog Farm	Active	200	800	106				
912	CFO	Schurmeier Farms Inc	Active	360	1600	16				
3719	CAFO	Schoonover Farms	Active		8000					
3981	CFO	Stanley Michel	Active	1800	480	94	11			
4522	CFO	Clay Hill Turkey Farm	Active							22000
		M & D Michel								
4524	CFO	Turkeys	Active							52000
6167	CAFO	Dave Winkle	Active							57000
6654	CAFO	Obert Legacy Dairy	Active					900	80	
			Total:	2360	10880	216	11	900	80	131000


Figure 1: Highland-Pigeon Creek Watershed

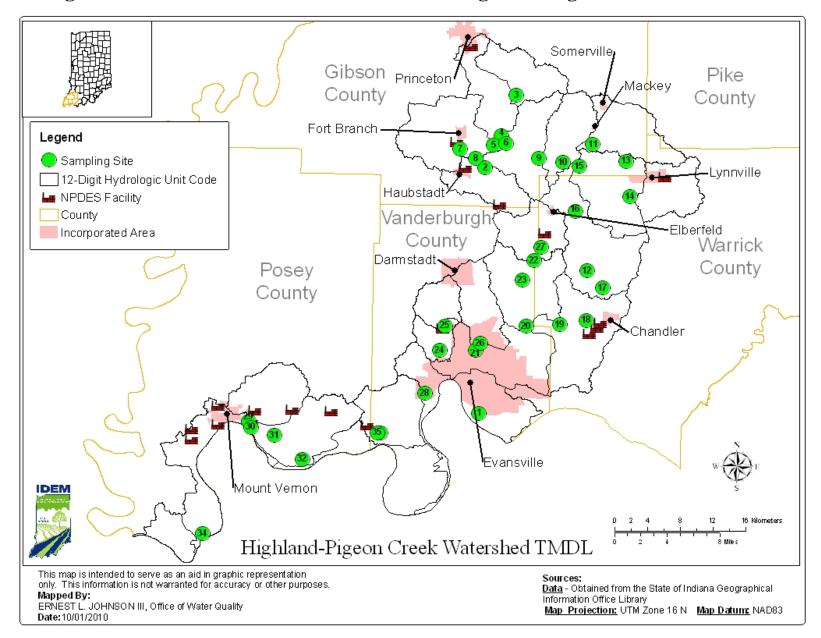

Figure 2: Streams in the Highland-Pigeon Creek Watershed

Figure 3: Sample Sites in the Highland-Pigeon Creek Watershed

Figure 4: Land use in the Highland-Pigeon Creek Watershed

Figure 5: NPDES Permitted Facilities in the Highland-Pigeon Creek Watershed

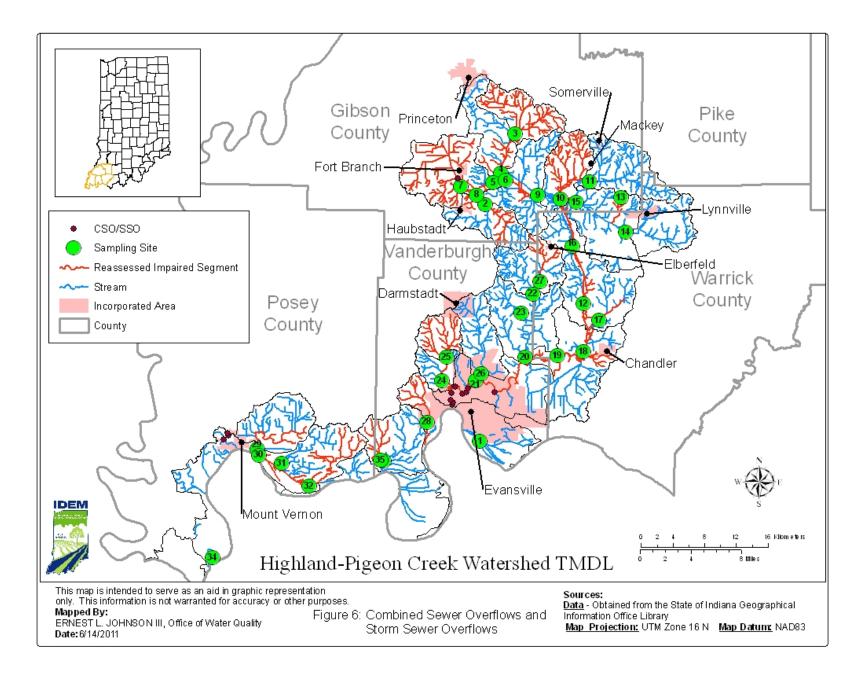


Figure 6: CSO/SSO Outfalls in the Highland-Pigeon Creek Watershed

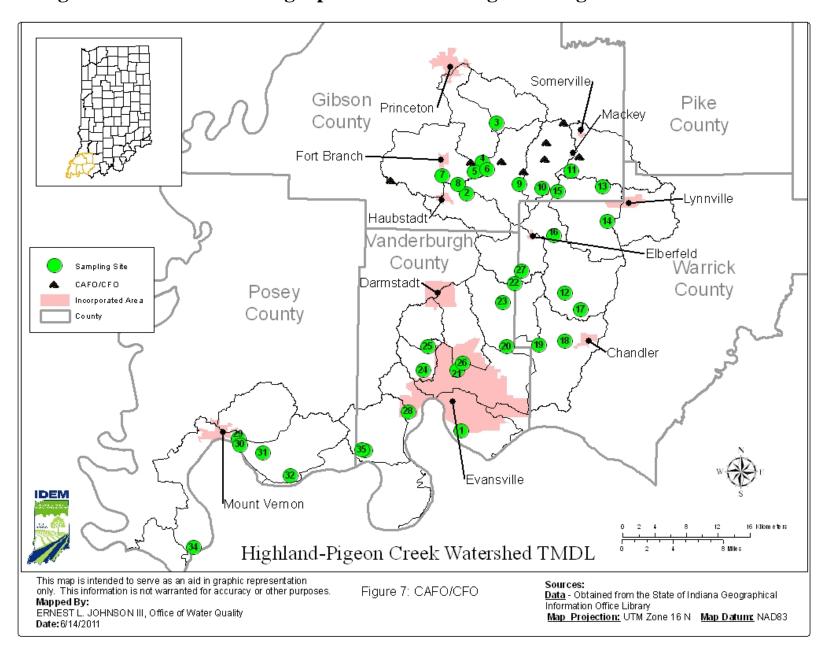


Figure 7: Confined Feeding Operations in the Highland-Pigeon Creek Watershed

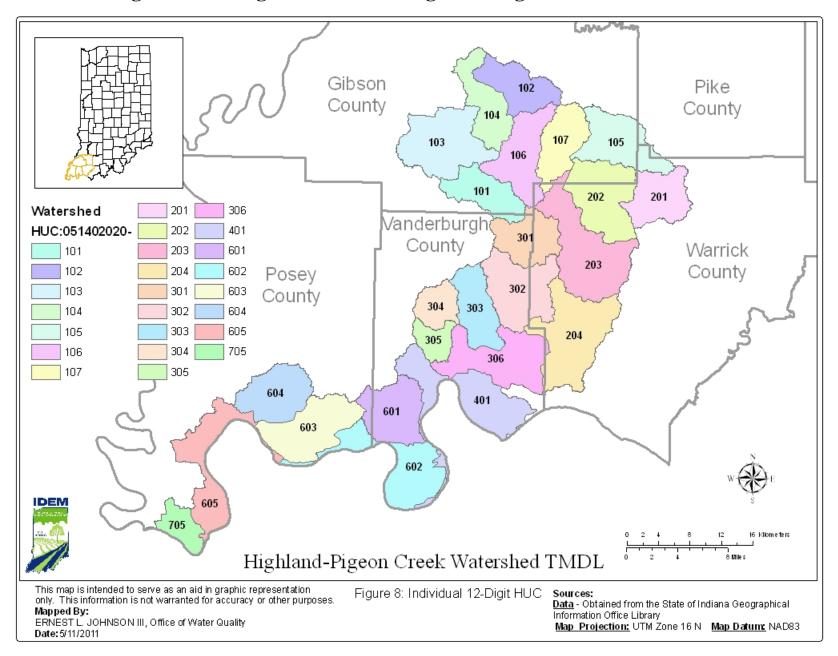


Figure 8: 12-Digit HUCs in the Highland-Pigeon Creek Watershed

Attachment A

Bacteria Data for Highland-Pigeon Creek Watershed TMDL

Attachment B

Water Quality Graphs for the Highland-Pigeon Creek Watershed TMDL

Attachment C

Load Duration Curves for the Highland-Pigeon Creek Watershed TMDL

Attachment D

Precipitation Graphs for Impaired Sites in the Highland-Pigeon Creek Watershed TMDL

Attachment E

Load Reductions for the Highland-Pigeon Creek Watershed TMDL

Attachment F

Third-Party Data for the Highland-Pigeon Creek Watershed

Attachment G

Nutrient Data for Highland-Pigeon Creek Watershed TMDL

Attachment H

Reassessment notes for the Highland-Pigeon Creek Watershed TMDL

Attachment I

Response to Public Comments

Attachment A

Bacteria Data for Highland-Pigeon Creek Watershed TMDL

Project_Name	Stream Name	Description	TMDL Site	LSITE	Northing	Easting	Sample_Date	E_Coli
2007 Highland Pigeon TMDL	Eagle Cr	S Kentucky Ave	1	OHP010-0001	4199195.62	451825.301	9/5/2007 16:50	121
2007 Highland Pigeon TMDL	Eagle Cr	S Kentucky Ave	1	OHP010-0001	4199195.62	451825.301	9/11/2007 16:00	17.9
2007 Highland Pigeon TMDL	Eagle Cr	S Kentucky Ave	1	OHP010-0001	4199195.62	451825.301	9/18/2007 15:50	93.2
2007 Highland Pigeon TMDL	Eagle Cr	S Kentucky Ave	1	OHP010-0001	4199195.62	451825.301	9/25/2007 16:35	45
2007 Highland Pigeon TMDL	Eagle Cr	S Kentucky Ave	1	OHP010-0001	4199195.62	451825.301	10/3/2007 15:25	36.4
2005 Corvallis E. coli	Hurricane Cr	North of CR 1025 S., east of US 41 and Haubstadt	2	ОНР020-0007	4229134.09	452520.542	4/11/2005 13:40	206.3
2005 Corvallis E. coli	Hurricane Cr	North of CR 1025 S., east of US 41 and Haubstadt	2	OHP020-0007	4229134.09	452520.542	4/18/2005 12:40	248.1
2005 Corvallis E. coli	Hurricane Cr	North of CR 1025 S., east of US 41 and Haubstadt	2	OHP020-0007	4229134.09	452520.542	4/25/2005 13:05	2420
2005 Corvallis E. coli	Hurricane Cr	North of CR 1025 S., east of US 41 and Haubstadt	2	OHP020-0007	4229134.09	452520.542	5/2/2005 12:45	95.9
2005 Corvallis E. coli	Hurricane Cr	North of CR 1025 S., east of US 41 and Haubstadt	2	ОНР020-0007	4229134.09	452520.542	5/9/2005 13:15	410.6
2007 Highland Pigeon TMDL	Sand Cr	CR 450 S	3	OHP020-0016	4238030.25	456331.734	9/10/2007 12:25	2420
2007 Highland Pigeon TMDL	Sand Cr	CR 450 S	3	ОНР020-0016	4238030.25	456331.734	9/17/2007 12:40	2419
2007 Highland Pigeon TMDL	Sand Cr	CR 450 S	3	OHP020-0016	4238030.25	456331.734	9/24/2007 12:35	139.6
2007 Highland Pigeon TMDL	Sand Cr	CR 450 S	3	OHP020-0016	4238030.25	456331.734	10/2/2007 12:30	114.5

2007 Highland Pigeon TMDL	Pigeon Cr	CR 750 S	4	OHP020-0017	4233112.87	454534.784	9/4/2007 13:45	99
2007 Highland Pigeon	Pigeon Cr	CR 750 S	4	OHP020-0017	4233112.87	454534.784	9/10/2007 13:45	224.7
2007 Highland Pigeon TMDL	Pigeon Cr	CR 750 S	4	OHP020-0017	4233112.87	454534.784	9/17/2007 13:30	111.2
2007 Highland Pigeon TMDL	Pigeon Cr	CR 750 S	4	OHP020-0017	4233112.87	454534.784	9/24/2007 13:15	344.1
2007 Highland Pigeon TMDL	Pigeon Cr	CR 750 S	4	OHP020-0017	4233112.87	454534.784	10/2/2007 13:10	93.3
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 200 E	5	OHP020-0018	4231885.71	453554.923	9/4/2007 14:00	186
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 200 E	5	OHP020-0018	4231885.71	453554.923	9/10/2007 14:00	275.5
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 200 E	5	OHP020-0018	4231885.71	453554.923	9/17/2007 13:40	88.2
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 200 E	5	OHP020-0018	4231885.71	453554.923	9/24/2007 13:25	248.9
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 200 E	5	OHP020-0018	4231885.71	453554.923	10/2/2007 13:25	139.6
2007 Highland Pigeon TMDL	Pigeon Cr	CR 300 E	6	OHP020-0019	4232164.69	455122.666	9/4/2007 13:15	727
2007 Highland Pigeon TMDL	Pigeon Cr	CR 300 E	6	OHP020-0019	4232164.69	455122.666	9/10/2007 12:45	770.1
2007 Highland Pigeon TMDL	Pigeon Cr	CR 300 E	6	OHP020-0019	4232164.69	455122.666	9/17/2007 13:00	1733
2007 Highland Pigeon TMDL	Pigeon Cr	CR 300 E	6	OHP020-0019	4232164.69	455122.666	9/24/2007 12:55	816.4
2007 Highland Pigeon TMDL	Pigeon Cr	CR 300 E	6	OHP020-0019	4232164.69	455122.666	10/2/2007 12:45	1203
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 25 W	7	ОНР020-0020	4231430.48	449476.423	9/4/2007 14:15	307.6
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 25 W	7	ОНР020-0020	4231430.48	449476.423	9/10/2007 14:10	410.6

2007 Highland Pigeon								
TMDL	W Fk Pigeon Cr	CR 25 W	7	OHP020-0020	4231430.48	449476.423	9/17/2007 13:55	1553
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 25 W	7	ОНР020-0020	4231430.48	449476.423	9/24/2007 13:40	613.1
2007 Highland Pigeon TMDL	W Fk Pigeon Cr	CR 25 W	7	OHP020-0020	4231430.48	449476.423	10/2/2007 13:35	307.6
2007 Highland Pigeon TMDL	Hurricane Cr	CR 925 S	8	OHP020-0021	4230324.34	451439.014	9/4/2007 14:30	2420
2007 Highland Pigeon TMDL	Hurricane Cr	CR 925 S	8	OHP020-0021	4230324.34	451439.014	9/10/2007 14:25	1120
2007 Highland Pigeon TMDL	Hurricane Cr	CR 925 S	8	OHP020-0021	4230324.34	451439.014	9/17/2007 14:05	980.4
2007 Highland Pigeon TMDL	Hurricane Cr	CR 925 S	8	OHP020-0021	4230324.34	451439.014	9/24/2007 13:50	1203
2007 Highland Pigeon TMDL	Hurricane Cr	CR 925 S	8	OHP020-0021	4230324.34	451439.014	10/2/2007 13:45	1733
2007 Highland Pigeon TMDL	Pigeon Cr	CR 550 E	9	OHP020-0022	4230285.12	459160.824	9/4/2007 15:00	14.3
2007 Highland Pigeon TMDL	Pigeon Cr	CR 550 E	9	OHP020-0022	4230285.12	459160.824	9/10/2007 14:55	81.3
2007 Highland Pigeon TMDL	Pigeon Cr	CR 550 E	9	OHP020-0022	4230285.12	459160.824	9/17/2007 14:25	74.3
2007 Highland Pigeon TMDL	Pigeon Cr	CR 550 E	9	OHP020-0022	4230285.12	459160.824	9/24/2007 14:10	42.8
2007 Highland Pigeon TMDL	Pigeon Cr	CR 550 E	9	OHP020-0022	4230285.12	459160.824	10/2/2007 14:05	75.9
2007 Highland Pigeon TMDL	Smith Fk	SR 57	10	OHP020-0023	4229829.82	462085.461	9/4/2007 15:15	116.9
2007 Highland Pigeon TMDL	Smith Fk	SR 57	10	OHP020-0023	4229829.82	462085.461	9/10/2007 15:10	122.3
2007 Highland Pigeon TMDL	Smith Fk	SR 57	10	OHP020-0023	4229829.82	462085.461	9/17/2007 14:35	325.5
2007 Highland Pigeon TMDL	Smith Fk	SR 57	10	OHP020-0023	4229829.82	462085.461	9/24/2007 14:25	235.9

2007 Highland Pigeon	Smith Fk	SR 57	10	OHP020-0023	4229829.82	462085.461	10/2/2007 14:25	613.1
TMDL								
2007 Highland Pigeon TMDL	Smith Fk	CR 950 E	11	OHP020-0024	4232022.23	465722.37	9/4/2007 15:30	18.5
2007 Highland Pigeon TMDL	Smith Fk	CR 950 E	11	OHP020-0024	4232022.23	465722.37	9/10/2007 15:20	275.5
2007 Highland Pigeon TMDL	Smith Fk	CR 950 E	11	OHP020-0024	4232022.23	465722.37	9/17/2007 14:45	76.3
2007 Highland Pigeon TMDL	Smith Fk	CR 950 E	11	OHP020-0024	4232022.23	465722.37	9/24/2007 14:40	73.3
2007 Highland Pigeon TMDL	Smith Fk	CR 950 E	11	OHP020-0024	4232022.23	465722.37	10/2/2007 14:40	28.1
2007 Highland Pigeon TMDL	Pigeon Cr	New Harmony Rd	12	OHP030-0006	4216596.18	464988.881	9/4/2007 17:30	161.6
2007 Highland Pigeon TMDL	Pigeon Cr	New Harmony Rd	12	OHP030-0006	4216596.18	464988.881	9/10/2007 14:55	73.3
2007 Highland Pigeon TMDL	Pigeon Cr	New Harmony Rd	12	OHP030-0006	4216596.18	464988.881	9/17/2007 16:40	47.1
2007 Highland Pigeon TMDL	Pigeon Cr	New Harmony Rd	12	OHP030-0006	4216596.18	464988.881	9/24/2007 16:10	48
2007 Highland Pigeon TMDL	Pigeon Cr	New Harmony Rd	12	OHP030-0006	4216596.18	464988.881	10/2/2007 16:20	186
2005 Corvallis E. coli	Unnamed Trib to Big Cr	CR 950 S, NW of Lynnville, SE of Hemmer Woods Nature Preserve	13	OHP030-0013	4229962.71	469748.72	4/11/2005 14:15	1120
2005 Corvallis E. coli	Unnamed Trib to Big Cr	CR 950 S, NW of Lynnville, SE of Hemmer Woods Nature Preserve	13	OHP030-0013	4229962.71	469748.72	4/18/2005 13:15	2420
2005 Corvallis E. coli	Unnamed Trib to Big Cr	CR 950 S, NW of	13	ОНР030-0013	4229962.71	469748.72	4/25/2005 13:35	2420

2005 Corvallis E. coli	Unnamed Trib to Big Cr	CR 950 S, NW of Lynnville, SE of Hemmer Woods Nature Preserve	13	OHP030-0013	4229962.71	469748.72	5/2/2005 13:20	1396
2005 Corvallis E. coli	Unnamed Trib to Big Cr	CR 950 S, NW of Lynnville, SE of Hemmer Woods Nature Preserve	13	OHP030-0013	4229962.71	469748.72	5/9/2005 13:50	344.8
2007 Highland Pigeon TMDL	Big Cr	Strip Mine Rd	14	OHP030-0018	4225632.64	470267.268	9/4/2007 16:00	111.2
2007 Highland Pigeon TMDL	Big Cr	Strip Mine Rd	14	OHP030-0018	4225632.64	470267.268	9/10/2007 15:50	9.6
2007 Highland Pigeon TMDL	Big Cr	Strip Mine Rd	14	OHP030-0018	4225632.64	470267.268	9/17/2007 15:20	21.3
2007 Highland Pigeon TMDL	Big Cr	Strip Mine Rd	14	OHP030-0018	4225632.64	470267.268	9/24/2007 15:10	193.5
2007 Highland Pigeon TMDL	Big Cr	Strip Mine Rd	14	OHP030-0018	4225632.64	470267.268	10/2/2007 15:15	32.3
2007 Highland Pigeon TMDL	Big Cr	Buckskin Rd/CR 850 W	15	OHP030-0019	4229360.32	464094.318	9/4/2007 15:45	27.5
2007 Highland Pigeon TMDL	Big Cr	Buckskin Rd/CR 850 W	15	OHP030-0019	4229360.32	464094.318	9/10/2007 15:30	88.4
2007 Highland Pigeon TMDL	Big Cr	Buckskin Rd/CR 850 W	15	OHP030-0019	4229360.32	464094.318	9/17/2007 15:00	25.3
2007 Highland Pigeon TMDL	Big Cr	Buckskin Rd/CR 850 W	15	OHP030-0019	4229360.32	464094.318	9/24/2007 14:55	68.3
2007 Highland Pigeon TMDL	Big Cr	Buckskin Rd/CR 850 W	15	OHP030-0019	4229360.32	464094.318	10/2/2007 14:55	51.2
2007 Highland Pigeon TMDL	Pigeon Cr	Stanley Rd	16	ОНР030-0020	4223820.78	463595.924	9/4/2007 16:20	68.1
2007 Highland Pigeon TMDL	Pigeon Cr	Stanley Rd	16	OHP030-0020	4223820.78	463595.924	9/10/2007 16:05	248.9
2007 Highland Pigeon TMDL	Pigeon Cr	Stanley Rd	16	ОНР030-0020	4223820.78	463595.924	9/17/2007 15:35	66.3

2007 Highland Pigeon TMDL	Pigeon Cr	Stanley Rd	16	OHP030-0020	4223820.78	463595.924	9/24/2007 15:25	107.1
2007 Highland Pigeon TMDL	Pigeon Cr	Stanley Rd	16	OHP030-0020	4223820.78	463595.924	10/2/2007 15:30	648.8
2007 Highland Pigeon TMDL	Squaw Cr	Interrieden Rd	17	OHP030-0021	4214465.59	466954.349	9/5/2007 16:20	74.8
2007 Highland Pigeon TMDL	Squaw Cr	Interrieden Rd	17	OHP030-0021	4214465.59	466954.349	9/11/2007 15:30	151.5
2007 Highland Pigeon TMDL	Squaw Cr	Interrieden Rd	17	OHP030-0021	4214465.59	466954.349	9/18/2007 15:15	186
2007 Highland Pigeon TMDL	Squaw Cr	Interrieden Rd	17	OHP030-0021	4214465.59	466954.349	9/25/2007 15:55	365.4
2007 Highland Pigeon TMDL	Squaw Cr	Interrieden Rd	17	OHP030-0021	4214465.59	466954.349	10/3/2007 14:55	517.2
2007 Highland Pigeon TMDL	Pigeon Cr	Heim Rd	18	OHP030-0022	4210522.67	464893.581	9/5/2007 16:00	209.8
2007 Highland Pigeon TMDL	Pigeon Cr	Heim Rd	18	OHP030-0022	4210522.67	464893.581	9/11/2007 15:15	313
2007 Highland Pigeon TMDL	Pigeon Cr	Heim Rd	18	OHP030-0022	4210522.67	464893.581	9/18/2007 15:00	44.8
2007 Highland Pigeon TMDL	Pigeon Cr	Heim Rd	18	OHP030-0022	4210522.67	464893.581	9/25/2007 16:05	90.7
2007 Highland Pigeon TMDL	Pigeon Cr	Heim Rd	18	OHP030-0022	4210522.67	464893.581	10/3/2007 14:55	119.8
2007 Highland Pigeon TMDL	Pigeon Cr	N Stevenson Station Rd	19	OHP030-0023	4210014.79	461702.291	9/5/2007 15:50	290.9
2007 Highland Pigeon TMDL	Pigeon Cr	N Stevenson Station Rd	19	OHP030-0023	4210014.79	461702.291	9/11/2007 15:00	184.2
2007 Highland Pigeon TMDL	Pigeon Cr	N Stevenson Station Rd	19	OHP030-0023	4210014.79	461702.291	9/18/2007 14:45	123.3
2007 Highland Pigeon TMDL	Pigeon Cr	N Stevenson Station Rd	19	OHP030-0023	4210014.79	461702.291	9/25/2007 15:15	259.5
2007 Highland Pigeon TMDL	Pigeon Cr	N Stevenson Station Rd	19	OHP030-0023	4210014.79	461702.291	10/3/2007 14:35	248.9

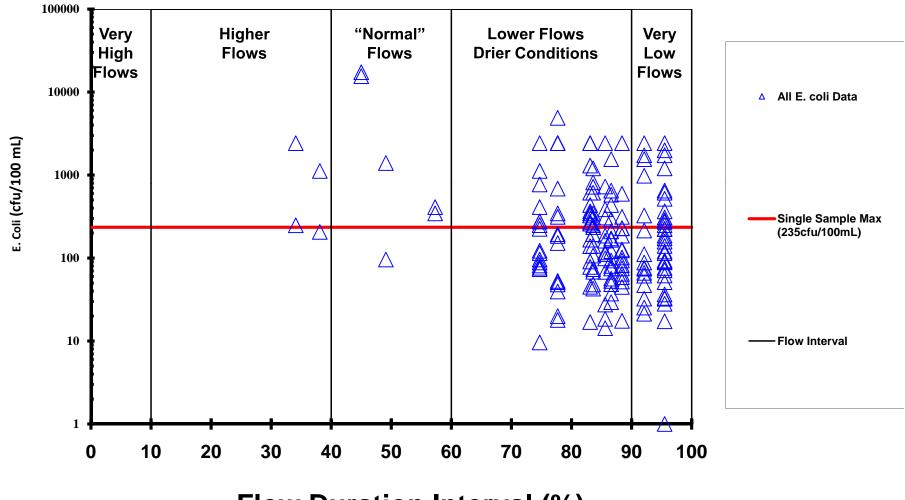
		-						
2007 Highland Pigeon TMDL	Bluegrass Cr	Heckel Rd	20	OHP040-0014	4209803.43	457604.593	9/5/2007 15:40	52.9
2007 Highland Pigeon TMDL	Bluegrass Cr	Heckel Rd	20	OHP040-0014	4209803.43	457604.593	9/11/2007 14:50	2419
2007 Highland Pigeon TMDL	Bluegrass Cr	Heckel Rd	20	OHP040-0014	4209803.43	457604.593	9/18/2007 14:30	17.5
2007 Highland Pigeon TMDL	Bluegrass Cr	Heckel Rd	20	OHP040-0014	4209803.43	457604.593	9/25/2007 15:00	166.4
2007 Highland Pigeon TMDL	Bluegrass Cr	Heckel Rd	20	OHP040-0014	4209803.43	457604.593	10/3/2007 14:25	71.2
2007 Highland Pigeon TMDL	Pigeon Cr	Cardinal Dr and the intersection of Stringtown Rd	21	OHP040-0018	4206886	451361.927	9/5/2007 14:50	48.4
2007 Highland Pigeon TMDL	Pigeon Cr	Cardinal Dr and the intersection of Stringtown Rd	21	OHP040-0018	4206886	451361.927	9/11/2007 14:00	686.7
2007 Highland Pigeon TMDL	Pigeon Cr	Cardinal Dr and the intersection of Stringtown Rd	21	OHP040-0018	4206886	451361.927	9/18/2007 14:00	228.2
2007 Highland Pigeon TMDL	Pigeon Cr	Cardinal Dr and the intersection of Stringtown Rd	21	OHP040-0018	4206886	451361.927	9/25/2007 14:30	325.5
2007 Highland Pigeon TMDL	Pigeon Cr	Cardinal Dr and the intersection of Stringtown Rd	21	OHP040-0018	4206886	451361.927	10/3/2007 13:45	365.4
2007 Highland Pigeon TMDL	Trib to Bluegrass Cr	Warrick Co Line Rd	22	OHP040-0028	4217814.45	458593.254	9/10/2007 16:30	95.9
2007 Highland Pigeon TMDL	Trib to Bluegrass Cr	Warrick Co Line Rd	22	OHP040-0028	4217814.45	458593.254	9/17/2007 16:00	214.3
2007 Highland Pigeon TMDL	Trib to Bluegrass Cr	Warrick Co Line Rd	22	OHP040-0028	4217814.45	458593.254	9/24/2007 15:55	307.6
2007 Highland Pigeon TMDL	Trib to Bluegrass Cr	Warrick Co Line Rd	22	OHP040-0028	4217814.45	458593.254	10/2/2007 16:00	1

2007 Highland Pigeon TMDL	Schlensker D	Boonville New Harmony Rd	23	OHP040-0029	4215437.89	457140.848	9/10/2007 16:40	114.5
2007 Highland Pigeon TMDL	Schlensker D	Boonville New Harmony Rd	23	OHP040-0029	4215437.89	457140.848	9/17/2007 16:15	61.3
2007 Highland Pigeon TMDL	Schlensker D	Boonville New Harmony Rd	23	OHP040-0029	4215437.89	457140.848	10/2/2007 16:10	272.3
2007 Highland Pigeon TMDL	Locust Cr	Allen Ln	24	OHP040-0031	4206843.83	447042.018	9/5/2007 14:00	37.3
2007 Highland Pigeon TMDL	Locust Cr	Allen Ln	24	OHP040-0031	4206843.83	447042.018	9/11/2007 13:05	2420
2007 Highland Pigeon TMDL	Locust Cr	Allen Ln	24	OHP040-0031	4206843.83	447042.018	9/18/2007 13:10	74.9
2007 Highland Pigeon TMDL	Locust Cr	Allen Ln	24	OHP040-0031	4206843.83	447042.018	9/25/2007 12:55	344.1
2007 Highland Pigeon TMDL	Locust Cr	Allen Ln	24	OHP040-0031	4206843.83	447042.018	10/3/2007 12:40	90.7
2007 Highland Pigeon TMDL	Locust Cr	Foot Bridge @ Trailer Park	25	OHP040-0032	4209853.34	447666.816	9/5/2007 14:15	579.4
2007 Highland Pigeon TMDL	Locust Cr	Foot Bridge @ Trailer Park	25	OHP040-0032	4209853.34	447666.816	9/11/2007 13:25	2420
2007 Highland Pigeon TMDL	Locust Cr	Foot Bridge @ Trailer Park	25	OHP040-0032	4209853.34	447666.816	9/18/2007 13:20	52.1
2007 Highland Pigeon TMDL	Locust Cr	Foot Bridge @ Trailer Park	25	OHP040-0032	4209853.34	447666.816	9/25/2007 13:15	2419
2007 Highland Pigeon TMDL	Locust Cr	Foot Bridge @ Trailer Park	25	OHP040-0032	4209853.34	447666.816	10/3/2007 12:50	33.1
2007 Highland Pigeon TMDL	Little Pigeon Cr	Kentucky Ave	26	OHP040-0033	4207711.15	451999.485	9/5/2007 15:15	165.8
2007 Highland Pigeon TMDL	Little Pigeon Cr	Kentucky Ave	26	OHP040-0033	4207711.15	451999.485	9/11/2007 13:45	2420
2007 Highland Pigeon TMDL	Little Pigeon Cr	Kentucky Ave	26	OHP040-0033	4207711.15	451999.485	9/18/2007 13:40	82
2007 Highland Pigeon TMDL	Little Pigeon Cr	Kentucky Ave	26	OHP040-0033	4207711.15	451999.485	9/25/2007 14:20	16.9

2007 Highland Pigeon TMDL	Little Pigeon Cr	Kentucky Ave	26	OHP040-0033	4207711.15	451999.485	10/3/2007 13:30	17.3
2007 Highland Pigeon	Bluegrass Cr	CR 600 N / Baseline Rd	27	OHP040-0034	4219420.76	459448.856	9/4/2007 16:50	387.3
2007 Highland Pigeon TMDL	Bluegrass Cr	CR 600 N / Baseline Rd	27	OHP040-0034	4219420.76	459448.856	9/10/2007 16:20	76.3
2007 Highland Pigeon TMDL	Bluegrass Cr	CR 600 N / Baseline Rd	27	OHP040-0034	4219420.76	459448.856	9/17/2007 15:55	32.4
2007 Highland Pigeon TMDL	Bluegrass Cr	CR 600 N / Baseline Rd	27	OHP040-0034	4219420.76	459448.856	9/24/2007 15:45	721.5
2007 Highland Pigeon TMDL	Bluegrass Cr	CR 600 N / Baseline Rd	27	OHP040-0034	4219420.76	459448.856	10/2/2007 15:50	224.7
2007 Highland Pigeon TMDL	Carpentier Cr	Broadway Ave	28	OHP050-0002	4201651.33	445225.939	9/5/2007 13:00	1553
2007 Highland Pigeon TMDL	Carpentier Cr	Broadway Ave	28	OHP050-0002	4201651.33	445225.939	9/11/2007 12:20	2420
2007 Highland Pigeon TMDL	Carpentier Cr	Broadway Ave	28	OHP050-0002	4201651.33	445225.939	9/18/2007 12:25	2420
2007 Highland Pigeon TMDL	Carpentier Cr	Broadway Ave	28	OHP050-0002	4201651.33	445225.939	9/25/2007 12:35	2420
2007 Highland Pigeon TMDL	Carpentier Cr	Broadway Ave	28	OHP050-0002	4201651.33	445225.939	10/3/2007 12:15	2420
2007 Highland Pigeon TMDL	McFadden Cr	EW 570 Rd	29	OHP070-0008	4198240.9	423718.4	9/5/2007 10:45	435.2
2007 Highland Pigeon TMDL	McFadden Cr	EW 570 Rd	29	OHP070-0008	4198240.9	423718.4	9/11/2007 10:30	51.2
2007 Highland Pigeon TMDL	McFadden Cr	EW 570 Rd	29	OHP070-0008	4198240.9	423718.4	9/18/2007 10:40	126.7
2007 Highland Pigeon TMDL	McFadden Cr	EW 570 Rd	29	OHP070-0008	4198240.9	423718.4	9/25/2007 11:00	435.2
2007 Highland Pigeon TMDL	McFadden Cr	EW 570 Rd	29	OHP070-0008	4198240.9	423718.4	10/3/2007 10:50	285.1
2007 Highland Pigeon TMDL	Cypress Slough	Acess off of Bluff Rd	30	ОНР070-0009	4197479.7	423936.948	9/5/2007 11:10	80.1

2007 Highland Pigeon TMDL	Cypress Slough	Acess off of Bluff Rd	30	OHP070-0009	4197479.7	423936.948	9/11/2007 10:40	39.5
2007 Highland Pigeon TMDL	Cypress Slough	Acess off of Bluff Rd	30	OHP070-0009	4197479.7	423936.948	9/18/2007 10:55	64.5
2007 Highland Pigeon TMDL	Cypress Slough	Acess off of Bluff Rd	30	OHP070-0009	4197479.7	423936.948	9/25/2007 11:10	139.1
2007 Highland Pigeon TMDL	Cypress Slough	Acess off of Bluff Rd	30	OHP070-0009	4197479.7	423936.948	10/3/2007 11:00	88.6
2007 Highland Pigeon TMDL	Unnamed Trib Cypress Slough	Indian Mound Rd	31	OHP070-0010	4196447.62	426821.429	9/5/2007 11:25	56.5
2007 Highland Pigeon TMDL	Cypress Slough	Indian Mound Rd	31	OHP070-0010	4196447.62	426821.429	9/11/2007 10:50	19.9
2007 Highland Pigeon TMDL	Unnamed Trib Cypress Slough	Indian Mound Rd	31	OHP070-0010	4196447.62	426821.429	9/18/2007 11:05	58.8
2007 Highland Pigeon TMDL	Unnamed Trib Cypress Slough	Indian Mound Rd	31	OHP070-0010	4196447.62	426821.429	9/25/2007 11:25	260.2
2007 Highland Pigeon TMDL	Unnamed Trib Cypress Slough	Indian Mound Rd	31	OHP070-0010	4196447.62	426821.429	10/3/2007 11:10	157.6
2007 Highland Pigeon TMDL	Cypress Slough	Carbon Rd	32	OHP070-0011	4193580.02	430267.591	9/5/2007 11:40	648.8
2007 Highland Pigeon TMDL	Cypress Slough	Carbon Rd	32	OHP070-0011	4193580.02	430267.591	9/11/2007 11:10	344.8
2007 Highland Pigeon TMDL	Cypress Slough	Carbon Rd	32	OHP070-0011	4193580.02	430267.591	9/18/2007 11:20	593.8
2007 Highland Pigeon TMDL	Cypress Slough	Carbon Rd	32	OHP070-0011	4193580.02	430267.591	9/25/2007 11:40	1300
2007 Highland Pigeon TMDL	Cypress Slough	Carbon Rd	32	OHP070-0011	4193580.02	430267.591	10/3/2007 11:20	1986
2007 Highland Pigeon TMDL	Bayou Cr	Franklin Rd	33	OHP070-0014	4196789.57	439763.082	9/5/2007 12:35	172.6
2007 Highland Pigeon TMDL	Bayou Cr	Franklin Rd	33	OHP070-0014	4196789.57	439763.082	9/11/2007 12:00	193.5
2007 Highland Pigeon TMDL	Bayou Cr	Franklin Rd	33	OHP070-0014	4196789.57	439763.082	9/18/2007 11:55	101.4

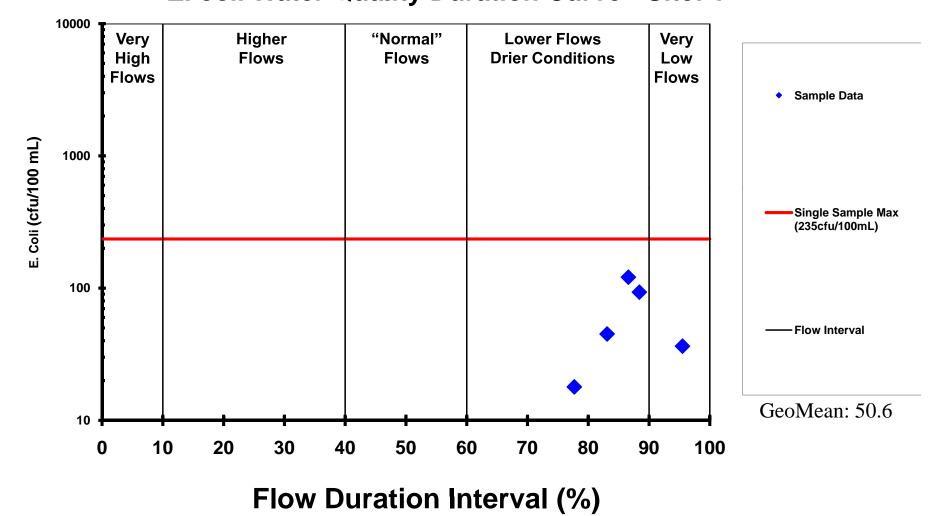
2007 Highland Pigeon TMDL	Bayou Cr	Franklin Rd	33	OHP070-0014	4196789.57	439763.082	9/25/2007 12:20	271.7
2007 Highland Pigeon TMDL	Bayou Cr	Franklin Rd	33	OHP070-0014	4196789.57	439763.082	10/3/2007 11:55	172.6
2007 Highland Pigeon TMDL	Bayou Drain	DNR Rd Hovey Lake Fish and Wildlife Access Rd to the Drain.	34	OHP070-0015	4184492.35	418046.24	9/5/2007 9:45	29.4
2007 Highland Pigeon TMDL	Bayou Drain	DNR Rd Hovey Lake Fish and Wildlife Access Rd to the Drain.	34	OHP070-0015	4184492.35	418046.24	9/11/2007 9:45	48
2007 Highland Pigeon TMDL	Bayou Drain	DNR Rd Hovey Lake Fish and Wildlife Access Rd to the Drain.	34	OHP070-0015	4184492.35	418046.24	9/18/2007 9:40	228.2
2007 Highland Pigeon TMDL	Bayou Drain	DNR Rd Hovey Lake Fish and Wildlife Access Rd to the Drain.	34	OHP070-0015	4184492.35	418046.24	9/25/2007 10:00	78
2007 Highland Pigeon TMDL	Bayou Drain	DNR Rd Hovey Lake Fish and Wildlife Access Rd to the Drain.	34	OHP070-0015	4184492.35	418046.24	10/3/2007 9:45	61.6
2007 Highland Pigeon TMDL	Unnamed Trib to Bayou Cr	Smith-Diamond Rd	35	OHP070-0016	4196799.33	439363.587	9/5/2007 12:30	93.3
2007 Highland Pigeon TMDL	Unnamed Trib to Bayou Cr	Smith-Diamond Rd	35	OHP070-0016	4196799.33	439363.587	9/11/2007 11:50	52.9
2007 Highland Pigeon TMDL	Unnamed Trib to Bayou Cr	Smith-Diamond Rd	35	OHP070-0016	4196799.33	439363.587	9/18/2007 11:45	313
2007 Highland Pigeon TMDL	,	Smith-Diamond Rd	35	OHP070-0016	4196799.33	439363.587	9/25/2007 12:10	613.1
2007 Highland Pigeon TMDL		Smith-Diamond Rd	35	OHP070-0016	4196799.33	439363.587	10/3/2007 11:45	222.4


Attachment B

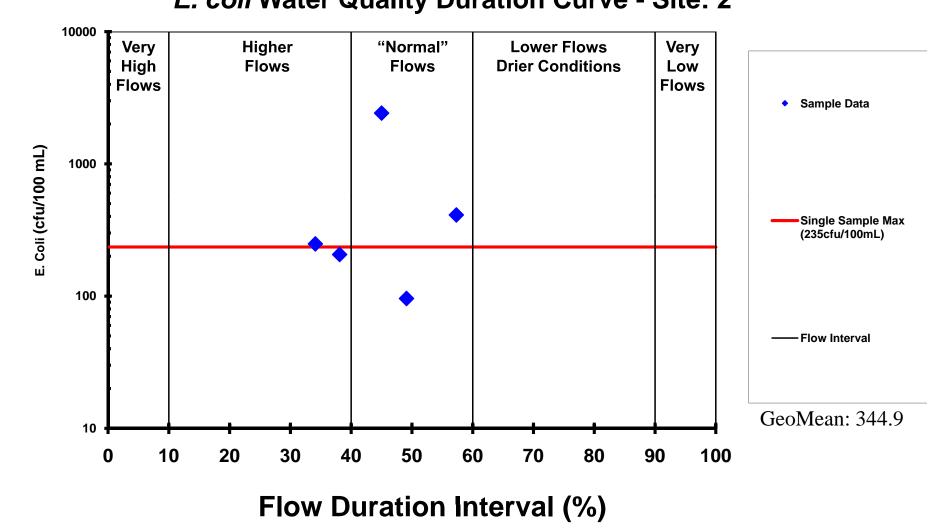
Water Quality Graphs for the Highland-Pigeon Creek Watershed TMDL

<<left intentionally blank for double-sided printing>>

Highland Pigeon Creek Watershed

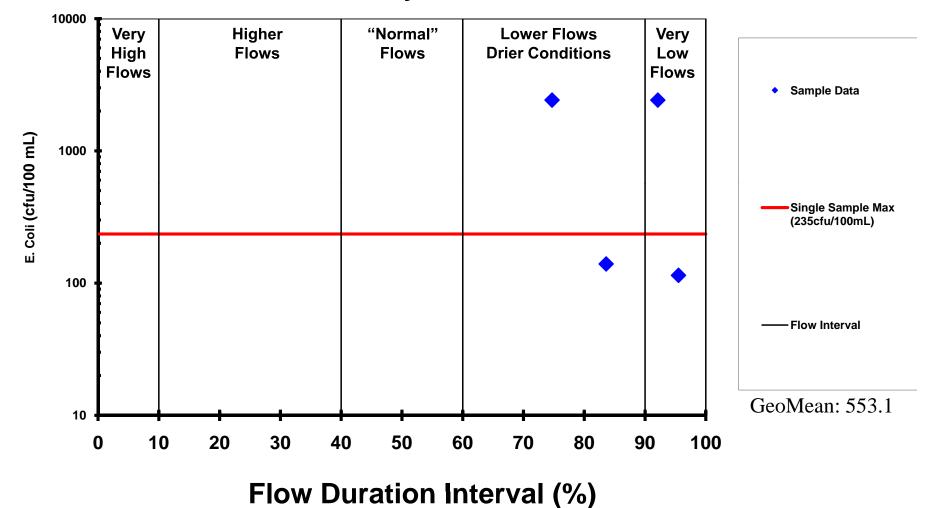

E. coli Water Quality Duration Curve (all sites)

Flow Duration Interval (%)


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Watershed Drainage Area is 526.14 square miles

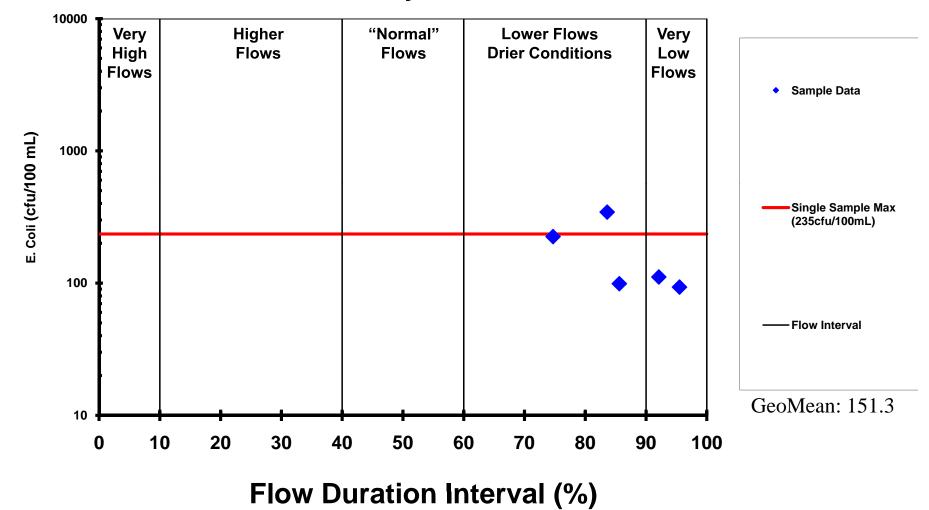
Eagle Creek At S. Kentucky Ave *E. coli* Water Quality Duration Curve - Site: 1

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 0.0003 square miles


Hurricane Creek North of CR 1025 S and East of US 41 *E. coli* Water Quality Duration Curve - Site: 2

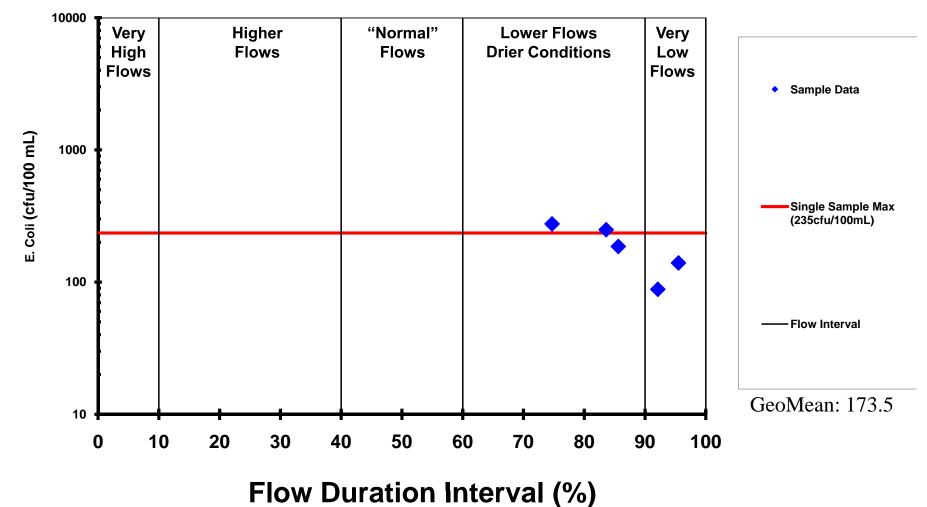
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 13.7 square miles

Sand Creek At CR 450 S


E. coli Water Quality Duration Curve - Site: 3

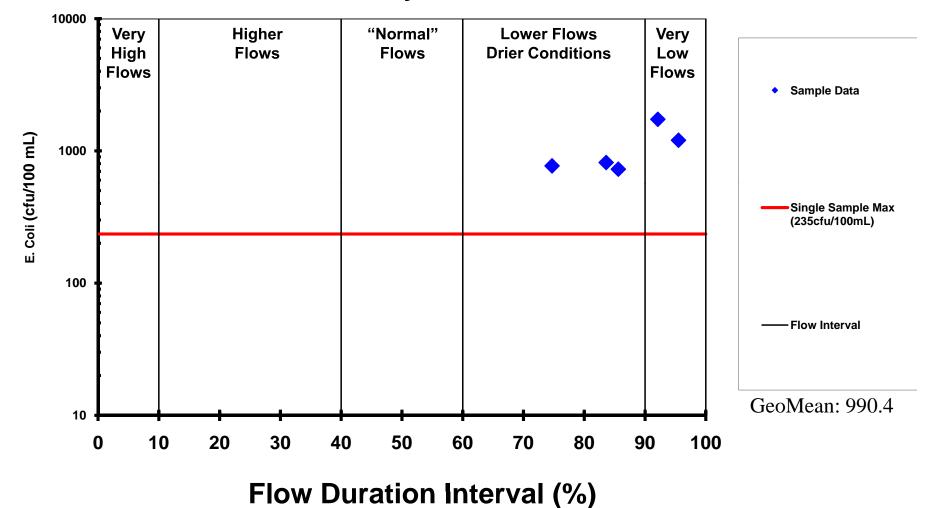
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 13.9 square miles

Pigeon Creek At CR 750 S


E. coli Water Quality Duration Curve - Site: 4

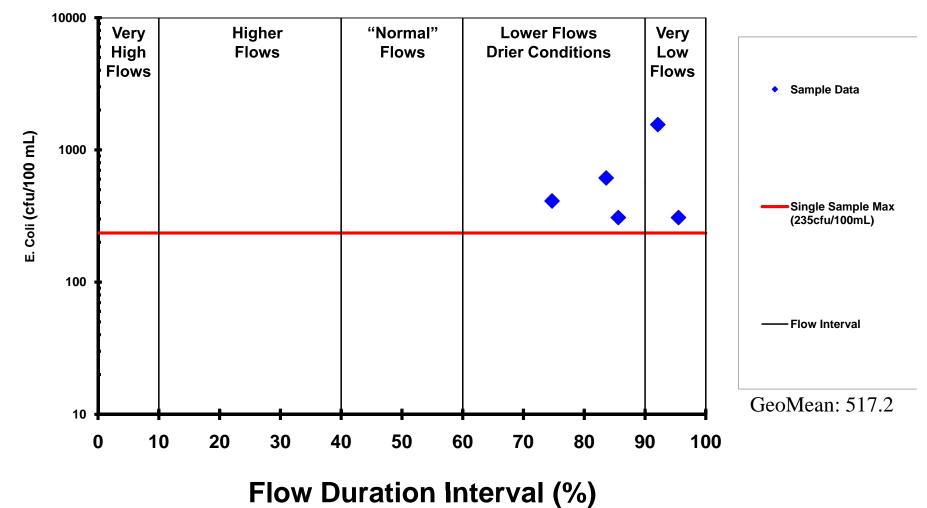
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 30.3 square miles

West Fork Pigeon Creek At CR 200 E


E. coli Water Quality Duration Curve - Site: 5

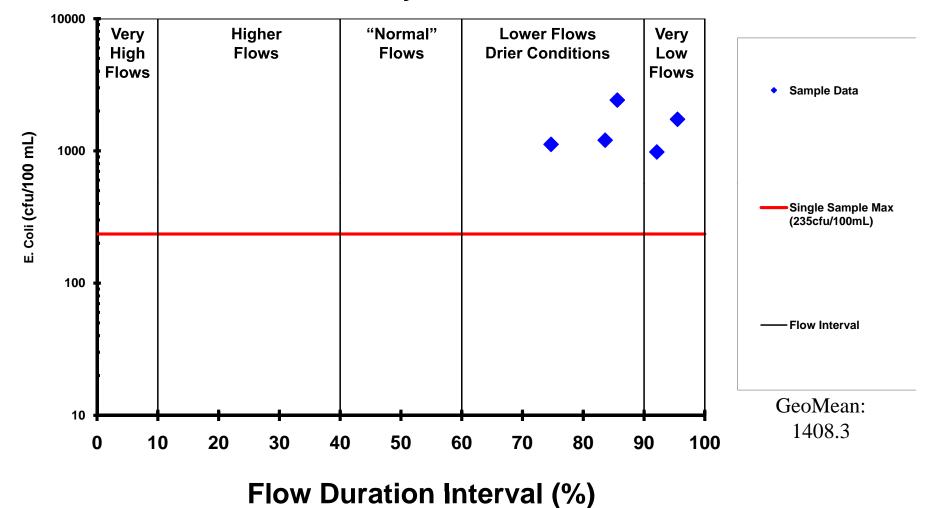
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 43.3 square miles

Pigeon Creek At CR 300 E


E. coli Water Quality Duration Curve - Site: 6

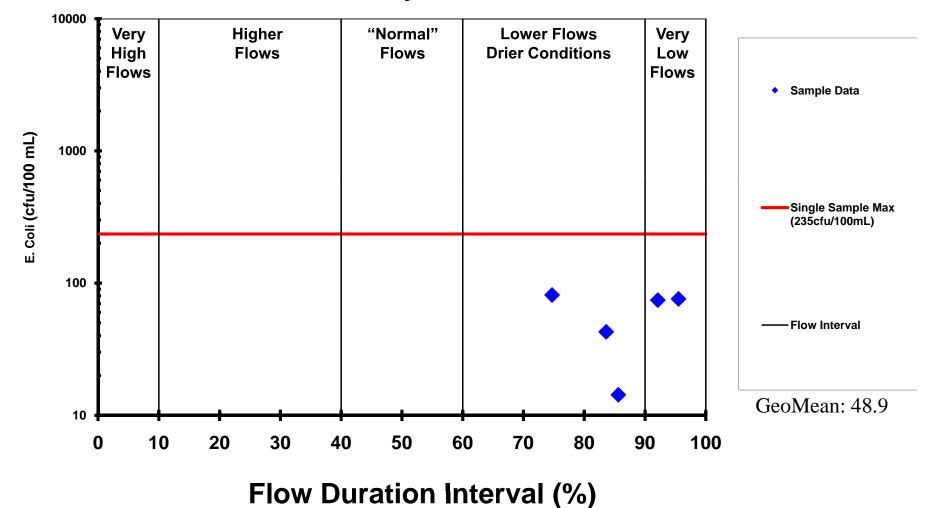
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 76.0 square miles

West Fork Pigeon Creek At CR 25 W


E. coli Water Quality Duration Curve - Site: 7

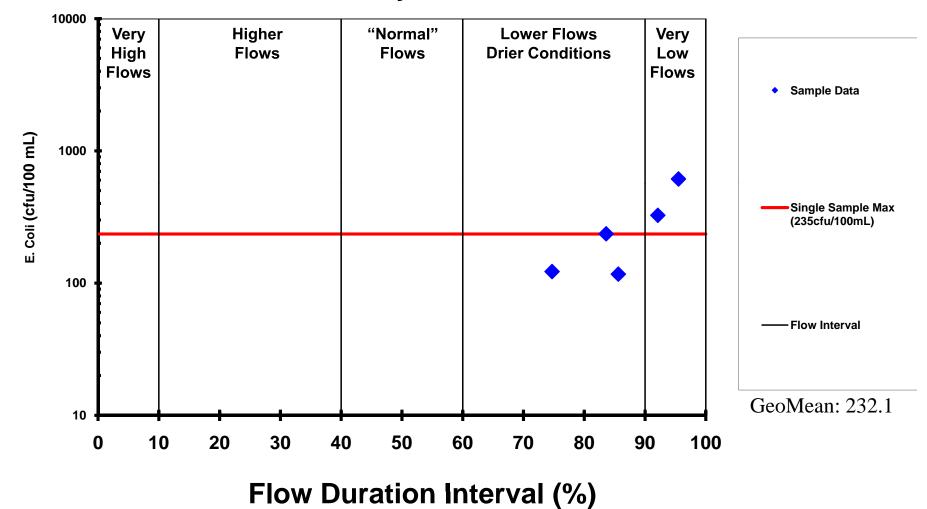
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 22.9 square miles

Hurricane Creek At CR 925 S


E. coli Water Quality Duration Curve - Site: 8

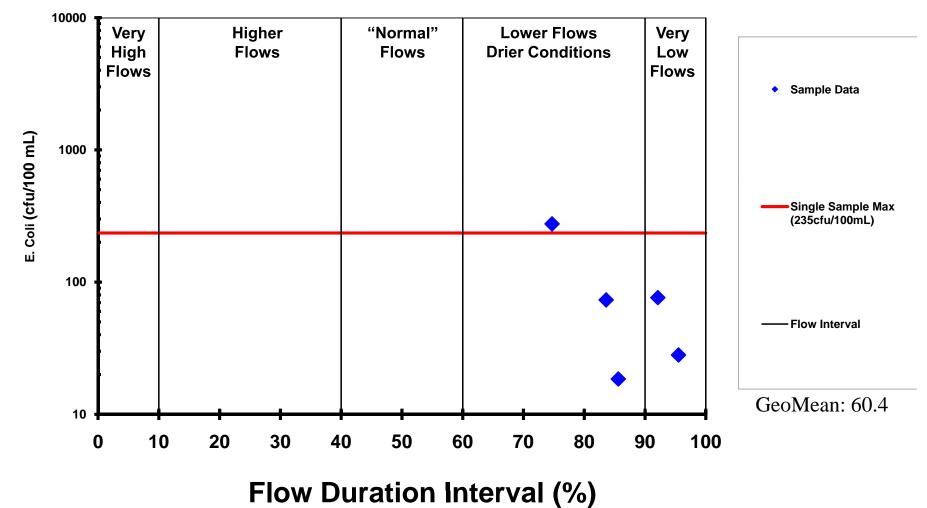
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 16.0 square miles

Pigeon Creek At CR 550 E


E. coli Water Quality Duration Curve - Site: 9

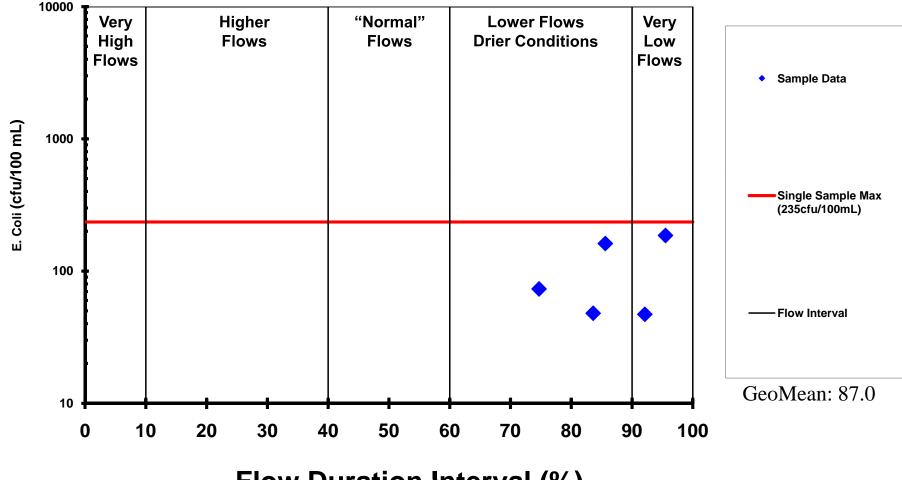
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 90.5 square miles

Smith Fork At SR 57


E. coli Water Quality Duration Curve - Site: 10

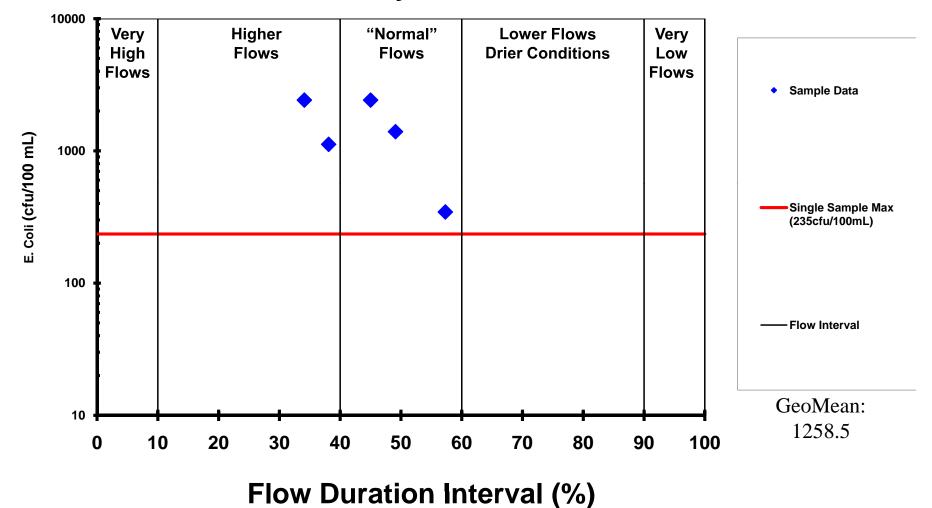
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 17.6 square miles

Smith Fork At CR 950 E


E. coli Water Quality Duration Curve - Site: 11

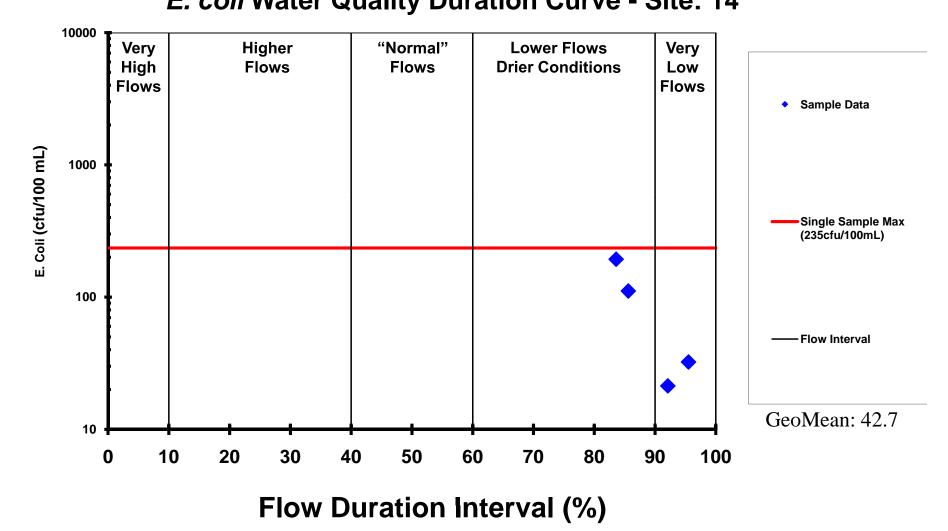
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 21.2 square miles

Pigeon Creek At New Harmony Rd



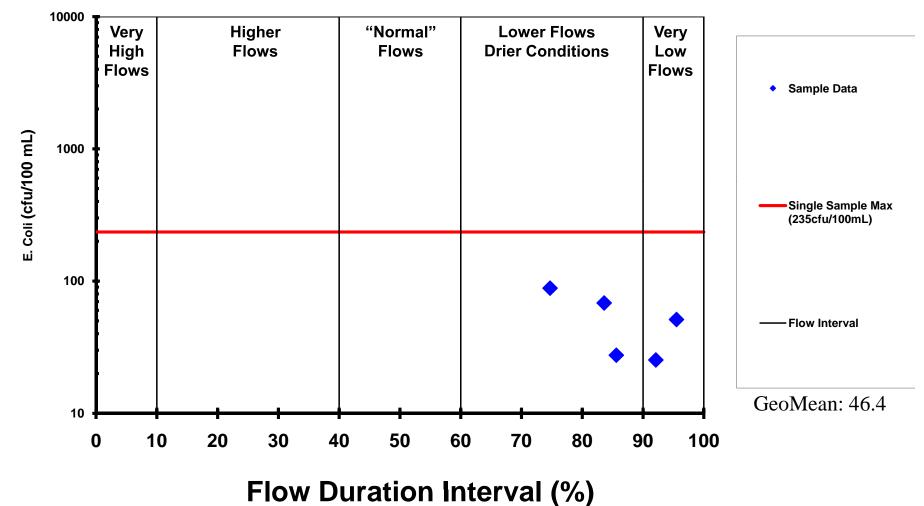
Flow Duration Interval (%)

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 63.8 square miles


Unnamed Tributary to Big Creek NW of Lynnville at CR 950 S

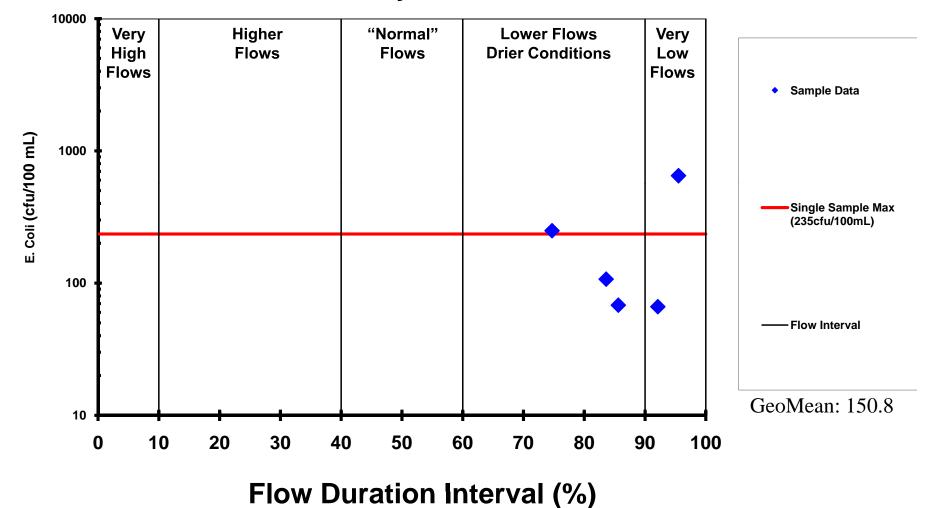
E. coli Water Quality Duration Curve - Site: 13

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 12.0 square miles


Big Creek At Strip Mine Rd *E. coli* Water Quality Duration Curve - Site: 14

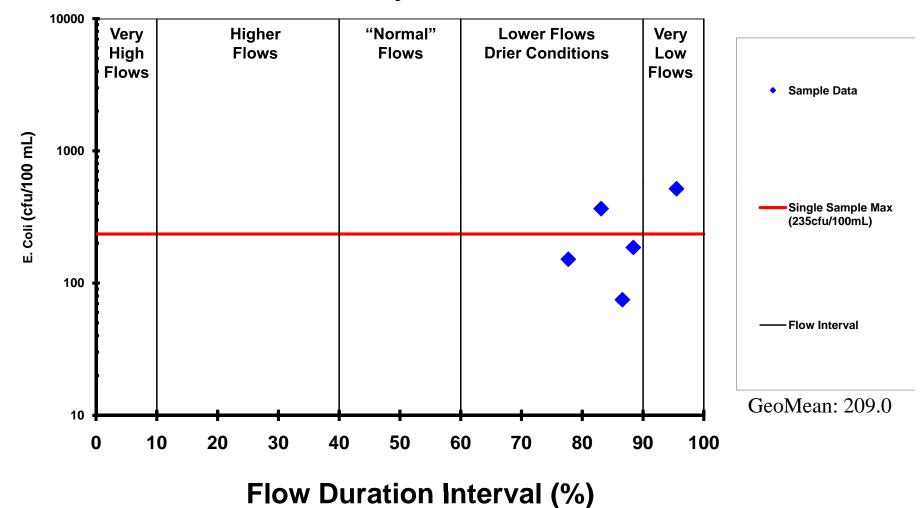
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 16.9 square miles

Big Creek At Buckskin Rd/CR850 W


E. coli Water Quality Duration Curve - Site: 15

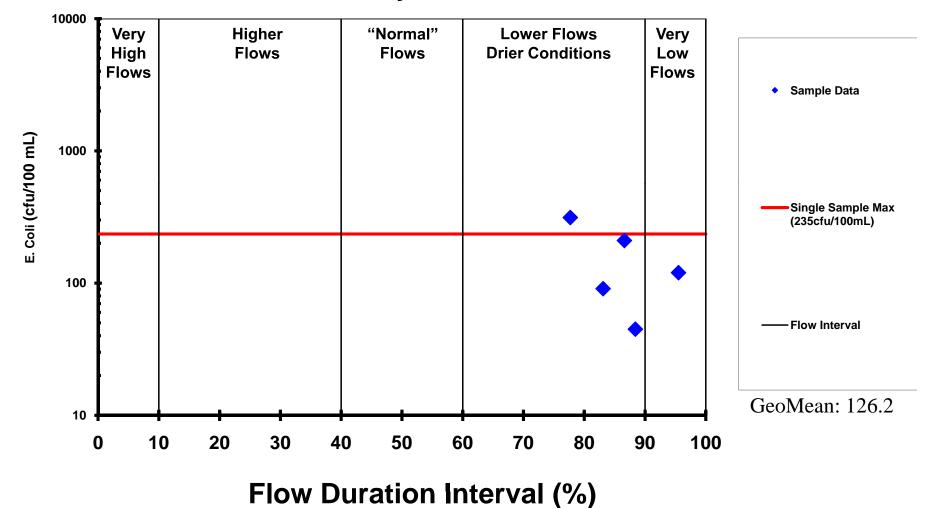
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 39.83 square miles

Pigeon Creek At Stanley Rd


E. coli Water Quality Duration Curve - Site: 16

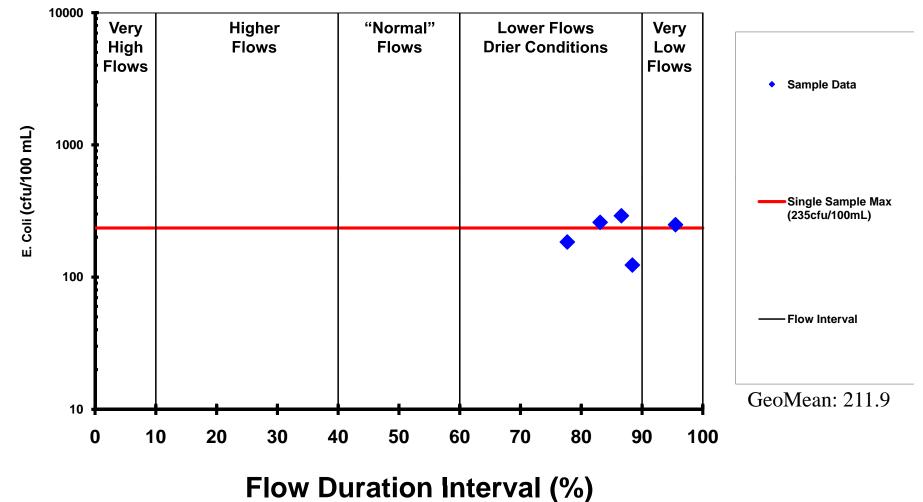
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 46.62 square miles

Squaw Creek At Interrieden Rd


E. coli Water Quality Duration Curve - Site: 17

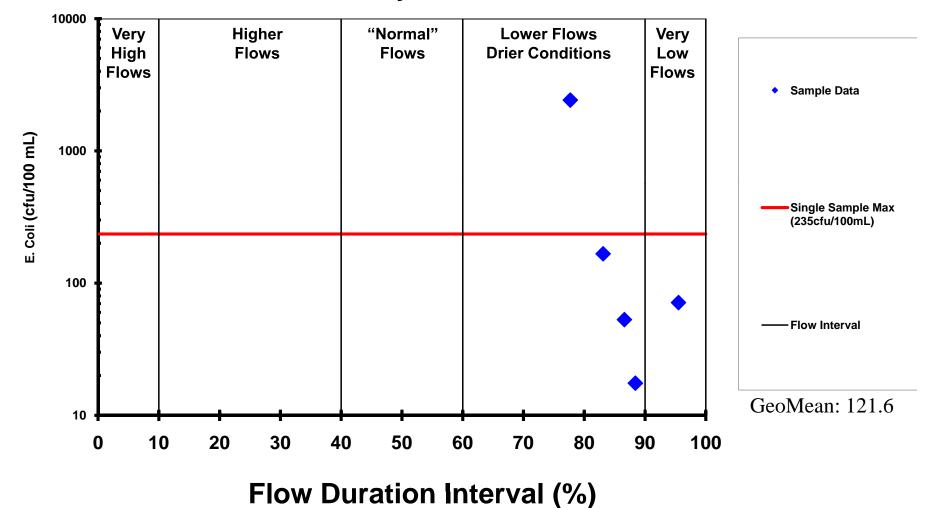
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 11.13 square miles

Pigeon Creek At Heim Rd


E. coli Water Quality Duration Curve - Site: 18

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 86.12 square miles

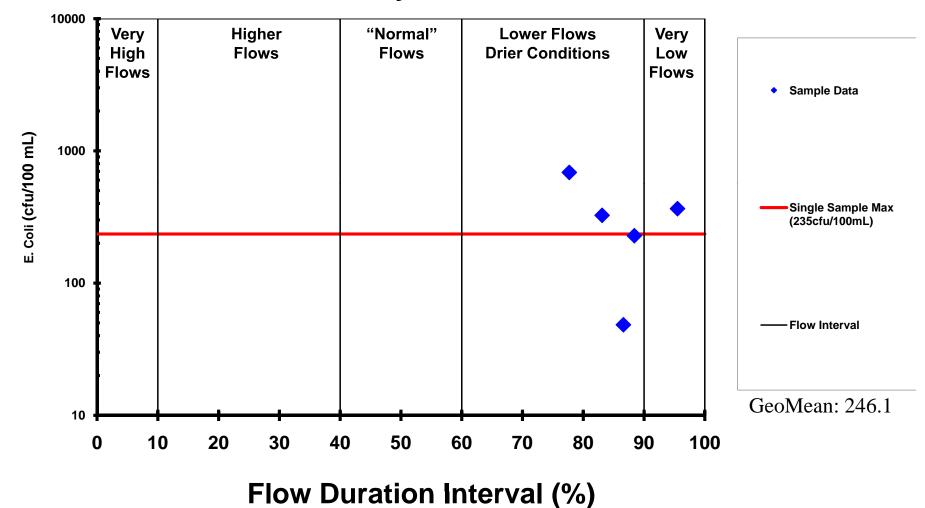
Pigeon Creek At N. Stevenson Station Rd



IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 107.9 square miles

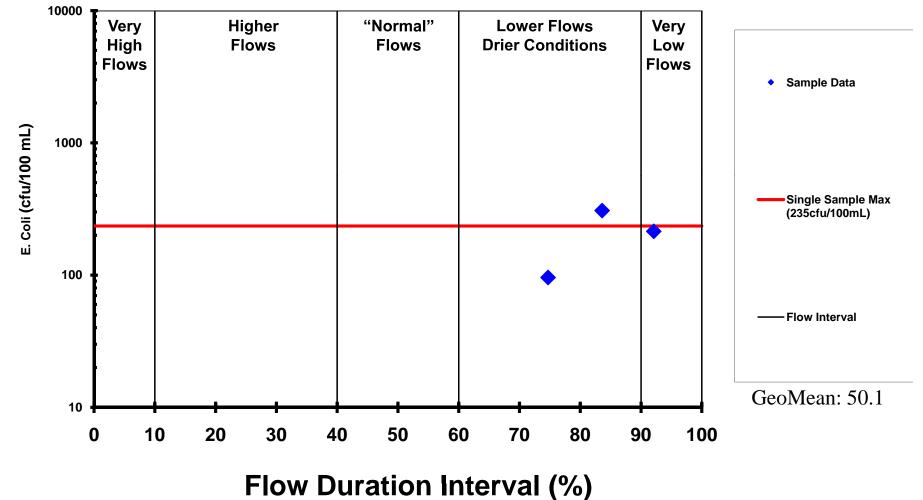
Attachment B: 20 of 38

Bluegrass Creek At Heckel Rd

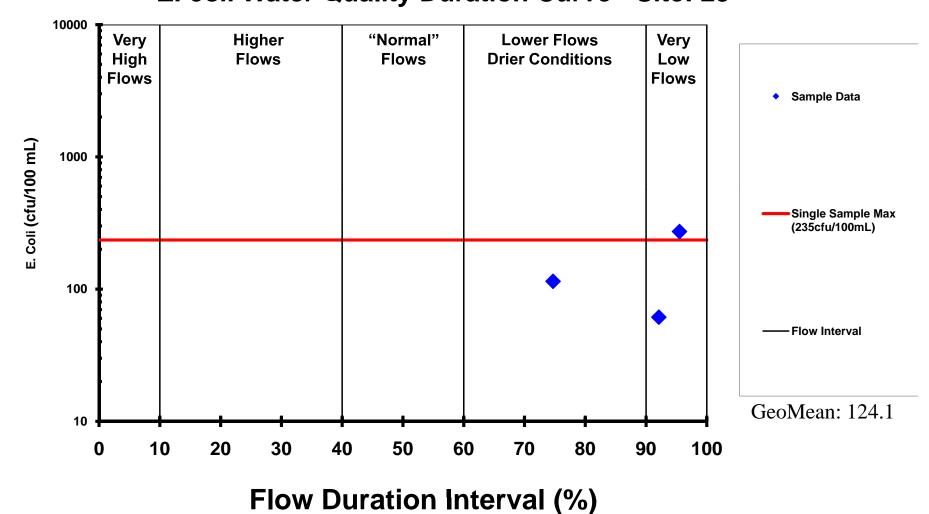

E. coli Water Quality Duration Curve - Site: 20

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 44.08 square miles

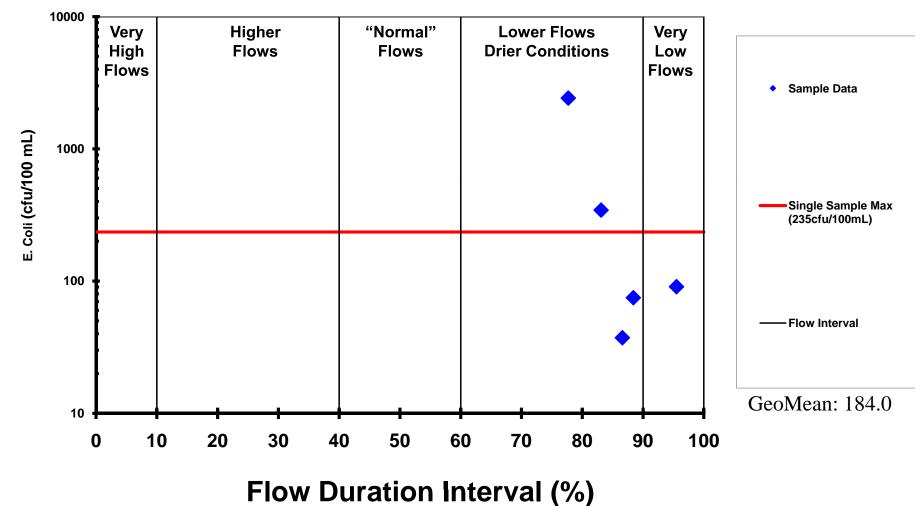
Pigeon Creek At Cardinal Dr


E. coli Water Quality Duration Curve - Site: 21

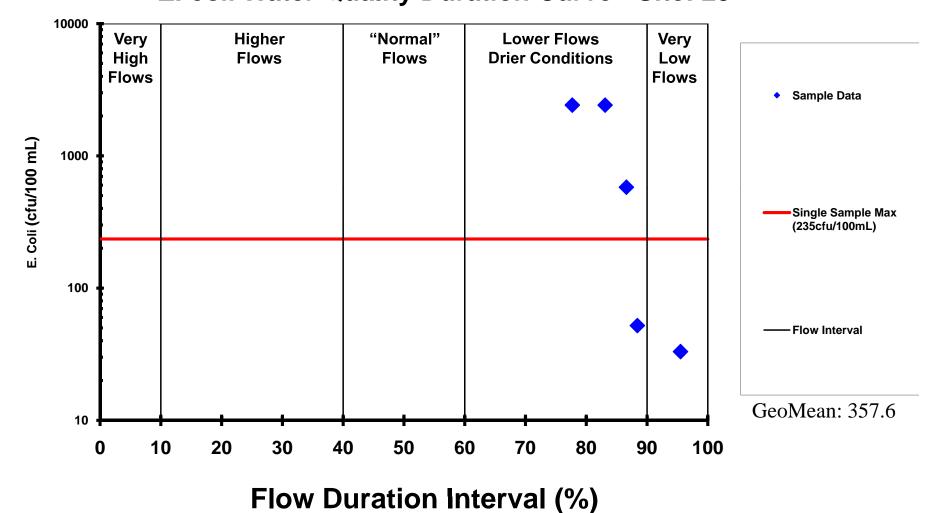
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 77.3 square miles


Trib to Bluegrass Creek At Warrick County Line Rd

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 0.12 square miles

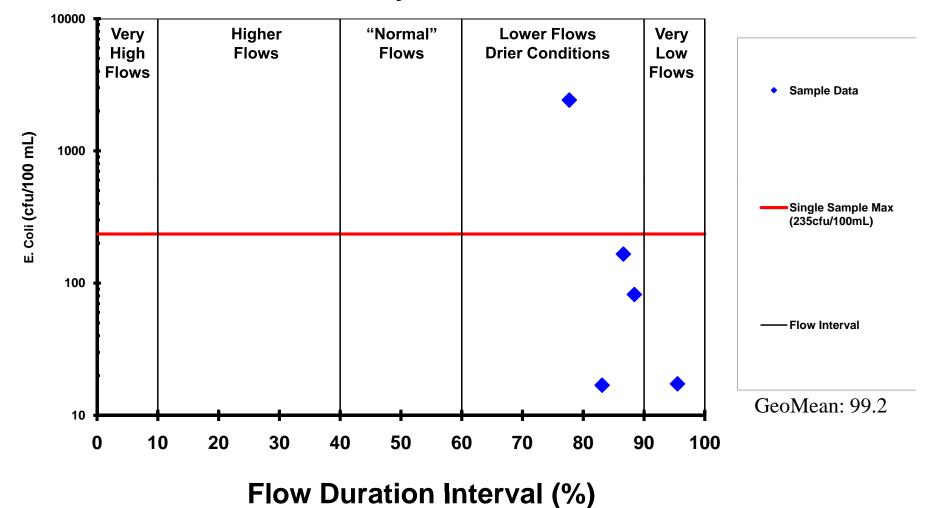

Schlensker Ditch At Boonville New Harmony Rd *E. coli* Water Quality Duration Curve - Site: 23

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 5.74 square miles


Locust Creek At Allen Ln

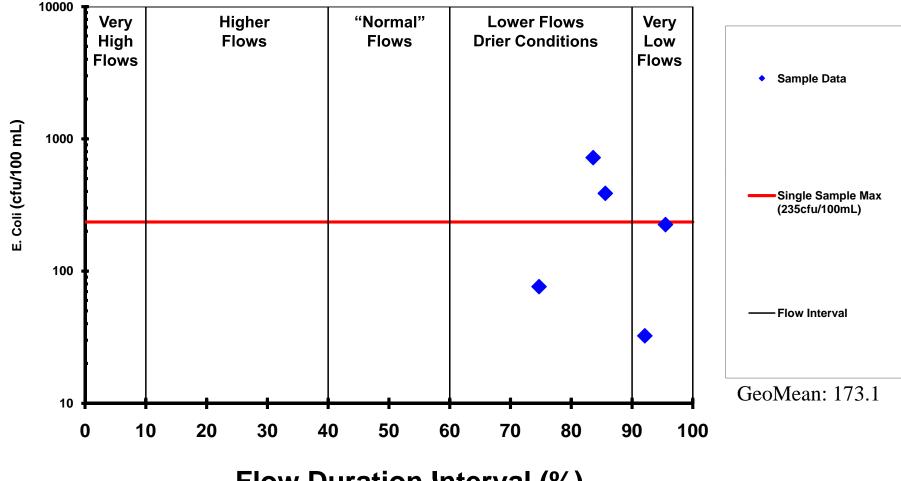
E. coli Water Quality Duration Curve - Site: 24

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 15.57 square miles


Locust Creek At Foot Bridge @ Trailer Park *E. coli* Water Quality Duration Curve - Site: 25

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 10.13 square miles

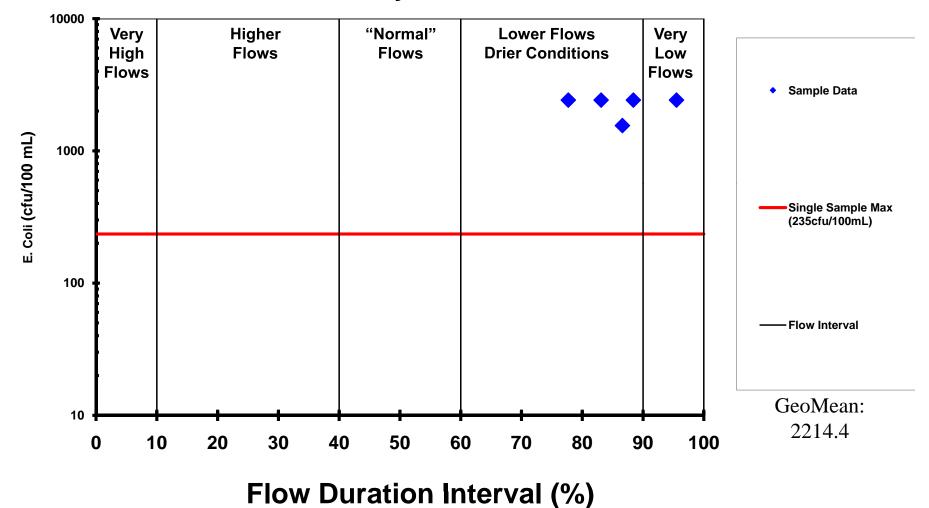
Little Pigeon Creek Kentucky Ave


E. coli Water Quality Duration Curve - Site: 26

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 15.4 square miles

Bluegrass Creek CR 600 N/Baseline Rd

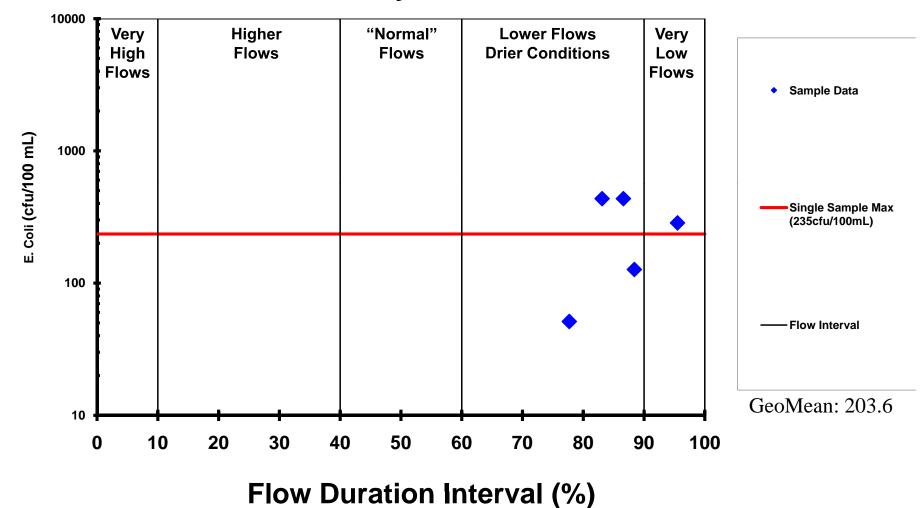
E. coli Water Quality Duration Curve - Site: 27



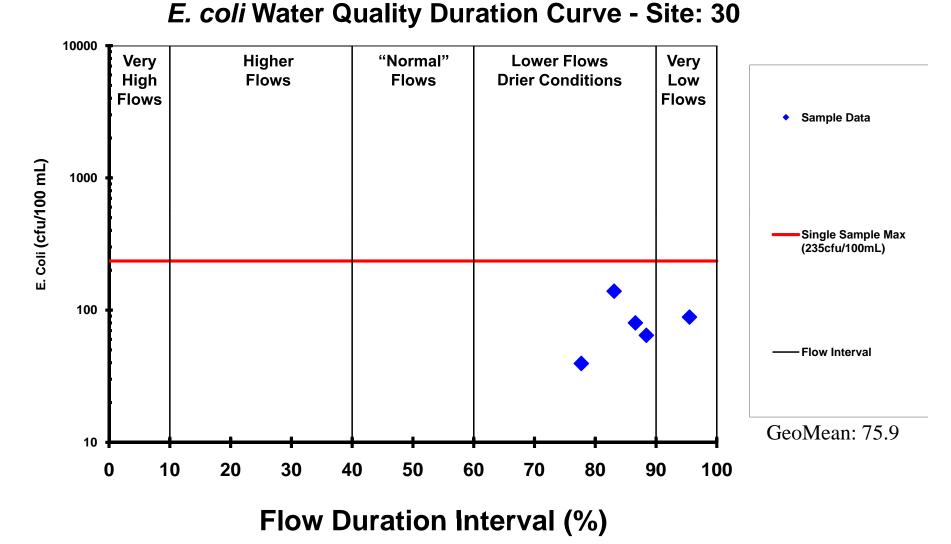
Flow Duration Interval (%)

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 8.27 square miles

Carpentier Creek Broadway Ave

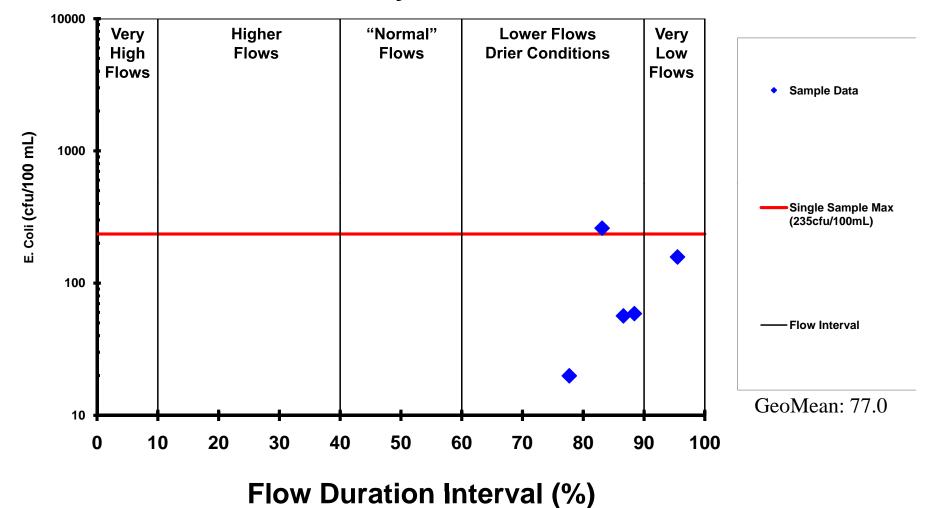

E. coli Water Quality Duration Curve - Site: 28

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 7.29 square miles


McFadden Creek EW 570 Rd

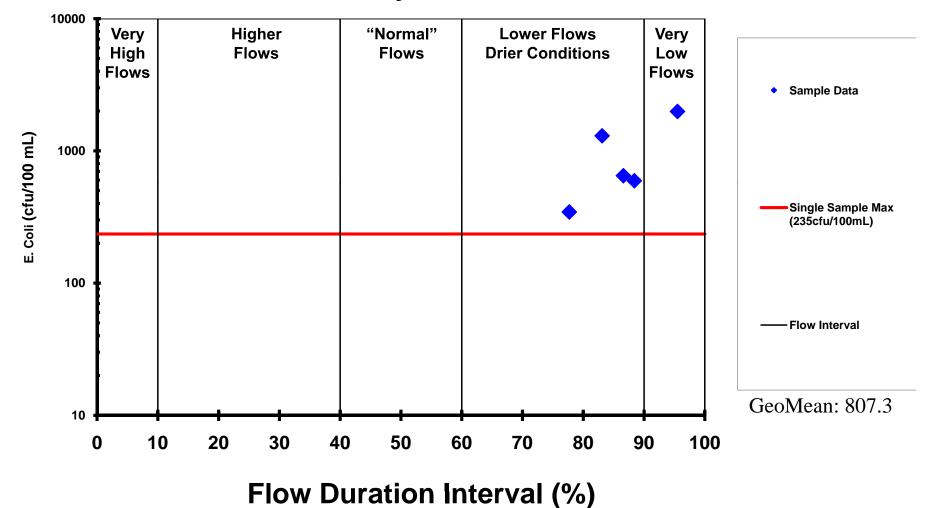
E. coli Water Quality Duration Curve - Site: 29

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 19.92 square miles


Cypress Slough Access off of Bluff Rd

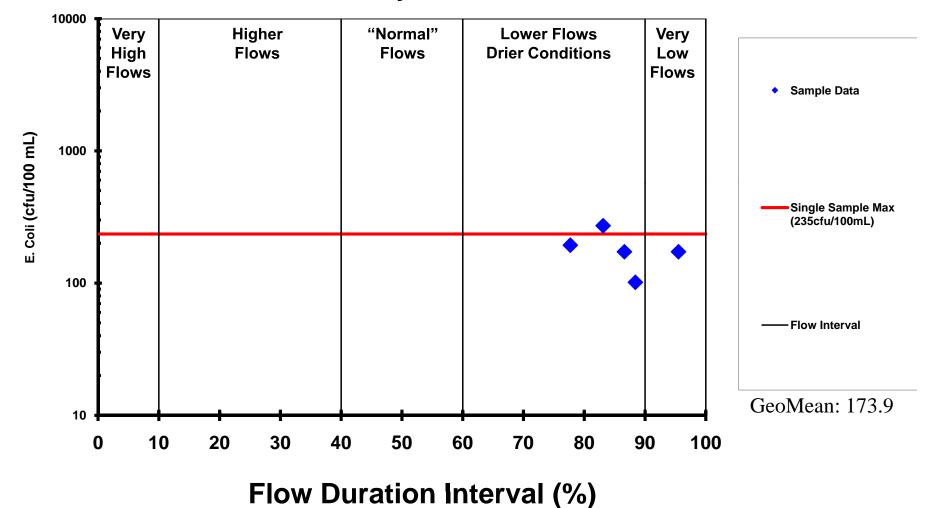
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 24.98 square miles

Unnamed Tributary to Cypress Slough Indian Mound Rd


E. coli Water Quality Duration Curve - Site: 31

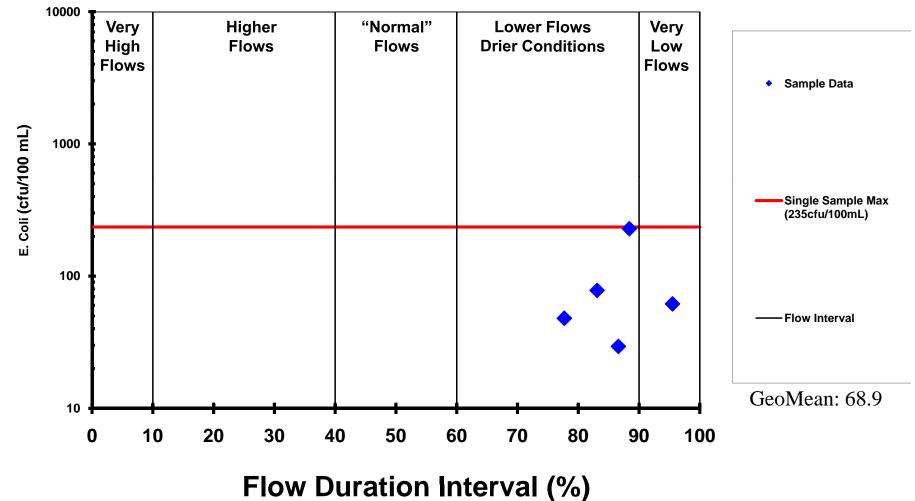
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 6.79 square miles

Cypress Slough Carbon Rd


E. coli Water Quality Duration Curve - Site: 32

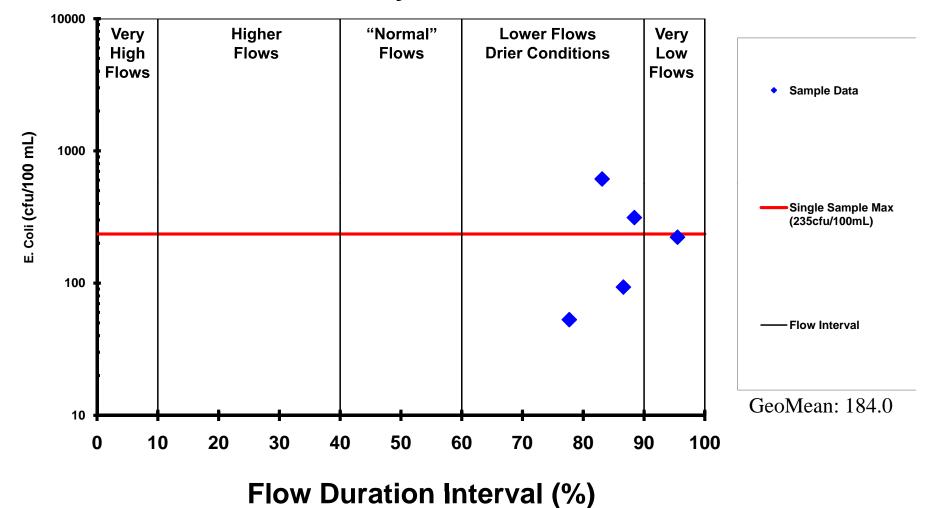
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 9.34 square miles

Bayou Creek Franklin Rd

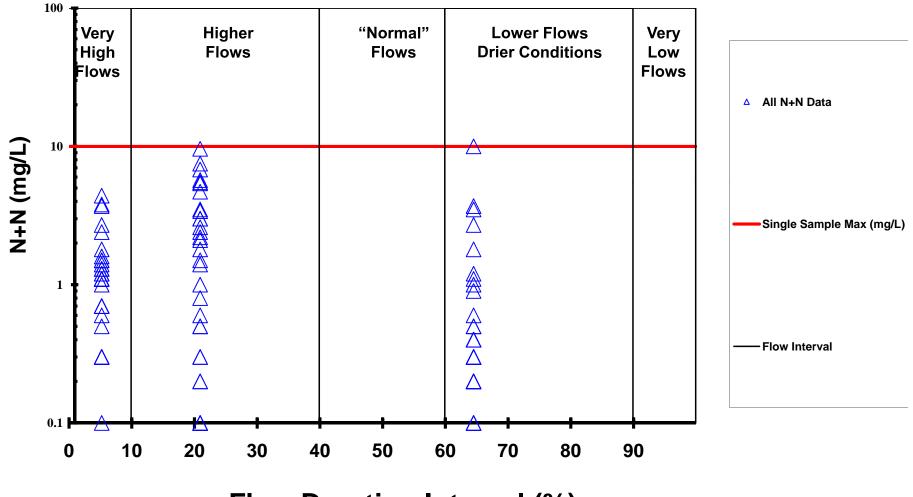

E. coli Water Quality Duration Curve - Site: 33

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 9.74 square miles

Bayou Drain DNR Rd Hovey Lake FWA


E. coli Water Quality Duration Curve - Site: 34

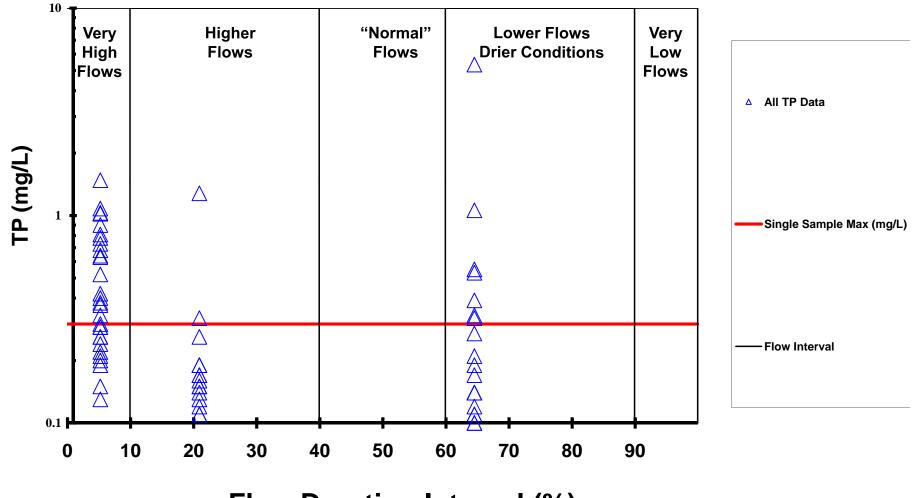
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 5.28 square miles


Unnamed Tributary to Bayou Creek At Smith-Diamond Rd

E. coli Water Quality Duration Curve - Site: 35

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 6.89 square miles

Highland Pigeon Creek Watershed Nitrate+Nitrite Water Quality Duration Curve (all sites)



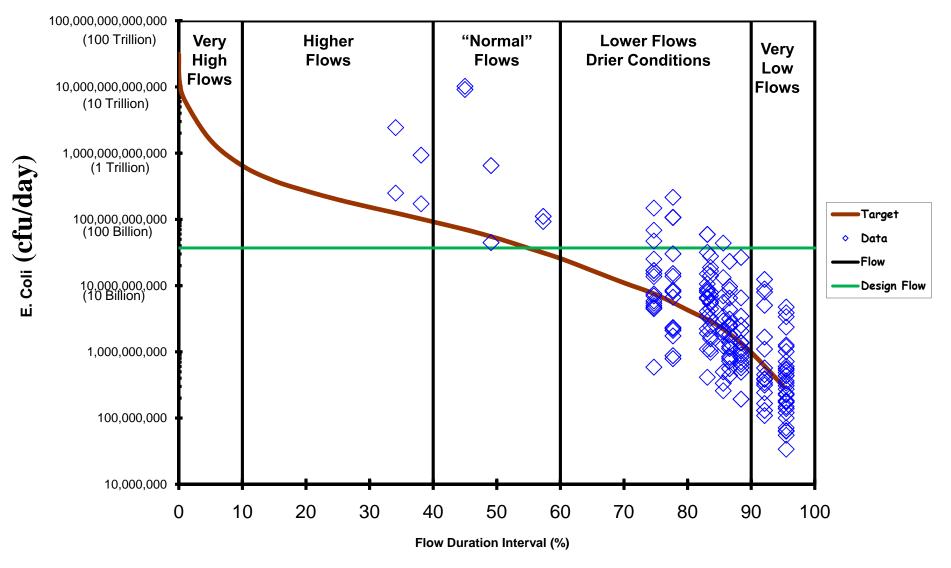
Flow Duration Interval (%)

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Watershed Drainage Area is 526.14 square miles

Attachment B: 37 of 38

Highland Pigeon Creek Watershed Total Phosphorus Water Quality Duration Curve (all sites)

Flow Duration Interval (%)

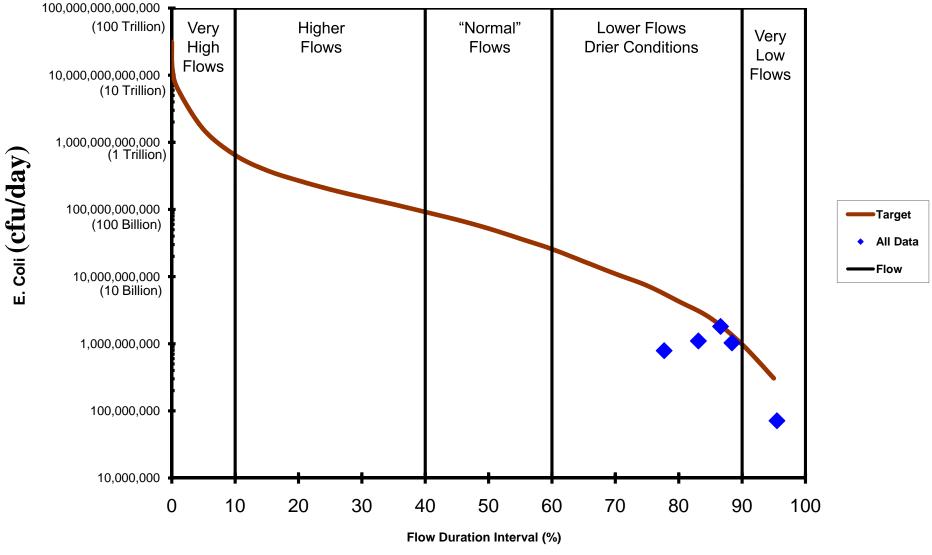

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Watershed Drainage Area is 526.14 square miles

Attachment C

Load Duration Curves for the Highland-Pigeon Creek Watershed TMDL

<<left intentionally blank for double-sided printing>>

Highland Pigeon *E. coli* Load Duration Curve (all sites)

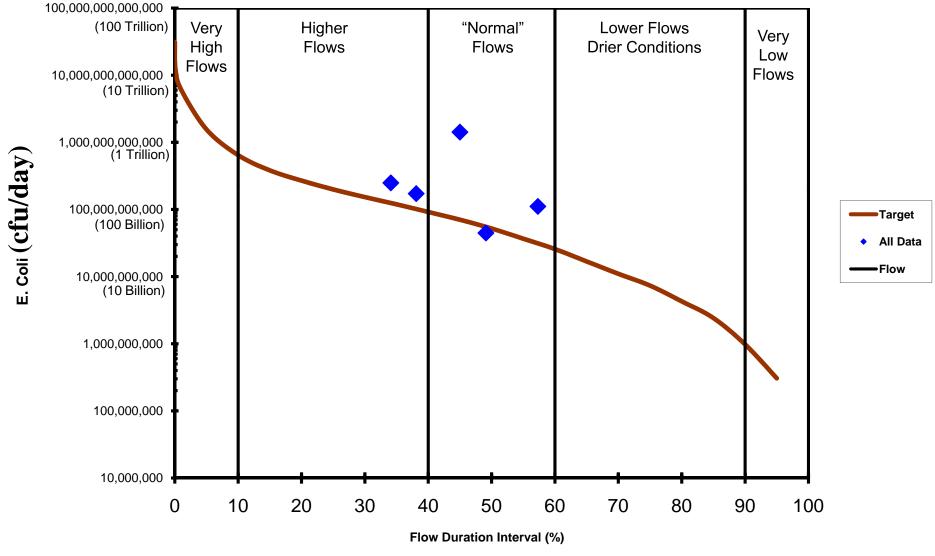


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Watershed Drainage Area is 526.14 square miles

Attachment C: 1 of 67

Eagle Creek At S. Kentucky Ave

E. coli Load Duration Curve - Site: 1

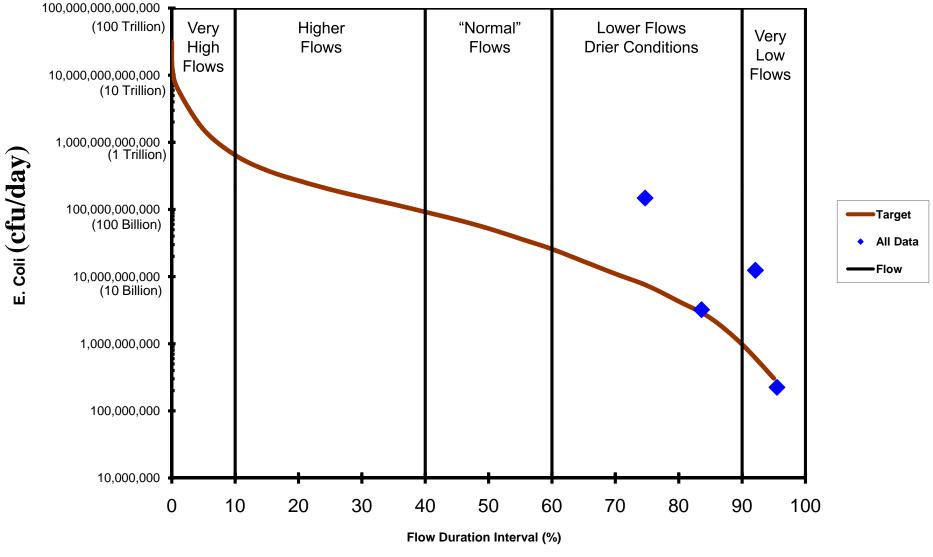


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 0.0003 square miles

Attachment C: 2 of 67

Hurricane Creek North of CR 1025 S and East of US 41

E. coli Load Duration Curve - Site: 2

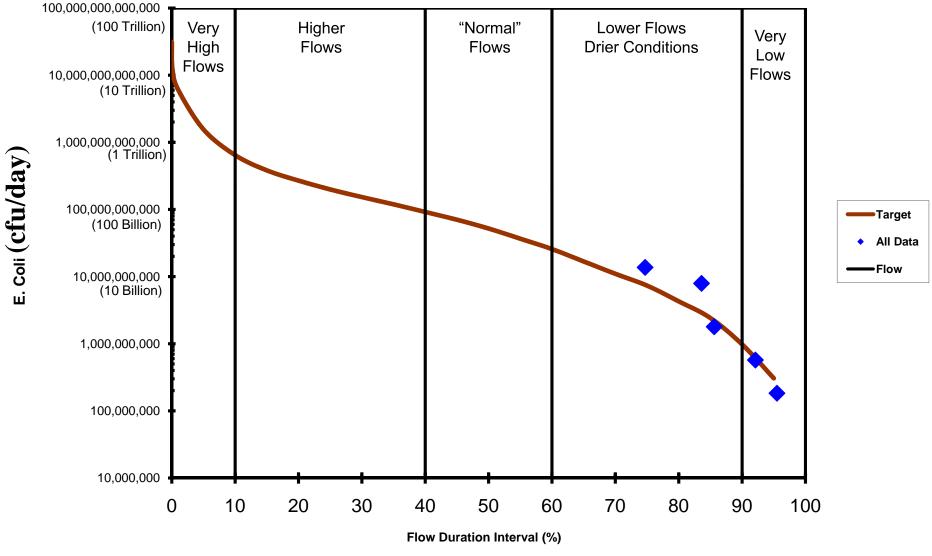


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 13.7 square miles

Attachment C: 3 of 67

Sand Creek At CR 450 S

E. coli Load Duration Curve - Site: 3

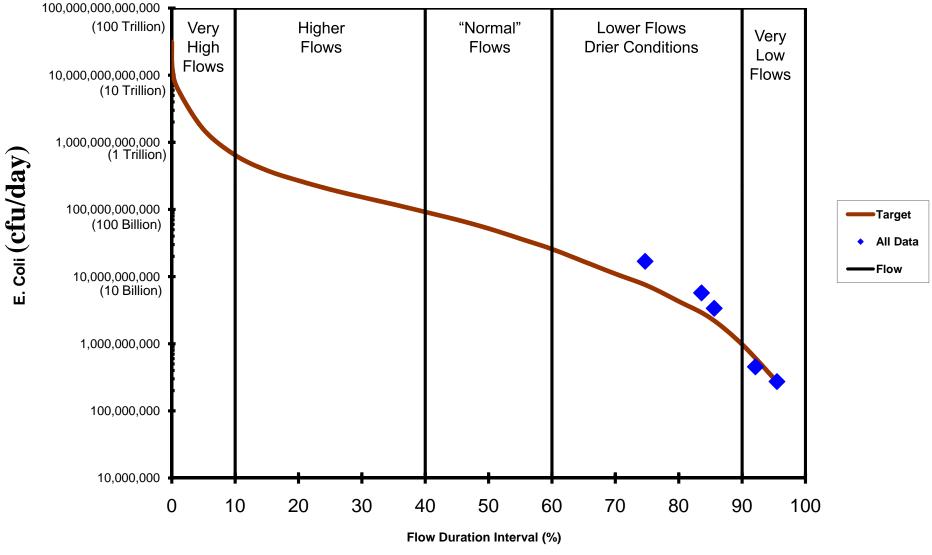


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 13.9 square miles

Attachment C: 4 of 67

Pigeon Creek At CR 750 S

E. coli Load Duration Curve - Site: 4

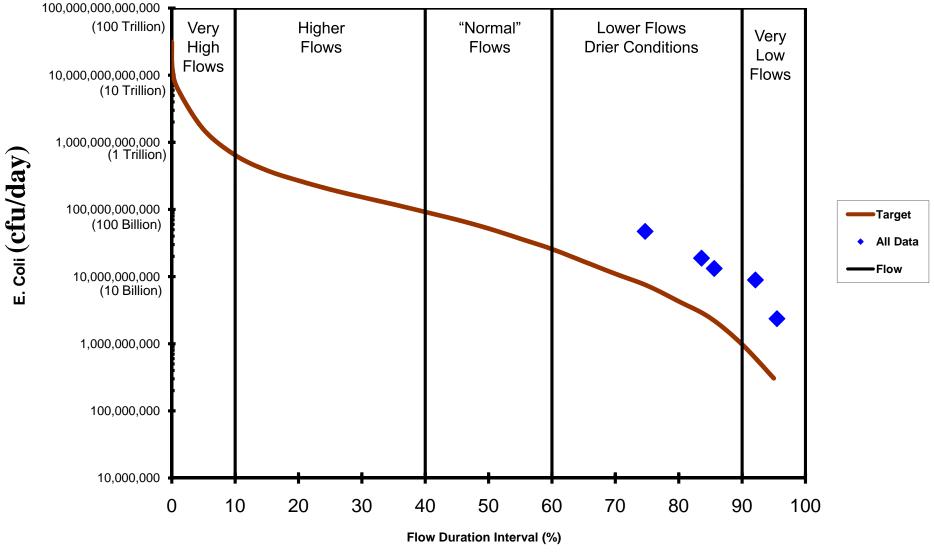


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 30.3 square miles

Attachment C: 5 of 67

West Fork Pigeon Creek At CR 200 E

E. coli Load Duration Curve - Site: 5

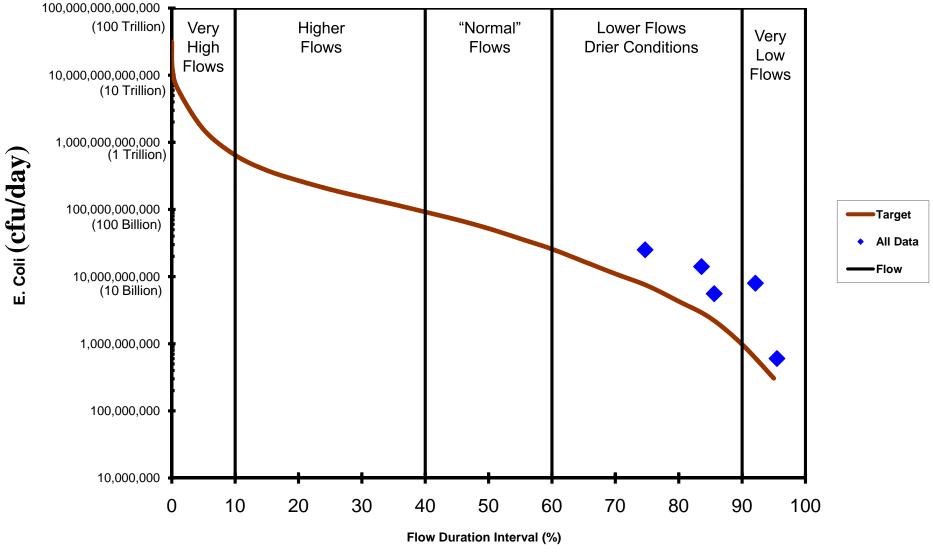


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 43.3 square miles

Attachment C: 6 of 67

Pigeon Creek At CR 300 E

E. coli Load Duration Curve - Site: 6

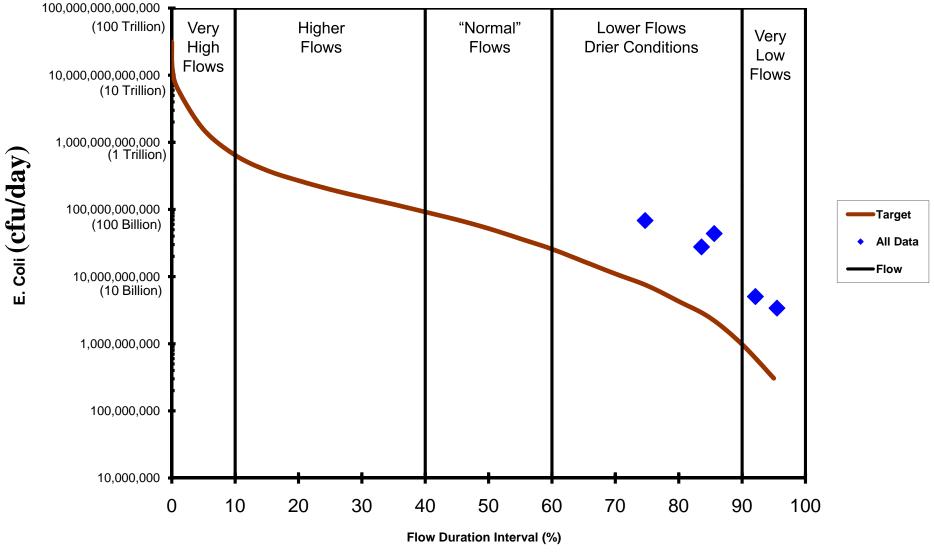


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 76.0 square miles

Attachment C: 7 of 67

West Fork Pigeon Creek At CR 25 W

E. coli Load Duration Curve - Site: 7

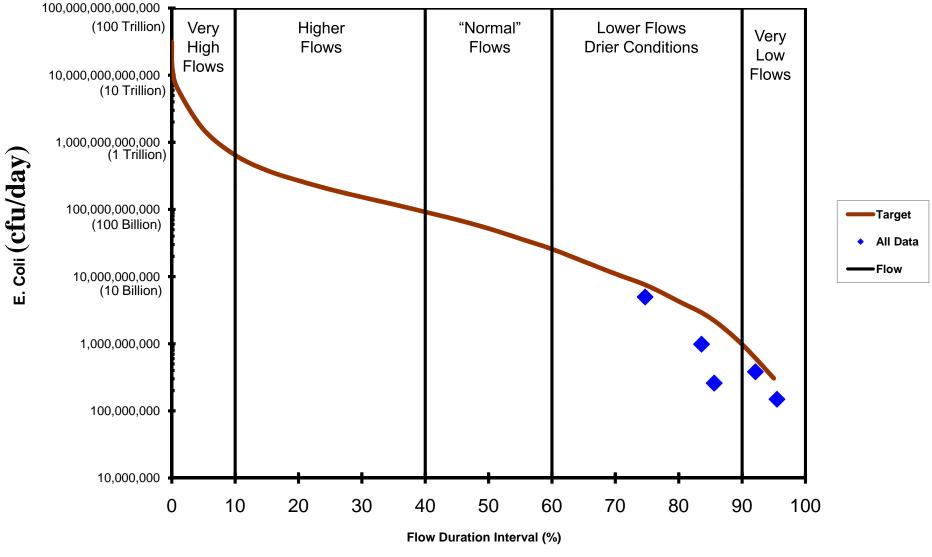


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 22.9 square miles

Attachment C: 8 of 67

Hurricane Creek At CR 925 S

E. coli Load Duration Curve - Site: 8

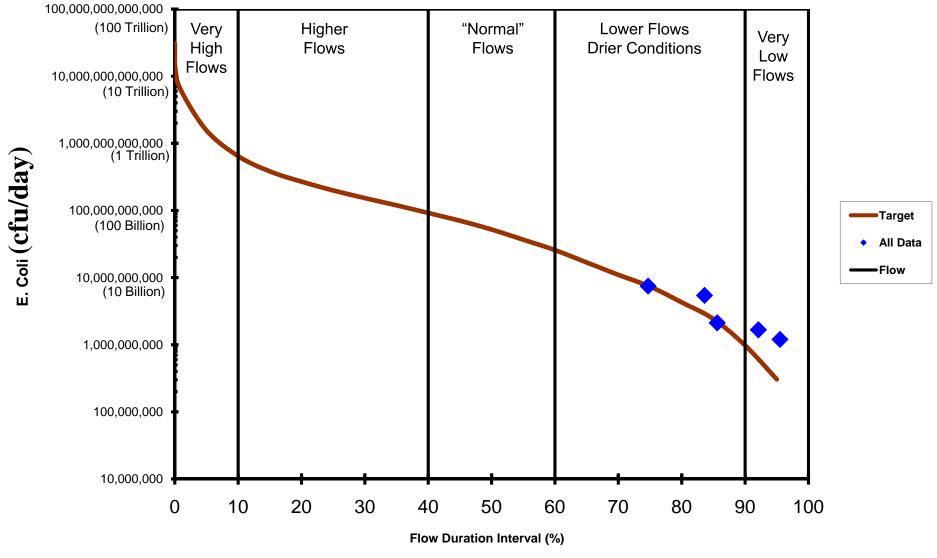


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 16.0 square miles

Attachment C: 9 of 67

Pigeon Creek At CR 550 E

E. coli Load Duration Curve - Site: 9

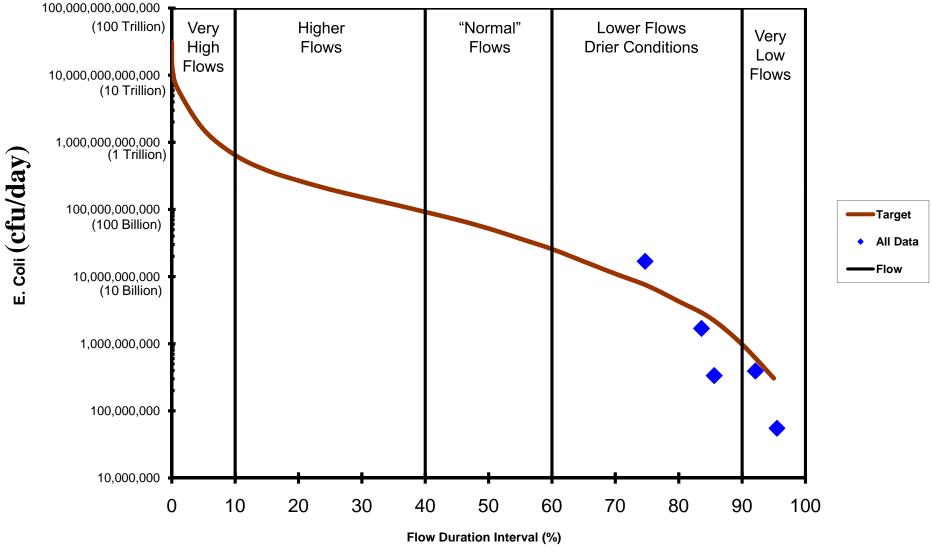


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 90.5 square miles

Attachment C: 10 of 67

Smith Fork At SR 57

E. coli Load Duration Curve - Site: 10



IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 17.6 square miles

Attachment C : 11 of 67

Smith Fork At CR 950 E

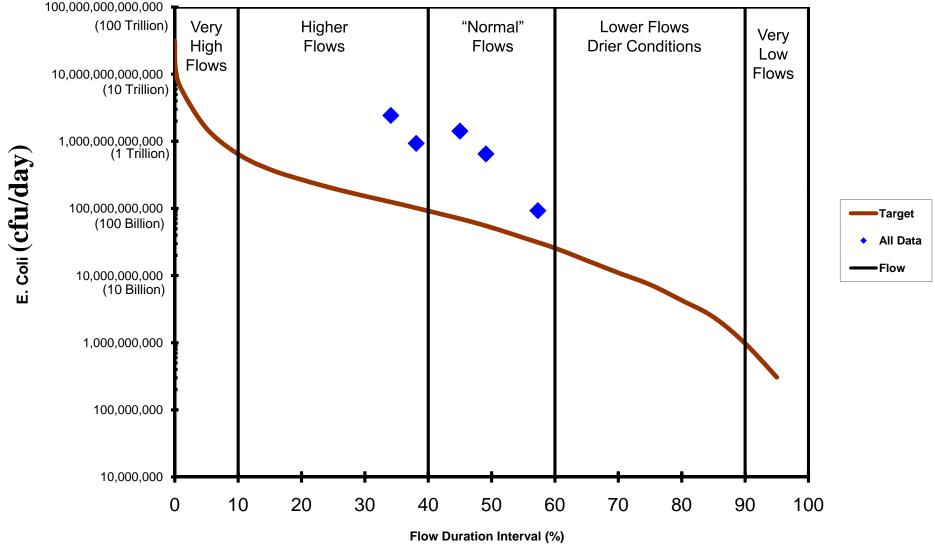
E. coli Load Duration Curve - Site: 11

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 21.2 square miles

Attachment C: 12 of 67

Pigeon Creek At New Harmony Rd

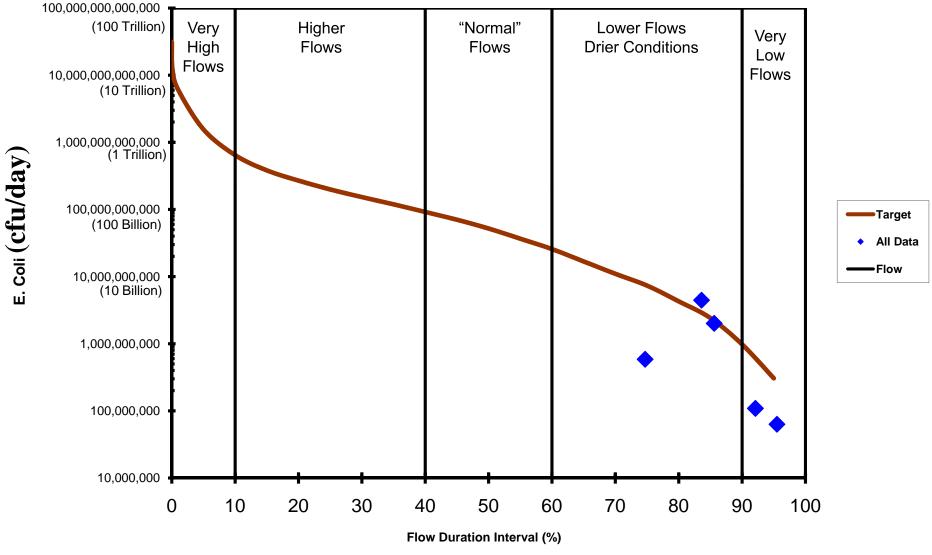
E. coli Load Duration Curve - Site: 12



IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 63.8 square miles

Attachment C: 13 of 67

Unnamed Tributary to Big Creek NW of Lynnville at CR 950 S

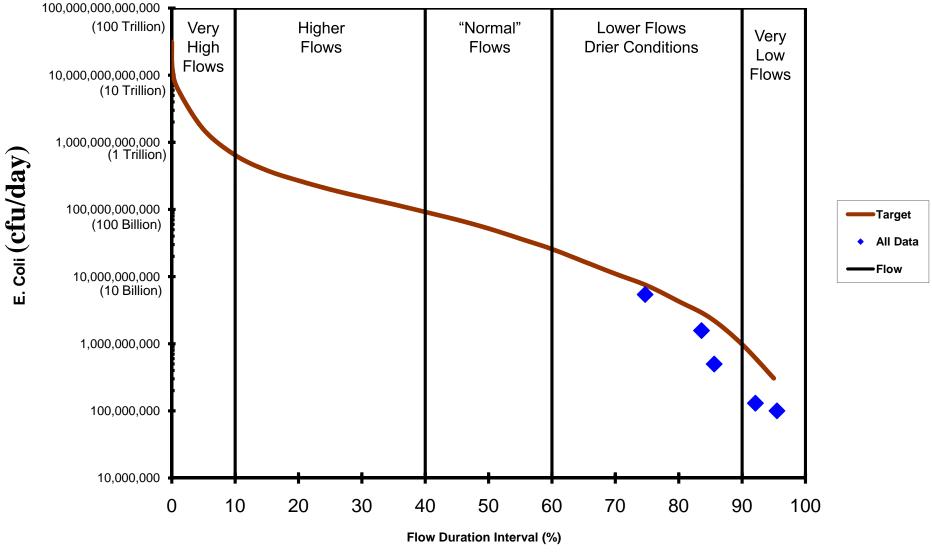


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 12.0 square miles

Attachment C: 14 of 67

Big Creek At Strip Mine Rd

E. coli Load Duration Curve - Site: 14

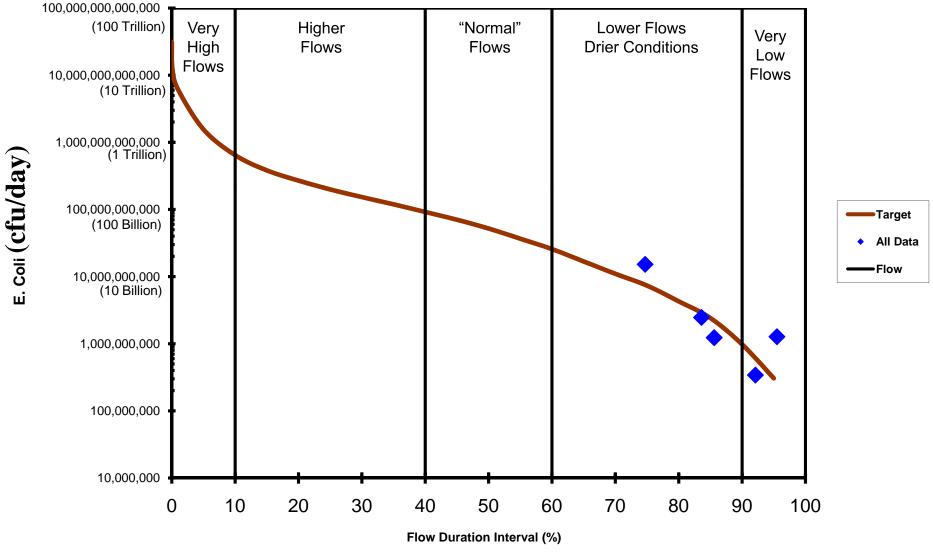


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 16.9 square miles

Attachment C: 15 of 67

Big Creek At Buckskin Rd/CR850 W

E. coli Load Duration Curve - Site: 15

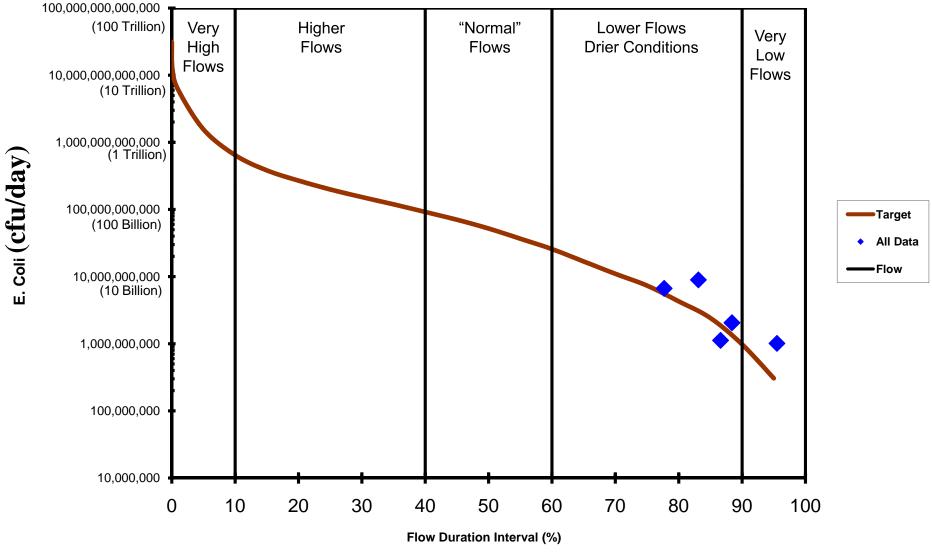


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 39.83 square miles

Attachment C: 16 of 67

Pigeon Creek At Stanley Rd

E. coli Load Duration Curve - Site: 16

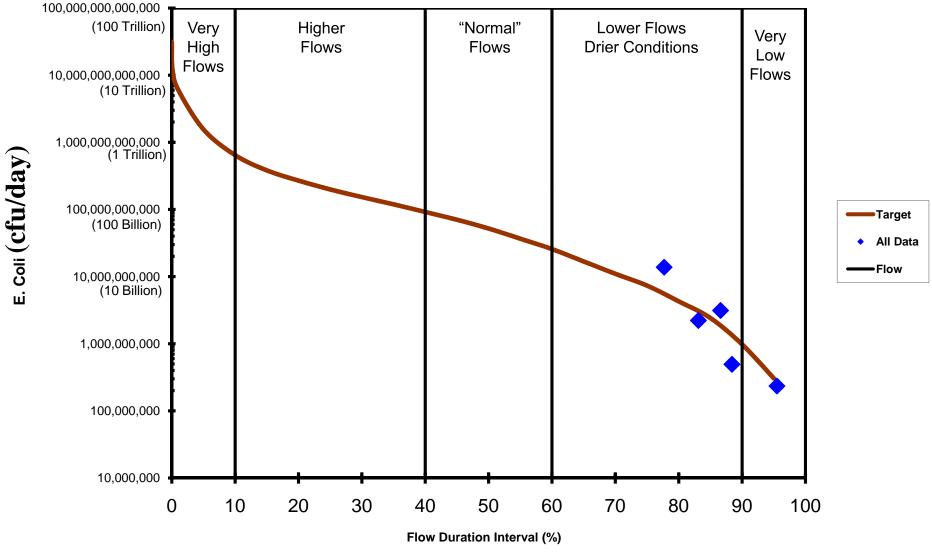


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 46.62 square miles

Attachment C: 17 of 67

Squaw Creek At Interrieden Rd

E. coli Load Duration Curve - Site: 17

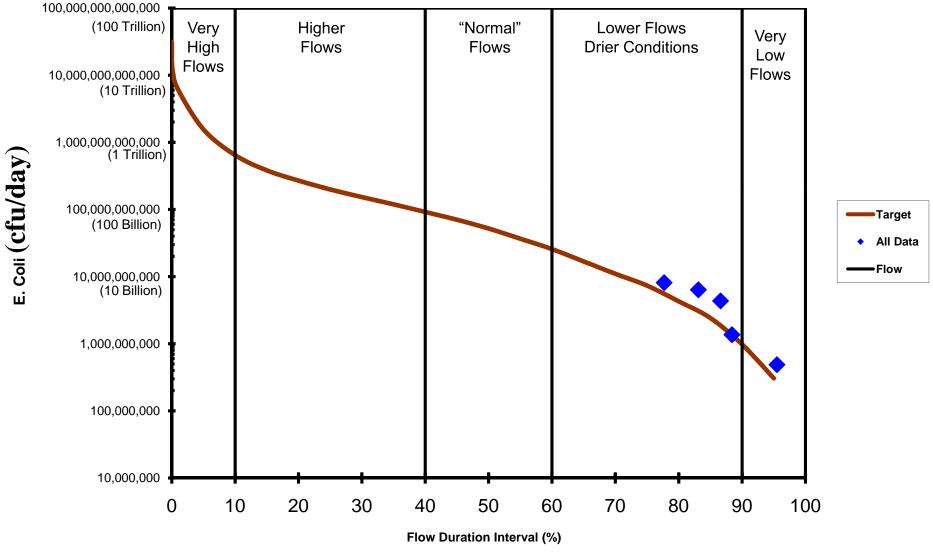


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 11.13 square miles

Attachment C: 18 of 67

Pigeon Creek At Heim Rd

E. coli Load Duration Curve - Site: 18

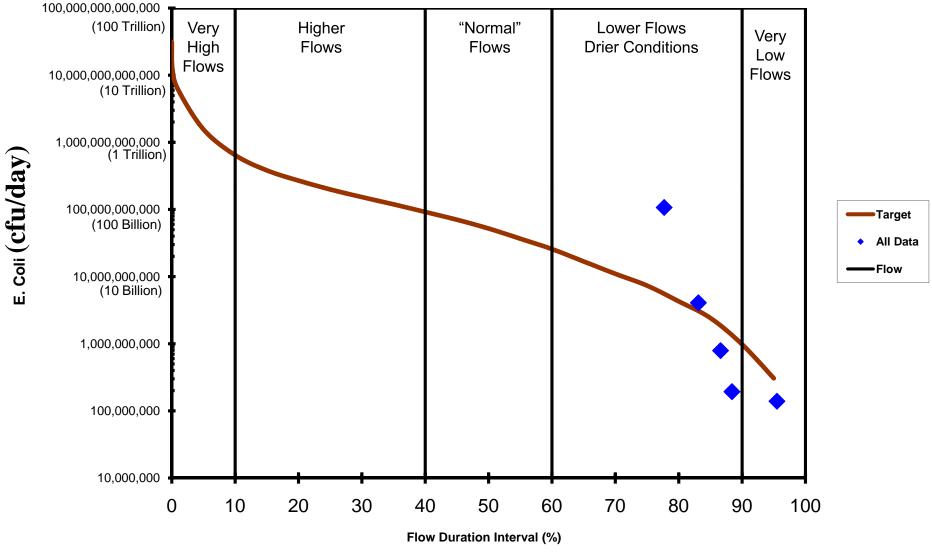


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 86.12 square miles

Attachment C: 19 of 67

Pigeon Creek At N. Stevenson Station Rd

E. coli Load Duration Curve - Site: 19

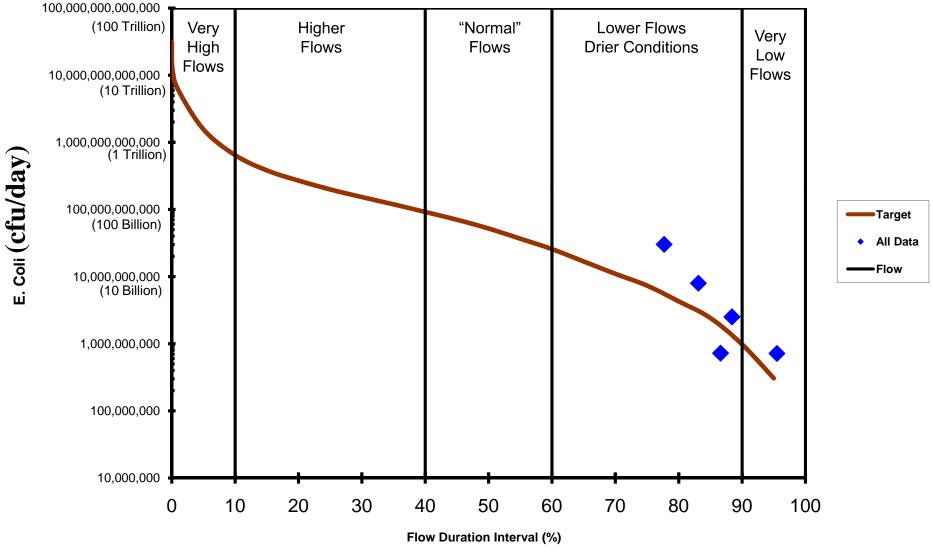


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 107.9 square miles

Attachment C: 20 of 67

Bluegrass Creek At Heckel Rd

E. coli Load Duration Curve - Site: 20

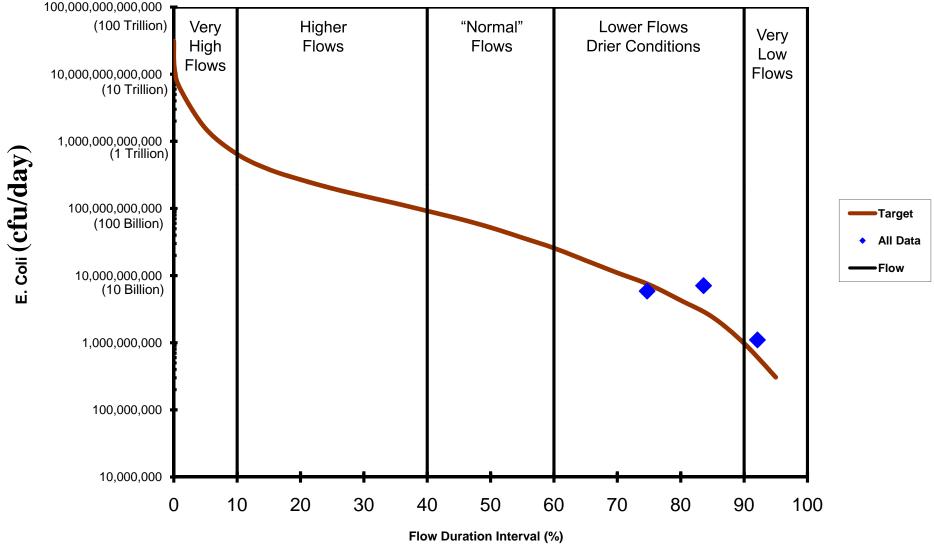


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 44.08 square miles

Attachment C: 21 of 67

Pigeon Creek At Cardinal Dr

E. coli Load Duration Curve - Site: 21



IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 77.3 square miles

Attachment C : 22 of 67

Tributary to Bluegrass Creek At Warrick County Line Rd

E. coli Load Duration Curve - Site: 22

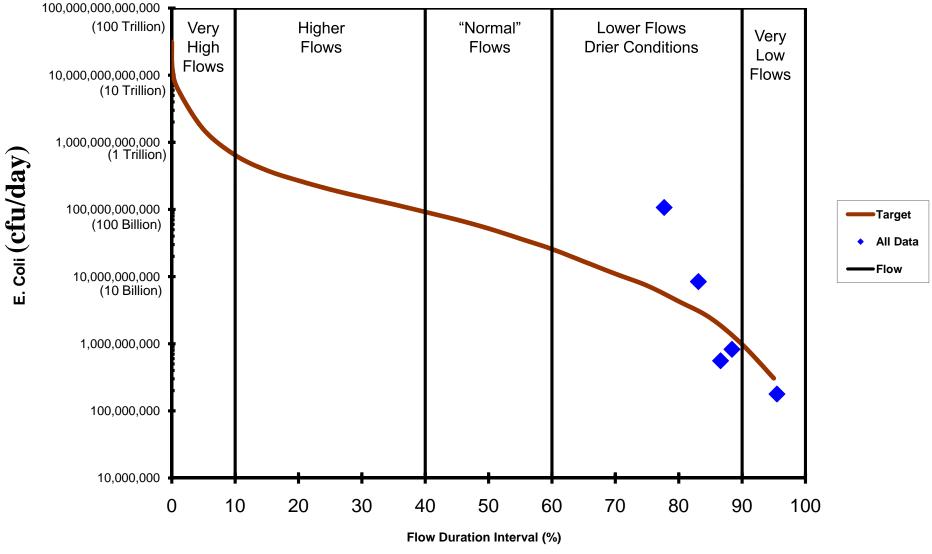


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 0.12 square miles

Attachment C : 23 of 67

Schlensker Ditch At Boonville New Harmony Rd

E. coli Load Duration Curve - Site: 23

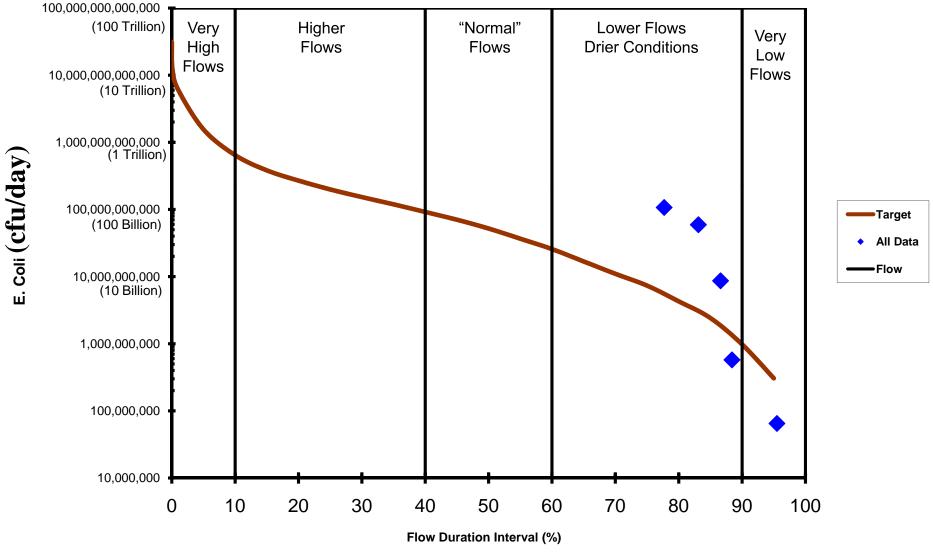


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 5.74 square miles

Attachment C: 24 of 67

Locust Creek At Allen Ln

E. coli Load Duration Curve - Site: 24

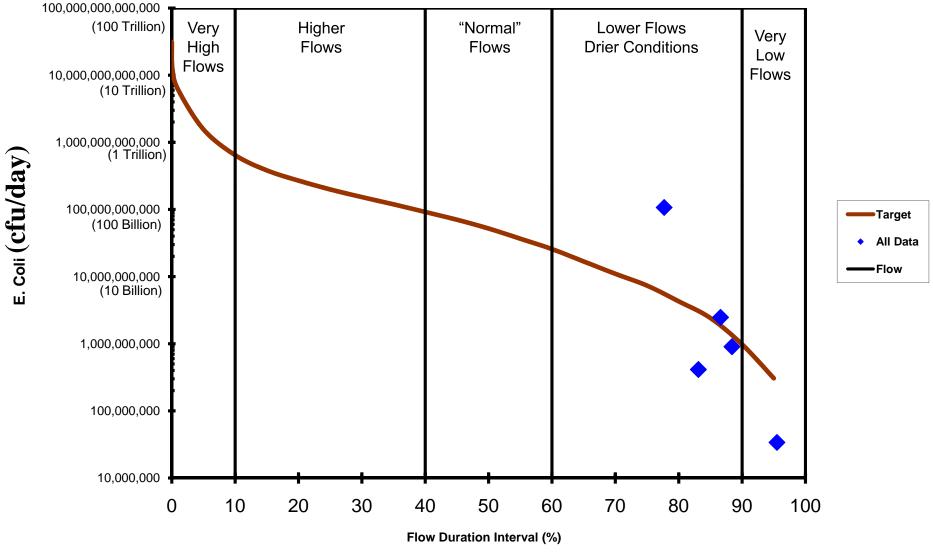


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 15.57 square miles

Attachment C: 25 of 67

Locust Creek At Foot Bridge @ Trailer Park

E. coli Load Duration Curve - Site: 25

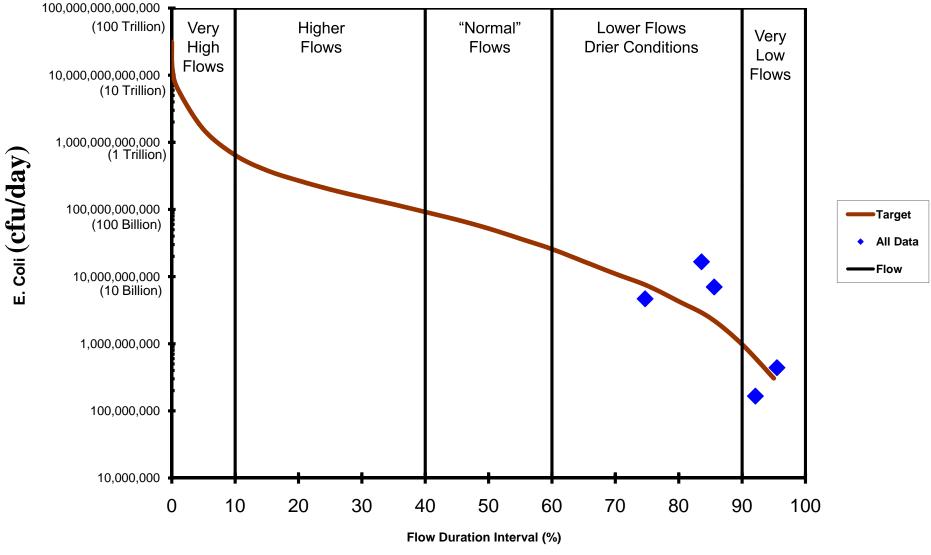


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 10.13 square miles

Attachment C: 26 of 67

Little Pigeon Creek Kentucky Ave

E. coli Load Duration Curve - Site: 26

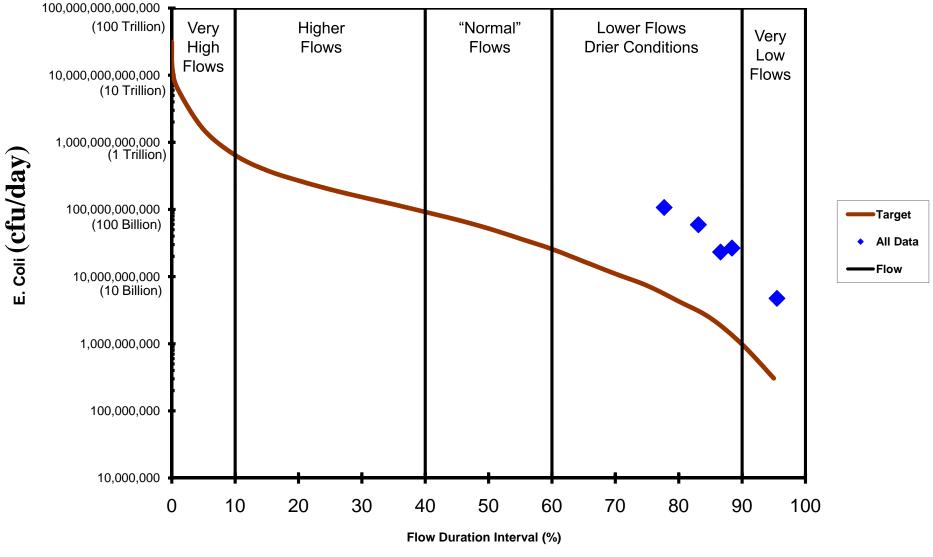


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 15.4 square miles

Attachment C: 27 of 67

Bluegrass Creek CR 600 N/Baseline Rd

E. coli Load Duration Curve - Site: 27

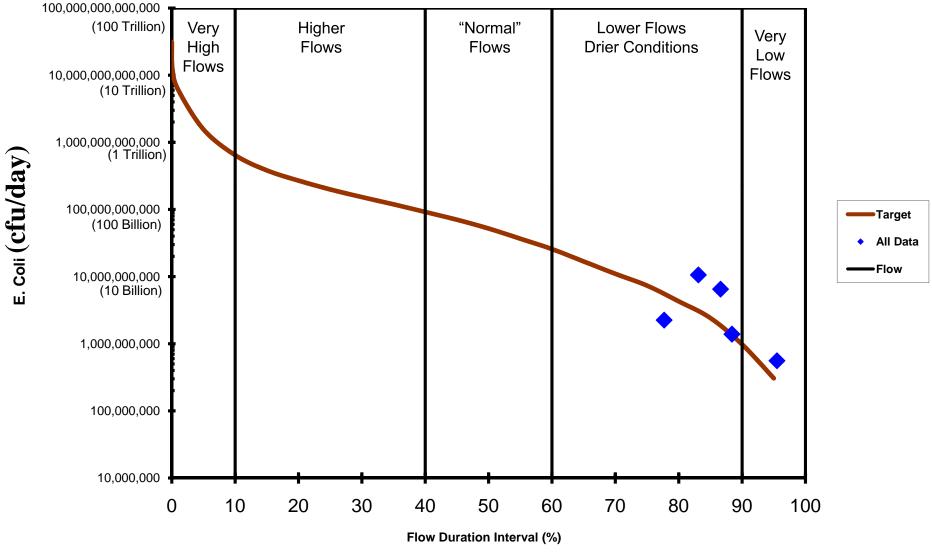


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 8.27 square miles

Attachment C: 28 of 67

Carpentier Creek Broadway Ave

E. coli Load Duration Curve - Site: 28

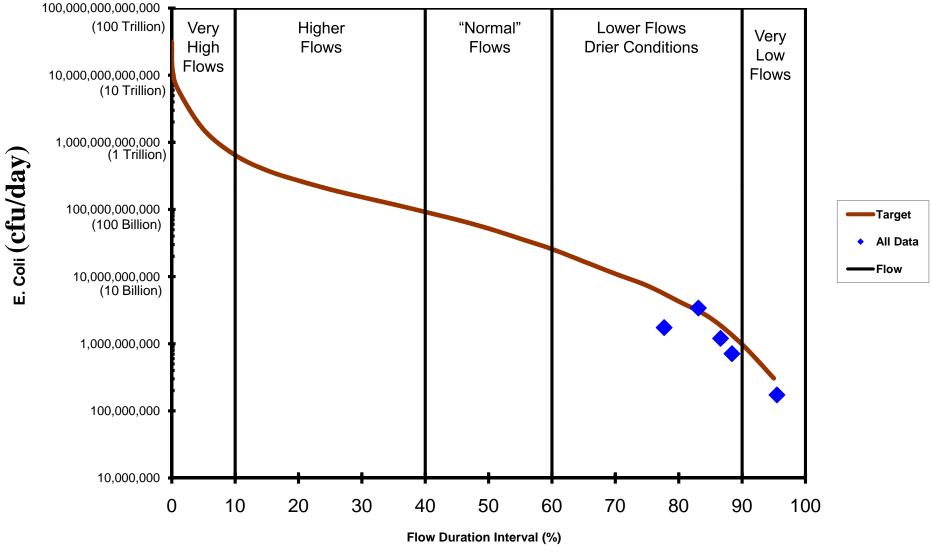


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 7.29 square miles

Attachment C: 29 of 67

McFadden Creek EW 570 Rd

E. coli Load Duration Curve - Site: 29

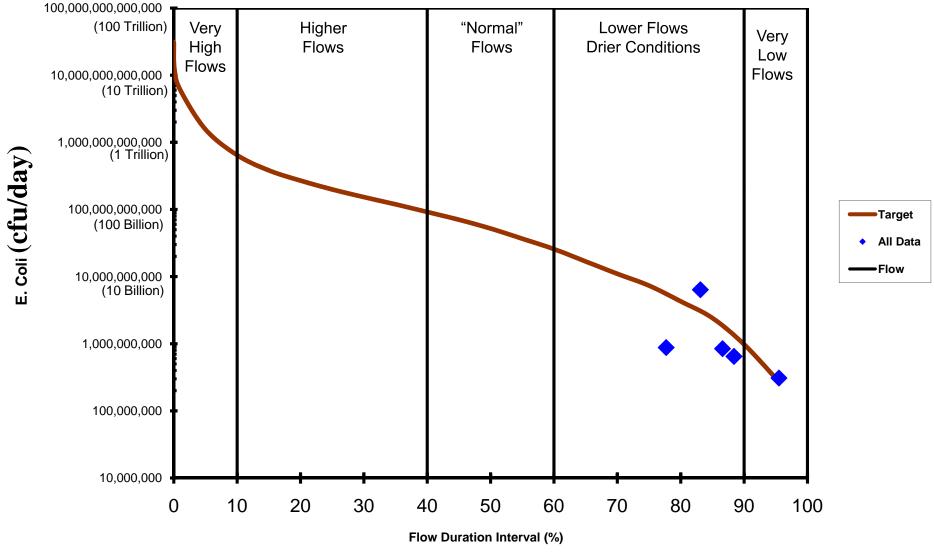


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 19.92 square miles

Attachment C: 30 of 67

Cypress Slough Access off of Bluff Rd

E. coli Load Duration Curve - Site: 30

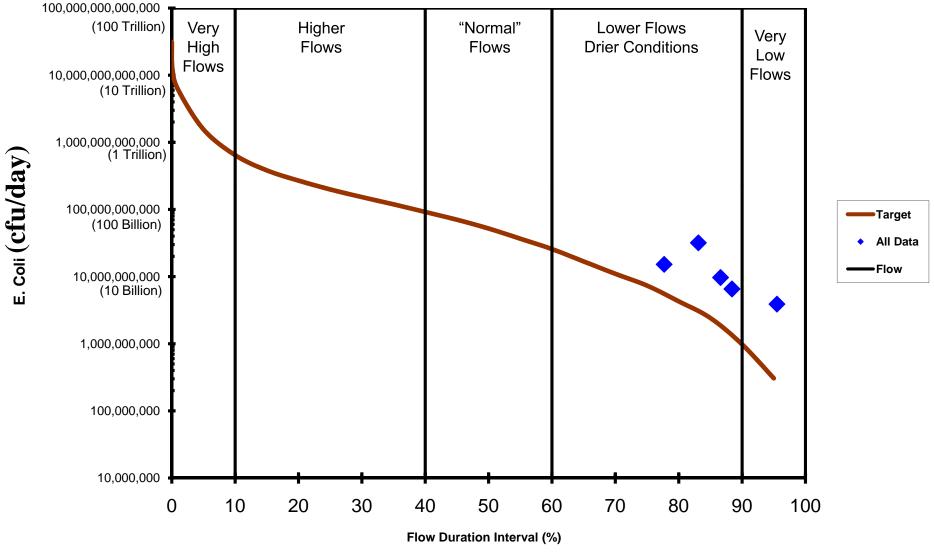


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 24.98 square miles

Attachment C: 31 of 67

Unnamed Tributary to Cypress Slough Indian Mound Rd

E. coli Load Duration Curve - Site: 31

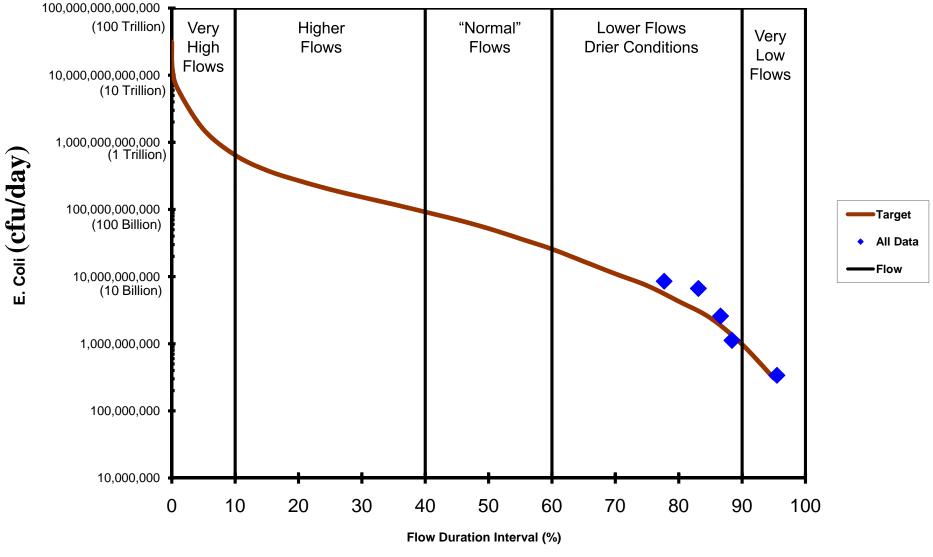


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 6.79 square miles

Attachment C: 32 of 67

Cypress Slough Carbon Rd

E. coli Load Duration Curve - Site: 32

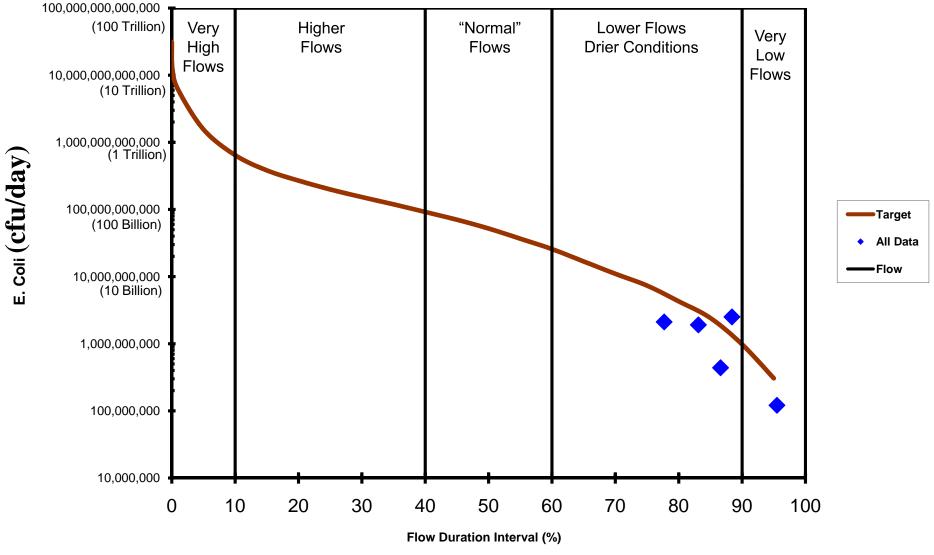


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 9.34 square miles

Attachment C: 33 of 67

Bayou Creek Franklin Rd

E. coli Load Duration Curve - Site: 33

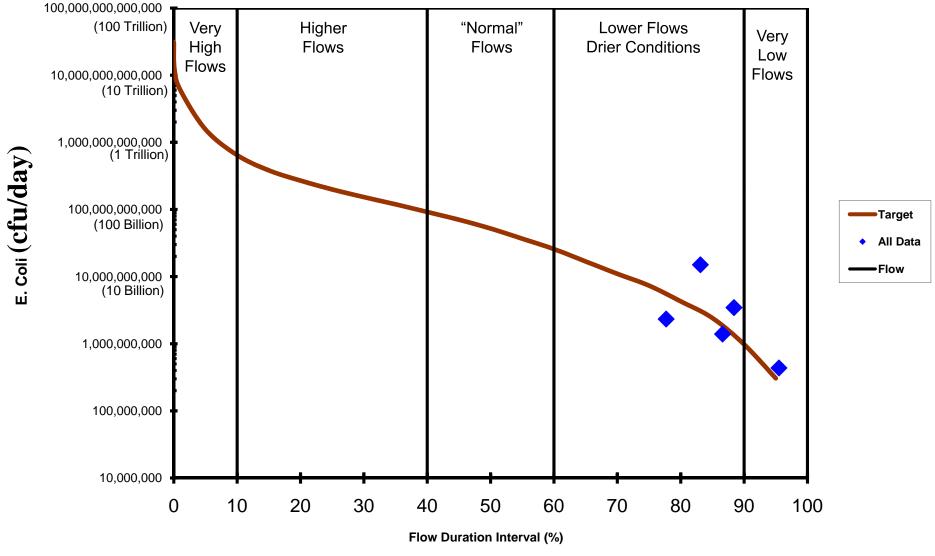


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 9.74 square miles

Attachment C: 34 of 67

Bayou Drain DNR Rd Hovey Lake FWA

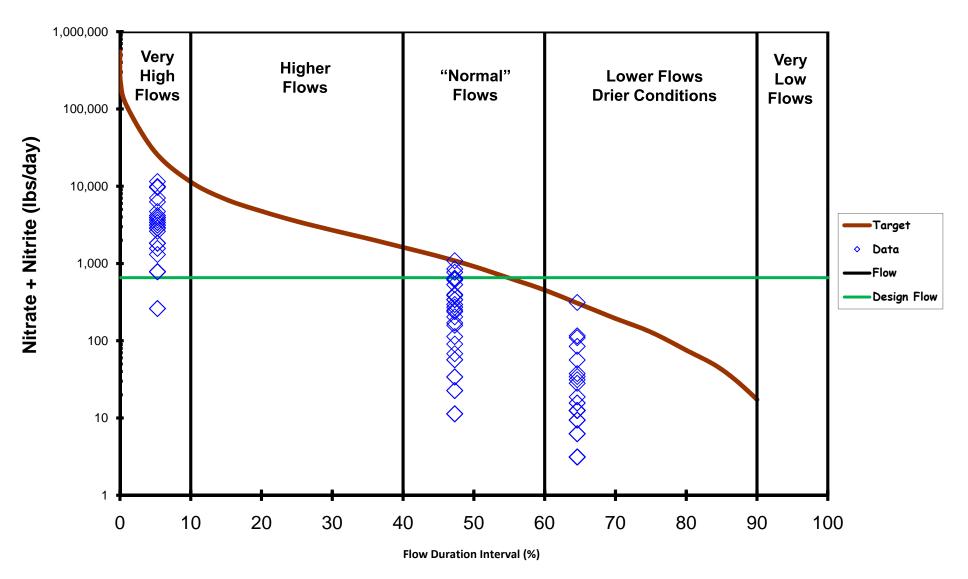
E. coli Load Duration Curve - Site: 34



IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 5.28 square miles

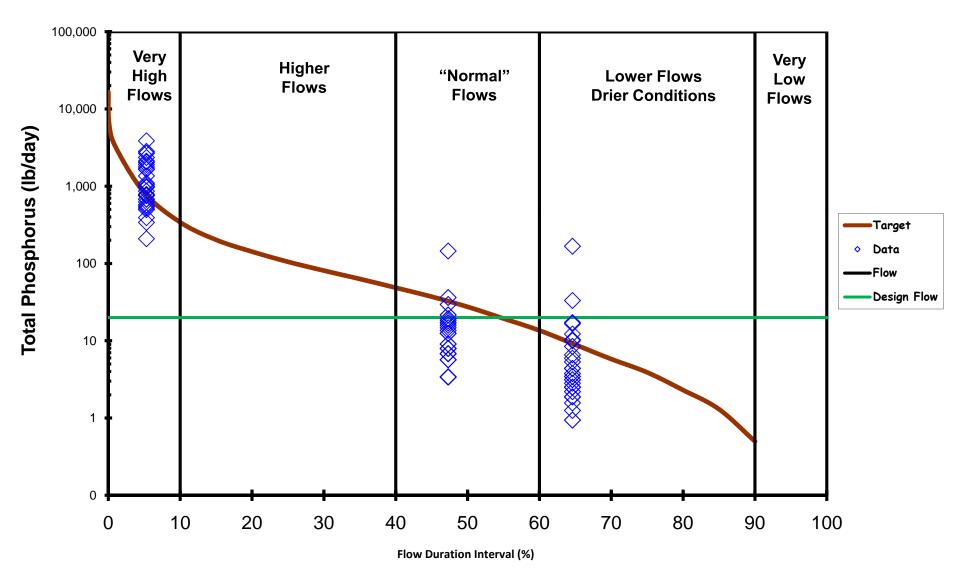
Attachment C: 35 of 67

Unnamed Tributary to Bayou Creek At Smith-Diamond Rd


E. coli Load Duration Curve - Site: 35

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 6.89 square miles

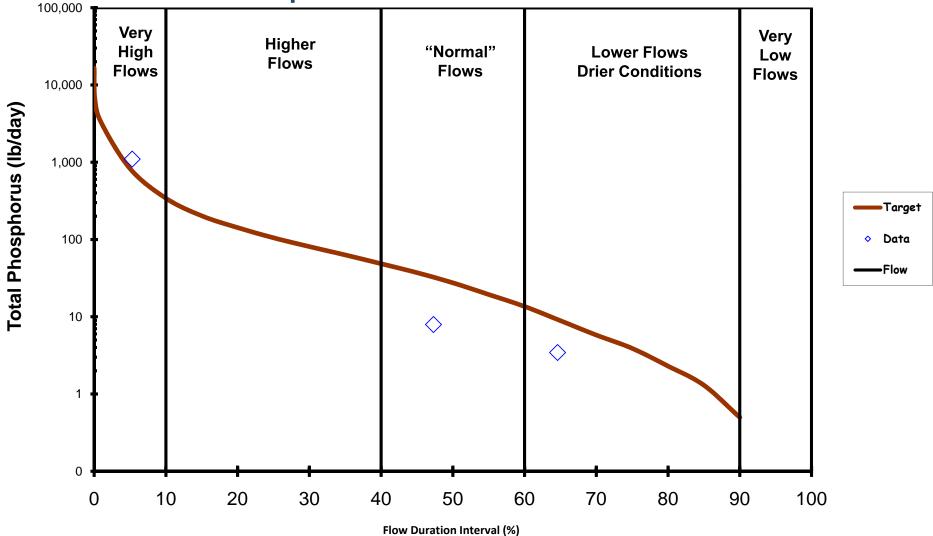
Attachment C: 36 of 67


Highland Pigeon Nitrate + Nitrite Load Duration Curve (all sites)

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Watershed Drainage Area is 526.14 square miles

Attachment C: 37 of 67

Highland Pigeon Total Phosphorus Load Duration Curve (all sites)

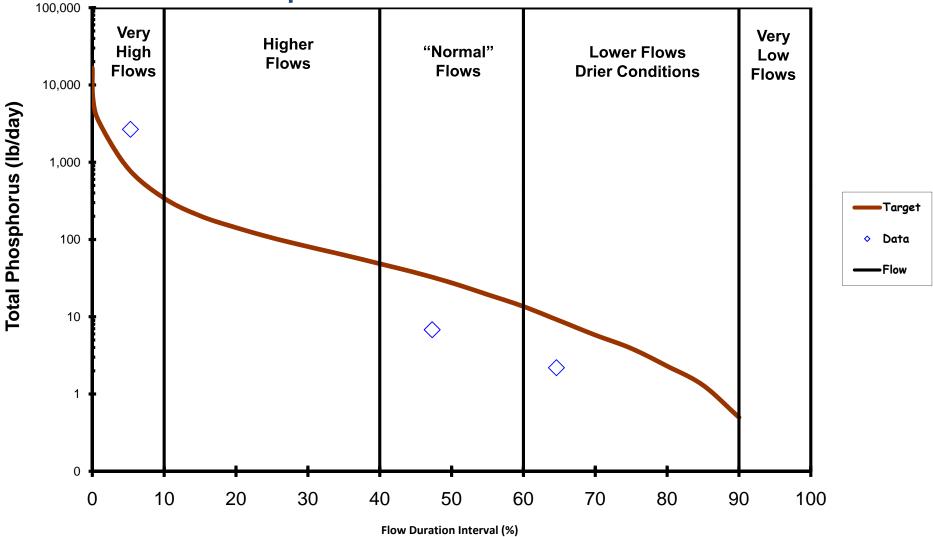


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Watershed Drainage Area is 526.14 square miles

Attachment C: 38 of 67

Sand Creek At CR 450 S

Total Phosphorous Load Duration Curve - Site: 3

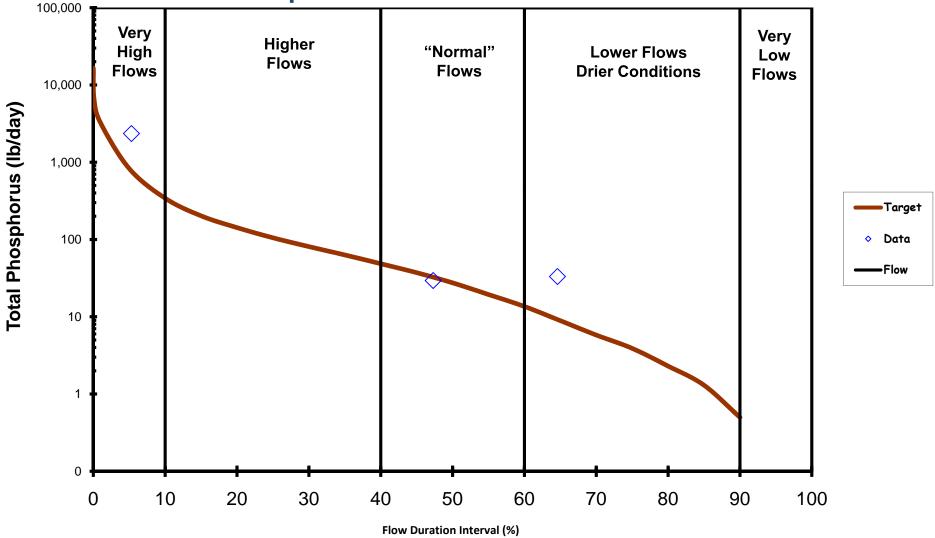


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 13.9 square miles

Attachment C: 39 of 67

Pigeon Creek At CR 750 S

Total Phosphorous Load Duration Curve - Site: 4

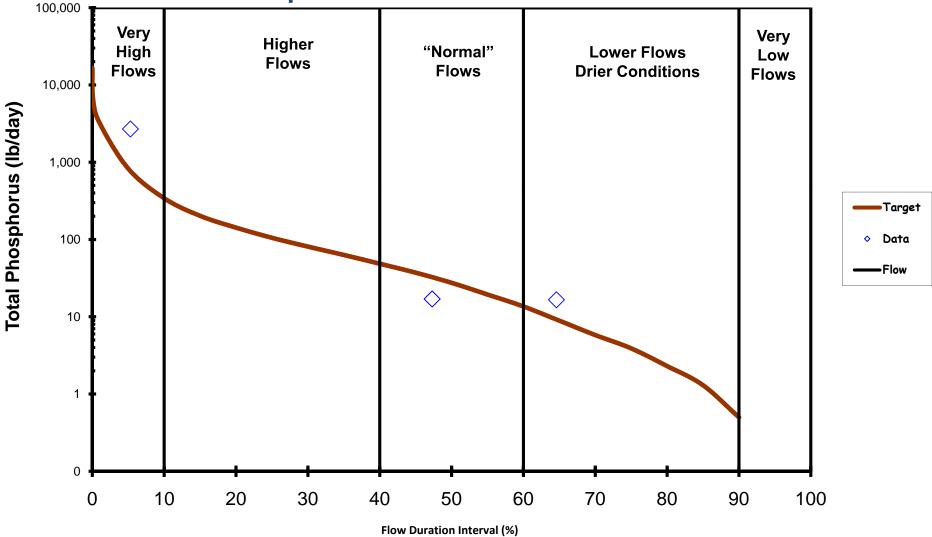


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 30.3 square miles

Attachment C: 40 of 67

West Fork Pigeon Creek At CR 200 E

Total Phosphorous Load Duration Curve - Site: 5

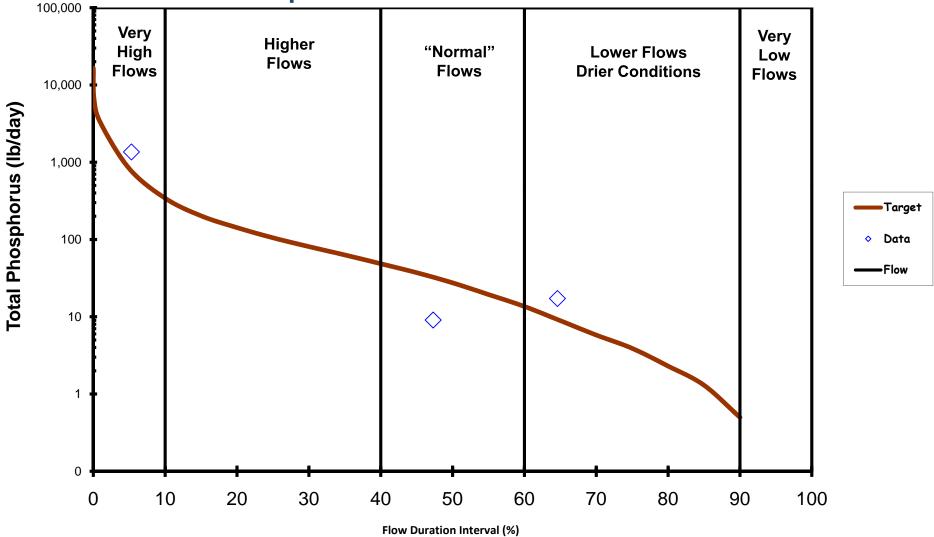


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 43.3 square miles

Attachment C: 41 of 67

Pigeon Creek At CR 300 E

Total Phosphorous Load Duration Curve - Site: 6

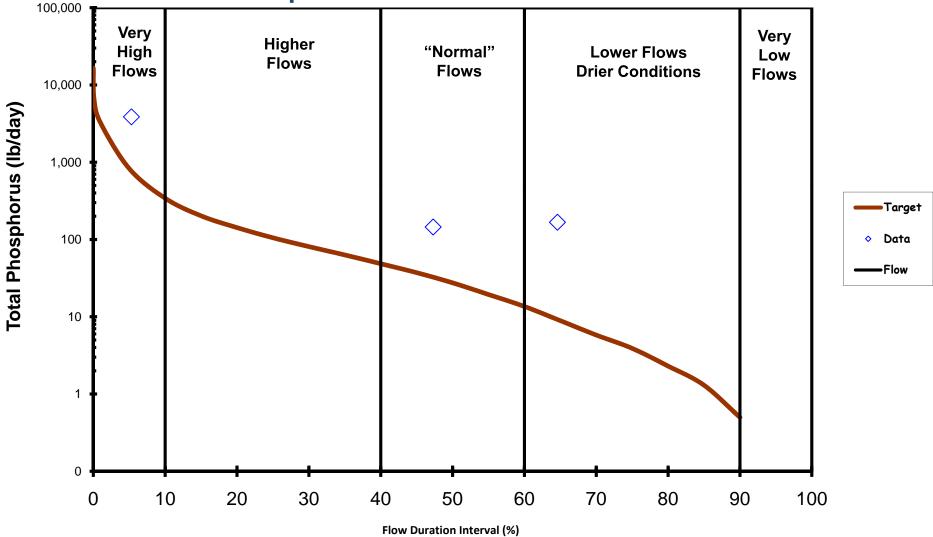


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 76.0 square miles

Attachment C: 42 of 67

West Fork Pigeon Creek At CR 25 W

Total Phosphorous Load Duration Curve - Site: 7

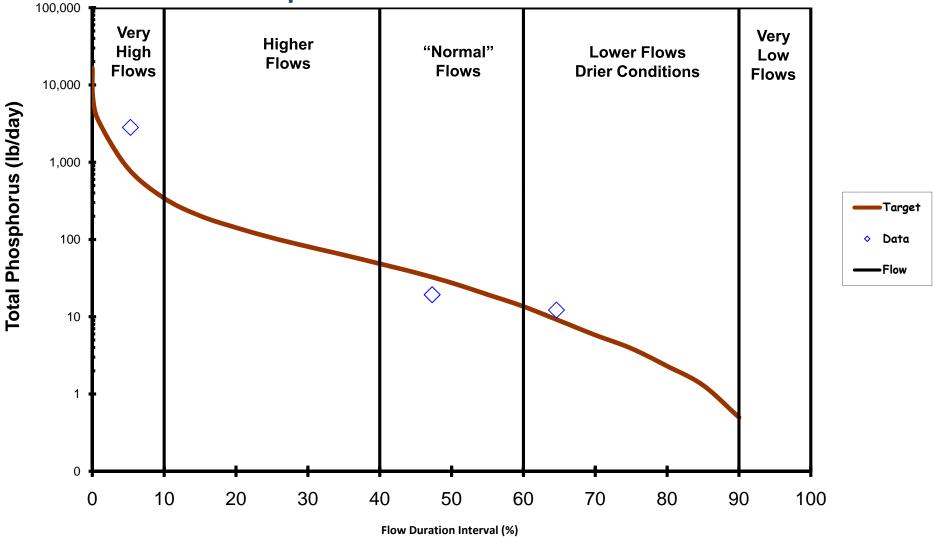


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 22.9 square miles

Attachment C: 43 of 67

Hurricane Creek At CR 925 S

Total Phosphorous Load Duration Curve - Site: 8

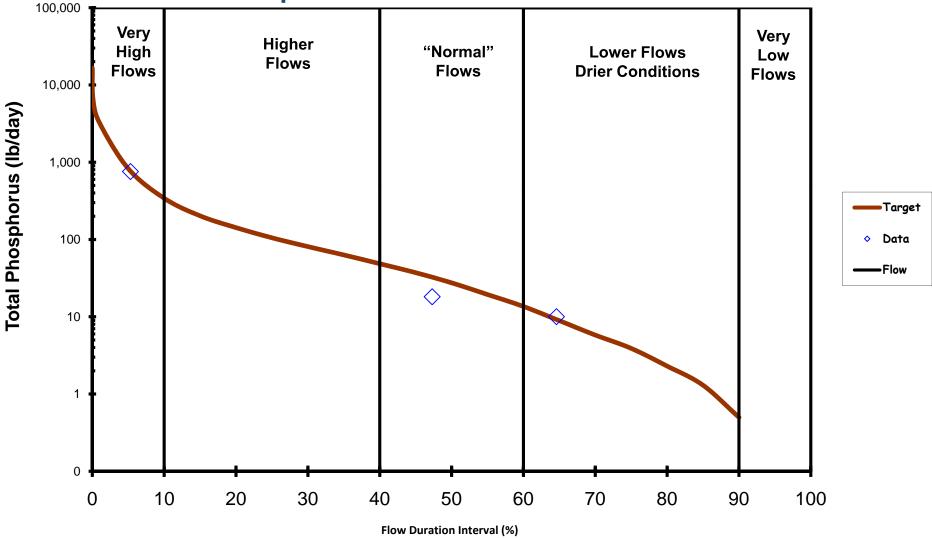


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 16.0 square miles

Attachment C: 44 of 67

Pigeon Creek At CR 550 E

Total Phosphorous Load Duration Curve - Site: 9

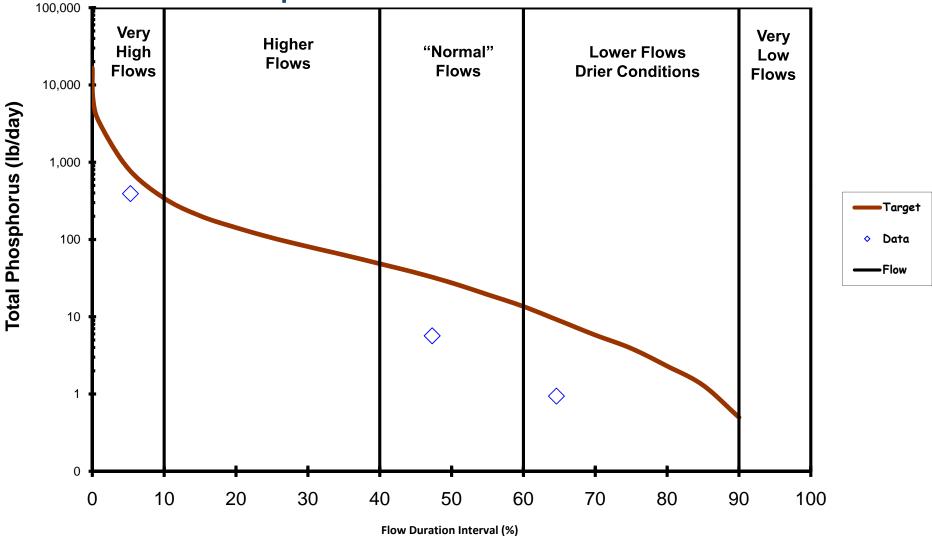


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 90.5 square miles

Attachment C: 45 of 67

Smith Fork At SR 57

Total Phosphorous Load Duration Curve - Site: 10

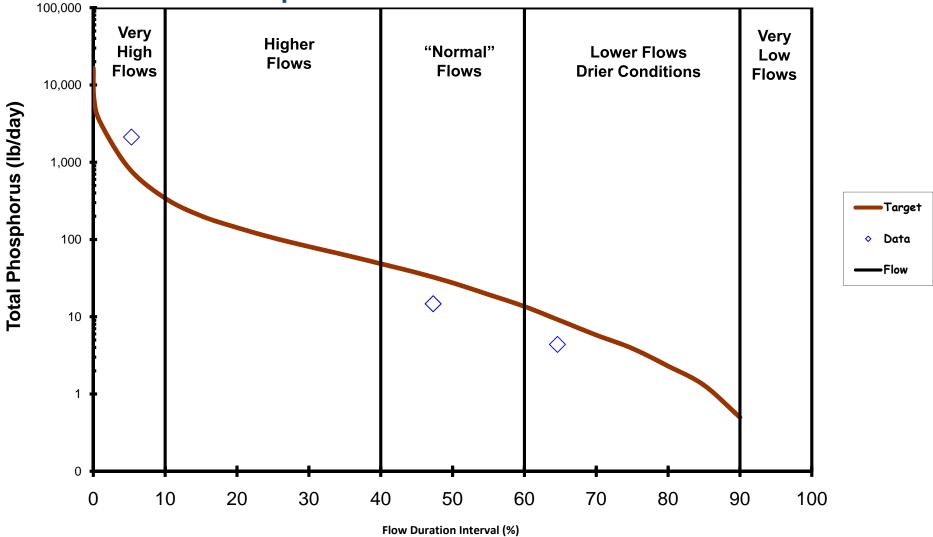


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 17.6 square miles

Attachment C: 46 of 67

Smith Fork At CR 950 E

Total Phosphorous Load Duration Curve - Site: 11

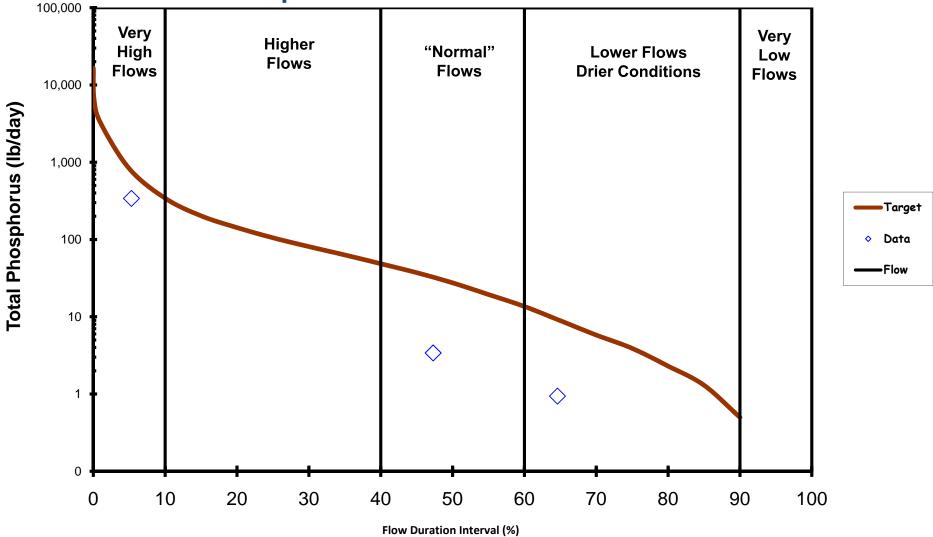


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 21.2 square miles

Attachment C: 47 of 67

Pigeon Creek At New Harmony Rd

Total Phosphorous Load Duration Curve - Site: 12

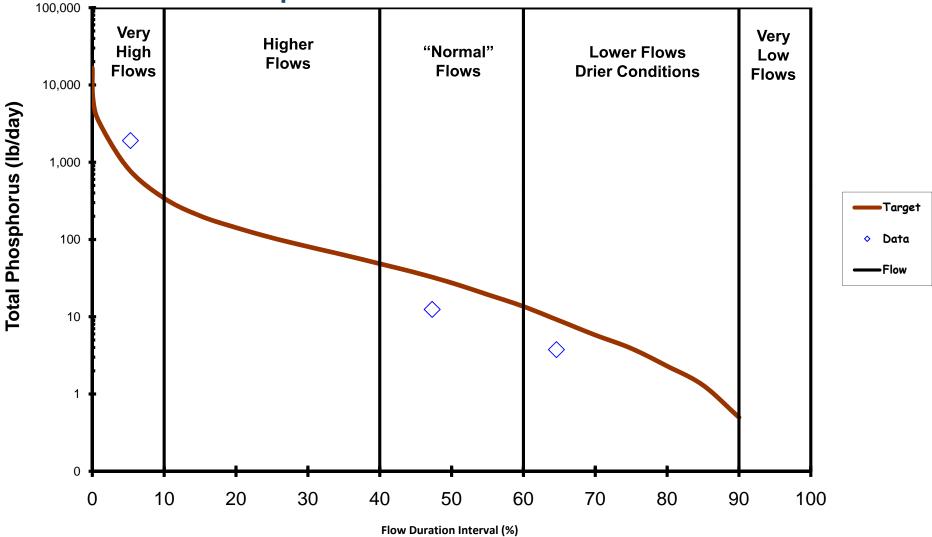


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 63.8 square miles

Attachment C: 48 of 67

Big Creek At Buckskin Rd/CR850 W

Total Phosphorous Load Duration Curve - Site: 15

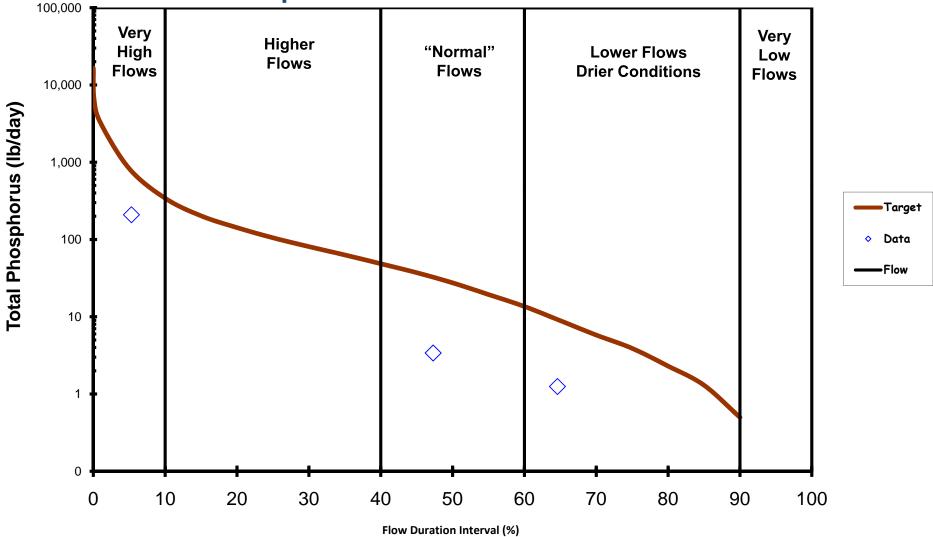


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 39.83 square miles

Attachment C: 49 of 67

Pigeon Creek At Stanley Rd

Total Phosphorous Load Duration Curve - Site: 16

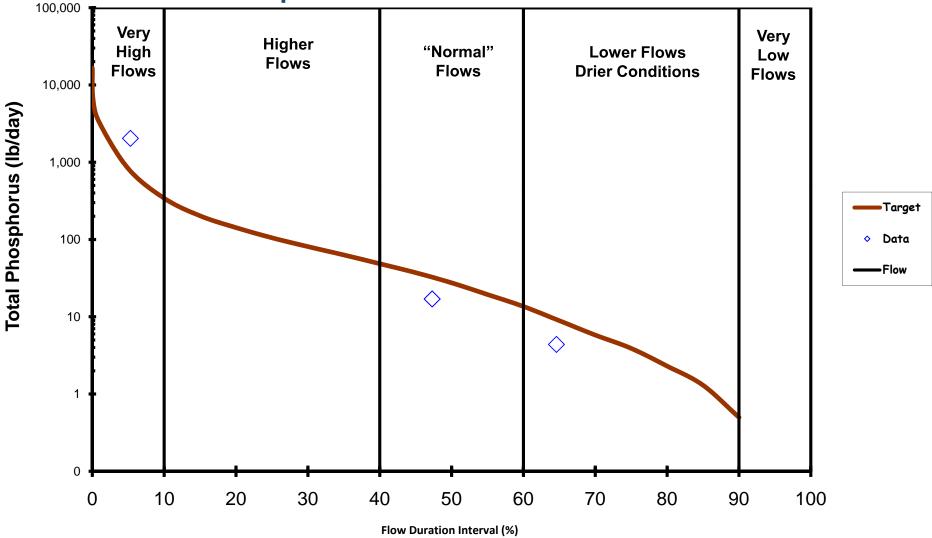


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 46.62 square miles

Attachment C: 50 of 67

Squaw Creek At Interrieden Rd

Total Phosphorous Load Duration Curve - Site: 17

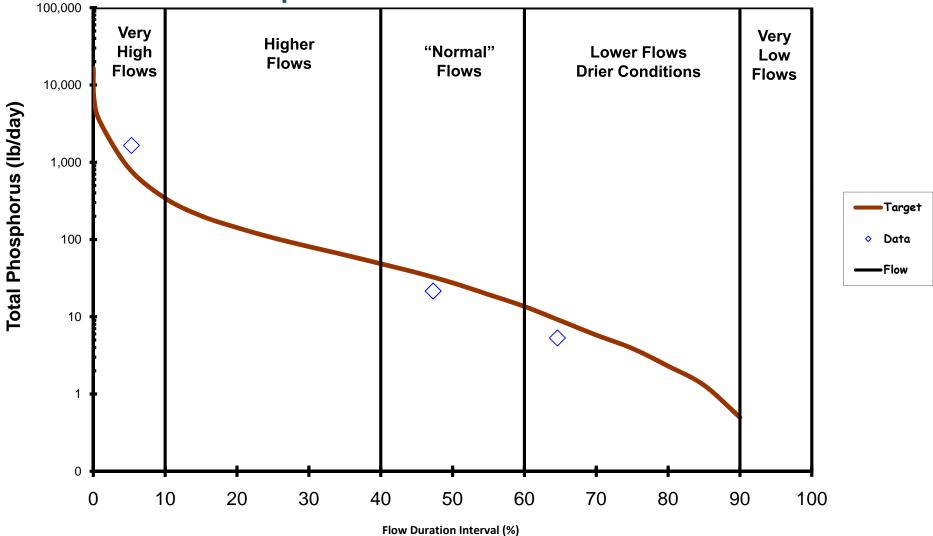


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 11.13 square miles

Attachment C: 51 of 67

Pigeon Creek At Heim Rd

Total Phosphorous Load Duration Curve - Site: 18

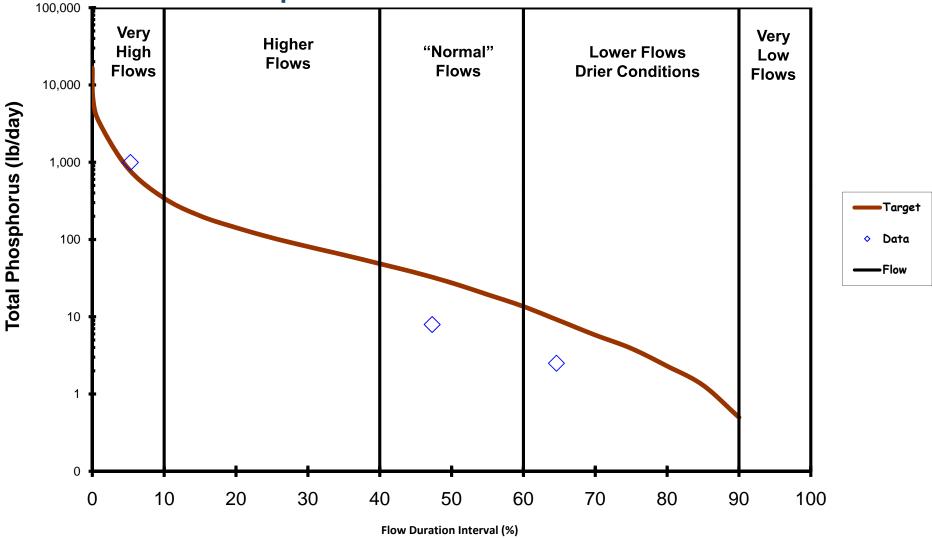


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 86.12 square miles

Attachment C: 52 of 67

Pigeon Creek At N. Stevenson Station Rd

Total Phosphorous Load Duration Curve - Site: 19

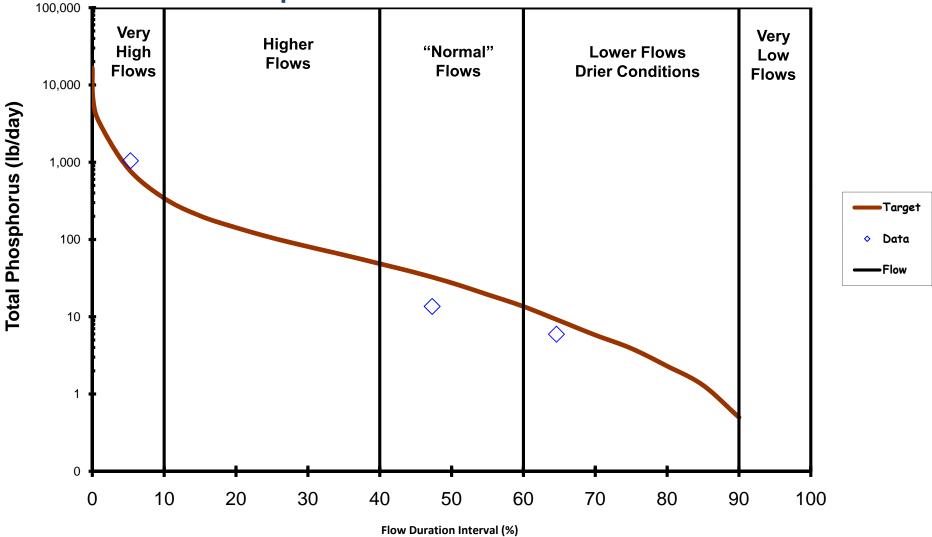


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 107.9 square miles

Attachment C: 53 of 67

Bluegrass Creek At Heckel Rd

Total Phosphorous Load Duration Curve - Site: 20

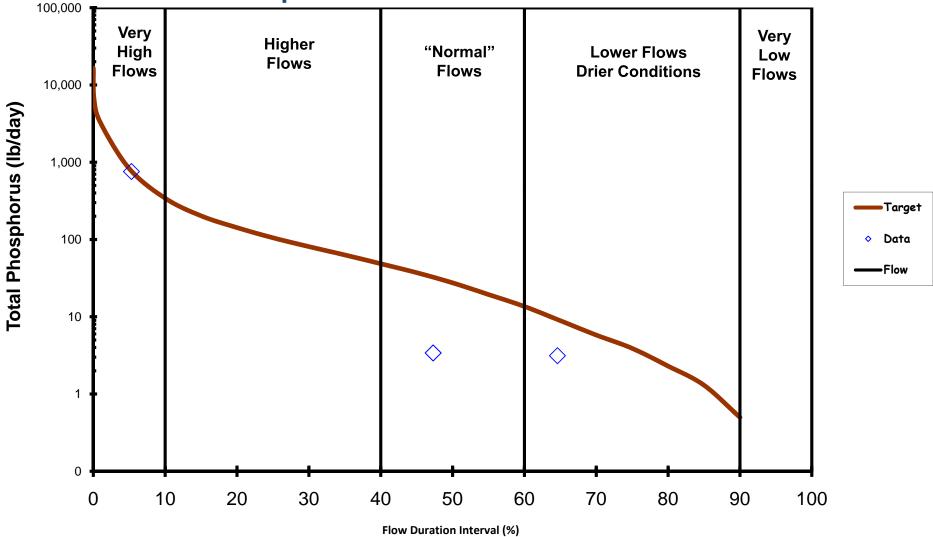


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 44.08 square miles

Attachment C: 54 of 67

Pigeon Creek At Cardinal Dr

Total Phosphorous Load Duration Curve - Site: 21

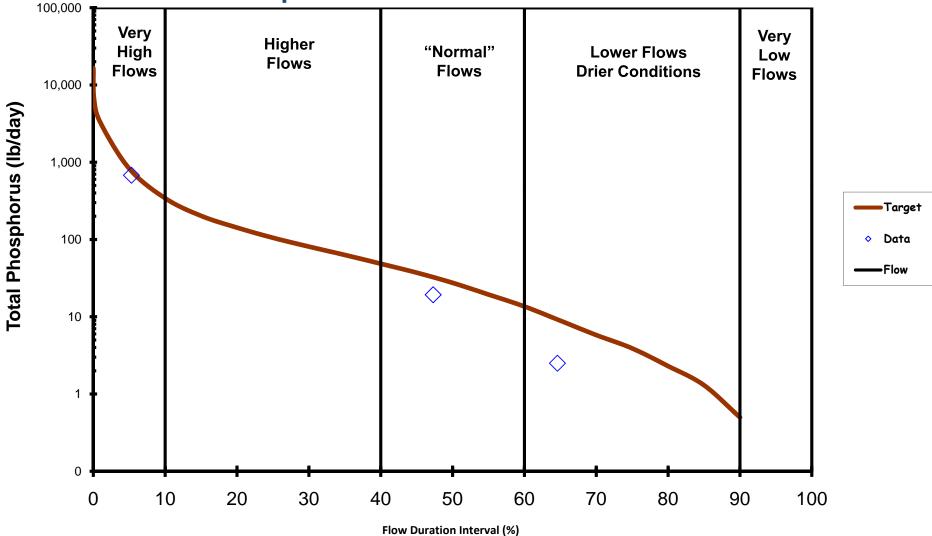


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 77.3 square miles

Attachment C: 55 of 67

Tributary to Bluegrass Creek At Warrick County Line Rd

Total Phosphorous Load Duration Curve - Site: 22

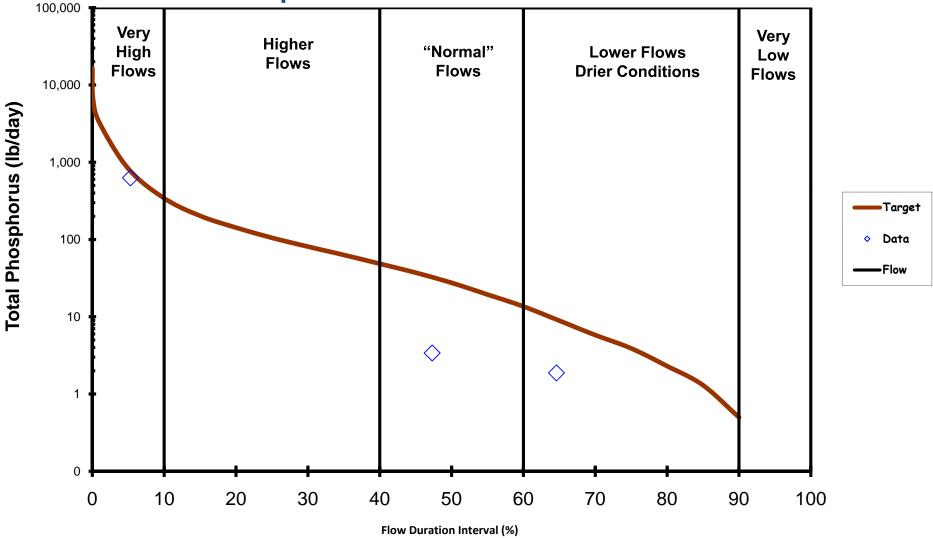


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 0.12 square miles

Attachment C: 56 of 67

Schlensker Ditch At Boonville New Harmony Rd

Total Phosphorous Load Duration Curve - Site: 23

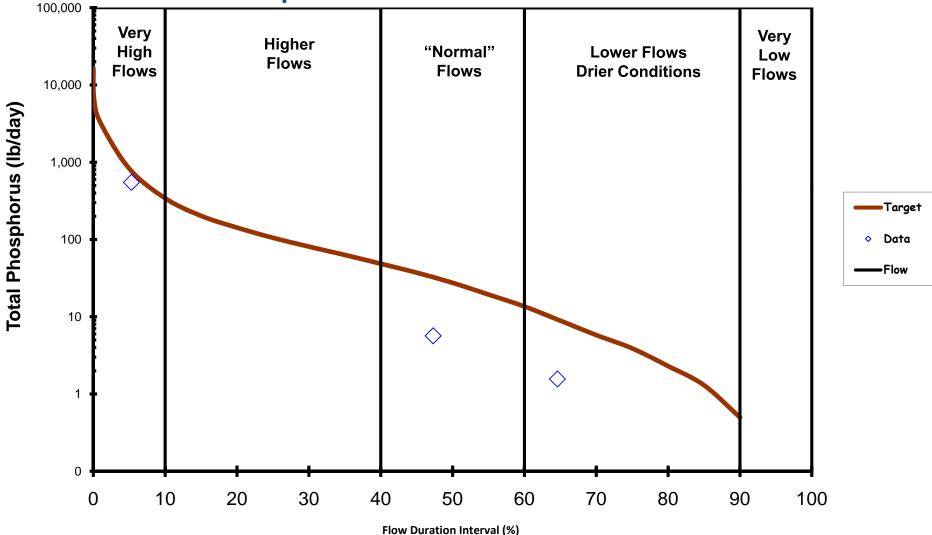


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 5.74 square miles

Attachment C: 57 of 67

Locust Creek At Allen Ln

Total Phosphorous Load Duration Curve - Site: 24

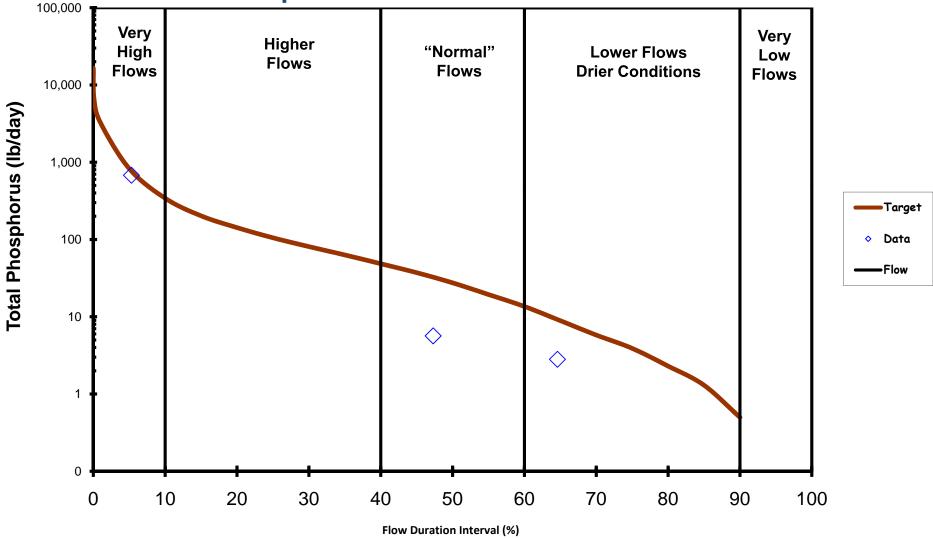


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 15.57 square miles

Attachment C: 58 of 67

Locust Creek At Foot Bridge @ Trailer Park

Total Phosphorous Load Duration Curve - Site: 25

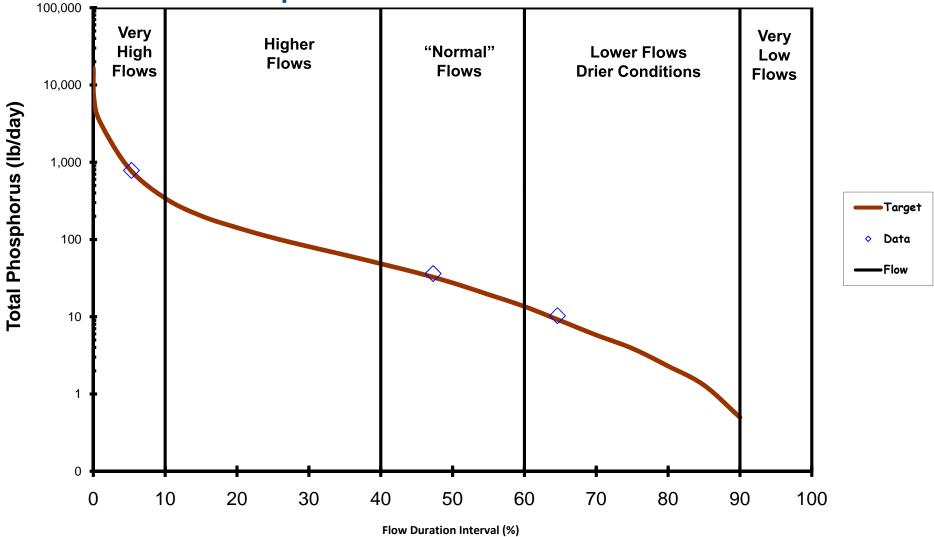


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 10.13 square miles

Attachment C: 59 of 67

Little Pigeon Creek Kentucky Ave

Total Phosphorous Load Duration Curve - Site: 26

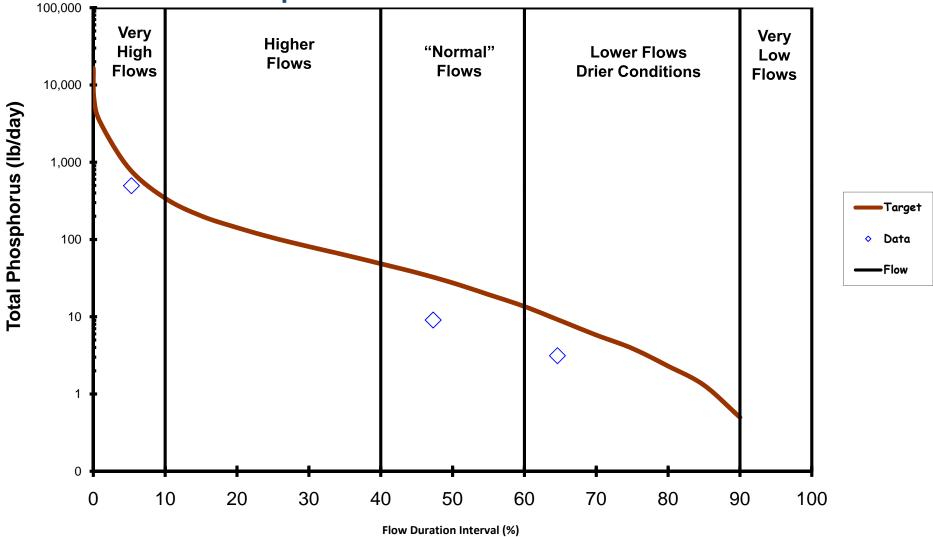


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 15.4 square miles

Attachment C: 60 of 67

Bluegrass Creek CR 600 N/Baseline Rd

Total Phosphorous Load Duration Curve - Site: 27

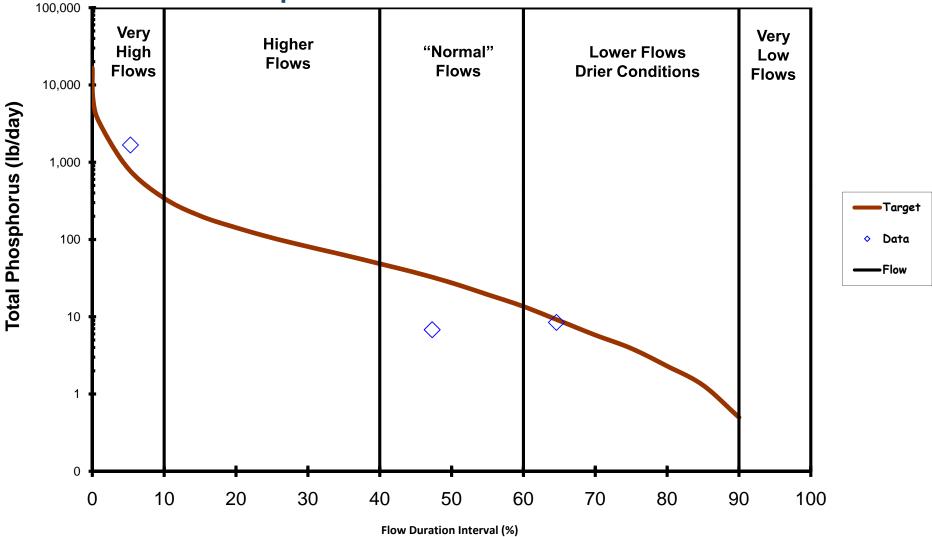


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 8.27 square miles

Attachment C: 61 of 67

Carpentier Creek Broadway Ave

Total Phosphorous Load Duration Curve - Site: 28

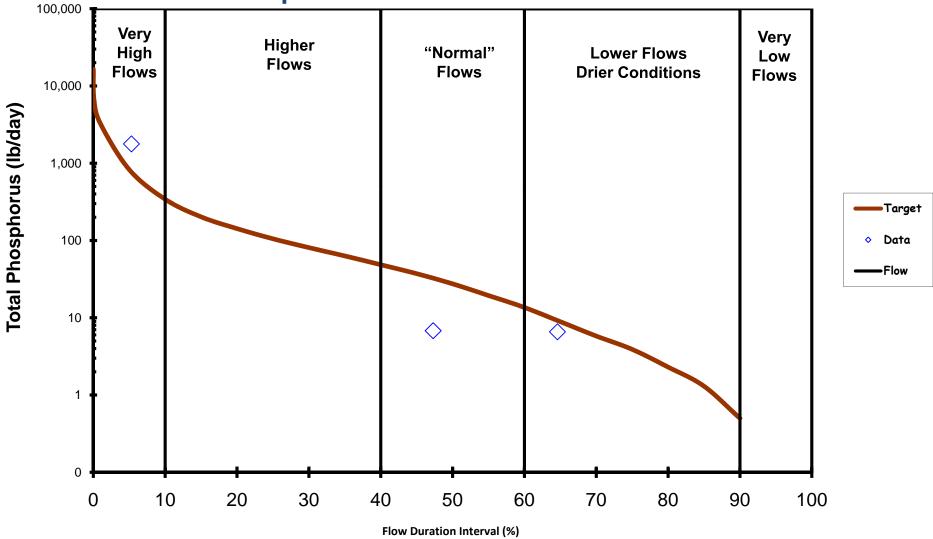


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 7.29 square miles

Attachment C: 62 of 67

McFadden Creek EW 570 Rd

Total Phosphorous Load Duration Curve - Site: 29

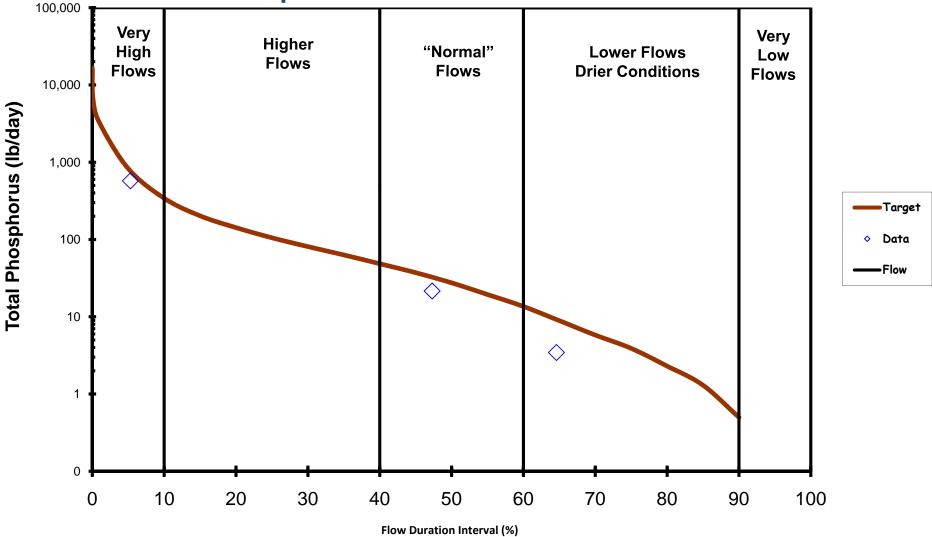


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 19.92 square miles

Attachment C: 63 of 67

Unnamed Tributary to Cypress Slough Indian Mound Rd

Total Phosphorous Load Duration Curve - Site: 31

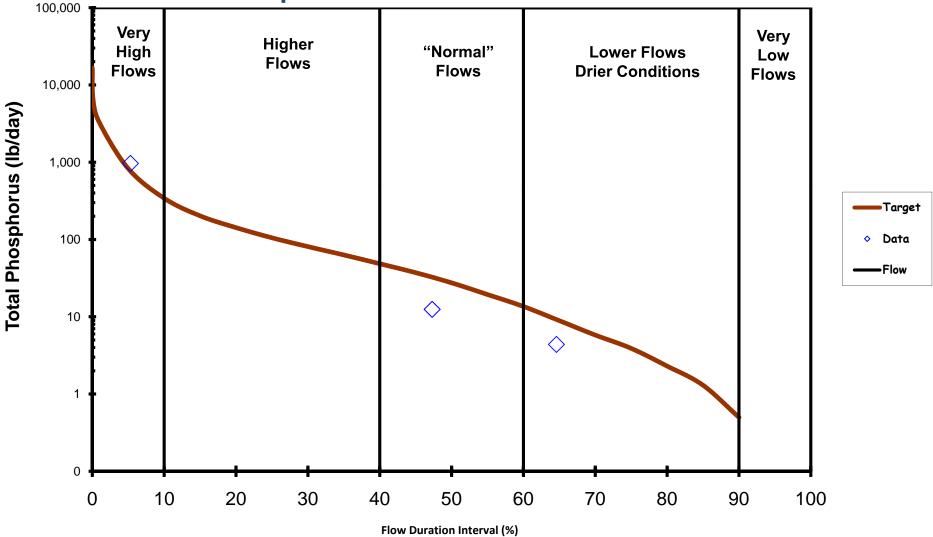


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 6.79 square miles

Attachment C: 64 of 67

Cypress Slough Carbon Rd

Total Phosphorous Load Duration Curve - Site: 32

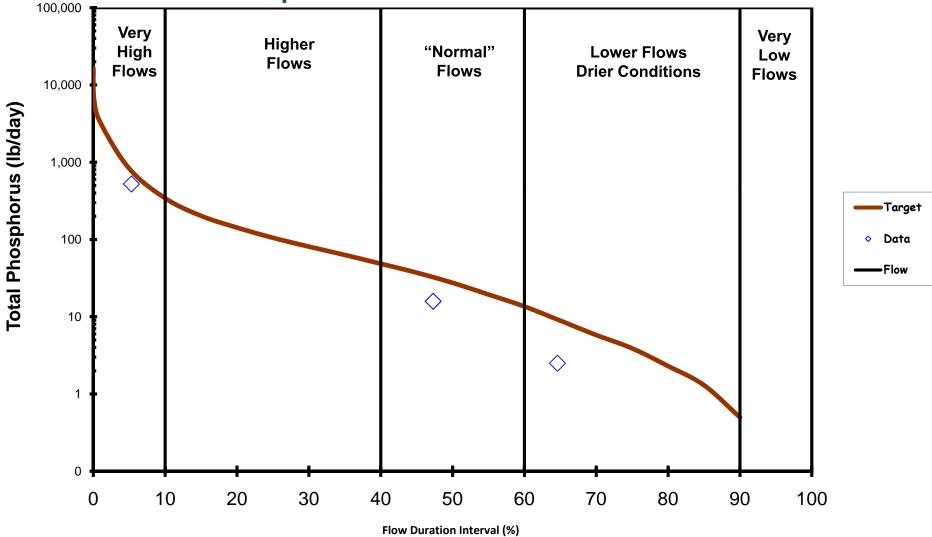


IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 9.34 square miles

Attachment C: 65 of 67

Bayou Creek Franklin Rd

Total Phosphorous Load Duration Curve - Site: 33

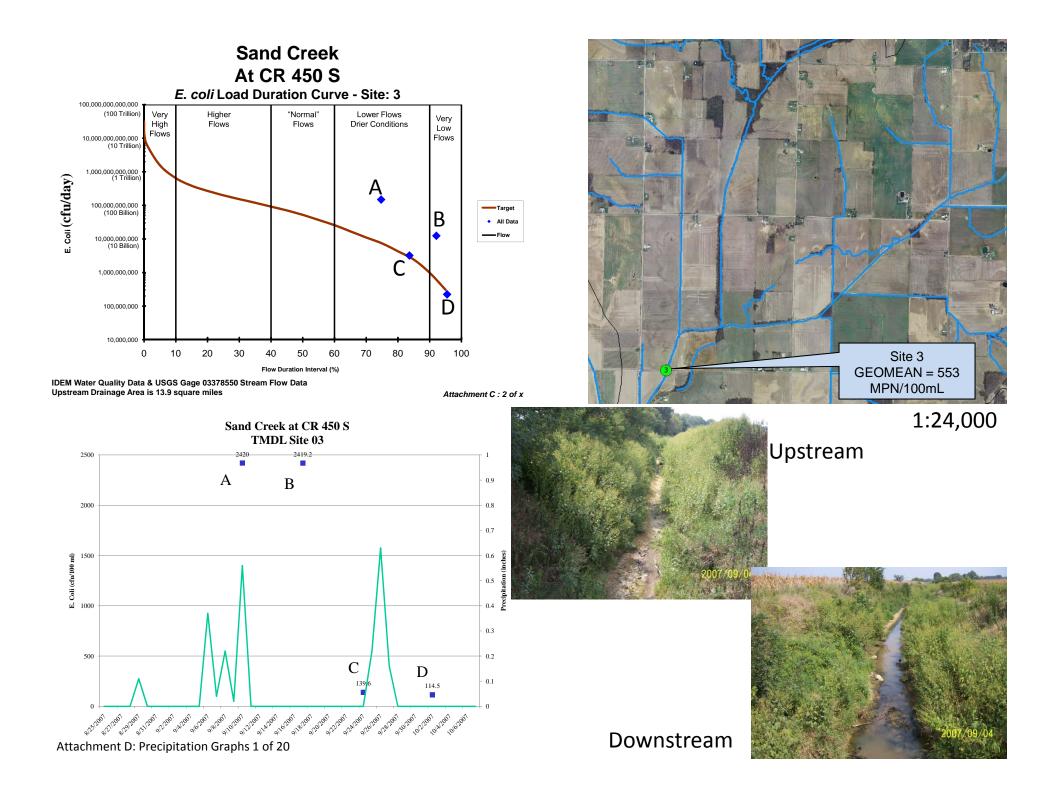


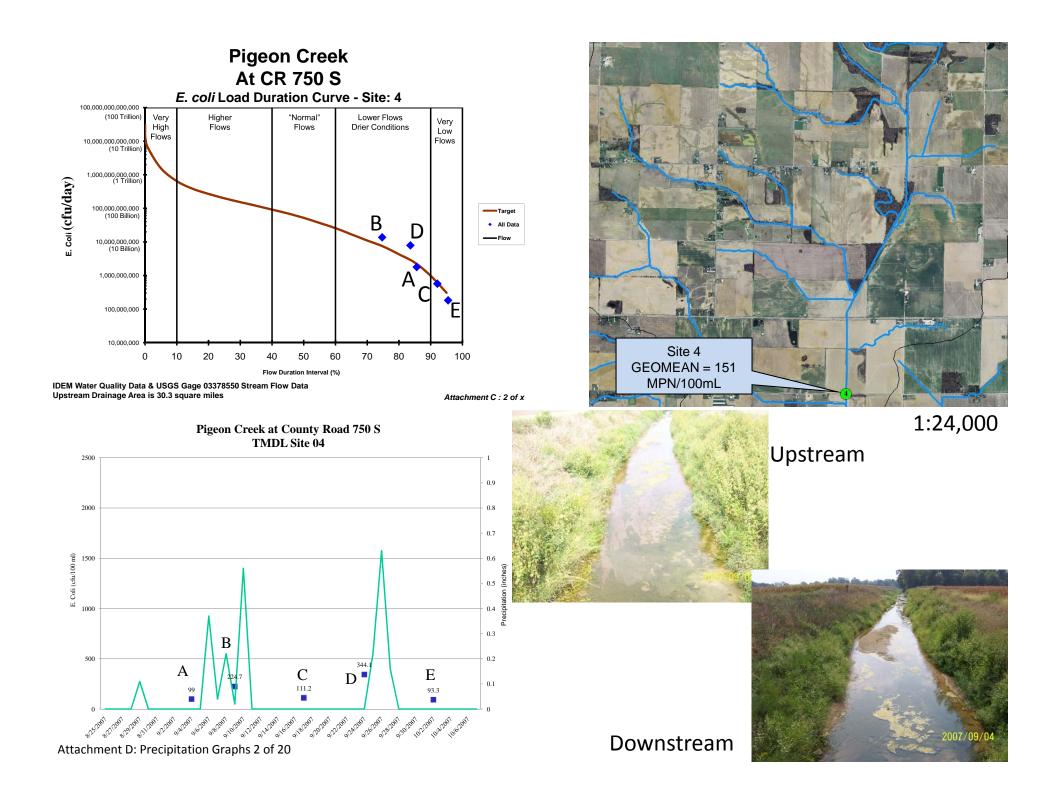
IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 9.74 square miles

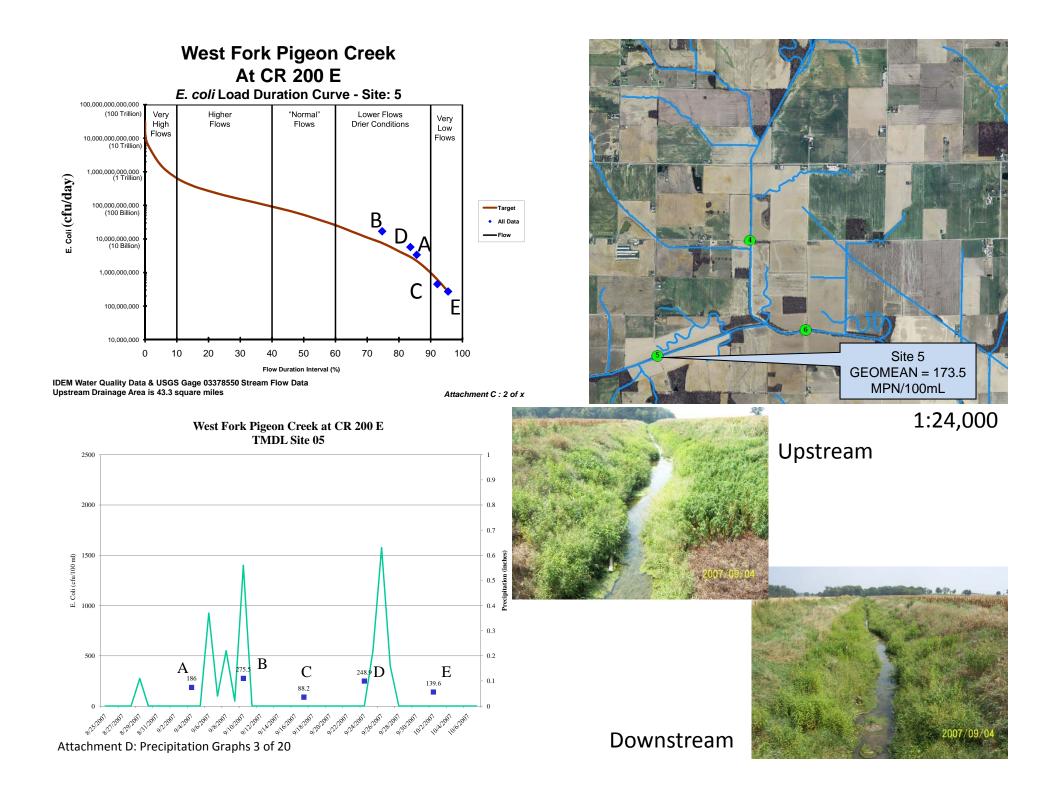
Attachment C: 66 of 67

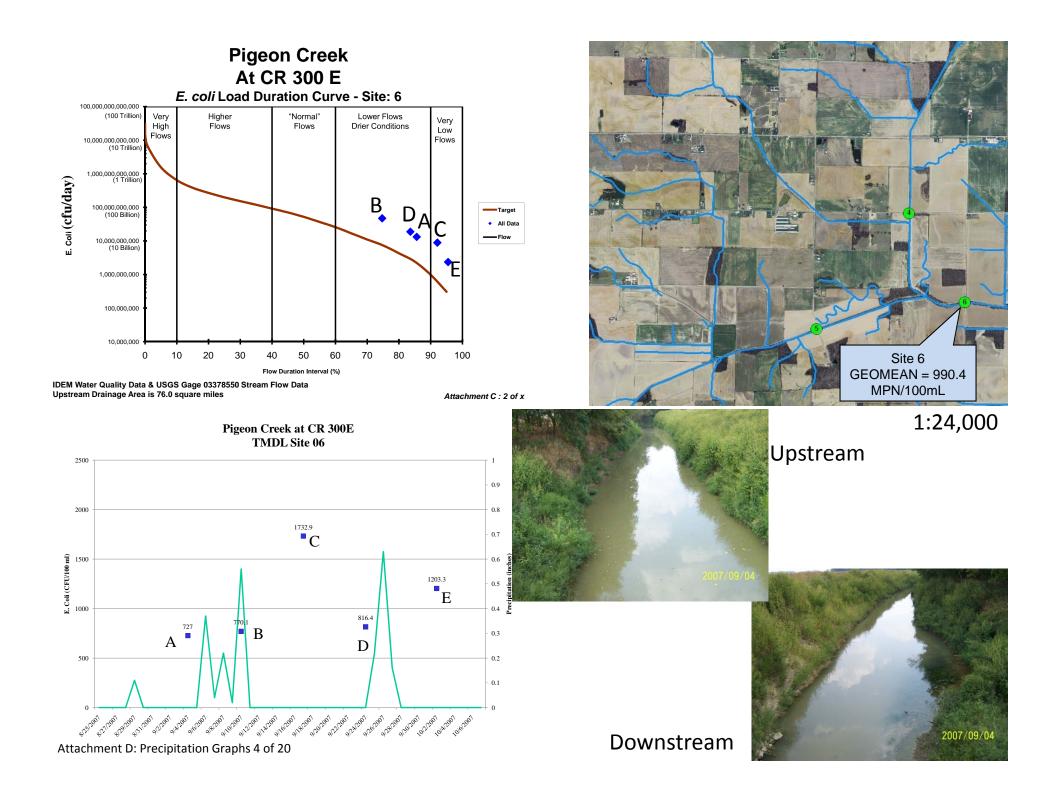
Unnamed Tributary to Bayou Creek At Smith-Diamond Rd

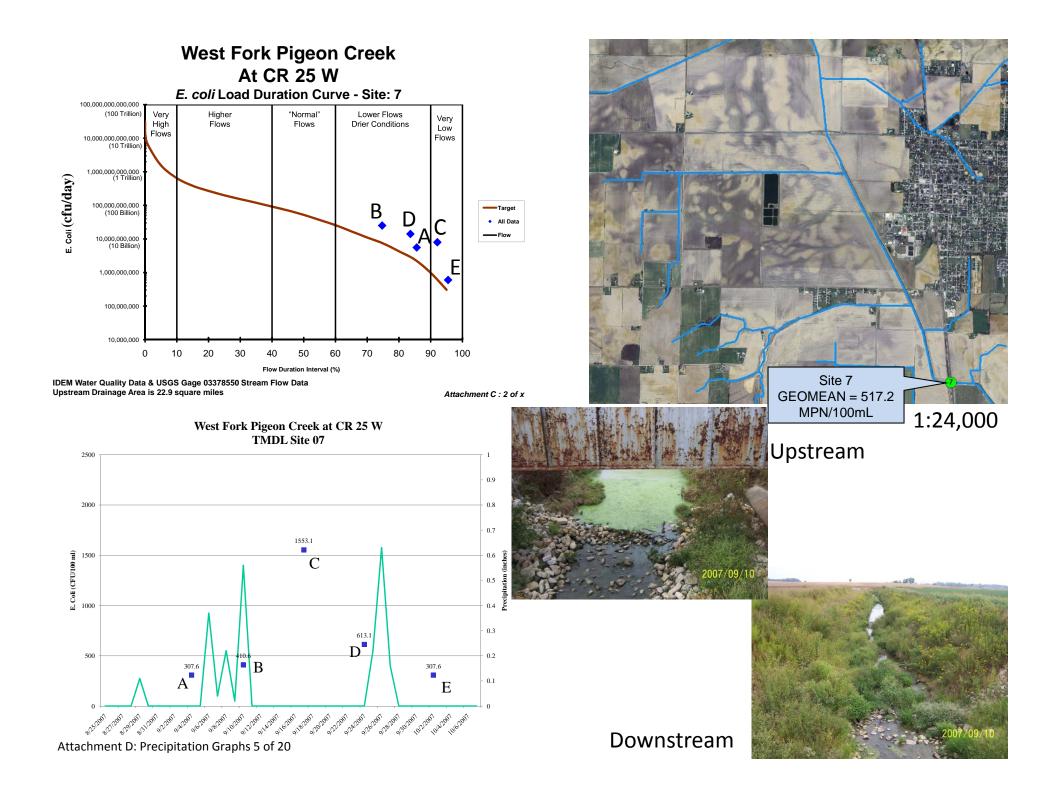
Total Phosphorous Load Duration Curve - Site: 35

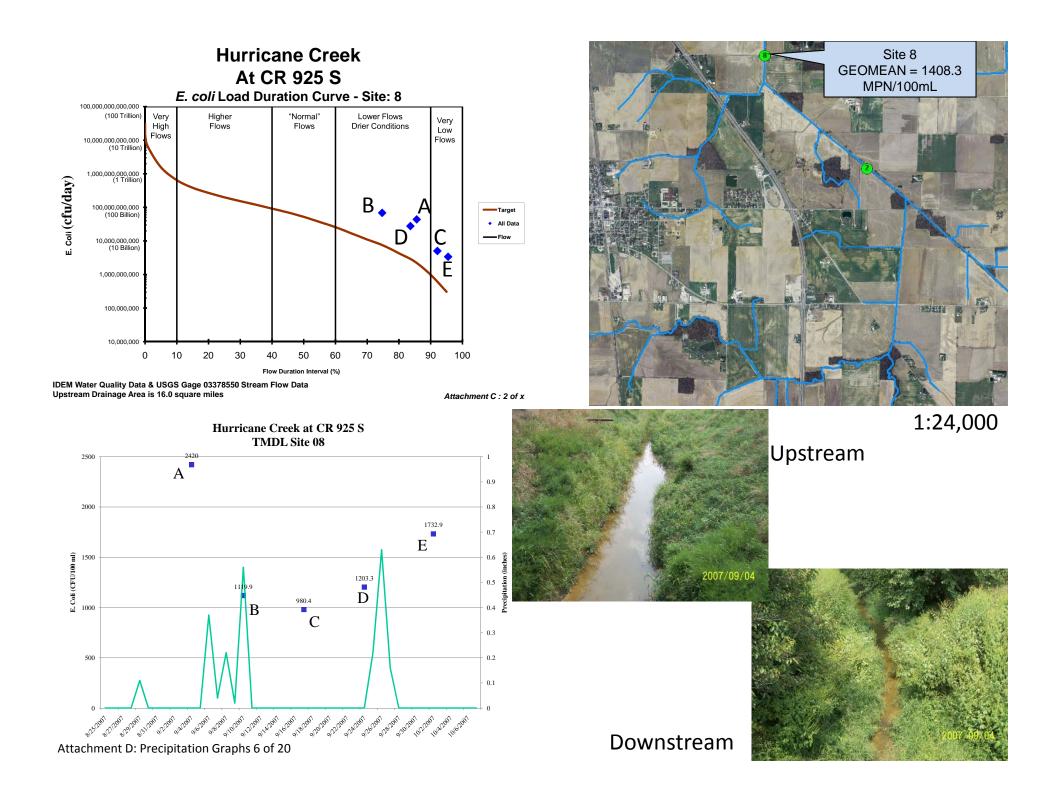


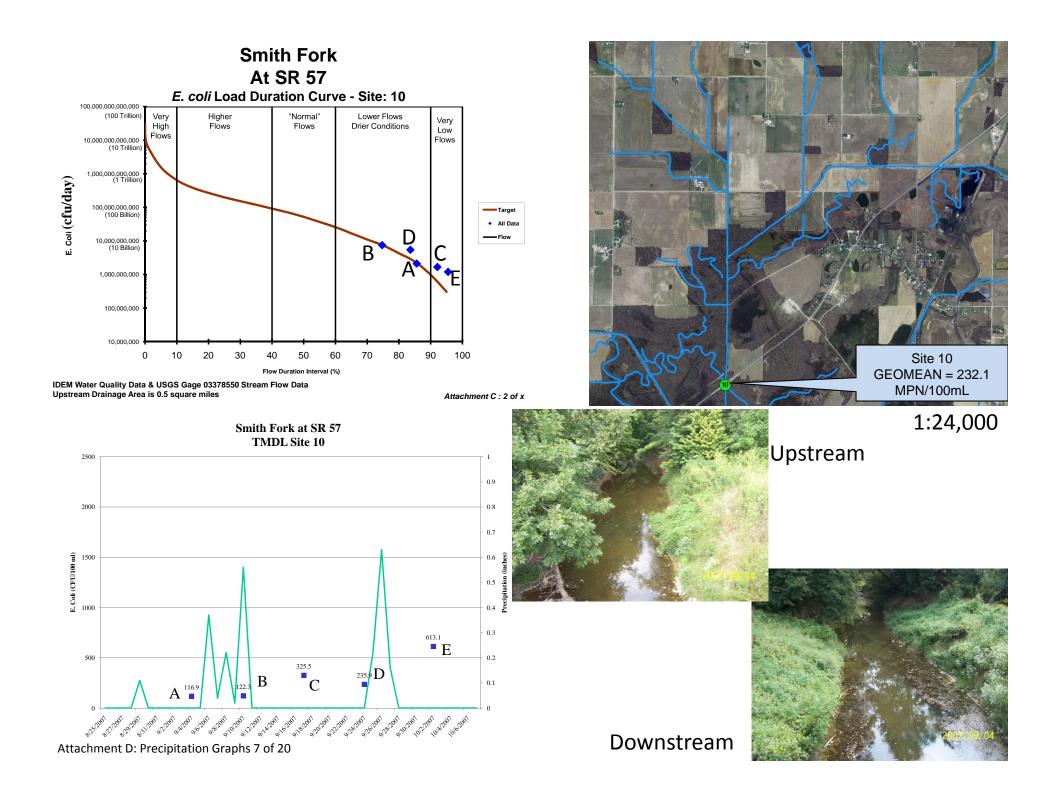

IDEM Water Quality Data & USGS Gage 03378550 Stream Flow Data Upstream Drainage Area is 6.89 square miles

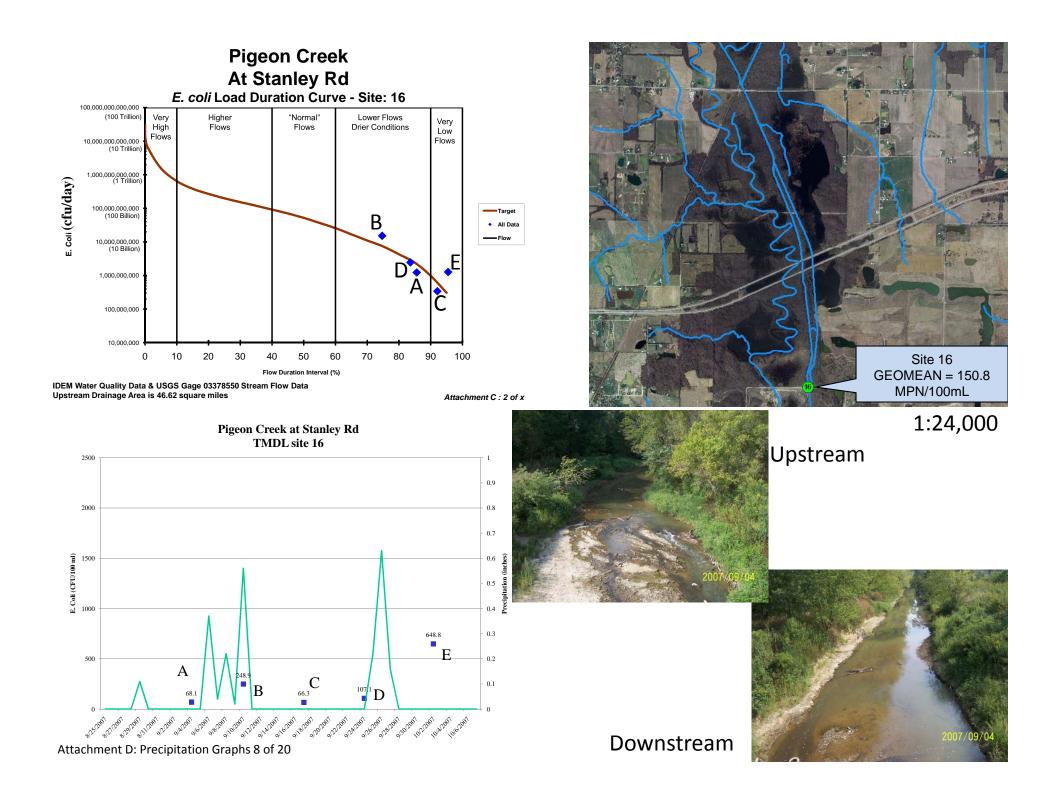

Attachment C: 67 of 67

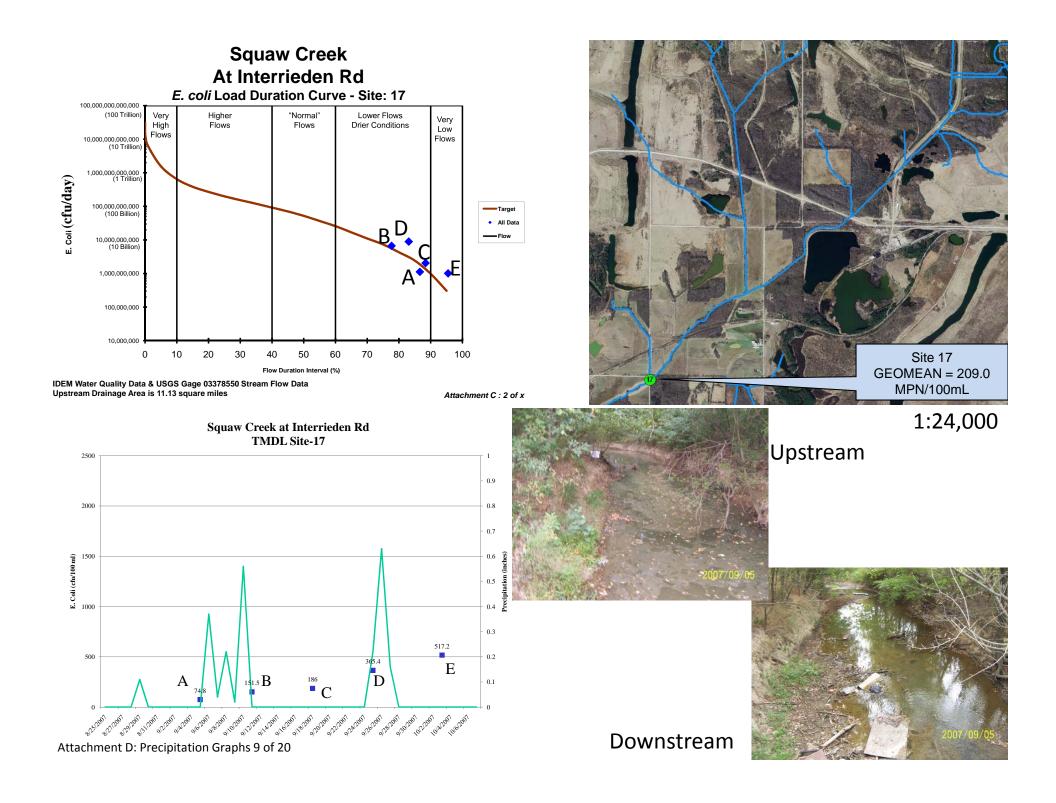

Attachment D

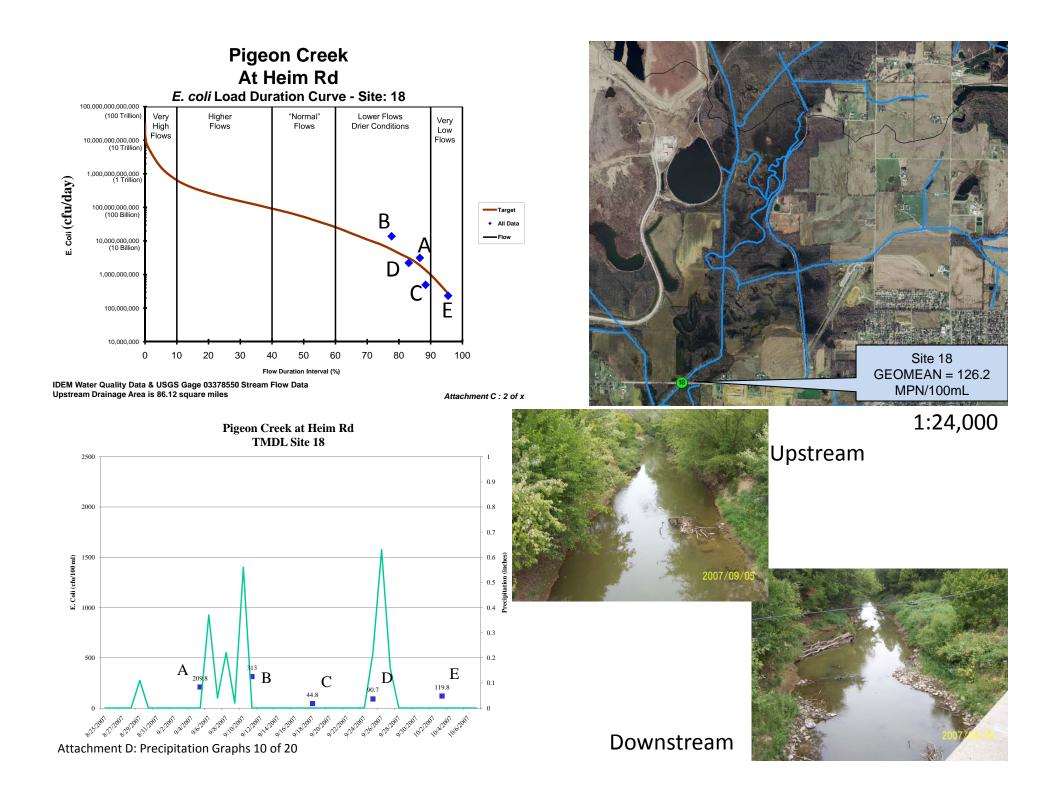

Precipitation Graphs for Impaired Sites in the Highland-Pigeon Creek Watershed TMDL

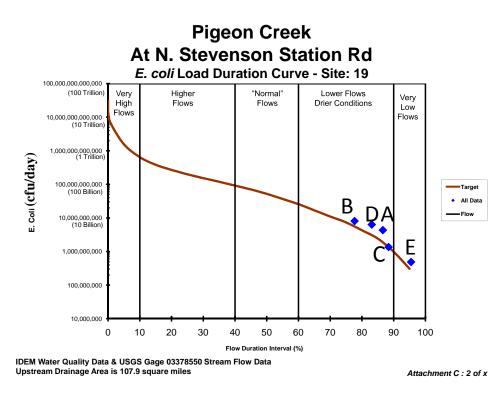


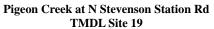


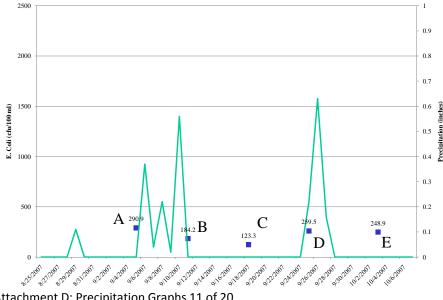


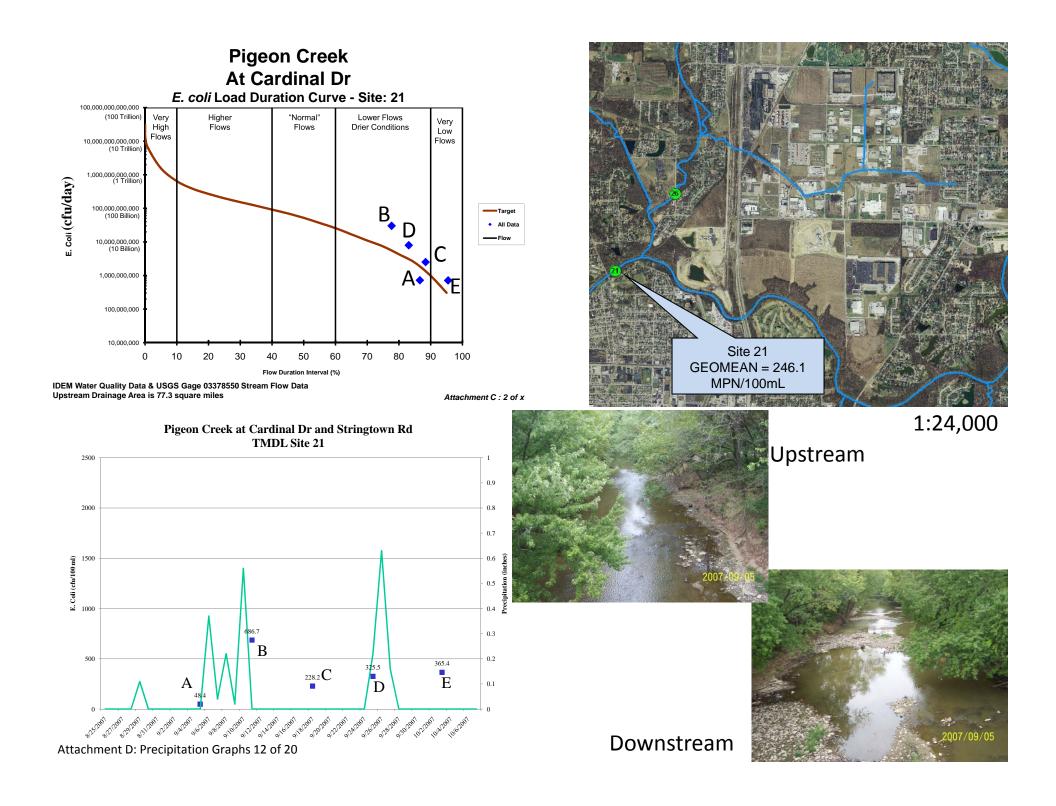


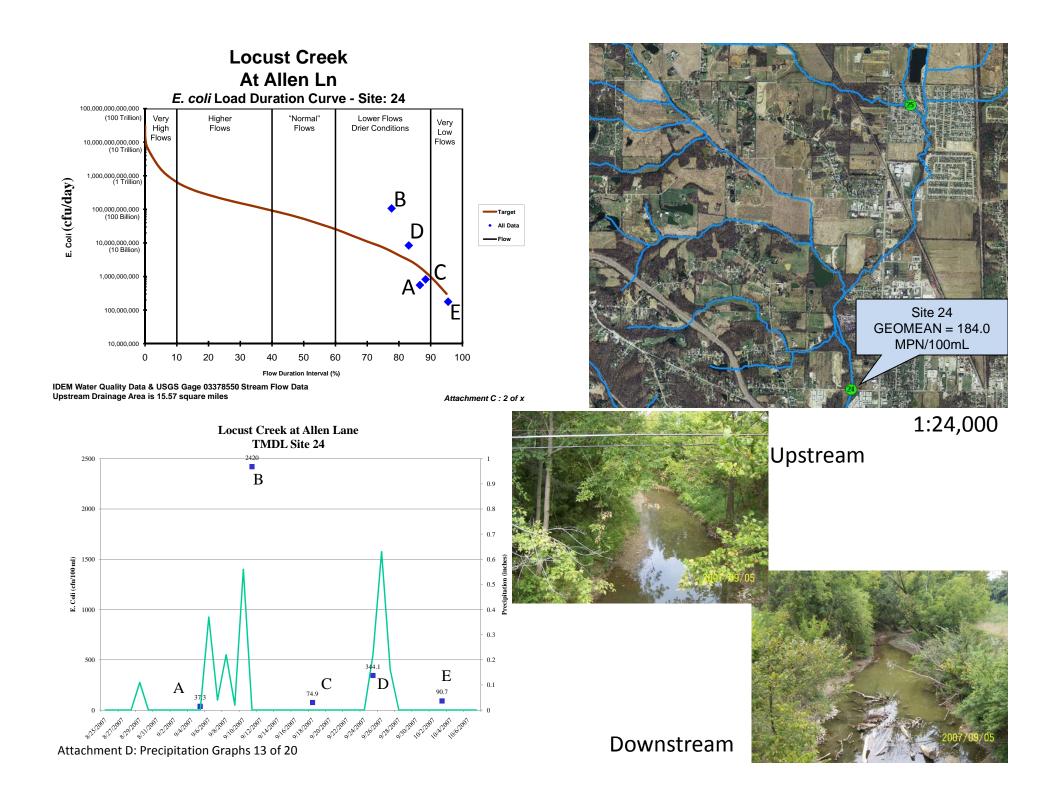


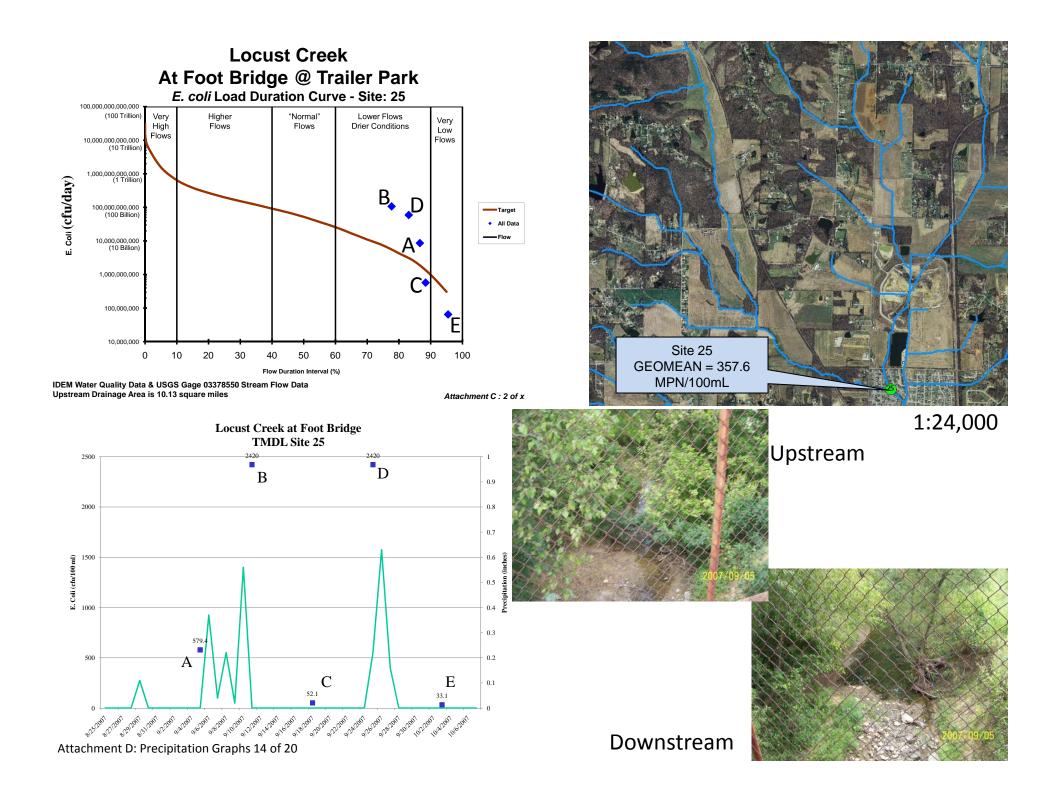


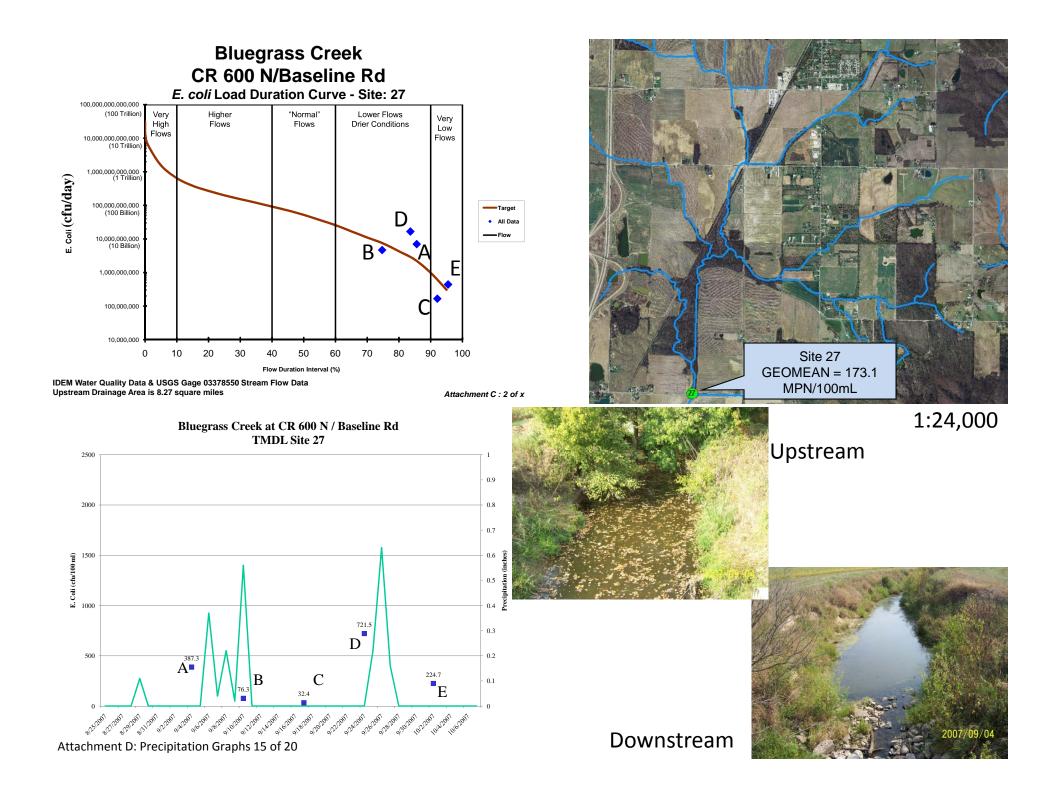


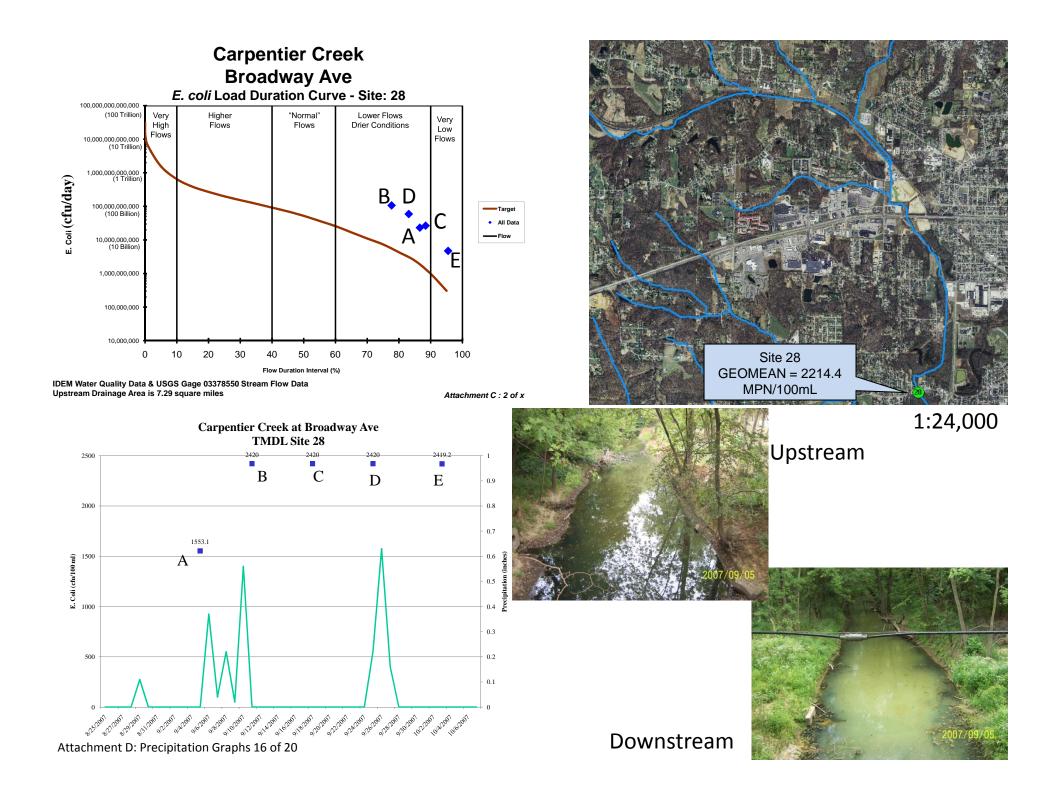


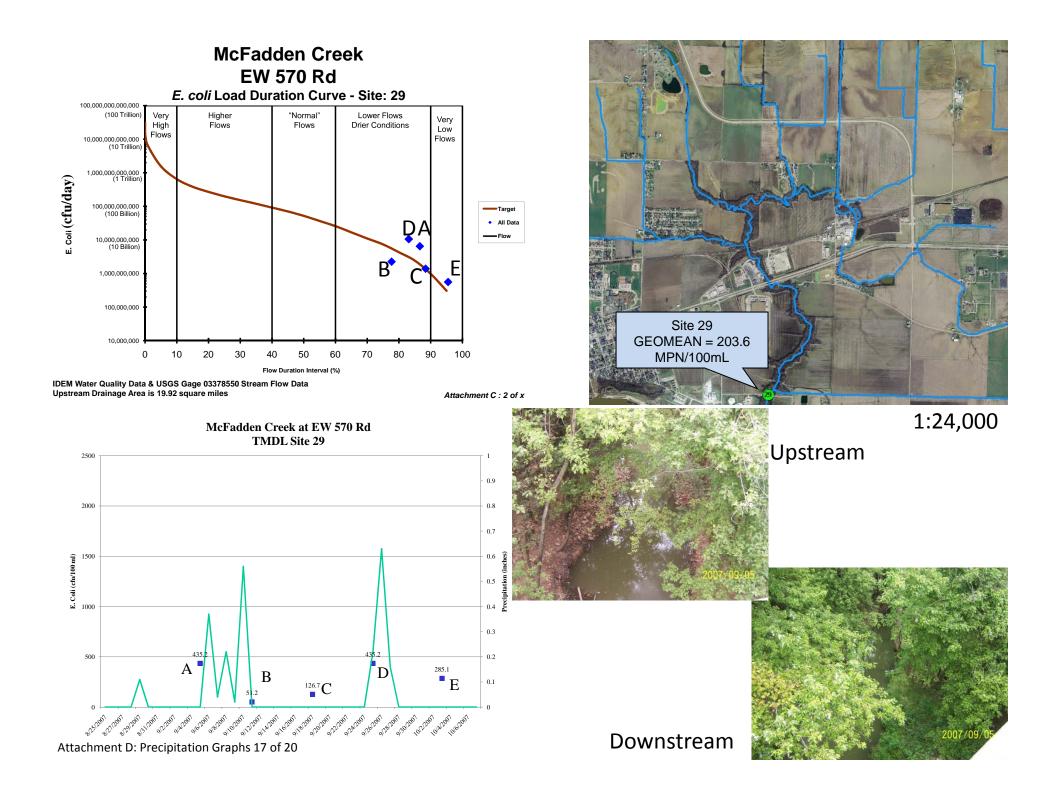

1:24,000

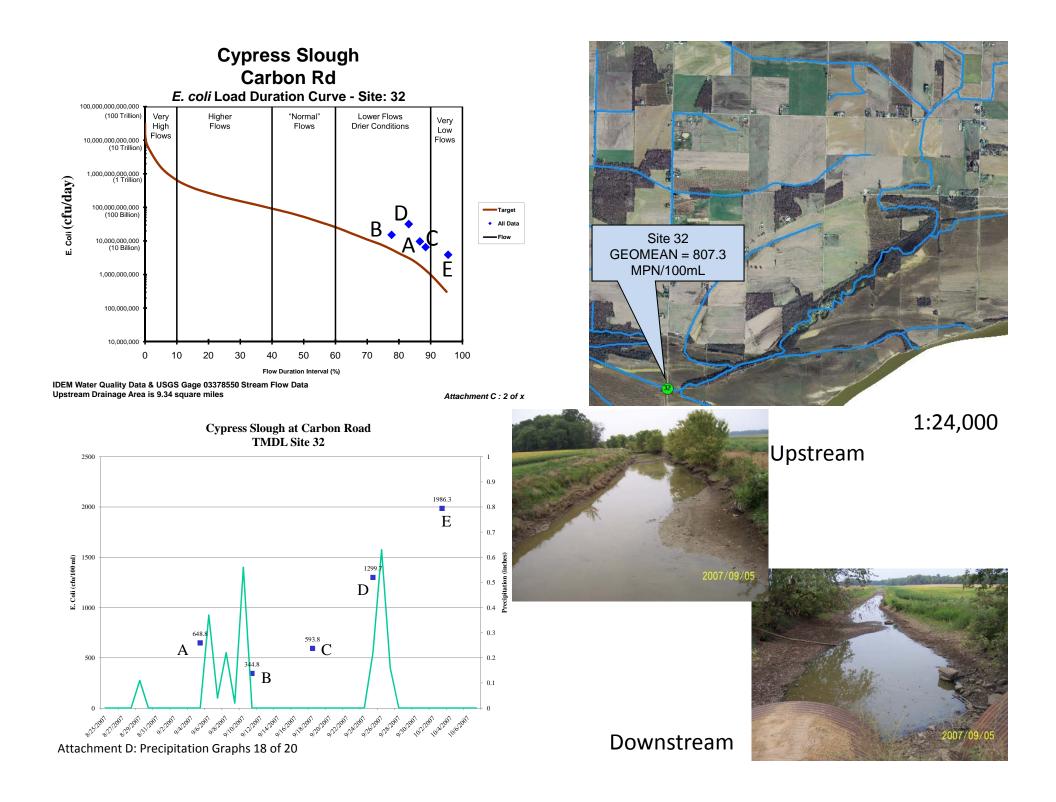

Upstream

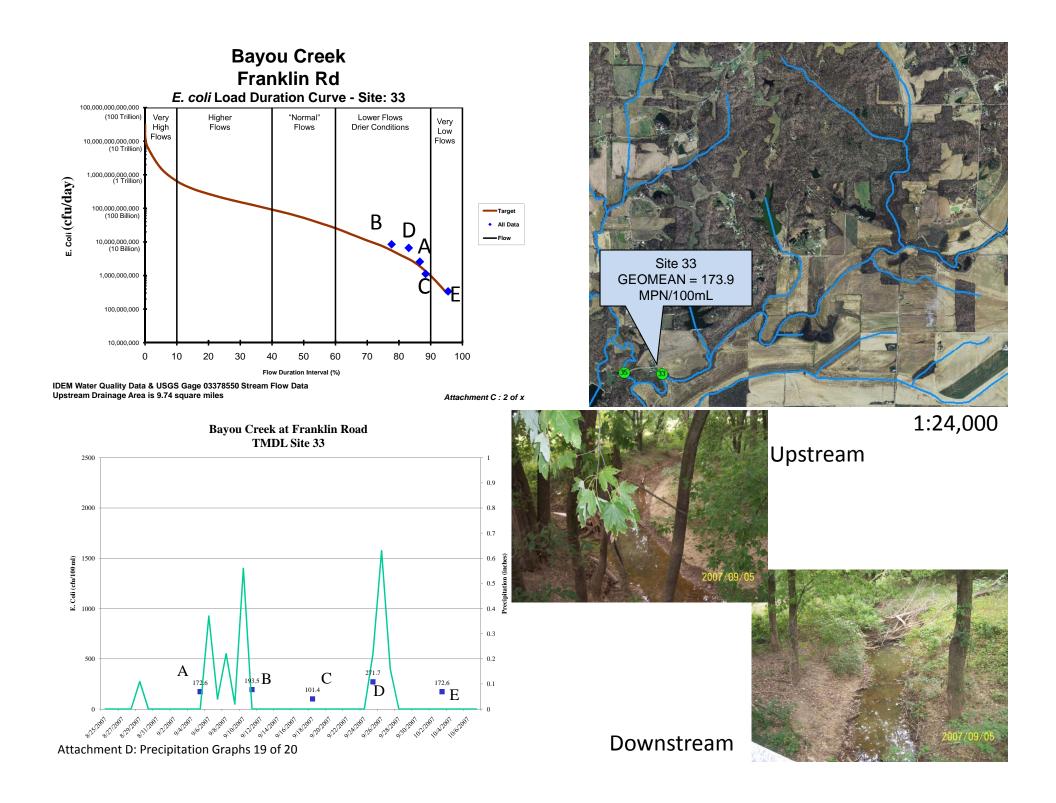

Downstream

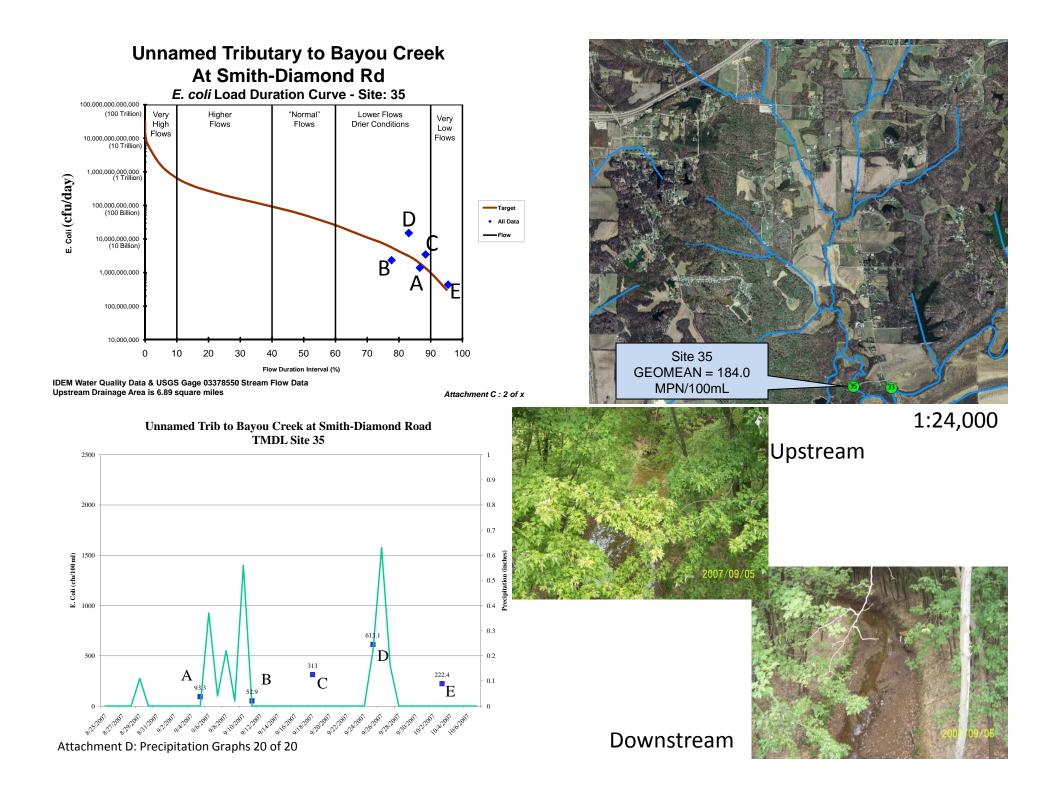



Attachment D: Precipitation Graphs 11 of 20









Attachment E

Load Reductions for the Highland-Pigeon Creek Watershed TMDL

<i>E. coli</i> Standard = 125 mpn/100 mL											
Stream Name	Site Number	<i>E. coli</i> (geometric mean)	Percent Reduction								
Eagle Cr	1	50.6	N/A								
Hurricane Cr	2	344.9	63.75%								
Sand Cr	3	553.1	77.40%								
Pigeon Cr	4	151.3	17.41%								
W Fk Pigeon Cr	5	173.5	27.94%								
Pigeon Cr	6	990.4	87.38%								
W Fk Pigeon Cr	7	517.2	75.83%								
Hurricane Cr	8	1408.3	91.12%								
Pigeon Cr	9	48.9	N/A								
Smith Fk	10	232.1	46.14%								
Smith Fk	11	60.4	N/A								
Pigeon Cr	12	87.0	N/A								
Unnamed Trib to Big Cr	13	1258.5	90.07%								
Big Cr	14	42.7	N/A								
Big Cr	15	46.4	N/A								
Pigeon Cr	16	150.8	17.13%								
Squaw Cr	17	209.0	40.18%								
Pigeon Cr	18	126.2	0.92%								
Pigeon Cr	19	211.9	41.00%								
Bluegrass Cr	20	121.6	N/A								
Pigeon Cr	21	246.1	49.20%								
Trib to Bluegrass Cr	22	50.1	N/A								
Schlensker D	23	124.1	N/A								
Locust Cr	24	184.0	32.07%								
Locust Cr	25	357.6	65.05%								
Little Pigeon Cr	26	99.2	N/A								
Bluegrass Cr	27	173.1	27.77%								
Carpentier Cr	28	2214.4	94.36%								
McFadden Cr	29	203.6	38.62%								
Cypress Slough	30	75.9	N/A								
Unnamed Trib Cypress Slough	31	77.0	N/A								
Cypress Slough	32	807.3	84.52%								
Bayou Cr	33	173.9	28.10%								
, Bayou Drain	34	68.9	N/A								
Unnamed Trib to Bayou Cr	35	184.0	32.05%								

Attachment F

Third-Party Data for the Highland-Pigeon Creek Watershed

							-		Ortho-		A	-	- I.		c.
HR-ID	Lat	Long	Date	DO	%Sat	BOD	Temp	рН	Phosphate	Nitrate	Nitrite	Turbity	Ecoli	Description	Source
1420	38°00'49"	87°34'49"	8-Mar-10	8	85	NA	18	7	0	1	0	40	50	Pigeon Creek Stevenson Station Rd	Vanderburgh County SWCD
														Pigeon Creek Stevenson	Vanderburgh County
1420	38°00'49"	87°34'49"	4-Apr-10	8	85	3	18	6	0.3	2.2	0	18	100	Station Rd	SWCD
														Pigeon Creek Stevenson	Vanderburgh County
1420	38°00'49"	87°34'49"	6-May-10	5	85	2	20	6.5	0.6	220	0.99	41	50	Station Rd	SWCD
														Pigeon Creek Stevenson	Vanderburgh County
1420	38°00'49"	87°34'49"	1-Jun-10	5.5	66	4.5	25	8.5	0.9	4.4	0	40	200	Station Rd	SWCD
														Pigeon Creek Stevenson	Vanderburgh County
1420	38°00'49"	87°34'49"	6-Jul-10	6	77	4	28	8.5	1.5	2.2	0	50	100	Station Rd	SWCD
														Pigeon Creek Stevenson	Vanderburgh County
1420	38°00'49"	87°34'49"	18-Aug-10	6	75	2	28	7	1	2.2	0	35	67	Station Rd	SWCD
														Pigeon Creek Stevenson	Vanderburgh County
1420	38°00'49"	87°34'49"	7-Sep-10	7	80	NA	22	7	0.3	2.2	0	17	NA	Station Rd	SWCD
														Pigeon Creek Stevenson	Vanderburgh County
1420	38°00'49"	87°34'49"	15-Oct-10	6.5	75	NA	22	8	NA	NA	NA	35	NA	Station Rd	SWCD
														Pigeon Highland-	Vanderburgh County
1606	38°15'91"	87°02'31"	31-Mar-10	10	90	3	12	7.5	0.2	2.2	0	20	467	Petersburg Bridge at 41	SWCD
														Pigeon Highland-	Vanderburgh County
1606	38°15'91"	87°02'31"	5-May-10	8	100	0	20	7.5	0.3	2.2	0	18	2000	Petersburg Bridge at 41	SWCD
														Pigeon Highland-	Vanderburgh County
1606	38°15'91"	87°02'31"	22-Jun-10	2	30	NA	26	6.5	0.4	2.2	0	18	1600	Petersburg Bridge at 41	SWCD
														Pigeon Highland-	Vanderburgh County
1606	38°15'91"	87°02'31"	23-Jul-10	2	35	NA	30	7.5	0.6	2.2	0	20	1500	Petersburg Bridge at 41	SWCD
														Pigeon Highland-	Vanderburgh County
1606	38°15'91"	87°02'31"	18-Aug-10	3	28	2	25	6.5	0.8	2.2	0	21	300	Petersburg Bridge at 41	SWCD
											_			Pigeon Highland-	Vanderburgh County
1606	38°15'91"	87°02'31"	13-Sep-10	4	45	NA	26	7.5	0.6	2.2	0	18	850	Petersburg Bridge at 41	SWCD
								_						Pigeon Highland-	Vanderburgh County
1606	38°15'91"	87°02'31"	15-Oct-10	4	45	NA	24	7	NA	NA	NA	18	NA	Petersburg Bridge at 41	SWCD
1005	208221008	078201071	6.4	_			10	7 6	0.45	2.2			200	Pigeon Tributary-	Vanderburgh County
1605	38°23'00"	87°30'07"	6-Apr-10	7	80	NA	18	7.5	0.15	2.2	0	NA	200	Stockwell Rd	SWCD
1005	20022100	078201071	1 May 10	7	75	NIA	10	C F	0.2	0.0	0.405	21	1050	Pigeon Tributary-	Vanderburgh County
1605	38°23'00"	87°30'07"	4-May-10	/	75	NA	19	6.5	0.3	8.8	0.495	31	1050	Stockwell Rd	SWCD
1005	20022100	87°30'07"	2 hun 10	4	47	2	22	7 5	0.2	2.2	0	15	200	Pigeon Tributary-	Vanderburgh County SWCD
1005	38°23'00"	87 30 07	2-Jun-10	4	47	3	23	7.5	0.2	2.2	0	15	200	Stockwell Rd Pigeon Tributary-	Vanderburgh County
1605	38°23'00"	87°30'07"	6 Jul 10	2.5	30	1.5	25	7	0.2	0	0	15	200	Stockwell Rd	SWCD
1005	30 23 00	67 50 07	6-Jul-10	2.5	50	1.5	25	/	0.3	U	U	15	200	Pigeon Tributary-	Vanderburgh County
1605	38°23'00"	87°30'07"	3-Aug-10	4	50	2	25	6.5	0.2	0	0	15	3350	Stockwell Rd	SWCD
1005	30 23 00	37 30 07	3-Aug-10	4	50	2	25	0.5	0.2	U	0	15	3330	Pigeon Tributary-	Vanderburgh County
1605	38°23'00"	87°30'07"	13-Sep-10	3	33	NA	21	7	0.4	0	0	16	NA	Stockwell Rd	SWCD
1005	30 23 00	07 30 07	13-36b-10		55		21	,	0.4	0		10		Pigeon Tributary-	Vanderburgh County
1605	38°23'00"	87°30'07"	15-Oct-10	2	20	NA	21	7.5	NA	NA	NA	17	NA	Stockwell Rd	SWCD

														Vanderburgh County
913 38°33'40"	87°0'25"	28-Apr-10	7	75	NA	20	6.33	0.5	220	0.495	20	2000	Pigeon Creek Boat Ramp	SWCD
														Vanderburgh County
913 38°33'40"	87°0'25"	25-May-10	5	58	4	23	8.5	0.8	8.8	0	19	250	Pigeon Creek Boat Ramp	SWCD
														Vanderburgh County
913 38°33'40"	87°0'25"	8-Jun-10	7	87	NA	26	8.5	1	2.2	0	28	300	Pigeon Creek Boat Ramp	SWCD
														Vanderburgh County
913 38°33'40"	87°0'25"	29-Jun-10	6	75	NA	27	8.5	1	0	0	35	1100	Pigeon Creek Boat Ramp	SWCD
														Vanderburgh County
913 38°33'40"	87°0'25"	23-Aug-10	5	58	NA	25	8.5	1	0	0	50	1100	Pigeon Creek Boat Ramp	SWCD
														Vanderburgh County
913 38°33'40"	87°0'25"	13-Sep-10	5	58	NA	25	8.5	1	0	0	50	2000	Pigeon Creek Boat Ramp	SWCD
														Vanderburgh County
913 38°33'40"	87°0'25"	15-Oct-10	5	60	NA	25	8.5	NA	NA	NA	20	NA	Pigeon Creek Boat Ramp	SWCD
														Vanderburgh County
911 38° 00'49"	87° 04'45'	6-Apr-10	11	115	NA	19	6	0.3	2.2	0	40	100	Locust Creek-Mohr Rd.	SWCD
														Vanderburgh County
911 38° 00'49"	87° 04'45'	5-May-10	7	75	3	17	6	0.15	8.8	1.65	17	267	Locust Creek-Mohr Rd.	SWCD
														Vanderburgh County
911 38° 00'49"	87° 04'45'	1-Jun-10	4	48	NA	24	6.5	0.2	2.2	0	35	1800	Locust Creek-Mohr Rd.	SWCD
														Vanderburgh County
911 38° 00'49"	87° 04'45'	7-Jul-10	7	97	NA	31	8	0.15	0	0	15	250	Locust Creek-Mohr Rd.	SWCD
														Vanderburgh County
911 38° 00'49"	87° 04'45'	18-Aug-10	3	43	1	27	6.5	0.8	6.6	0	18	250	Locust Creek-Mohr Rd.	SWCD
														Vanderburgh County
911 38° 00'49"	87° 04'45'	13-Sep-10	6	70	NA	26	6.5	0.8	2.2	0	18	220	Locust Creek-Mohr Rd.	SWCD
														Vanderburgh County
911 38° 00'49"	87° 04'45'	15-Oct-10	6	75	NA	27	6.5	NA	NA	NA	15	NA	Locust Creek-Mohr Rd.	SWCD
														Vanderburgh County
1611 37°58'80"	87°37'56"	19-May-10	7	71	NA	16	7.5	0.1	8.8	0	15	50	Locust Creek- Mill Rd.	SWCD
														Vanderburgh County
1611 37°58'80"	87°37'56"	29-Jun-10	2.5	30	1	25	6.5	0.7	2.2	0	20	4700	Locust Creek- Mill Rd.	SWCD
														Vanderburgh County
1611 37°58'80"	87°37'56"	22-Jul-10	4	60	1	30	6	0.6	2.2	0	20	3500	Locust Creek- Mill Rd.	SWCD
														Vanderburgh County
1611 37°58'80"	87°37'56"	18-Aug-10	4	50	2	25	6	0.6	2.2	0	19	200	Locust Creek- Mill Rd.	SWCD
														Vanderburgh County
1611 37°58'80"	87°37'56"	13-Sep-10	4	50	NA	26	7	0.6	2.2	0	18	250	Locust Creek- Mill Rd.	SWCD
														Vanderburgh County
1611 37°58'80"	87°37'56"	15-Oct-10	5	55	NA	26	7	NA	NA	NA	15	NA	Locust Creek- Mill Rd.	SWCD
													Bluegrass-Boonville New	Vanderburgh County
1189 38°05'20"	87°28'35"	11-Apr-10	NA	NA	NA	20	6.5	0.1	4.4	0	17.67	200	Harmony	SWCD
													Bluegrass-Boonville New	Vanderburgh County
1189 38°05'20"	87°28'35"	7-May-10	6	67	0	23	7.5	0	8.8	0	15	133	Harmony	SWCD
	1								1				Bluegrass-Boonville New	Vanderburgh County
1189 38°05'20"	87°28'35"	4-Jun-10	8	100	NA	29	6.5	1	0	0	16	150	Harmony	SWCD

														Bluegrass-Boonville New	Vanderburgh County
1189	38°05'20"	87°28'35"	23-Jul-10	6	90	4	32	7	0	0	0	19	100	Harmony	SWCD
														Bluegrass-Boonville New	Vanderburgh County
1189	38°05'20"	87°28'35"	31-Aug-10	3.5	50	1.5	25	6.5	0	0	0	90	67	Harmony	SWCD
														Bluegrass-Boonville New	Vanderburgh County
1189	38°05'20"	87°28'35"	13-Sep-10	5	60	NA	25	6.5	0	0	0	20	67	Harmony	SWCD
														Bluegrass-Boonville New	Vanderburgh County
1189	38°05'20"	87°28'35"	7-Oct-10	6	65	NA	22	7	NA	NA	NA	20	NA	Harmony	SWCD
														Firlick Creek -	Vanderburgh County
1424	38°03'00"	87°3'00"	6-Apr-10	8	86	NA	19	6.5	0.2	8.8	0	25	33	Millersburgh Rd	SWCD
														Firlick Creek -	Vanderburgh County
1424	38°03'00"	87°3'00"	4-May-10	7	76	3	20	6	0.8	8.8	0.495	35	133	Millersburgh Rd	SWCD
														Firlick Creek -	Vanderburgh County
1424	38°03'00"	87°3'00"	1-Jun-10	5	60	4	25	7.5	0.2	2.2	0	15	600	Millersburgh Rd	SWCD
														Firlick Creek -	Vanderburgh County
1424	38°03'00"	87°3'00"	6-Jul-10	6	75	NA	27	8	2	0	0	25	200	Millersburgh Rd	SWCD
														Firlick Creek -	Vanderburgh County
1424	38°03'00"	87°3'00"	18-Aug-10	9	105	3	24	7.5	1	0	0	20	50	Millersburgh Rd	SWCD
														Firlick Creek -	Vanderburgh County
1424	38°03'00"	87°3'00"	13-Sep-10	7.5	90	NA	25	6.5	0.3	0	0	15	200	Millersburgh Rd	SWCD
														Firlick Creek -	Vanderburgh County
1424	38°03'00"	87°3'00"	15-Oct-10	7.5	90	NA	24	7	NA	NA	NA	15	NA	Millersburgh Rd	SWCD
															Vanderburgh County
1188	37°56'59"	87°38'35"	6-Apr-10	4	42	NA	19	8	0.2	2.2	0	NA	NA	Kleymeyer First Avenue	SWCD
															Vanderburgh County
1188	37°56'59"	87°38'35"	4-May-10	4	42	2	18	6.5	0.2	4.4	0.66	30	1100	Kleymeyer First Avenue	SWCD
									_						Vanderburgh County
1188	37°56'59"	87°38'35"	2-Jun-10	1	12	0.5	23	8	2	2.2	0	1	1800	Kleymeyer First Avenue	SWCD
					-				_						Vanderburgh County
1188	37°56'59"	87°38'35"	6-Jul-10	0.5	6	0	24	8	2	0	0	40	500	Kleymeyer First Avenue	SWCD
							•	_							Vanderburgh County
1188	37°56'59"	87°38'35"	3-Aug-10	2.5	42	NA	26	7	0.8	0	0	18	2100	Kleymeyer First Avenue	SWCD
4400		07*201251	7.6 10	5	50	4 5	22	7 5	0.2	0	0	45	050		Vanderburgh County
1188 .	37°56'59"	87°38'35"	7-Sep-10	5	50	1.5	22	7.5	0.3	0	0	15	850	Kleymeyer First Avenue	SWCD
1100	27%56'50"	07*20'25"	15 Oct 10	2	25	NIA	22	0	NIA	NIA	NIA	10	NIA	Kloumouar First Avanua	Vanderburgh County
1188 :	37°56'59"	87°38'35"	15-Oct-10	3	35	NA	22	8	NA	NA	NA	18	NA	Kleymeyer First Avenue	SWCD
1022	37°58'80"	87°37'56"	10 14-11	1 5	15	NIA	17	6.5	0.15	2.2	0	15	50	Bayou Tributary-Burdette Park	SWCD
1022	37 38 80	8/ 3/ 30	19-May-10	1.5	15	NA	17	6.5	0.15	2.2	0	15	50	Bayou Tributary-Burdette	
1622	37°58'80"	87°37'56"	22-Jun-10	1	13	NA	30	7.5	0.8	2.2	0	NA	100	Park	SWCD
1022	57 58 80	87 37 30	22-Juli-10	1	15	NA	50	7.5	0.8	2.2	0	NA	100	Bayou Tributary-Burdette	
1622	37°58'80"	87°37'56"	7-Jul-10	2.5	31	NA	26	8	0.4	0	0	20	0	Park	SWCD
1022	57 30 00	07 57 50	7-JUI-TO	2.5	21	INA	20	0	0.4	U	0	20	0	Bayou Tributary-Burdette	
1622	37°58'80"	87°37'56"	3-Aug-10	7	85	NA	30	6	0.8	220	33	17	5000	Park	SWCD
1022	00 00 11	01 31 30	2-Aug-10	/	65	NA.	- 30	0	0.0	220	35	1/	5000	Bayou Tributary-Burdette	
1															wanaci bargii Coulity

													Bayou Tributary-Burdette	Vanderburgh County
1622 37°58'80"	87°37'56"	7-Oct-10	5	60	NA	22	8	0.6	220	33	18	6000	Park	SWCD
													Carpentier Creek-	Vanderburgh County
16 37°59'26"	87°38'08"	8-Jul-10	12	140	NA	32	8.5	0.4	0	0	15	150	Claremont	SWCD
													Carpentier Creek-	Vanderburgh County
1631 37°59'26"	87°38'08"	3-Aug-10	12	145	NA	30	7.5	0.6	2.2	0	15	150	Claremont	SWCD
													Carpentier Creek-	Vanderburgh County
1631 37°59'26"	87°38'08"	7-Sep-10	12	140	NA	30	9	0.6	0	0	15	50	Claremont	SWCD
													Carpentier Creek-	Vanderburgh County
1631 37°59'26"	87°38'08"	7-Oct-10	12	140	NA	34	9	NA	NA	NA	15	NA	Claremont	SWCD
													Carpentier Creek Kohl's	Vanderburgh County
1610 38°00'66"	87°33'66"	19-May-10	8	79	4	15	6.5	0.15	4.4	0	<15	266.4	Hogue Rd	SWCD
													Carpentier Creek Kohl's	Vanderburgh County
1610 38°00'66"	87°33'66"	22-Jun-10	9	100	NA	30	8.5	0.2	2.2	0	15	200	Hogue Rd	SWCD
													Carpentier Creek Kohl's	Vanderburgh County
1610 38°00'66"	87°33'66"	7-Jul-10	4	48	NA	25	7.5	0.15	0	0	15	400	Hogue Rd	SWCD
													Carpentier Creek Kohl's	Vanderburgh County
1610 38°00'66"	87°33'66"	3-Aug-10	11	140	5	32	8.5	0.6	2.2	0	17	50	Hogue Rd	SWCD
													Carpentier Creek Kohl's	Vanderburgh County
1610 38°00'66"	87°33'66"	7-Sep-10	6	70	NA	25	7.5	0.6	2.2	0	15	250	Hogue Rd	SWCD
													Carpentier Creek Kohl's	Vanderburgh County
1610 38°00'66"	87°33'66"	7-Oct-10	8	95	NA	23	8	NA	NA	NA	20	NA	Hogue Rd	SWCD
													Carpentier Creek-Red	Vanderburgh County
1632 37°58'25"	87°38'08"	8-Jul-10	9	111	NA	26	8.5	0.2	2.2	0	15	550	Bank	SWCD
													Carpentier Creek-Red	Vanderburgh County
1632 37°58'25"	87°38'08"	3-Aug-10	7	82	4	25	8	0.6	22	0	15	2500	Bank	SWCD
			_			~-							Carpentier Creek-Red	Vanderburgh County
1632 37°58'25"	87°38'08"	13-Sep-10	5	58	NA	25	8.5	1	0	0	15	2000	Bank	SWCD
													Carpentier Creek-Red	Wesselman Nature
1632 37°58'25"	87°38'08"	7-Oct-10	6	70	NA	26	8	NA	NA	NA	15	NA	Bank	Society
1200 200221401	07101051		_		6	25	0.5				50			Wesselman Nature
1360 38°33'40"	87°0'25"	21-Aug-08	7	NA	6	25	8.5	0.8	0	0	50	NA	Pigeon Creek Boat Ramp	Society
1200208221408	07801251	20 Nov 00	6		0	-	c	0.2	0	0	00		Diana Caraly Darat Daras	Wesselman Nature
1360 38°33'40"	87°0'25"	20-Nov-08	6	NA	0	5	6	0.2	0	0	80	NA	Pigeon Creek Boat Ramp	Society
1200 208221408	07801251	20 14 00	_		2	0	c	0.2	22	0			Disease Creak Death Dear	Wesselman Nature
1360 38°33'40"	87°0'25"	30-Mar-09	5	NA	2	8	6	0.3	22	0	NA	NA	Pigeon Creek Boat Ramp	Society
1200 20822140	07801251	0.1.1.00			2	24	0	0.0	2.2	0		400	Disease Creak Death Dear	Wesselman Nature
1360 38°33'40"	87°0'25"	9-Jul-09	8	NA	3	24	8	0.8	2.2	0	NA	400	Pigeon Creek Boat Ramp	Society
1200 20822140	07%0/25"	2 Can 00	0		2	22	0	0.0	0	0	NIA	200	Disson Creek Deat Dama	Wesselman Nature
1360 38°33'40"	87°0'25"	3-Sep-09	9	NA	2	22	8	0.6	0	0	NA	200	Pigeon Creek Boat Ramp	Society Wesselman Nature
1260 2022240	070025	22 Jun 10	_	NIA	1	21	6.5	2	_	0	NIA	000	Digoon Crook Doot Down	
1360 38°33'40"	87°0'25"	22-Jun-10	9	NA	1	31	6.5	2	0	U	NA	900	Pigeon Creek Boat Ramp	Society
1260 20022140	97°0'25"	6 10 10	10	NIA	2	30	8.5	0.7	0	0	NA	NIA	Digoon Crook Doot Domin	Wesselman Nature
1360 38°33'40"	87°0'25"	6-Aug-10	10	NA	2	30	ŏ.5	0.7	U	U	NA	NA	Pigeon Creek Boat Ramp	Society
1260 2002240	87°0'25"	11 Oct 10	8	NIA	2	17	8	0.6	0	0	NA	NIA	Digoon Crook Boot Barry	Wesselman Nature
1360 38°33'40"	0/ 025	11-Oct-10	ð	NA	2	17	ð	0.6	U	U	NA	NA	Pigeon Creek Boat Ramp	Society

Attachment G

Nutrient Data for Highland-Pigeon Creek Watershed TMDL

			Ammonia	TKN		TP	DO		Temp	SpC		
TMDL Site	Date	Time	(mg/L)	(mg/L)	N+N (mg/L)	(mg/L)	(mg/L)	pH (SU)	(C)	(uS/cm)	Turb (NTU)	%Sat
1	9/9/2009						Not Locate					
1	10/28/09						Not Locate	d				
1	5/18/10						Not Locate					
3	9/10/09	9:48		0.90		0.11		7.95	21.26	308.00		66.30
3	10/28/09	17:31		0.80		0.42		8.29	14.55	309.00		93.00
3	5/18/10	16:23		0.40		0.07		8.66	19.66	1356.00		139.90
4	9/10/09	8:55		0.30		0.07		8.19	19.67	586.00		91.10
4	10/28/09	16:47		1.60		1.02		7.60	14.02	324.00		87.80
4	5/18/10	15:31		0.40		0.06		8.42	20.12	547.00		132.10
5	9/10/09	9:02				1.06		8.24	21.08	2.00		71.50
5	10/28/09	16:54				0.90		7.58	14.54	460.00		83.40
5	5/18/10	15:38		0.60		0.26		8.14	18.51	703.00		103.10
6	9/10/09	8:47		1.00		0.53		7.99	20.54	502.00		80.70
6	10/28/09	16:41		2.00		1.03		7.68	14.21	379.00		85.90
6	5/18/10	15:24		0.50		0.15		8.35	20.04	168.00		123.10
7	9/10/09	9:28				0.55		7.98	22.30	628.00		81.10
7	10/28/09	17:11	0.20			0.52		7.78	14.87	534.00		93.10
7	5/18/10	15:55		0.40		0.08		8.07	18.52	716.00		109.70
8	9/10/09	9:13				5.34		7.76	19.31	662.00		78.30
8	10/28/09	17:03				1.48		7.96	14.43	427.00		87.00
8	5/18/10	15:48				1.28		8.46	20.13	724.00		126.10
9	9/10/09	8:33		0.90		0.39		7.93	22.35	462.00		74.40
9	10/28/09	16:30				1.08		7.64	13.46	351.00		80.40
9	5/18/10	15:11		0.50		0.17		8.20	18.84	628.00		107.90
10	9/10/09	7:50				0.32		7.88	22.08	402.00		79.90
10	10/28/09	16:18		1.20		0.29		7.91	14.42	799.00		90.30
10	5/18/10	14:56		0.60		0.16		8.18	19.32	626.00		106.80
11	9/10/09	8:15		0.30		<0.03	7.68	8.23	20.24	2980.00		86.80
11	10/28/09	15:53		0.90		0.15		8.10	14.59	1229.00		97.90
11	5/18/10	14:35		0.7		0.05		8.62	22.26	181.00		182.70
12	9/9/09	18:44		0.70		0.14		8.21	24.27	1470.00		94.50
12	10/28/09	14:43	0.20	2.00	1.10	0.81	7.71	7.75	13.19	410.00	132.00	74.80

12	5/18/10	13:23 <0.1		0.70	3.00	0.13	8.15	8.08	18.03	1127.00	56.00	89.50
14	9/9/09 N	o Access										
14	10/28/09 N	lo Access										
14	5/18/10 N	o Access										
15	9/9/09	20:04 <0.1		0.40	0.20	0.03	7.56	8.15	21.37	1660.00	13.70	86.70
15	10/28/09	16:07 <0.1		0.80	0.30	0.13	9.30	8.02	13.67	0.85	82.50	91.40
15	5/18/10	14:45 <0.1		0.50	0.20 <0).03	10.23	8.29	18.98	167.00	10.70	113.70
16	9/9/09	19:07 <0.1		0.80	0.50	0.12	7.68	8.14	23.77	1356.00	38.90	93.00
16	10/28/09	15:27	0.20	1.80	1.30	0.73	8.11	7.67	13.41	460.00	110.00	79.20
16	5/18/10	14:10 <0.1		0.70	3.00	0.11	8.52	8.11	18.53	1087.00	35.30	94.30
17	9/9/09	8:21 <0.1		0.50 <0.1		0.04	8.31	8.25	23.96	1920.00	0.00	99.80
17	10/28/09	14:34 <0.1		0.70 <0.1		0.08	9.21	8.08	13.81	1690.00	13.90	90.80
17	5/18/10	13:11 <0.1		0.40 < 0.1	<(0.03	10.90	8.30	18.04	252.00	9.40	120.00
18	9/9/09	18:09 <0.1		0.70	0.30	0.14	6.75	7.83	23.20	1268.00	40.90	81.10
18	10/28/09	14:25	0.10	2.20	1.10	0.78	7.41	7.68	13.17	380.00	218.00	71.70
18	5/18/10	13:01 <0.1		1.20 <0.1		0.15	6.11	7.96	18.78	1352.00	47.00	68.20
19	9/9/09	17:53 <0.1		1.00	0.30	0.17	6.35	7.69	23.12	945.00	55.60	75.50
19	10/28/09	14:15	0.10	2.10	1.30	0.63	6.90	7.88	13.23	424.00	212.00	66.90
19	5/18/10	12:53 <0.1		1.00	2.20	0.19	7.39	8.05	18.56	1290.00	74.50	82.00
20	9/9/09	16:53 <0.1		0.70	0.10	0.08	6.50	8.10	24.12	1034.00	53.10	78.80
20	10/28/09	13:48 <0.1		1.50	0.70	0.38	7.61	7.96	13.52	298.00	98.70	74.90
20	5/18/10	12:38 <0.1		0.60	0.20	0.07	7.01	8.10	18.40	1279.00	30.70	77.50
21	9/9/09	15:44 <0.1		1.00	0.40	0.19	6.19	7.72	23.18	746.00	81.80	74.10
21	10/28/09	13:24 < 0.1		1.40	1.10	0.40	7.62	7.92	13.42	564.00	128.00	73.30
21	5/18/10	11:25 < 0.1		0.90	1.80	0.12	5.83	7.88	18.85	1203.00	52.70	64.60
22	9/9/09	17:17 < 0.1		0.80 < 0.1		0.10	8.92	7.98	24.51	154.00		108.70
22	10/28/09	15:10 < 0.1		1.40	1.40	0.29	9.16	7.70	14.30	249.00	81.70	91.10
22	5/18/10	13:50 < 0.1		0.50	1.40	0.03	10.22	8.17	17.28	431.00		110.10
23	9/9/09	17:11 < 0.1		0.70	0.20	0.08	8.33	7.99	24.53	224.00		101.00
23	10/28/09	13:59 < 0.1		1.20	0.70	0.26	9.41	7.94	14.43	240.00	38.80	94.30
23	5/18/10	13:43 < 0.1		1.50	0.50	0.17	11.41	8.32	17.53	445.00	115.00	
24	9/9/09	16:11 < 0.1		0.60	0.40	0.06	8.30	8.03	23.71	258.00		101.20
24	10/28/09	12:45 < 0.1		1.20	0.70	0.24	9.41	8.11	13.80	258.00	54.20	93.00
24	5/18/10	11:55 <0.1		0.50	3.40 <(1.03	8.64	8.10	16.75	42.00	8.60	91.40

25	9/9/09	16:26 <0.1		0.70 <0.1		0.05	8.13	8.51	25.77	279.00	2.00	101.30
25	10/28/09	13:01 <0.1		1.20	0.60	0.21	9.63	8.17	13.92	249.00	37.30	96.10
25	5/18/10	12:16 <0.1		0.50	0.60	0.05	7.00	7.99	16.84	390.00	23.50	74.00
26	9/9/09	15:53 <0.1		0.80	0.50	0.09	7.92	7.97	22.86	343.00	18.50	93.40
26	10/28/09	13:16 <0.1		1.30	0.30	0.26	9.12	7.93	14.06	247.00	68.40	90.40
26	5/18/10	11:35 <0.1		0.40	0.30	0.05	8.75	7.96	17.25	600.00	9.40	93.70
27	9/9/09	17:25 <0.1		1.30	0.90	0.33	6.11	7.59	22.67	282.00	12.70	73.10
27	10/28/09	15:03 <0.1		1.40	1.60	0.30	8.90	8.10	14.02	184.00	46.30	88.10
27	5/18/10	13:57 <0.1		0.60	2.60	0.32	6.58	7.98	16.77	575.00	11.90	70.00
28	9/9/09	14:24	0.20	0.80	0.30	0.10	5.04	7.48	22.21	357.00	13.20	59.10
28	10/28/09	12:02 <0.1		0.80	0.30	0.19	8.15	8.05	13.63	312.00	24.20	79.80
28	5/18/10	10:55	0.10	0.60	0.30	0.08	4.20	7.61	17.49	504.00	19.70	44.90
29	9/9/09	13:34 <0.1		0.90	0.60	0.27	6.40	7.75	22.29	253.00	13.20	75.10
29	10/28/09	10:23 <0.1		1.70	1.50	0.64	8.37	7.66	13.40	320.00	131.00	81.40
29	5/18/10	9:23 <0.1		0.40	3.50	0.06	7.20	7.94	17.79	655.00	22.30	77.40
30	· · ·	13:05 <0.1		0.60	0.40	0.06	5.70	7.68	23.36	418.00	1.50	66.70
30		Io Longer Access										
30		Io Longer Access	sible									
31	9/9/09	13:13	0.10	1.10	0.20	0.21	3.80	7.64	21.49	281.00	29.80	43.80
31	10/28/09	10:39 <0.1		1.80	1.00	0.68	7.30	7.69	13.24	294.00	160.00	71.00
31	5/18/10	9:47 <0.1		0.60	1.50	0.06	6.90	7.93	16.77	614.00	15.50	73.10
32	9/9/09	13:20 <0.1		0.80	0.10	0.11	4.81	7.35	25.48	302.00	26.90	59.40
32	10/28/09	10:54 <0.1		1.20	0.50	0.22	3.45	7.75	13.18	387.00	25.00	33.10
32	5/18/10	10:01	0.30	1.30	0.10	0.19	1.00	7.43	18.19	510.00	45.10	10.30
33	9/9/09	14:10 <0.1		0.80	0.20	0.14	8.30	7.70	21.73	204.00	73.50	96.00
33	10/28/09	11:30 <0.1		1.00	0.10	0.37	7.71	7.90	13.19	233.00	112.00	74.40
33	5/18/10	10:39 <0.1		0.60	0.50	0.11	5.03	7.64	17.51	426.00	34.90	54.30
34		lot located										
34	10/28/09 N											
34		lot located										
35	9/9/09	14:02 <0.1		0.70	0.30	0.08	8.50	7.87	22.26	341.00		100.40
35	10/28/09	11:40 < 0.1		0.80	0.30	0.20	8.69	7.95	13.48	296.00	61.80	84.90
35	5/18/10	10:33 < 0.1	. .	0.60	0.80	0.14	6.20	7.74	17.26	583.00	32.20	66.10
FB	9/9/2009	9:48 <0.1	<0.1	<0.1	<(0.03						

FB	10/28/09	10:30 <0.1	<0.1	<0.1	<0.03
FB	5/18/10	14:10 <0.1	<0.1	<0.1	<0.03

Commenter A:

A1: The map of CSO's didn't show any in the Evansville section of the creek. I noticed they were in the data but not on the map.

IDEM Response to A1: The map that Commenter A was referring to was the original map which did not indicate the CSO's along the Evansville section in question. This has been resolved and a new map was generated to properly reflect the locations of the CSO's along the Pigeon Creek portion in question.

Commenter B:

B1: The City recommends that the TMDL be renamed to indicate it addresses *E. coli* for portions of the Highland-Pigeon Creek Watershed and Total Phosphorus for Hurricane Creek.

IDEM Response to B1: This has been changed to properly reflect the impairments and locations.

B2: In the TMDL, it would be helpful if IDEM would clarify how it expects the TMDL for the 15 Assessment Unit IDs (AUIDs) to address impairments throughout the watershed or remove the statement on page 1 that the TMDL will address 1156 stream miles (statement on page 1).

IDEM Response to B2: IDEM has added language clarifying the difference between stream mile and AUID impairments. Also that the TMDL addresses 1156 stream miles and 399 of those stream miles are impaired.

B3: It would be helpful if information on the upstream and downstream river miles associated with each AUID was provided in Table 1 and Tables 2 to 18. There are also some inconsistencies between the tables (names of stream segments). Map(s) with these segments clearly identified with old and new Assessment Unit IDs (AUIDs) would also be helpful.

IDEM Response to B3: The watershed is viewed as a whole system so upstream and downstream of specific AUIDs is not necessary. All segments for the TMDL are linked via the Assessment Unit ID. Variations in Stream names can be resolved by using the AUDI. A cross-walk table is included to assist in any variations.

B4: Table 1 (pages 8-9) should be modified to indicate that the TMDL calculation for Pigeon Creek-Kleymeyer Park is being deferred until IDEM and US EPA approve the City of Evansville's Integrated Overflow Control Plan (IOCP). In accordance with a federal consent decree, the City is required to submit the IOCP no later than November 30, 2012.

IDEM Response to B4: The language has been changed to reflect that the TMDL is not intended to circumvent the IOCP. The TMDL expects the results of the IOCP to address the impairments within the watershed. This language has been discussed and sent to the commenter for comment prior to submission of the TMDL. Based on this information IDEM is proceeding with submission of this TMDL.

B5: Deferring the TMDL will also allow the City to assemble data that could be useful for establishing the appropriate load limits for the City's MS4 program. Because the TMDL does not distinguish between MS4 loads and nonpoint source loads, the City will need to assess its existing bacteria loads for the MS4 discharges and the TMDL will need to be updated over time. The TMDL should explicitly recognize this or IDEM should develop better estimates of the different MS4 and nonpoint source loads and account for these in the TMDL.

IDEM Response to B5: The TMDL has accounted for the WLA of the MS4 and realizes that the MS4 permitting process is still in its infancy and improvements will occur as the process is refined. IDEM anticipates that within further NPDES MS4 permits the impairments will be addressed.

Calculations have been accounted for in the sub-watersheds effected by the MS4 and a wasteload allocation has been set at the Water Quality Standard for *E. coli*. This language has been discussed and sent to the commenter for comment prior to submission of the TMDL. Based on this information IDEM is proceeding with submission of this TMDL.

B6: The statements "Evansville is currently under a federal consent decree. They have an integrated work plan to eliminate the CSO discharges. Evansville has until November 2012 to submit their final Long Term Control Plan (LTCP) and will be required to have complete and full implementation of the plan by 2032 (Personal Communication: D. Tennis, IDEM-OWQ, 2011)." should be replaced with "Evansville is developing an Integrated Overflow Control Plan (IOCP) to control CSOs and eliminate SSOs in accordance with requirements in a federal consent decree (3:09CV128 WTL-WGH). Under the terms of the decree, Evansville will evaluate different CSO control alternatives and submit the IOCP no later than November 30, 2012."

IDEM Response to B6: Language has been changed to better reflect the ICOP as requested. The Project Manager, D. Tennis, agreed that the language change would be appropriate to better reflect the situation in Evansville.

B7: The statement on page 9 "These sampling sites were intensively sampled for *E. coli* September through October 2007" should be re-worded to include the range of number of times that the stream segments were sampled. For example, Appendix B shows that Site 21 was sampled only five times for *E. coli*, and all at lower flows (which does not in the City's opinion represent intensive sampling).

IDEM Response to B7: IDEM has removed the word "intensively" and restated the WQS for *E. coli*.

B8: Table 14, the TMDL for the Pigeon Creek-Kleymeyer Park, should be deleted.

IDEM Response to B8: IDEM has recalculated the WLA for the MS4 portion of this sub-watershed per other comments from Commenter B. This language and change has been discussed and sent to the commenter for comment prior to submission of the TMDL.

B9: The text on page 21 regarding Evansville's CSOs should be modified as discussed above. Text should be added to make it clear that the WLA for the City's CSOs will be established using the information from the IOCP.

IDEM Response to B9: IDEM has added language to better reflect the CSO discussion. This language has been discussed and sent to the commenter for comment prior to submission of the TMDL.

B10: Additional text should be added on page 22 under "Load Allocations" to indicate that a LA for the City of Evansville's MS4 discharges will be determined after consideration of the information provided in the IOCP. The work under the IOCP will result in more data and modeling tools that can be used to calculate a more specific LA for the City's MS4 and other nonpoint source loads.

IDEM Response to B10: Load Allocations are for nonpoint sources of the impairment. The loadings and NPDES permits response has been answered in previous response to comments.

B11: Additional text should be added on page 22 under "Monitoring" to reflect that additional data should be available in 2013 for the Pigeon Creek-Kleymeyer TMDL as a result of the IOCP that the City of Evansville is developing.

IDEM Response to B11: The TMDL is based upon currently available data. When the additional data has been collected it can be submitted to IDEM-TMDL for use in any updates to the TMDL that are deemed necessary. This language has been discussed and sent to the commenter for comment prior to submission of the TMDL. Based on this information IDEM is proceeding with submission of this TMDL.

B12: The section on the Storm Water General Permit Rule 13 needs to be expanded to include IDEM's expectations for MS4 permittees. This is because US EPA is requiring more explicit incorporation of TMDLs into NPDES permits.

IDEM Response to B12: Additional language has been included in the TMDL to clarify the expectations of the results of the TMDL on the NPDES permits. This language has been discussed and sent to the commenter for comment prior to submission of the TMDL. Based on this information IDEM is proceeding with submission of this TMDL.

B13: A section should be added to "Potential Future Activities" on page 24 to acknowledge the work that the City of Evansville is undertaking under the IOCP and that this work is being conducted in close coordination with IDEM under the federal consent decree.

IDEM Response to B13: During the discussions with Commenter B on the submitted comments, IDEM requested the additional information on activities being done as part of the IOCP. This additional information has not been submitted at the time of the final submittal of this TMDL. If the information is submitted after the finalization of the TMDL the information will be made and attachment to the final TMDL document.