VFC Index - Watershed (Plan)

Program: Watershed

IDEM Document Type: Plan

Document Date: 10/28/2005

Security Group: Public

Project Name: Eel River - Tick Creek WMP

Plan Type: Watershed Management Plan

HUC Code: 05120104 Eel (WR)

Sponsor: Lake Perry Property Owners Assoc, JF New, & Cass County SWCD

Contract #: 3-737

County: Cass

Cross Reference ID: 23059836

Comments:

Additional WMP Information

Checklist: 2003 Checklist

Grant type: 319

Fiscal Year: 2003

IDEM Approval Date: 10/28/2005

EPA Approval Date:

Project Manager: Kathleen Hagan

Eel River-Tick Creek Watershed Management Plan

Cass County, Indiana

September 13, 2005

The Eel River-Tick Creek watershed and its water bodies are clean, stable, and treasured resources, where improved water quality supports recreation, agriculture, land-drainage, aquatic life and potable water. These resources preserved and strengthened through Cass County resident's civic pride, knowledge and stewardship

Prepared for:

Lake Perry Estates Corporation

c/o Pete Riggle

603 Lakeview Drive

Logansport, Indiana 46947

Cass County SWCD

c/o Judy Buttice 906 West Broadway Logansport, Indiana 46947

Prepared by:

c/o Sara Peel 708 Roosevelt Road Walkerton, Indiana 46574 574-586-3400

EEL RIVER-TICK CREEK WATERSHED MANAGEMENT PLAN CASS COUNTY, INDIANA

EXECUTIVE SUMMARY

The Eel River-Tick Creek watershed encompasses approximately 9,011 acres immediately northeast of Logansport, Indiana and lies at the downstream end of the larger Eel River basin in Cass County, Indiana. The watershed contains four main streams, Laird Ditch, Tick Creek, Shackelford Ditch, and Howard Ditch, one river, the Eel River, and one private, manmade lake, Lake Perry. With funding from the U. S. Environmental Protection Agency through the Indiana Department of Environmental Management's Section 319 grant program the Lake Perry Estates Corporation (LPEC) and the Cass County Soil and Water Conservation District (SWCD) initiated the development of a watershed management plan in an effort to improve water quality in the lake and streams in the Eel River-Tick Creek watershed.

The LPEC and Cass County SWCD, along with their consultant, held several public meetings, reviewed available historical water quality data, and conducted current water quality sampling to identify water quality concerns in the Eel River-Tick Creek watershed. Through the use of public notices and targeted mailings, all property owners in the watershed as well as representatives from local, state, and federal natural resource agencies, not-for-profit organizations, and local governments were invited to attend the public meetings. Several common themes began to surface during the public meetings. The three concerns emerged as the top concerns of the watershed stakeholders: 1. the streams and lake did not support multiple uses such as water quality, biological habitat, and aesthetic value; 2. water from the Eel River-Tick Creek watershed flows into the Eel River, which is the water source for the City of Logansport; and 3. watershed stakeholders do not understand the actions they could take to protect water quality.

As a first step toward addressing their three top concerns, the watershed stakeholders agreed on the following vision statement. The watershed stakeholders will use this vision to guide management efforts in the Eel River-Tick Creek watershed.

The Eel River-Tick Creek watershed and its water bodies are clean, stable, and treasured resources, where improved water quality supports recreation, agriculture, land-drainage, aquatic life and potable water—resource preserved and strengthened through Cass County resident's civic pride, knowledge and stewardship

Watershed stakeholders, along with their consultant, also identified the stressors associated with their top concerns and the sources of these stressors. High nutrient and sediment loads reaching the streams and lake are the primary stressors driving the eutrophication of the waterbodies. The second stressor identified by watershed stakeholders was lack of knowledge by property owners living in and around the watershed. Pathogenic contamination, as evidenced by high *E. coli* concentrations, was the third stressor identified by watershed stakeholders.

To reduce the identified stressors in the Eel River-Tick Creek watershed and address to other concerns identified by watershed stakeholders, the stakeholders developed six goals and developed an action plan for each of the goals. The goals in order of priority as agreed upon by the watershed stakeholders are as follows:

- Goal 1: We want to increase participation by all stakeholders including local natural resources agencies/representatives, possibly resulting in the formation of a watershed group.
- Goal 2: Within two years, each land owner within the watershed will learn and implement at least one water quality improvement practice/technique on his/her own property.
- Goal 3: We want to reduce the sediment load to the waterbodies within the Eel River-Tick Creek watershed by 50% over the next five years.
- Goal 4: We want to repair and maintain existing drainage tiles to ensure property owners have full use of their land.
- Goal 5: We want to reduce the nutrient load reaching Lake Perry by 50% over the next 10 years.
- Goal 6: We want to reduce the concentration of E. coli within the waterbodies in the Eel River-Tick Creek watershed so that water within the streams and lake meets the state standard for E. coli within 10 years.

Where feasible, the goals list specific targets watershed stakeholders wish to reach. Additionally, the plan identifies who will assist with completing the plan and indicates what measures will be used to identify successful achievement of the plan's goals and objectives.

ACKNOWLEDGEMENTS

The Eel River-Tick Creek Watershed Management Plan was made possible with funding from the Indiana Department of Environmental Management (IDEM) through the Section 319 Program and the Lake Perry Estates Corporation. The Eel River-Tick Creek Watershed Management Plan was completed by JFNew and their subcontractor, Indiana University School of Public and Environmental Affairs. Contributors to this project included Pete Riggle with the Lake Perry Estates Corporation, Judy Buttice with the Cass County Soil and Water Conservation District; Ruth Montgomery with the Cass County Natural Resource Conservation Service; Chuck Bell, Stacey Sobat, and Todd Davis with the IDEM Assessment Section; and Ron Helmich with the Indiana Department of Natural Resources Division of Nature Preserves. Special thanks to the dedicated stakeholders for their insight into the Eel River-Tick Creek watershed and their attendance at multiple meetings. Also thanks to Pete Riggle with the Lake Perry Estates Corporation and Judy Buttice for their initiative and assistance in getting this study completed and to Stan Williams with the Cass County/Logansport Planning Commission for his input on the vision statement. Authors of this report included Sara Peel, Marianne Giolitto, Joe Exl, and John Richardson at JFNew.

DISTRIBUTION LIST

All individuals attending any of the watershed planning meetings were sent a copy of the draft Eel River-Tick Creek Watershed Management Plan. A copy of the plan was provided to the Logansport Public Library to allow for community members not receiving the plan to comment. Additionally, multiple electronic copies were provided to the two sponsoring organizations in the care of Judy Buttice with the Cass County SWCD and Pete Riggle with the Lake Perry Estates Corporation. Other individuals and local and state entities receiving copies of the draft Eel River-Tick Creek watershed management plan are listed below:

- Judy Buttice, Cass County SWCD
- Ruth Montgomery, Cass County NRCS
- Pete Riggle, Lake Perry Estates Corporation
- Stan Williams, City/County Plan Commission
- Cass County Health Department
- Cass County Drainage Board
- Indiana Department of Environmental Management
- Indiana Department of Natural Resources

TABLE OF CONTENTS

	PAGE
1.0 Introduction	
1.1 Watershed Partnerships	
1.2 Public Participation	
1.3 Concerns	
1.4 Vision for the Future	8
2.0 The Eel River-Tick Creek Watershed	
2.1 Watershed Location	
2.2 Climate	
2.3 Geology and Topography	
2.4 Soils	
2.5 Natural History	
2.6 Endangered Species	
2.7 Hydrology	
2.9 Land Use	
2.10 Population	
2.11 Land Ownership.	
20 D 1: W 4 O 1: C 1::	20
3.0 Baseline Water Quality Conditions	
3.2 Indiana Clean Lakes Volunteer Monitoring Program	
3.3 JFNew Watershed Stream and Lake Sampling	
3.4 Indiana Geological Survey.	
3.5 Other Sources	
4.0 Baseline Watershed Conditions	40
4.1 Stream Crossing Survey	
4.2 Walking Survey	
4.3 Other Observations	
5.0 Clarifying Our Problems	43
5.1 Linking Concerns to the Existing Data	
5.2 Developing Problem Statements	
5.3 Identifying Potential Goals	
6.0 Setting Goals and Making Decisions	55
7.0 Measuring Success	75
8.0 Future Consideration	80
9.0 Literature Cited	82

LIST OF FIGURES

		PAGE
Figure 1.	Eel River-Tick Creek watershed location map	1
Figure 2.	Eel River-Tick Creek watershed	
Figure 3.	Eel River basin	3
Figure 4.	Subwatersheds of the Eel River-Tick Creek watershed	9
Figure 5.	The major soil associations covering the Eel River-Tick Creek watershed	12
Figure 6.	Highly erodible and potentially highly erodible soils in the	
J	Eel River-Tick Creek watershed	15
Figure 7.	Soil septic field absorption suitability in the Eel River-Tick Creek watershed	
Figure 8.	National wetland inventory map	
Figure 9.	Hydric soils in the Eel River-Tick Creek watershed	
	Historical structures and sites in the Eel River-Tick Creek watershed	
	Land use in the Eel River-Tick Creek watershed	
_	Populations of Clay Township (Eel River-Tick Creek watershed), Eel Township	
S	(City of Logansport), and Cass County from 1890 through 2000	
Figure 13.	Tracts of land owned by public entities within the Eel River-Tick Creek	
C	watershed	29
Figure 14.	Water clarity in Lake Perry from 2000 to 2004	
-	Stream sampling locations	
	Typical stream bank erosion observed along Laird Ditch during a walking tour	
S	of the ditch	36
Figure 17.	Watershed concerns identified during various watershed surveys	
	Critical areas targeted for sediment loading reduction in the	
S	Eel River-Tick Creek watershed	47
Figure 19.	Critical areas targeted for wetland restoration and flood control in the	
S	Eel River-Tick Creek watershed	48
Figure 20.	Streambank erosion along Laird Ditch between County Road 250 East and	
S	County Road 300 East	49
Figure 21.	Streambank erosion along Tick Creek south of County Road 200 North	
_	Critical areas targeted for nutrient loading and pathogen concentration reduction	
S	in the Eel River-Tick Creek watershed.	
Figure 23.	Representative location where livestock have access to waterbodies	
<i>5</i> - 2.	within the Lake Perry subwatershed	52
Figure 24.	Representative location where livestock have access to waterbodies	
<i>U</i>	within the Shackelford Ditch subwatershed	53

LIST OF TABLES

PAGE Table 1. Monthly rainfall data for 2004 compared to average monthly rainfall data Highly erodible and potentially highly erodible soils units in the Table 2 Soil types present in the Eel River-Tick Creek watershed and suitability Table 3. Acreage and classification of wetland habitat in the watershed21 Table 4. Table 5. Table 6. Table 7. Macroinvertebrate Index of Biotic Integrity scores and associated classification......31 Table 8. Table 9. Table 10. Physical parameter data collected during base and storm flow sampling events Table 11. Chemical and bacterial characteristics of the Eel River-Tick Creek watershed Table 12. Chemical loading data for the Eel River-Tick Creek watershed waterbodies Table 13. Water quality characteristics of Indiana lakes sampled by the Indiana Clean Lakes Table 14. List of locations where the application of best management practices would Improve water quality in the Eel River-Tick Creek watershed as photographed Table 15. List of locations where the application of best management practices would improve water quality in the Eel River-Tick Creek watershed as identified Table 16. List of locations where the application of best management practices would improve water quality in the Eel River-Tick Creek watershed as identified Table 17. Linking watershed stakeholders' concerns with existing data to develop problem statements 44

LIST OF APPENDICES

Appendix A.	GIS Sources
-------------	-------------

Appendix B. Eel River-Tick Creek and Cass County Endangered, Threatened, and Rare

Species

Appendix C. Historic Water Quality Data Appendix D. Quality Assurance Project Plan

Appendix E. 2004 Water Quality Data

Appendix F. Photographs from Watershed Surveys

Appendix G. Action Register

Appendix H. Potential Funding Sources

Appendix I. Action Tracker

LIST OF ACRONYMS

BMP Best Management Practice
cfu colony forming unit
CLP Clean Lakes Program
DC District Conservationist

EPA Environmental Protection Agency ETR Endangered, Threatened, or Rare

F Farenheit

GIS Geographic Information System

HES Highly Erodible Land
HUC Hydrologic Unit Code
IBI Index of Biotic Integrity

ICLVMP Indiana Clean Lakes Volunteer Monitoring Program IDEM Indiana Department of Environmental Management

IDNR Indiana Department of Natural Resources

LPEC Lake Perry Estates Corporation
mIBI macroinvertebrate Index of Integrity

msl mean sea level

NRCS Natural Resources Conservation Service

NTU Nephelometric Turbidity Unit
NWI National Wetland Inventory
PHES Potentially Highly Erodible Land
QAPP Quality Assurance Project Plan
QHEI Qualitative Habitat Evaluation Index
SWCD Soil and Water Conservation District

TMDL Total Maximum Daily Load

USDA United States Department of Agriculture USFWS United States Fish and Wildlife Service

USGS United States Geological Survey
UWA Unified Watershed Assessment

WRAS Watershed Restoration Action Strategy

EEL RIVER-TICK CREEK WATERSHED MANAGEMENT PLAN CASS COUNTY, INDIANA

1.0 INTRODUCTION

This watershed management plan addresses non-point source pollution and other water quality concerns facing the Eel River-Tick Creek watershed. The Eel River-Tick Creek watershed (HUC 05120104070060) encompasses approximately 9,011 acres immediately northeast of Logansport, Indiana (Figures 1 and 2) and lies at the downstream end of the larger Eel River basin (05120104; Figure 3). The watershed contains four main streams, Laird Ditch, Tick Creek, Shackelford Ditch, and Howard Ditch, one river, the Eel River, and one private, manmade lake, Lake Perry. This watershed management plan documents the concerns watershed stakeholders have for the Eel River-Tick Creek waterbodies and describes stakeholders' vision for these waterbodies. The plan outlines the goals, strategies, and action items watershed stakeholders have selected to achieve their vision. Finally, the plan includes methods for measuring stakeholders' progress towards achieving their vision and timeframes for periodic refinement of the plan.

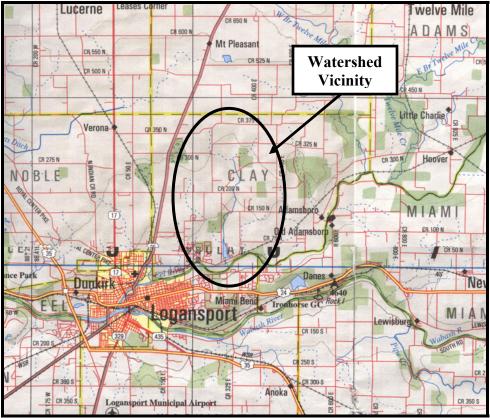


Figure 1. Eel River-Tick Creek watershed location map.

Source: DeLorme, 1998. Scale: 1"=approximately 2.5 miles.

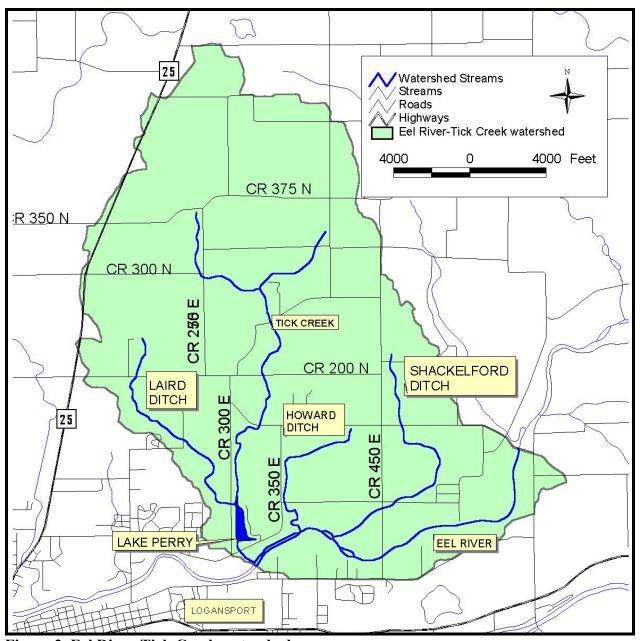


Figure 2. Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000".

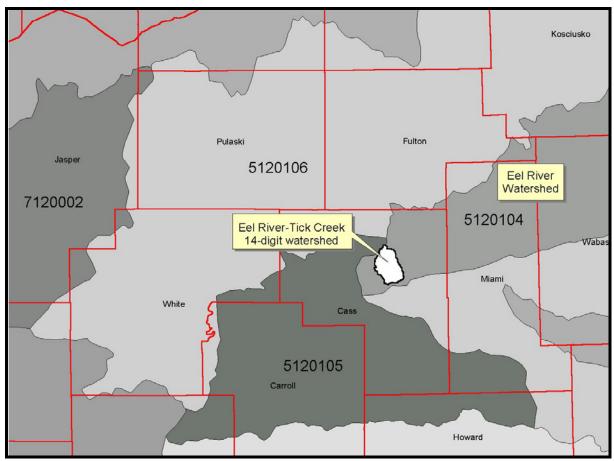


Figure 3. Eel River basin. Source: See Appendix A.

The Eel River-Tick Creek watershed management plan grew out of efforts by the Lake Perry Estates Corporation (LPEC), Natural Resources Conservation Service (NRCS), and an Indiana Department of Environmental Management (IDEM) regional watershed conservationist. In 1997, a small group of LPEC residents began to investigate some perceived problems in their lake (Steinberger and Wolf, 1997 correspondence to the LPEC Board of Directors). Maintenance concerns regarding the lake's outlet and sediment traps, poor water clarity, decreasing lake depth, poor sport fish community, and aquatic plant growth were among the perceived problems. The group's final report documented some of the perceived problems as unfounded or at least noted the lack of data necessary to verify the concern. The group confirmed other perceived problems such as a decrease in lake depth. Based on discussions with the engineer responsible for the lake's design and subsequent soundings of the lake bottom in 1997, the group estimated that the lake's maximum depth had decreased from 13 feet in the 1970s to 9.5 feet in 1997. The group recommended regular maintenance of the two sediment traps on the northern end of the lake and halting the aquatic plant treatment program.

In 1998, members of the LPEC asked the NRCS for assistance in determining sources of silt and sediment entering Lake Perry from the watershed. The NRCS District Conservationist (DC) completed an assessment of Lake Perry's watershed, which includes the area of land draining to Laird Ditch and the area of land draining to Tick Creek upstream of Lake Perry (Montgomery, unpublished). The District Conservationist found that many conservation practices were

currently in use to reduce soil loss from the landscape. These included grassed waterways, wildlife and grassland set-asides, and conservation tillage methods. The DC also noted that in 1998 nearly 30% of Lake Perry's watershed was covered with land use types that limited erosion or helped control runoff. The DC concluded that siltation is a common problem for lakes with large watershed area to lake area ratios. (Lake Perry's watershed area to lake area ratio is approximately 245:1.) She recommended regular maintenance of Lake Perry's sediment traps and, if feasible, the construction of additional basins upstream of existing sediment traps.

In an effort to obtain more data on their lake's water clarity rather than relying on anecdotal evidence, the LPEC began monitoring Lake Perry's water clarity through the Indiana Clean Lakes Volunteer Monitoring Program (ICLVMP). From 2000 to 2003, water clarity, as measured with a Secchi disk, ranged from approximately 1.5 to 3.3 feet. The lake's average water clarity (1.8-2.3 feet) remained fairly stable over the four years. This relatively low average suggests water clarity in Lake Perry is poor, particularly when compared to other Indiana lakes. Of those lakes monitored through the ICLVMP, Lake Perry often rates among the lakes with poorest water clarity.

Under new leadership, the LPEC began working with a private consulting firm in 2002 to determine what steps they could take to address Lake Perry's poor water clarity. At the same time, the LPEC contacted IDEM's regional watershed conservationist for Cass County to enlist his services in building more effective partnerships with watershed landowners. Both the private consultant and the IDEM regional watershed conservationist encouraged the LPEC to develop a watershed management plan with input from the entire community since the process of the developing a plan is designed to help watershed stakeholders understand each stakeholder's concerns and find common ground in resolving these concerns. With this in mind, the LPEC and their partner, the Cass County Soil and Water Conservation District (SWCD), expanded the project scope to include the entirety of the Eel River-Tick Creek watershed and its four waterbodies, which all drain to the 303(d)-listed Eel River (*E. coli* and mercury). In 2004, the LPEC and SWCD successfully secured a Section 319 grant from the United States Environmental Protection Agency (EPA) through IDEM's Section 319 grant program to develop a watershed management plan.

Although efforts prior to the development of this watershed management plan focused primarily on the watershed draining to Lake Perry, the watershed management plan's geographical scope includes the entire 14-digit Eel River-Tick Creek watershed (05120104070060) not just the watershed draining to Lake Perry. This watershed includes four tributaries to and a portion of the Eel River mainstem, which is listed on Indiana's list of impaired waterbodies for pathogenic (*E. coli*) and mercury contamination. It was assumed during the grant application process that many of the same non-point source concerns facing stakeholders in the Lake Perry watershed were shared by stakeholders across the entire Eel River-Tick Creek watershed. Comments at the first several public meetings during the plan's development confirmed this assumption as many attendees expressed a concern for the water quality in the Eel River, which receives water from the Eel River-Tick Creek watershed. This is of specific concern since the City of Logansport obtains its drinking water from the Eel River and most watershed stakeholders will drink city water at some point in their lives, if not regularly.

1.1 Watershed Partnerships

The desire to build effective watershed partnerships to collectively address non-point source pollutions concerns facing the Eel River-Tick Creek watershed was one of the primary driving forces behind the LPEC's effort to initiate a watershed management plan. Because the Cass County SWCD works directly with many of the watershed's stakeholders, including many watershed landowners, forming a partnership with the SWCD was critical to linking the LPEC with other watershed stakeholders. The LPEC and the Cass County SWCD developed a partnership in which the Cass County SWCD served as the project's sponsor and the LPEC contributed the required matching funds for the project. The Cass County SWCD and LPEC contracted with JFNew, a private ecological consulting firm, to facilitate the planning process. JFNew also conducted water chemistry, biological, and habitat evaluations on each of the watershed's main waterbodies (Laird Ditch, Tick Creek, Shackelford Ditch, Howard Ditch, and Lake Perry) to provide additional data for guiding decision making during the planning process.

JFNew worked closely with the NRCS District Conservationist during the plan's development to understand the current condition of the watershed's landscape and existing conservation measures already in place. The local DC has invaluable information on the watershed in which he or she works, so working with this individual is particularly important during the land investigation portion of a watershed management plan's development. The NRCS District Conservationist toured the Eel River-Tick Creek watershed with a JFNew biologist. Additionally, both walked a portion of Laird Ditch to identify erosion concerns associated with the stream's banks.

The Cass County SWCD, LPEC, and JFNew developed a list of additional key stakeholders whose input would be important in the planning process. These stakeholders included Indiana Department of Natural Resources (IDNR) Division of Soil Conservation Resource Specialist, the Cass County 4-H, and the Cass County planner. A local developer and contractor were added to the list since residential development and its impacts with respect to water quality were noted as a concern during on of the first public meetings. Several individuals who own or operate agricultural land in the watershed were also included on the list to ensure representation of the agricultural community. All individuals on the list were sent a letter requesting their participation in the planning process. Regardless of their attendance at meetings, these individuals continued to receive outreach materials, including draft plans when available, for their review and comment.

1.2 Public Participation

The Eel River-Tick Creek watershed stakeholders and the public community at large drove the development of this watershed management plan. Early in the planning process, watershed stakeholders noted the connection between the Eel River-Tick Creek watershed and the drinking water for the City of Logansport. While recognizing that water from the Eel River-Tick Creek watershed comprises only a small portion of the river volume from which the city draws its drinking water, stakeholders felt that what they did in their watershed could affect the city's drinking water quality. Thus, stakeholders acknowledged the very public nature of their planning effort to improve water quality in the Eel River-Tick Creek watershed.

Public participation in the planning effort was encouraged through a series of quarterly public meetings. Outreach materials were developed to advertise the public meetings. Public meeting notices were published in the local paper prior to meetings. Additionally, meeting notices were provided to two local radio stations to announce meeting time and location. Flyers announcing the meetings were posted in conspicuous places around the community including at the SWCD office and the public library. Meeting announcements were mailed to all individuals on the key stakeholder list as well as those individuals who had attended previous project meetings. To further encourage public involvement, meetings were held in public spaces. The first meeting was held at the SWCD office, and subsequent meetings were held in the Logansport public library.

1.3 Concerns

During the beginning phases of the plan's development, the Eel River-Tick Creek watershed stakeholders identified several water quality related concerns in their watershed. Public meetings were the primary avenue for collecting concerns from stakeholders, although the project sponsor and facilitating consultant encouraged stakeholders to contact them with any concerns that stakeholders thought of outside of the meetings. The stakeholders' concerns broadly fit into various categories and are listed below. The order of the concerns listed below does not reflect any prioritization by the stakeholders.

Land Use

Watershed stakeholders had various concerns regarding how the land in the watershed was used in the past, is currently used, and may be used in the future.

- Stakeholders expressed a concern regarding the transition of land from old field land use to active agricultural land use and how that might affect soil erosion in those areas.
- Watershed stakeholders expressed a concern regarding an old dump in the watershed and how any runoff from the dump may be affecting water quality.
- Stakeholders noted there was a delay or time lag between site grading on the recently constructed recreational fields and establishment of grass on the fields. They expressed a concern over runoff from freshly graded areas.
- Stakeholders were concerned about site development techniques that involve grading an entire site for development rather than using a phased approach to minimize the amount of bare ground at any one time.
- Watershed stakeholders expressed concern over the effects of ditch cleaning on water quality and the adjacent habitat.

Flooding/Loss of Property

- Watershed stakeholders felt that silt and sediment clogging Howard and Shackelford Ditches
 was increasing flooding of land, rendering it unusable. The area near the intersection of
 County Road 450 East and County Road 150 North was noted as a particularly bad area.
- Stakeholders were concerned over the apparent disrepair of drainage tiles in some areas and how that can increase flooding and loss of property.
- Stakeholders questioned whether an open ditch would be better than tiles to prevent flooding and loss of property.

Education

- Watershed stakeholders generally agreed that there was a need for education among property
 owners and other stakeholders regarding water quality, techniques and land management to
 improve water quality, and who is already using such techniques to improve water quality.
- Watershed stakeholders indicated that there was a need to increase participation in the watershed planning process so that implementation efforts would be widespread.

Recreation

- Watershed stakeholders expressed a concern over the loss of recreational opportunities (swimming and aesthetic) due to poor water clarity from silt, particularly in Lake Perry.
- Stakeholders expressed concern over the loss of depth and consequently recreational opportunities resulting from sediment accumulation in Lake Perry. Stakeholders wondered about the natural age span of Lake Perry and what the natural rate of sedimentation is given the topography of the lake's drainage area.
- Stakeholders expressed a concern over the increase in rooted plants and algae in Lake Perry and how that is limiting swimming and boating opportunities on the lake. A stakeholder noted that the rooted plants now reach the top of the water column and suggested that it may be due to a loss in lake depth.

Health

- Watershed stakeholders expressed a desire for clean drinking water in the City of Logansport. (The City of Logansport receives it drinking water from the Eel River. Water from the Eel River-Tick Creek watershed drains to the Eel River immediately upstream of the city's drinking water intake.) Watershed stakeholders noted that while watershed property owners maintained individual wells for drinking water, nearly all stakeholders drank city water at some point in their lives. People who work, shop, dine, worship, and/or recreate in the city likely drink city water on a regular basis.
- Stakeholders expressed health and safety concerns over potential pollutants associated with the silt reaching Lake Perry. A stakeholder felt that more people used to swim in Lake Perry than now and wondered if concern for swimmers' health was preventing people from swimming in the lake.
- Stakeholders expressed concerns over bacteria (*E. coli*) concentrations that exceeded the state standard and how that could affect the health of those living near waterbodies with high levels of bacteria

Social

- Stakeholders expressed a desire to work with the county surveyor to ensure that ditch cleaning is done in a manner that is environmentally and economically justifiable.
- Stakeholders expressed a concern that Howard and Shackelford Ditches did not appear to be maintained regularly. There was a question over whether the ditch assessment fee was appearing on the property owners' taxes.
- Stakeholders felt there was a lack of cooperation among local agencies that address water resource issues.
- A stakeholder expressed a need for individuals to respect each other's property.

1.4 Vision for the Future

As the Eel River-Tick Creek watershed stakeholders listed concerns over the current state of water quality in their watershed, they concurrently described their vision for the streams and lake in the future. Several common themes began to surface during the public meetings. Nearly all stakeholders envisioned clean streams and lake that supported multiple uses. Stakeholders unanimously voiced support for a future in which the City of Logansport drinking water was clean and safe to consume. Stakeholders also envisioned a future where more individuals have a better understanding of actions they could take to protect water quality. The Eel River-Tick Creek watershed stakeholders summarized these themes in one overarching vision for the watershed:

The Eel River-Tick Creek watershed and its water bodies are clean, stable, and treasured resources, where improved water quality supports recreation, agriculture, land-drainage, aquatic life and potable water. These resources preserved and strengthened through Cass County resident's civic pride, knowledge and stewardship.

This vision serves as the foundation of the Eel River-Tick Creek watershed management plan. Watershed stakeholders selected and recorded in this document the goals and strategies that, over time, enable them to make this vision a reality.

2.0 THE EEL RIVER-TICK CREEK WATERSHED

2.1 Watershed Location

The Eel River-Tick Creek watershed encompasses approximately 9,011 acres immediately northeast of Logansport, Indiana (Figure 1). Specifically, the watershed is located in Bethlehem, Clay, and Eel Townships in Section 29 and 32-34 of Township 28 North, Range 2 East and Sections 3-11, 14-18, and 20-23 of Township 27 North, Range 2 East. The Eel River-Tick Creek watershed includes four perennial streams, Laird Ditch, Tick Creek, Shackelford Ditch, and Howard Ditch, and one private lake, Lake Perry (Figure 2). Laird Ditch and Tick Creek are tributaries to Lake Perry and cover the western portion of the watershed. The Laird Ditch subwatershed forms the western and southwestern boundaries of the watershed covering 973 acres. The Tick Creek subwatershed, including Lake Perry, drains approximately 4,660 acres. Water exits Lake Perry through Tick Creek and flows into the Eel River. The two remaining streams, Shackelford and Howard Ditches, are direct tributaries to the Eel River. Howard Ditch drains 860 acres, while the Shackelford Ditch subwatershed covers 1407 acres (Figure 4). The remaining 1,262 acres drain directly to the Eel River. Water flows from the Eel River into the Wabash River in Logansport and, ultimately, reaches the Ohio River in southern Illinois.

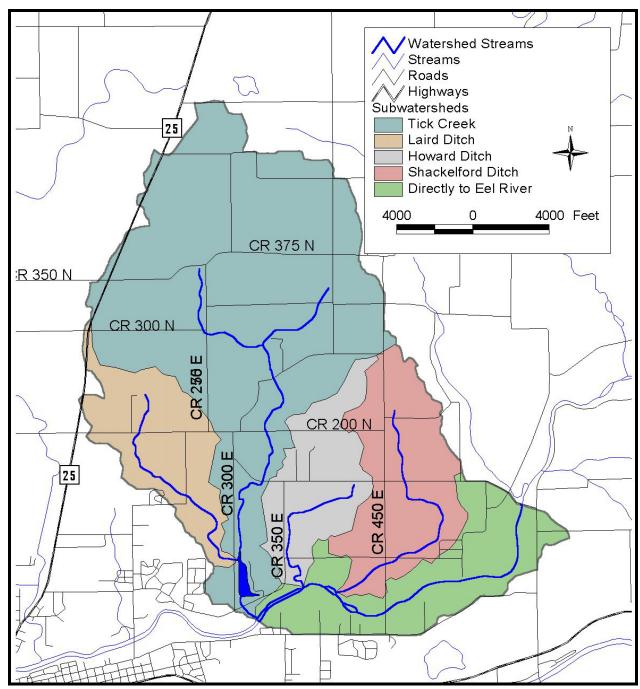


Figure 4. Subwatersheds of the Eel River-Tick Creek watershed.

Source: See Appendix A. Scale: 1"=4,000'.

2.2 Climate

As a whole, Cass County experiences cold winter months and warm summer months. In winter, the average temperature in Cass County is approximately 29° F. In summer, the average temperature is approximately 73° F. The record low is -25° F recorded on January 28, 1963, and the record high is 107° F recorded on July 14, 1954. Winter precipitation in Cass County is usually sufficient to minimize drought conditions for most soils during the summer months with annual snowfalls averaging nearly 21 inches. Approximately 60% of the total annual

precipitation occurs between April and September, which corresponds to the growing season of most crops (Douglas, 1981). The average annual precipitation for Cass County is 38.48 inches (Table 1). In 2004, approximately 43.82 inches of precipitation was recorded in Logansport, Indiana. Rainfall during 2004 was approximately 5.5 inches more than the annual average. This was the primarily the result of a wetter than average summer (May through August).

Table 1. Monthly rainfall data (in inches) for 2004 compared to average monthly rainfall data (in inches) from 1971-2000 as recorded in Logansport, Indiana.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2004	2.07	0.55	3.45	0.93	7.25	5.80	5.35	6.71	0.50	3.29	5.21	2.71	43.82
Average	2.10	1.82	2.81	3.39	4.03	4.33	3.92	3.92	3.53	2.82	3.08	2.73	38.48

Source: Purdue Applied Meteorology Group, 2004.

2.3 Geology and Topography

The repeated advance and retreat of glaciers in the last ice age shaped much of the landscape observed in Indiana today. Rather than blanketing the state as a single mass of ice from the north, distinct glacial lobes moved across the northern two thirds of the state on slightly different trajectories. At least three glacial lobes, the Lake Michigan Lobe, the Saginaw Lobe, and the Huron-Erie Lobe influenced the surficial geology in the northern two thirds of the state (Camp and Richardson, 1999). The Lake Michigan Lobe entered Indiana from the state's northwestern corner and moved southward along the Indiana-Illinois state line. The Saginaw Lobe entered the northeast corner of the state from southeastern Michigan and followed a southwesterly trajectory. The Huron-Erie Lobe entered Indiana from the east and pushed eastward and southward. These three lobes did not all move at the same time but rather through a series of staggered advances and retreats. The result is a mixture and layering of till, outwash, and drift materials across the northern two thirds of the Indiana.

The Eel River-Tick Creek watershed lies very near a junction point in Indiana surficial geology, suggesting each of the three glacial lobes mentioned above may have influenced the watershed's landscape. Fragments of the Packerton Moraine, one of the prominent end moraines left by the Saginaw Lobe extend into northeastern Cass County, just northeast of the Eel River-Tick Creek watershed (Hill, 1981). The Fair Oaks Dune Plain, which consists of wind blown outwash material from the Kankakee Outwash region, lies immediately to the west of the Eel River-Tick Creek watershed. The Kankakee Outwash and, consequently, the Fair Oaks Dune Plain were influenced by the activity of the Lake Michigan glacial lobe. The proximity of drift material from both the Saginaw and Lake Michigan Lobes to the Eel River-Tick Creek watershed suggests that such drift material may exist on the watershed's landscape as well.

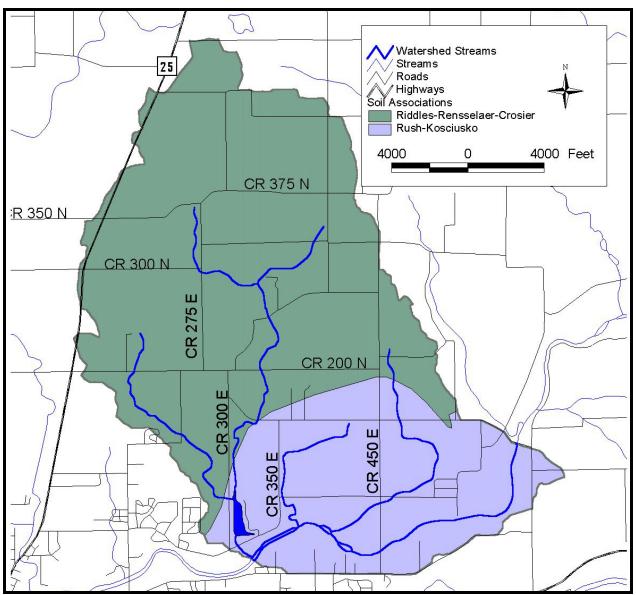
Any influence of the Lake Michigan or Saginaw Lobes on the Eel River-Tick Creek watershed was, however, minor compared to the influence of the Huron-Erie Lobe. Till deposits left by the Huron-Erie Lobe cover much of the watershed (Hill, 1981; Gray, 1989). These till deposits consist primarily of sand and silt, giving the till a loamy to sandy loam texture (Hill, 1981; Gray, 1989). Two abandoned sand mines exist in the Eel River-Tick Creek watershed, confirming the prominence of sand in the glacial till (Hasenmueller, 2001). The depth of the glacial till ranges from less than 100 feet in the southern part of the watershed to close to 350 feet in the northern part of the watershed (Hill, 1981; Gray, 1983).

In addition to the ground-moraine till covering the Eel River-Tick Creek watershed's landscape, Hill (1981) maps four other groups of unconsolidated glacial materials in the watershed. In the southern portion of the watershed, valley train outwash materials (primarily sand and gravel) mark the floodplain of a glacial meltwater stream. These valley train outwash materials border the modern day Eel River. Alluvium deposits (sand, gravel and silt) line the riverbeds of Eel River and Tick Creek. A narrow band of wind blown sand dune deposits from western Cass County extends into the west central portion of the Eel River-Tick Creek watershed. Finally, Hill (1981) locates a muck deposit north of Tick Creek's headwaters.

This somewhat complex surficial geology covers a less complex bedrock foundation. Dolomite and limestone lies under the entire Eel River-Tick Creek watershed (Hill, 1981). This bedrock is from the Silurian Period (Gutschick, 1966; Gray et al., 1987; Hill, 1981).

The ground moraine left by the Huron-Erie Lobe created a gently rolling to nearly level topography across much of the watershed. Elevations north of County Road 375 North generally range from 760 feet above mean sea level (msl) to 790 feet msl. The landscape east of County Road 275 East between County Road 350 North and County Road 200 North also exhibit a gently rolling to nearly level topography. Elevations in this area generally range from 730 to 750 feet msl. Valley train deposits left in the southeastern portion of the watershed, primarily the Howard and Shackelford Ditch subwatersheds, suggest this area may have been at least part of a nearly level floodplain of a glacial meltwater stream. Elevations in the Howard and Shackelford Ditch subwatersheds generally range from 650 to 680 feet msl, with most of the area ranging between 670 and 680 feet msl.

The steepest topography in the Eel River-Tick Creek watershed lies along Tick Creek and Laird Ditch, particularly south of County Road 200 North. The steepest areas have grades of approximately 10%. These steep grades exist along both creeks near County Road 300 East.


The change in elevation along County Road 300 East illustrates the difference in topographic gradient between the northern and southern halves of the Eel River-Tick Creek watershed. From the intersection of County Road 300 East and County Road 200 North to the point where Laird Ditch crosses County Road 300 East and empties into Lake Perry (approximately 1.25 miles), the elevation drops approximately 100 feet. In contrast, from the intersection of County Road 300 East and County Road 300 East and County Road 300 East and County Road 375 North (approximately 1.75 miles), the elevation rises only approximately 30 feet.

It is important to note that although the land adjacent to Tick Creek exhibits some of the steepest gradients in the watershed, Tick Creek itself does not possess the steepest gradient of the watershed streams. Over the course of the entire stream, Tick Creek drops approximately 30 feet per mile of stream. This is actually the lowest gradient of all the watershed streams. The gradient of Tick Creek north of County Road 200 North is less (27 feet per mile) than it is south of County Road 200 North (33 feet per mile). Laird Ditch possessed the steepest gradient dropping 41 feet per mile of stream. Howard and Shackelford Ditches drop 39 feet and 33 feet per mile of stream, respectively. Most of their gradient changes occur near their confluences with the Eel River.

2.4 Soils

The Eel River-Tick Creek watershed's geologic history described in the previous sections determined the soil types found in the watershed and is reflected in the major soil associations that cover the Eel River-Tick Creek watershed (Figure 5). The soil types found in the Eel River-Tick Creek watershed are a product of the original parent material deposited by the glaciers in this area 12,000 to 15,000 years ago. The main parent materials found in the watershed are glacial outwash and till, alluvium, and organic materials that were left as the glaciers receded. The interaction of these parent materials with the physical, chemical, and biological variables found in the area (climate, plant and animal life, time, landscape relief, and the physical and mineralogical composition of the parent material) formed the soils found in the Eel River-Tick Creek watershed today.

Figure 5. The major soil associations covering the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000".

Before detailing the major soil associations covering the Eel River-Tick Creek watershed, it may be useful to examine the concept of soil associations. Major soil associations are determined at the county level. Soil scientists review the soils, relief, and drainage patterns on the county landscape to identify distinct proportional groupings of soil units. The review process typically results in the identification of 8 to 15 distinct patterns of soil units. These patterns are the major soil associations of the county. Each soil association typically consists of two or three soil units that dominate the area covered by the soil association and several soil units (minor soils) that occupy only a small portion of the soil association's landscape. Soil associations are named for their dominant components. For example, the Rush-Kosciusko soil association consist primarily of Rush silt loam and Kosciusko silt loam. The following paragraphs provide more detailed information on each of the major soil association covering the Eel River-Tick Creek watershed. The discussion relies heavily on Douglas (1981) and readers should refer to that text for more information.

Douglas (1981) maps two soil associations in the Eel River-Tick Creek watershed: the Riddles-Rensselaer-Crosier soil association and the Rush-Kosciusko association (Figure 5). The Riddles-Rensselaer-Crosier soil association covers a majority of the Eel River-Tick Creek watershed including most of the Laird Ditch and Tick Creek subwatersheds and the headwaters of the Shackelford Ditch subwatershed. Soils in this association developed from glacial till parent materials. In general, Riddles soils account for 28% of the total soil association; Rensselaer soils account for 23%, while Crosier soils comprise 16% of the soil association. Riddles soils occupy side slopes along natural stream channels and on low rises. Within the Eel River-Tick Creek watershed, Riddles soils dominate the land adjacent to Laird Ditch and Tick Creek south of County Road 200 North. Rensselaer and Crosier soils are typically found in flat, low-lying or depressional areas. Rensselaer and Crosier soils are found scattered throughout the watershed north of County Road 200 North. Minor soil units in this association are also found in a variety of topographic locations. Miami soils are typically found in steep, eroded areas and Metea and Wawasee soils are typically located along ridge tops, while Houghton and Ackerman soils are typically found in poorly drained, depressional areas. Cultivated crops, such as corn, soybeans, small grains, and hay, thrive on soils of the Riddles-Rensselaer-Crosier association. Erosion, ponding, and wetness can limit use of these soils for both cultivation and urban development.

As the underlying geology of the Eel River-Tick Creek watershed transitions from the ground moraine covering most of the northern and western portion of the watershed to the outwash plain covering the southeast portion of the watershed, the watershed's soil units transition from soil units formed out of till parent material to soil units formed from glacial outwash. Consistent with this geologic shift, the soil association covering the Eel River-Tick Creek watershed shifts from the Riddles-Rensselaer-Crosier soil association in the northern and western portions of the watershed to the Rush-Kosciusko soil association in the southeastern portion of the watershed. Soils in the Rush-Kosciusko soil association developed from outwash parent material. Rush soils account for 33% of the association; Kosciusko soils comprise 18% of the association, while minor soil components account for the remaining 49% of the association. Rush soils occur on the top of high river terraces and along the sides of these terraces facing away from the river. Within the Eel River-Tick Creek watershed, Rush soils cover large areas around Howard and Shackelford Ditches. Kosciusko soils are found along small hills and on side slopes. Minor soils associated with this soil unit include Bloomfield loamy fine sand, Gessie Variant silt loam,

Stonelick loamy fine sand, Sleeth silt loam, Shoals silty clay loam, and Gilford loam, gravelly substratum soils. Many of these minor soil units line the drainageways holding Howard and Shackelford Ditches. Douglas (1981) classifies soils in the Rush-Kosciusko association as generally well suited for agricultural production; however, erosion may limit productivity.

Soils in the watershed, in particular their ability to erode or sustain certain land use practices, can impact the water quality of lakes and streams in the watershed. The dominance of Riddles and Rush soils throughout the Eel River-Tick Creek watershed suggests that much of the watershed is prone to erosion; common erosion control methods should be implemented when the land is used for agriculture or during residential development to protect waterbodies in the Eel River-Tick Creek watershed. Similarly, several soil units within the Eel River-Tick Creek watershed are severely limited in their ability to serve as septic system leach fields. This needs to be considered as areas of the watershed are converted from agricultural use to residential use. More detailed discussions of highly erodible soils and soils used to treat septic tank effluent in the Eel River-Tick Creek watershed follow below.

2.4.1 Highly Erodible Soils

Soils that erode from the landscape are transported to waterways where they degrade water quality, interfere with recreational uses, and impair aquatic habitat and biotic health. In addition, such soils carry attached nutrients, which further impair water quality by increasing plant production and algal growth. Soil-associated chemicals, like herbicides and pesticides, can kill aquatic life and damage water quality.

Highly erodible and potentially highly erodible are classifications used by the NRCS to describe the potential of certain soil units to erode from the landscape. The NRCS examines common soil characteristics such as slope and soil texture when classifying soils. The NRCS maintains a list of highly erodible soil units for each county. Table 2 lists the soil units in the Eel River-Tick Creek watershed that the NRCS considers to be highly erodible. Figure 6 displays the locations of highly erodible and potentially highly erodible soils in the watershed.

Highly erodible and potentially highly erodible soil units cover much of the Eel River-Tick Creek watershed. The Cass County Soil Survey (Douglas, 1981) shows that that majority of the potentially highly erodible soils lie within the Tick Creek and Laird Ditch subwatersheds, along the lower portion of the Howard Ditch subwatershed, and in the Shackelford Ditch headwaters. Of the potentially highly erodible soils present within the watershed, Metea loamy fine sand (MkC), Rush silt loam (RtB), Riddles silt loam (RsB-RsC), and Wawasee sandy loam (WeB) soils are particularly dominant. Highly erodible soils are also present within the Eel River-Tick Creek watershed. The majority of the areas mapped as highly erodible soils are located along the State Road 25 corridor north and south of County Road 300 North, in the Tick Creek subwatershed east of County Road 275 East between County Road 200 North and County Road 325 North, and along the southeastern boundary of the watershed directly adjacent to the Eel River. Three other small areas of highly erodible soils are located in the immediate vicinity of or adjacent to Lake Perry (Figure 6).

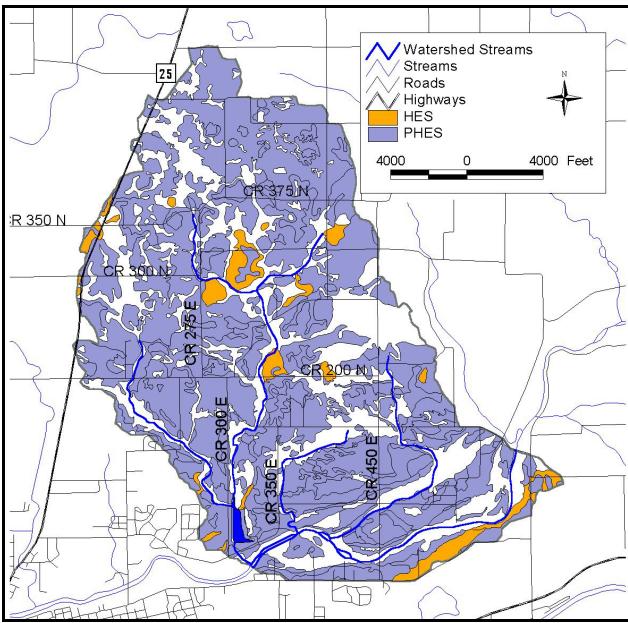


Figure 6. Highly erodible (orange) and potentially highly erodible (lavender) soils in the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000".

Table 2. Highly erodible and potentially highly erodible soils units in the Eel River-Tick Creek watershed.

Soil Unit	Soil Name	Detail*	Soil Description
BmC	Bloomfield loamy fine sand	PHES	4 to 12 percent slopes
BnA	Blount silt loam	PHES	0 to 3 percent slopes
ChC	Chelsea loamy fine sand	PHES	4 to 12 percent slopes
GwB	Glynwood silt loam	PHES	2 to 6 percent slopes
HeE	Hennepin loam	HES	25 to 60 percent slopes
KoB	Kosciusko silt loam	PHES	2 to 6 percent slopes
KsC3	Kosciusko sandy clay loam	PHES	6 to 12 percent slopes, severely eroded
MkC	Metea loamy fine sand	PHES	3 to 10 percent slopes
MnB2-MnC2	Miami silt loam	PHES	2 to 12 percent slopes, eroded
MnD2	Miami silt loam	HES	12 to 18 percent slopes, eroded
MoC3	Miami clay loam	HES	6 to 14 percent slopes, severely eroded
MxC3	Morley clay loam	HES	6 to 12 percent slopes, severely eroded
NeB-NeC	NewGlarus silt loam	PHES	2 to 12 percent slopes
RsB-RsC	Riddles silt loam	PHES	2 to 12 percent slopes
RtB	Rush silt loam	PHES	2 to 6 percent slopes
RuB-RuC	Russell silt loam	PHES	2 to 6 percent slopes
WeB	Wawasee sandy loam	PHES	2 to 8 percent slopes

*PHES=Potentially Highly Erodible Soil; HES=Highly Erodible Soil

Source: Douglas, 1981; 1993 USDA/SCS Indiana Technical Guide II-C for Cass County.

2.4.2 Soils Used for Septic Tank Absorption Fields

As is common in many areas of Indiana, septic tanks and septic tank absorption fields are utilized for wastewater treatment within the Eel River-Tick Creek watershed. This type of wastewater treatment system relies on the septic tank for primary treatment to remove solids and the soil for secondary treatment to reduce the remaining pollutants in the effluent to levels that protect surface and groundwater from contamination. The soil's ability to sequester and degrade pollutants in septic tank effluent (waste discharge) will ultimately determine how well surface and groundwater is being protected.

A variety of factors can affect a soil's ability to function as a septic absorption field. Seven soil characteristics are currently used to determine soil suitability for on-site sewage disposal systems: position in the landscape, slope, soil texture, soil structure, soil consistency, depth to limiting layers, and depth to seasonal high water table (Thomas, 1996). The ability of soil to treat effluent depends on four factors: the amount of accessible soil particle surface area; the chemical properties of the surfaces; soil conditions like temperature, moisture, and oxygen content; and the type of pollutants present in the effluent (Cogger, 1989).

Many of the nutrients and pollutants of concern are removed safely if a septic system is sited correctly. Most soils have a large capacity to hold phosphate. On the other hand, nitrate (the end product of nitrogen metabolism in a properly functioning septic system) is very soluble in soil solution and is often leached to the groundwater. Care must be taken in siting the system to avoid well contamination. Nearly all organic matter in wastewater is biodegradable as long as oxygen is present. Pathogens can be both retained and inactivated within the soil as long as

conditions are right. Bacteria and viruses are much smaller than other pathogenic organisms associated with wastewater; and therefore, have a much greater potential for movement through the soil. Clay minerals and other soil components may absorb them, but retention is not necessarily permanent. During storm flows, they may become resuspended in the soil solution and transported in the soil profile. Inactivation and destruction of pathogens occurs more rapidly in soils containing oxygen because sewage organisms compete poorly with the natural soil microorganisms, which are obligate aerobes requiring oxygen for life. Sewage organisms live longer under anaerobic conditions (without oxygen) and at lower soil temperatures because natural soil microbial activity is reduced.

The NRCS has ranked each soil series in terms of its limitations for use as a septic tank absorption field. Each soil series is placed in one of three categories: slightly limited, moderately limited, or severely limited. Use of septic absorption fields in moderately or severely limited soils generally requires special design, planning, and/or maintenance to overcome the limitations and ensure proper function. Table 3 summarizes the soil series mapped in the Eel River-Tick Creek watershed in terms of their suitability for use as septic tank absorption fields. Figure 7 displays the location and extent of soils slightly, moderately, and severely limited for use as a septic tank absorption field.

Table 3. Soil types present in the Eel River-Tick Creek watershed and suitability for use as

a septic tank absorption field.

Symbol	Name	High Water Table	Suitability for Septic Tank Absorption Field
Ad	Ackerman muck	+0.5-1.0 ft	Severe: ponding, poor filter
BmC	Bloomfield loamy fine sand	>6 ft	Severe: poor filter
ChC	Chelsea loamy fine sand	>6 ft	Severe: poor filter
СрА	Crosier loam	1-3 ft	Severe: wetness, percs slowly
Су	Cyclone silt loam	+0.5-1.0 ft	Severe: ponding
Ge	Gessie Variant silt loam	>6 ft	Severe: floods, poor filter
Gf	Gilford sandy loam	+0.5-1.0 ft	Severe: ponding, poor filter
Gg	Gilford loam	+0.5-1.0 ft	Severe: ponding, poor filter
HeE	Hennepin loam	>6 ft	Severe: percs slowly, wetness
Hh	Houghton muck	+1-1.0 ft	Severe: ponding, percs slowly
KoB	Kosciusko silt loam	>6 ft	Severe: poor filter
KsC3	Kosciusko sandy clay loam	>6 ft	Severe: poor filter
MnD2	Miami silt loam	>6 ft	Severe: percs slowly, slope
MoC3	Miami clay loam	>6 ft	Severe: percs slowly
Ms	Millsdale silty clay loam	+1-1.0 ft	Severe: depth to rock, ponding, percs slowly
NeB	New Glarus	>6 ft	Severe: depth to rock, percs slowly
ObA	Oakville loamy fine sand	3-6 ft	Severe: wetness, poor filter
OsB	Ormas loamy fine sand	>6 ft	Slight
Po	Patton silty clay loam	+0.5-2.0 ft	Severe: ponding
Pp	Pits, gravel		

Symbol	Name	High Water Table	Suitability for Septic Tank Absorption Field
Rn	Rensselaer loam	+0.5-1.0 ft	Severe: ponding, percs slowly
RsB-RsC	Riddles silt loam	>6 ft	Moderate: percs slowly, slope
RtA-RtB	Rush silt loam	>6 ft	Slight
Sh	Shoals silty clay loam	1.0-3.0 ft	Severe: floods, wetness
Sm	Sleeth silt loam	1.0-3.0 ft	Severe: wetness
St	Stonelick loamy fine sand	>6 ft	Severe: floods
WeB	Wawasee sandy loam	>6 ft	Slight

Source: Douglas, 1981.

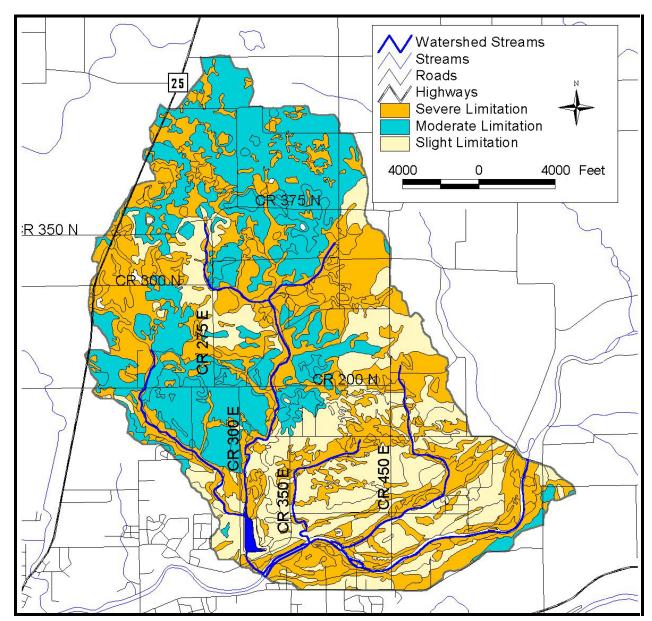


Figure 7. Soil septic field absorption suitability in the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000".

2.5 Natural History

Geographic location, climate, geology, topography, soils, hydrology, and other factors play a role in shaping the native floral and faunal communities in a particular area. Various ecologists (Deam, 1921; Petty and Jackson, 1966; Homoya et al., 1985; Omernik and Gallant, 1988) have divided Indiana into several natural regions or ecoregions, each with similar geologic history, climate, topography, and soils. Because the groupings are based on factors that ultimately influence the type of vegetation present in an area, these natural areas or ecoregions tend to support characteristic native floral and faunal communities. Under many of these classification systems, the Eel River-Tick Creek watershed lies at or near the transition between two regions. For example, the northern portion of the watershed lies within Homoya's Northern Indiana Natural Lakes Area while the southern portion along the Eel River is part of the Bluffton Till Plain section of the Central Till Plain. Similarly, the watershed lies along the transition between the oak-hickory forest and the beech maple forest types in Lindsey et al.'s (1965) map of presettlement vegetation in Indiana. As a result, the native floral and faunal community of the Eel River-Tick Creek watershed likely consists of components of both natural areas.

Prior to European settlement, oak-hickory forest likely covered most of the Eel River-Tick Creek watershed, particularly in the northern, upland portion of the watershed. White oak was the dominant component of this forest with red oak, black oak, shagbark hickory, and bitternut hickory as subdominants (Petty and Jackson, 1966; Homoya et al., 1985). Petty and Jackson (1966) list pussy toes, common cinquefoil, wild licorice, tick clover, blue phlox, waterleaf, bloodroot, Joe-pye weed, woodland asters and goldenrods, wild geranium, and bellwort as common components of the forest under story in the watershed's region. In the southeastern portion of the watershed, the area that may represent the floodplain of a precursor to the Eel River, second bottom floodplain tree species may have dominated the plant coverage. Petty and Jackson describe a remnant, drier, second bottom floodplain near Logansport in their 1966 work. Hard maple (black and sugar) and beech dominate this remnant patch of forest, while American elm, hackberry, cork elm, Ohio buckeye, and slippery elm round out the community. It is likely that this may be similar to the native community in the southeast portion of the Eel River-Tick Creek watershed

2.6 Endangered Species

The Indiana Natural Heritage Data Center database provides information on the presence of endangered, threatened, or rare (ETR) species, high quality natural communities, and natural areas in Indiana. The database was developed to assist in documenting the presence of special species and significant natural areas and to serve as a tool for setting management priorities in areas where special species or habitats exist. The database relies on observations from individuals rather than systematic field surveys by the Indiana Department of Natural Resources. Because of this, it does not document every occurrence of special species or habitat. At the same time, the listing of a species or natural area does not guarantee that the listed species is currently present or that the listed area is in pristine condition. The database includes the date that the species or special habitat was last observed in a specific location.

Appendix B presents the results from the database search for endangered, threatened, or rare species and high quality natural communities in the Eel River-Tick Creek watershed. (Appendix B also includes a listing of endangered, threatened, and rare species and high quality natural

communities documented in Cass County for additional reference.) According to the database, the Eel River-Tick Creek watershed supports three ETR animals. The listed fish are the state endangered bluebreast darter, the state endangered greater redhorse, and the eastern sand darter, which is a state species of special concern. The listed animals were observed in the Eel River in Sections 14 and 20 of Township 27 North, Range 2 East. The two darter species were documented in 1941, while the greater redhorse was observed in 1992. No ETR species were documented elsewhere in the Eel River-Tick Creek watershed.

Cass County supports a variety of endangered, threatened, and rare animals and plants. The listed animals include fifteen aquatic species: ten freshwater mussels, including the state endangered Eastern fanshell pearlymussel, snuffbox, black sandshell, and rabbitsfoot, and five fish. One amphibian (the four-toed salamander) and two reptiles (the spotted turtle and the Eastern massasauga) are also listed. Two ETR birds, the great blue heron and the barn owl, have been noted in Cass County. Three mammals, the northern river otter, bobcat, and American badger, have also been identified in the county. More than thirty plant species, many of which are hydrophytic (wetland or aquatic species), are also included in the database for Cass County. The county also supports two high quality communities: mesic floodplain forest and cliff limestone.

2.7 Hydrology

As is characteristic of much of the glaciated portion of the state, hydrologic features including lakes, streams, wetlands, and ponds are important components of the Eel River-Tick Creek watershed's landscape. One lake, Lake Perry, lies within the Eel River-Tick Creek watershed. Lake Perry is a reservoir which was created in the 1970s by installing a water control structure within the Tick Creek channel (Pete Riggle, personal communication). The lake is approximately 20 acres in size and has a maximum depth of 20 feet. Three major inlets flow from the watershed into the Eel River. Tick Creek is the largest of these streams. Tick Creek has one main tributary, Laird Ditch, which enters Tick Creek from the west at Lake Perry. Laird Ditch forms the western boundary of the watershed. Tick Creek is approximately 26,257 feet in length (not including the length of Lake Perry), while Laird Ditch is approximately 12,413 feet in length. Portions of Laird Ditch and Tick Creek maintain some elements of their historic form; however, other portions have been impacted as land use changed in the watershed. Howard Ditch (8,869 feet) and Shackelford Ditch (14,463 feet) are located in the eastern portion of the watershed and flow directly to the Eel River. Both ditches were dug at least partly in historic wetland communities. The combined stream length of the four streams in the Eel River-Tick Creek watershed is approximately 62,000 feet. Additionally, nearly 5,714 feet of the Eel River are contained within the Eel River-Tick Creek watershed. Logansport's drinking water intake pipe is located downstream of the Eel River-Tick Creek watershed; therefore, all activities targeted at improving water quality within the Eel River-Tick Creek watershed should improve drinking water within the City of Logansport.

The United States Fish and Wildlife Service's (USFWS) National Wetland Inventory (NWI) Map (Figure 8) shows that wetlands cover approximately 446 acres or 5% of the Eel River-Tick Creek watershed. (Table 4 presents the acreage of wetlands by type according to the National Wetland Inventory.) Functioning wetlands filter sediments and nutrients in runoff, store water for future release, provide an opportunity for groundwater recharge or discharge, and serve as nesting habitat for waterfowl and spawning sites for fish. By performing these roles, healthy,

functioning wetlands often improve the water quality and biological health of streams and lakes located downstream of the wetlands. As illustrated by Figure 8, wetland habitat is scattered throughout the watershed; however, several contiguous tracts of wetland habitat are located in the Laird Ditch and Tick Creek headwaters.

The Eel River-Tick Creek watershed has lost many of its wetlands. Figure 9 illustrates the extent of hydric soils in the watershed. Because hydric soils developed under wet conditions, they are a good indicator of the historical presence of wetlands. Comparing the total area covered by wetland (hydric) soils in the watershed to the area of existing wetland suggests that many of the wetlands in the Howard Ditch headwaters and along the mainstem of Shackelford Ditch have been converted to other land uses. Significant acreage in the northwest corner of the watershed has also been converted to other land uses.

Table 4. Acreage and classification of wetland habitat in the Eel River-Tick Creek watershed.

Wetland Type	Area (acres)	Percent of Watershed
Lacustrine	24.7	0.3%
Palustrine emergent	130.2	1.4%
Palustrine forested	120.5	1.3%
Palustrine scrub/shrub	54.2	0.6%
Palustrine submergent	0.5	0.0%
Ponds	22.7	0.3%
Riverine	92.9	1.0%
Total	455.8	4.9%

Source: USFWS National Wetland Inventory (NWI).

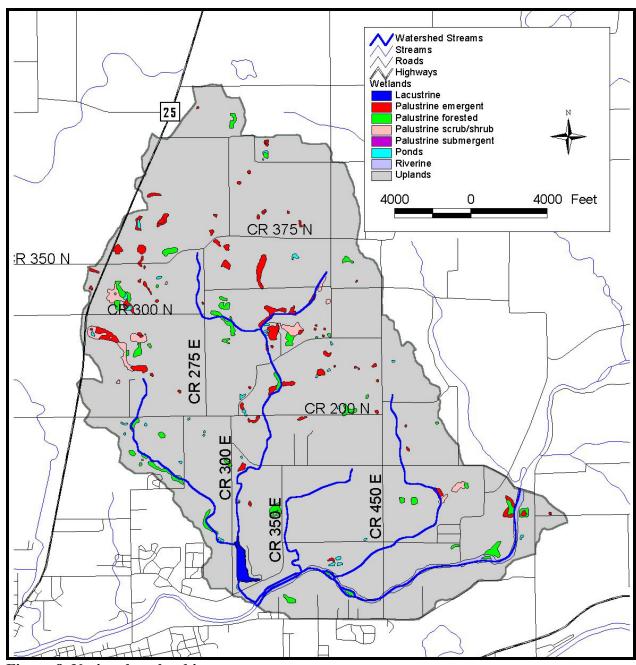


Figure 8. National wetland inventory map. Source: See Appendix A. Scale: 1"=4,000'.

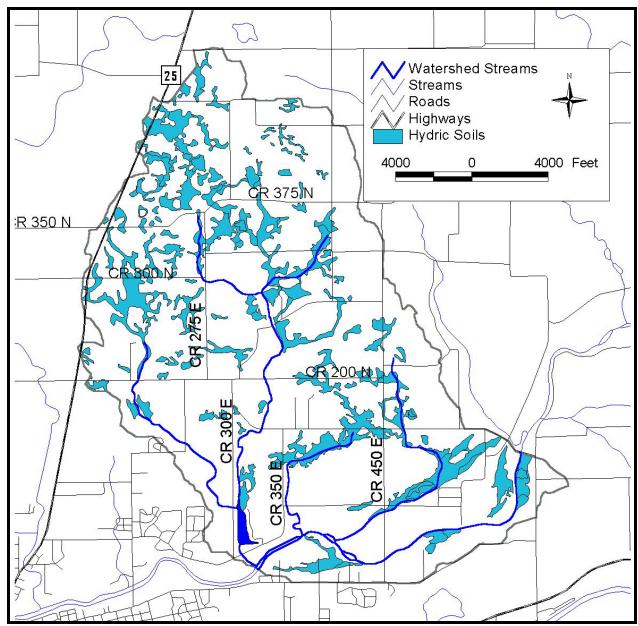


Figure 9. Hydric soils (blue) in the Eel River-Tick Creek watershed.

2.8 Cultural Resources

Prior to European settlement of Logansport and northern Cass County in 1826, the Eel River-Tick Creek watershed area was frequently visited by Native American tribes from other regions (Chamberlain, 1849). The Pottawatomie and Miami tribes called this area their home. Both tribes lived in this region year-around, frequently camping along the shores of the Eel and Wabash Rivers. Hunting, fishing, trapping, and gathering were a part of their culture; however, they also cultivated gardens for certain staple products. They sustainably harvested resources from the woods, wetlands, and prairies that dominated the land around them. Ultimately, as the pioneers entered the region, the majority of Pottawatomie and Miami tribes departed the region. By the mid-1830s, the tribes were relegated to their federally designated reservations in Kansas.

Logansport, the largest town in Cass County, was settled in the late 1820s. The first permanent settlers arrived in Cass County in 1826. These settlers built the first permanent structures and platted the city of Logansport in 1828 (Looker, 2004). Cass County was officially organized in 1829 (Chamberlain, 1849). Prior to being named Logansport, the Latin translation of "mouth of the Eel" and Logan were suggested. The town was eventually named after a Shawnee scout for the army, Logan, combined with "port" for the town's location along a navigable stream. In the late 1820's, General John Tipton, head of the Indian Agency at Fort Wayne, persuaded government officials in Washington D.C. to move the agency to Logansport. Subsequently, he played a major role in routing two heavily traveled thoroughfares through Cass County. Both the Michigan Road, which connected Madison, Indiana with Lake Michigan via Indianapolis, and the Wabash and Erie Canal, connecting Lake Erie in Toledo, Ohio with the Ohio River in Evansville, Indiana, established Cass County as an important hub for transportation (Looker, 2004). Automobile manufacturing, lumber production, and ultimately, the railroad, which operated a total of seven rail lines and employed over 4,000 people in the early 1920s, defined the town's location where it is today (State Legislature, 1938).

Settlers undoubtedly moved out from Logansport into the surrounding countryside soon after the city was platted. County commissioners established initial township boundaries early in 1829; however, these boundaries were revised many times. It was not until the 1840s that final township boundaries were determined (Historic Landmarks Foundation, 1984). Upon settling in the area, pioneers began altering the natural landscape. In an effort to cultivate the rich ground, forests were logged for their resources. Concurrently, prairies were cleared and plowed for cultivation and pastureland. Many of the streams were channelized and wetlands drained. Over time, wheat, small grain, hay, and corn production increased. In the early 1900s, nearly 95% of Cass County was farmed (Indiana Agricultural Statistics Service, 1999). Urbanization throughout the county also increased; this occurred primarily in and around Logansport, the area immediately southwest of the Eel River-Tick Creek watershed. Glimpses of the watershed's early history can be seen in the historic landmarks that survive today. Many historical structures are still present in the area. Figure 10 maps some of these notable landmarks, which include homes, churches, and farmsteads dating back to the early to mid-1800s.

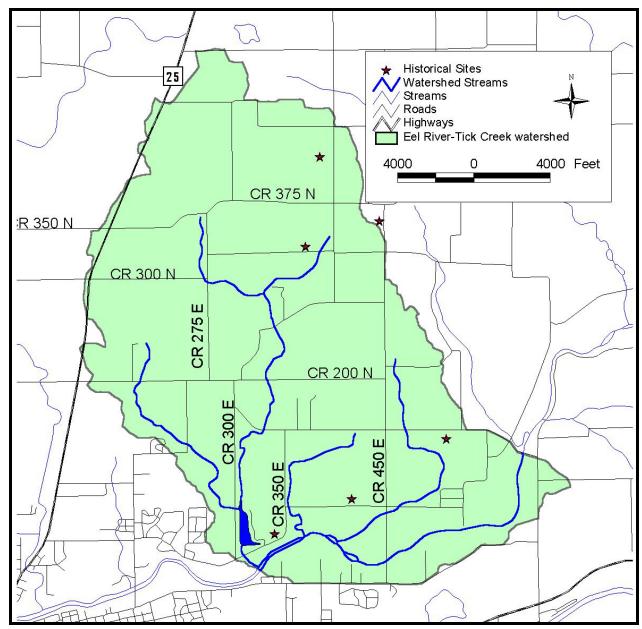


Figure 10. Historical structures and sites in the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000'.

2.9 Land Use

Table 5 and Figure 11 present the land use information for the Eel River-Tick Creek watershed. Land use data from the U.S. Geological Survey (USGS) forms the basis of Figure 11. The USGS data for the watershed was updated by examining 2003 orthophotography in ArcView GIS. Portions of the watershed were also field checked. Like much of Cass County (Douglas, 1981), agricultural land uses dominate the landscape of the Eel River-Tick Creek watershed. Row crop agricultural areas cover nearly two-thirds of the watershed (63.8%). According to 2004 tillage transect data for Cass County, 83% of corn and 14% of soybean field (by acres) are in conventional tillage. Cass County ranks 71st for the use of no-till farming on corn fields (by acre) and 17th for soybean fields (IDNR, 2004). Pasture occupies an additional 12% of the watershed.

Forested land exists on approximately 15% of the watershed. Open water and wetlands cover nearly 2% of the watershed. (This number differs slightly from the **Hydrological Features** section since different data sources were utilized.) Most of the forested and wetland areas lie in the headwaters of Laird Ditch and along the mainstems of Laird Ditch and Tick Creek (Figure 11). Residential and commercial development account for more than 4% of the watershed land use. This percentage has increased over the past decade and will likely continue to do so in the next years as the population of Logansport grows and pushes out from the city center.

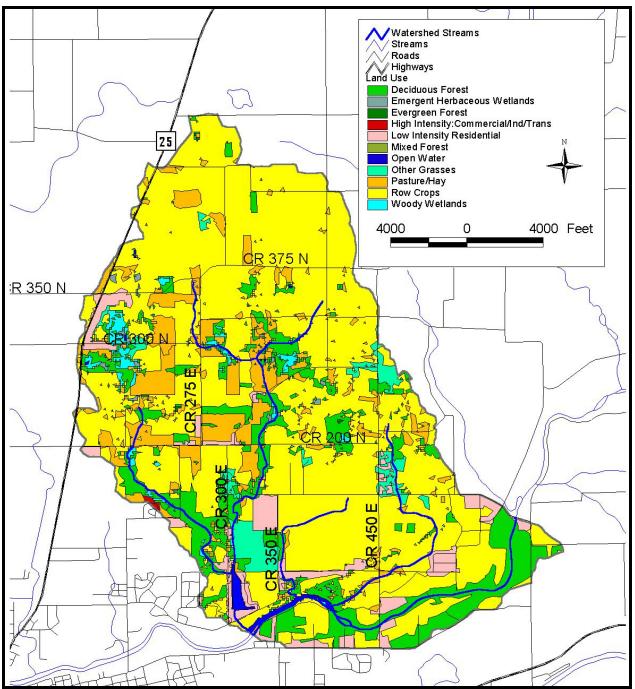


Figure 11. Land use in the Eel River-Tick Creek watershed.

Source: See Appendix A. Scale: 1"=4,000'.

Table 5. Detailed land use in the Eel River-Tick Creek watershed.

Land Use	Area (acres)	Percent of the Watershed
Row Crops	5755.7	63.9%
Deciduous Forest	1357.3	15.1%
Pasture/Hay	968.1	10.7%
Low Intensity Residential	470.8	5.2%
Other Grasses	263.1	2.9%
Woody Wetlands	107.5	1.2%
Open Water	49.5	0.5%
Emergent Herbaceous Wetlands	29.3	0.3%
High Intensity Commercial	6.8	0.1%
Evergreen Forest	2.8	0.0%
Mixed Forest	0.2	0.0%
Total	9,011	100.0%

2.10 Population

As the land use map (Figure X) suggests that the Eel River-Tick Creek watershed supports a relatively sparse population of people. Measuring and tracking population growth in the watershed is difficult since governmental and other agencies measuring this data often report their findings on a township, county, or census tract basis rather than by watershed. The reported data can, however, be utilized to estimate the current watershed population and track its growth over the past century. Table 6 presents the U.S. Census data for the Eel River-Tick Creek watershed area from 1890 to 2000. The entire Eel River-Tick Creek watershed lies in Clay Township, while the entirety of Logansport is located in Eel Township. Table 6 also provides data on Cass County for reference.

Table 6. U.S. Census data for Clay and Eel Townships and Cass County.

	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
Cass County	31,152	34,545	36,368	38,333	34,518	36,908	38,793	40,931	40,456	40,936	38,413	40,930
Clay Township	838	765	745	683	681	671	635	1,386	1,943	2,779	2,878	2,890
Eel Township	14,052	17,237	20,239	21,905	18,895	20,760	21,772	21,901	20,275	18,890	17,746	20,115

Source: Stats Indiana, 2005.

Generally, both Clay and Eel Townships have shown steady growth over the past 110 years. Clay Township, within which lies the Eel River-Tick Creek watershed, experienced it greatest growth rate between 1950 and 1960 when the township's population grew by nearly 115%. Growth between 1960 and 1980 was also strong (approximately 40-45%). Conversely, Eel Township experienced its greatest growth rate between 1890 and 1900. This period of growth corresponds with heavy manufacturing growth within Logansport. Growth in Cass County also shows similar results; the greatest period of growth occurred from 1890 to 1900. Figure 12 details the population levels in the two townships and Cass County from 1890 through 2000.

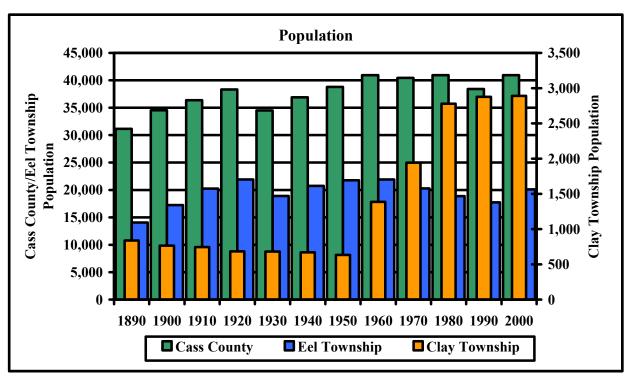


Figure 12. Populations of Clay Township (Eel River-Tick Creek watershed), Eel Township (City of Logansport), and Cass County from 1890 through 2000.

Population growth within the Eel River-Tick Creek watershed reflects that observed throughout Clay Township. In total, Clay Township supports approximately 80 people per square mile. A majority of these individuals are clustered around Lake Perry, along the State Road 25 corridor, and within subdivisions along the southern and eastern boundaries of the Eel River-Tick Creek watershed. In total, approximately 250 individuals own land within the Eel River-Tick Creek watershed (Judy Buttice and Pete Riggle, farm number records and Lake Perry Estates Corporation record search).

2.11 Land Ownership

Portions of two tracts of land owned by the Cass County Parks Department and the Cass County 4-H Program are located along the western watershed boundary of the Laird Ditch subwatershed (Figure 13). Both tracts are utilized for recreational activities including, but not limited to baseball diamonds, soccer fields, swing sets, animal barns, and open recreational areas. Individuals representing the Cass County Parks Department and the Cass County 4-H Program were contacted in regards to this project. Their input and opinions were solicited during the planning process through multiple mailings.

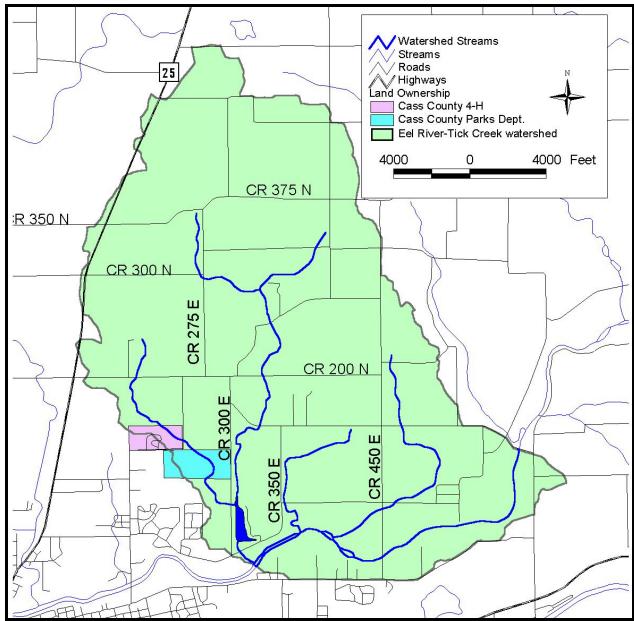


Figure 13. Tracts of land owned by public entities within the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000".

3.0 BASELINE WATER QUALITY CONDITIONS

Data contained in this section documents current water quality conditions in the four tributaries to the Eel River in the Eel River-Tick Creek watershed (Laird Ditch, Tick Creek, Howard Ditch, Shackelford Ditch, and Lake Perry). (These are referred to as the five major waterbodies in the Eel River-Tick Creek watershed throughout the remainder of this document.) Understanding the waterbodies' current conditions will help watershed stakeholders set realistic goals for future water quality conditions. This data will also serve as the benchmark against which future water

quality conditions can be compared to measure stakeholder success in achieving their vision for the future of these waterbodies.

A variety of resources were reviewed to establish the existing or baseline water quality conditions within the five major waterbodies in the Eel River-Tick Creek watershed (Laird Ditch, Tick Creek, Howard Ditch, Shackelford Ditch, and Lake Perry). In general, few studies have been completed on the five waterbodies in the Eel River-Tick Creek watershed. The Indiana Department of Environmental Management assessed the water chemistry, biological communities, and physical habitat in Tick Creek and Laird Ditch in 1991, 1994, and 1998. The LPEC monitored Lake Perry's water clarity through the Indiana Clean Lakes Volunteer Monitoring Program from 2000 to 2004. JFNew collected additional data from each of the four major streams and Lake Perry during the summer of 2004 as part of this plan's development to supplement the existing data. The following paragraphs outline the findings of these assessments.

3.1 IDEM Assessments

The Indiana Department of Environmental Management's Biological Studies Section sampled both Tick Creek and Laird Ditch several times in the past 15 years. IDEM collected fish community data from Tick Creek, downstream of Lake Perry near its confluence with the Eel River in 1994 (Sobat, 2004). IDEM also collected macroinvertebrate community data from the same site in 1991 and 1998 (Davis, 2004). Because fish and macroinvertebrates live in the stream, the health of these biological communities provides an indication of the quality of the water in the stream. Concurrently with the macroinvertebrate collection, IDEM conducted an evaluation of the creek's physical habitat. This data is used to help determine whether habitat or water quality plays a larger role in influencing the health of the biological communities in the stream. In 1998, IDEM assessed the fish community, macroinvertebrate community, and water chemistry in Laird Ditch. Their sampling site on Laird Ditch was located at County Road 300 East. Appendix C contains the raw data from these assessments.

The biological community and habitat data from IDEM's assessment of Tick Creek indicate that the biota in the creek are at least moderately healthy and that IDEM would likely consider the creek to "support" its aquatic life beneficial use. (Under the Clean Water Act all waterbodies, with a few exceptions, must be capable of supporting aquatic life and recreational beneficial uses. In other words, waterbodies must be "fishable and swimmable". Indiana state law has similar requirements.) In 1994 Tick Creek received a fish Index of Biotic Integrity (IBI) score of 52 out of a possible 60, placing it in the "good" category (Table 7). The creek received a macroinvertebrate Index of Biotic Integrity (mIBI) score of 4.8 in 1991 and 4.4 in 1998 (out of a possible 8), placing it in the slightly impaired category (Table 8). The creek at this site scored 75 points in 1991 and 63 points in 1998 using the Qualitative Habitat Evaluation Index (QHEI). One hundred is the maximum possible QHEI score. The decrease in QHEI score between 1991 and 1998 resulted from a decrease in the in-stream cover and channel metric scores. IDEM considers scores below 51 to be non-supporting of the aquatic life beneficial use (Table 9). In general, Tick Creek's biotic scores suggest that the stream is supporting a healthy, balanced warmwater aquatic community and that it likely meets the state's standards for these biological parameters.

Table 7. Fish Index of Biotic Integrity scores and associated classification

Total IBI Score	Integrity Class	Attributes
58-60	Excellent	Comparable to the best situation without human disturbance; all regionally expected species for the habitat and stream size, including the most intolerant forms, are present with a full array of age (size) classes; balanced trophic structure.
48-52	Good	Species richness somewhat below expectation, especially due to the loss of the most intolerant form; some species are present with less than optimal abundances or size distributions; trophic structure shows some sign of stress.
40-44	Fair	Signs of additional deterioration include the loss of intolerant forms, fewer species, highly skewed trophic structure (e.g. increasing frequency of omnivores and other tolerant species); older age classes of top predators may be rare.
28-34	Poor	Dominated by omnivores, tolerant forms, and habitat generalists; few top carnivores; growth rates and conditions factors commonly depressed; hybrids and diseased fish often present.
12-22	Very Poor	Few fish present, mostly introduced or tolerant forms; hybrids common; disease, parasites, fin damage, and other anomalies regular.
0	No fish	Repeated sampling finds no fish.

Source: Simon and Dufour, 1998, adapted from Karr et al., 1986.

Table 8. Macroinvertebrate Index of Biotic Integrity scores and associated classification

Total mIBI Score	Integrity Class
6-8	Non-impaired
4-6	Slightly impaired
2-4	Moderately impaired
0-2	Severely impaired

Table 9. IDEM's criteria for aquatic life use support

Parameter	Fully Supporting	Partially Supporting	Not Supporting
Benthic aquatic macroinvertebrate Index of Biotic Integrity (mIBI)	mIBI ≥ 4	mIBI < 4 and ≥ 2	mIBI < 2
Qualitative habitat use evaluation (QHEI)	QHEI ≥ 64	QHEI < 64 and \geq 51	QHEI < 51
Fish community (IBI) (Upper Wabash basin)	IBI > 34	IBI \leq 34 and \geq 32	IBI < 32

Source: IDEM, 2004f.

In the summer of 1998, IDEM assessed the biological communities, physical habitat, and water chemistry in Laird Ditch at County Road 300 East, upstream of the point where the creek discharges into Lake Perry (Davis, 2004; Sobat, 2004). The creek's biotic integrity scores were

lower than those observed in Tick Creek. The creek received an IBI score of 38, placing it between the poor and fair categories, and a mIBI score of 3.6, placing it in the moderately impaired category. Despite being lower than the IBI score observed in Tick Creek, Laird Ditch's IBI score is high enough that IDEM would consider the creek fully supportive of its aquatic life beneficial use (IDEM, 2004f). The mIBI score, however, suggests IDEM might consider the creek only partially supportive of its aquatic life beneficial use. The creek's habitat may play some minimal role in limiting biotic life in the creek. Laird Ditch received a QHEI score of 60, which IDEM considers only partially supportive of the aquatic life beneficial use.

The water chemistry testing in Laird Ditch (Bell, 2004) included many common parameters such as dissolved oxygen, pH, and nutrients as well as numerous other parameters such as heavy metals and some organic chemical compounds. None of the concentrations of the measured parameters exceeded the state standards for water quality and most concentrations were below the laboratory detection limit. (It is important to note that Indiana does not have a state standard for each parameter measured by IDEM during this sampling event.) The concentrations of two parameters, turbidity and total phosphorus, were higher than desirable. The creek exhibited a turbidity of 36 NTU and a total phosphorus concentration of 0.12 mg/L. Indiana does not have numeric criteria for either of these parameters, but some potential management targets for ensuring stream health are 10 NTU for turbidity (USEPA, 2000) and 0.075-0.1 mg/L for total phosphorus (Dodd et al., 1998; EPA, 2000; Ohio EPA, 1999).

3.2 Indiana Clean Lakes Volunteer Monitoring Program

The LPEC monitored Lake Perry's water clarity through the Indiana Clean Lakes Volunteer Monitoring Program from 2000 to 2004. Citizen volunteers in the ICLVMP are trained by ICLVMP staff to collect water clarity data from individual lakes on a biweekly basis (if possible) throughout the summer months, typically from June through August. Water clarity data is measured by the volunteer with a Secchi disk using the standard methodology employed by most lake management professionals (Indiana Clean Lakes Volunteer Monitoring Program, 2001). On Lake Perry, the citizen volunteer typically monitored the lake four or five times throughout the summer.

The results of this testing indicate that the lake suffers from poor but relatively stable water clarity. Most of the Secchi disk measurements for the lake were between 1.8 and 2.8 feet, although in two instances readings better than 3 feet were obtained. The lake's July/August average Secchi disk depth ranged from a low of 1.9 in 2001 to a high of 2.5 in 2004. These averages are well below the median Secchi disk depth for Indiana lakes of 6.9 feet (Figure 14).

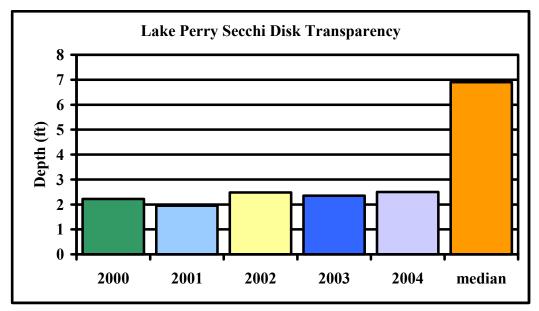


Figure 14. Water clarity in Lake Perry from 2000 to 2004. July/August Secchi disk averages for Lake Perry are compared to the median Secchi disk reading for Indiana lakes (based on Indiana Clean Lakes Program data).

3.3 JFNew Watershed Stream and Lake Sampling

To supplement the base of existing data, JFNew collected water chemistry, biological community, and physical habitat data from each of the four major watershed streams: Laird Ditch, Tick Creek, Howard Ditch, and Shackelford Ditch. One sampling station was located on each stream (Figure 15). Water chemistry samples were collected twice from each stream, once following a storm event to capture a runoff event and once following a period of little precipitation to serve as the "normal" stream condition. Each stream's biological community and physical habitat were assessed once in mid-late summer. To ensure comparability to data collected previously by IDEM, JFNew followed similar stream sampling protocols. Additionally, JFNew assessed the water quality in Lake Perry by examining water chemistry and biological parameters. Sampling followed the protocol utilized by the Indiana Clean Lakes Program to allow for comparison to data gathered for other Indiana lakes. The stream and lakes sampling and the appropriate quality assurance/quality control procedures are referenced in the project's Quality Assurance Project Plan (QAPP). Appendix D contains the project QAPP. Tables 10 through 12 present the raw water chemistry data, while Appendix E presents the raw data collected during the stream and lake assessments in tabular and graphical form. Sampling location coordinates are also contained in Appendix E.

Table 10. Physical parameter data collected during base and storm flow sampling events in the Eel River-Tick Creek watershed waterbodies on May 19, 2004 and July 20, 2004.

Site	Stream Name	Date	Event	Flow (cfs)	Temp (deg C)	DO (mg/L)	% Sat	pН	Turbidity (NTU)	TSS (mg/L)
1	Laird Ditch	5/19/04	storm	1.7	15.5	8.3	82.3	8.0	2.9	1.5
1	Land Ditti	7/20/04	base	0.5	18.5	8.2	98.7	8.0	4.3	14.5
2	Tick Creek	5/19/04	storm	8.3	14.3	9.6	93.7	8.1	2.5	2.3
2	TICK CIEEK	7/20/04	base	3.0	18.6	9.7	104.5	7.8	2.1	3.3
2	Howard	5/19/04	storm	1.6	14.8	9.0	88.5	7.9	2.8	5.0
3	Ditch	7/20/04	base	0.5	17.5	9.4	97.2	7.8	2.4	2.7
4	Shackelford	5/19/04	storm	2.1	14.0	7.5	73.4	7.9	6.3	26.0
4	Ditch	7/20/04	base	0.7	16.6	9.1	90.9	7.7	5.05	16.8

Table 11. Chemical and bacterial characteristics of the Eel River-Tick Creek watershed waterbodies as sampled on May 19, 2004 and July 20, 2004.

Site	Stream Name	Date	Event	NH ₃ -N (mg/L)	NO ₃ -N (mg/L)	TKN (mg/L)	SRP (mg/L)	TP (mg/L)	BOD (mg/L)	E. coli (col/100 mL)
1	Laird Ditch	5/19/04	storm	0.065	1.614	0.817	0.052	0.081	<2	390
1	Land Ditti	7/20/04	base	0.067	2.127	0.475	0.040	0.088	<2	490
2	Tick Creek	5/19/04	storm	0.116	6.661	0.963	0.032	0.081	<2	690
2	TICK CIEEK	7/20/04	base	0.018	4.222	0.486	0.025	0.063	<2	1,000
3	Howard	5/19/04	storm	0.087	3.751	0.559	0.053	0.080	<2	870
3	Ditch	7/20/04	base	0.018	4.316	0.349	0.026	0.081	<2	545
4	Shackelford	5/19/04	storm	0.113	3.770	0.724	0.071	0.137	<2	3,150
4	Ditch	7/20/04	base	0.053	3.028	0.468	0.036	0.101	<2	1,240

Table 12. Chemical loading data for the Eel River-Tick Creek watershed waterbodies as sampled on May 19, 2004 and July 20, 2004.

Site	Stream Name	Date	Event	NH ₃ -N Load (kg/d)	NO ₃ -N Load (kg/d)	TKN Load (kg/d)	SRP Load (kg/d)	TP Load (kg/d)	TSS Load (kg/d)	E. coli Load (mil col/d)
1	Laird Ditch	5/19/04	storm	0.264	6.606	3.345	0.213	0.332	6.140	15963
1	Land Diten	7/20/04	base	0.088	2.777	0.620	0.052	0.115	18.933	6398
2	Tick Creek	5/19/04	storm	2.373	135.793	19.637	0.652	1.651	45.866	140656
	TICK CICCK	7/20/04	base	0.132	31.044	3.572	0.184	0.460	23.896	73525
3	Howard	5/19/04	storm	0.334	14.500	2.160	0.205	0.309	19.329	33632
3	Ditch	7/20/04	base	0.024	5.646	0.456	0.034	0.106	3.551	7129
4	Shackelford	5/19/04	storm	0.586	19.623	3.766	0.370	0.713	135.451	163978
4	Ditch	7/20/04	base	0.093	5.324	0.823	0.063	0.178	29.447	21800

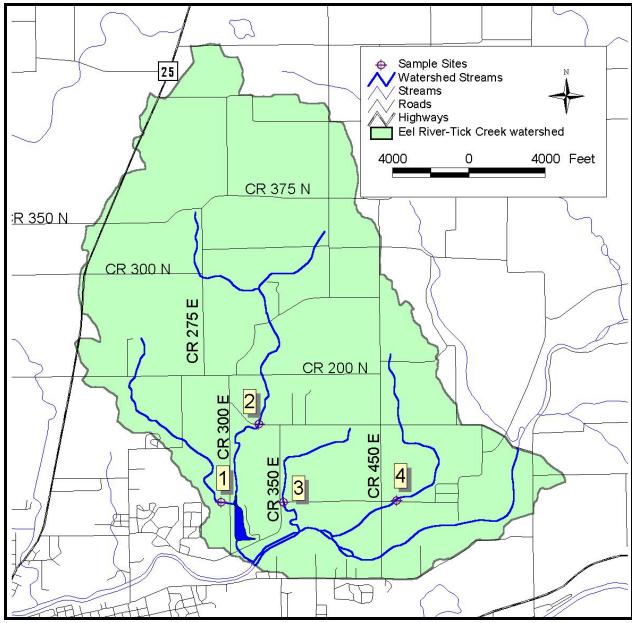


Figure 15. Stream sampling locations. Source: See Appendix A. Scale: 1"=4,000".

3.3.1 Laird Ditch

In general, water quality was relatively good in Laird Ditch, although some parameters were of concern. During both base flow and storm flow conditions, none of the samples violated the Indiana state standards for temperature, dissolved oxygen, pH, nitrate-nitrogen, or ammonia-nitrogen concentrations. These results are consistent with the findings from IDEM's 1998 assessment of the ditch. The evaluation of Laird Ditch's biological community and physical habitat indicated that the ditch fell just short of the thresholds at which IDEM typically considers a stream to be "fully supportive" of its aquatic life use. The ditch received a mIBI score of 3.6 placing it in the moderately impaired category. (This score was identical to the score obtained by IDEM in 1998.) Laird Ditch had a QHEI score of 63, which was a few points higher than the score calculated by IDEM in 1998.

The 2004 sampling of Laird Ditch highlighted a few areas of concern. First, the ditch exhibited E. coli concentrations above the Indiana state standard of 235 cfu/100mL during both the storm flow and base flow sampling events. While exceeding the state standard is of concern, the concern should be tempered by the fact that the E. coli concentrations observed in Laird Ditch were below the average E. coli concentration found in Indiana streams. In reviewing ten years worth of data from Indiana fixed monitoring stations, White (unpublished) found the average E. coli concentration in Indiana streams to be approximately 650 cfu/100mL. Also of concern is Laird Ditch's nitrate-nitrogen concentration. While the concentration does not exceed the state standard, the concentration under both storm and base flow conditions was above the concentration recommended by the Ohio EPA to protect aquatic life. In a study correlating nutrient concentrations to biotic health, the Ohio EPA (1999) recommended keeping nitrate concentrations below 1.0 mg/L in most streams. Finally, although the pollutant loads in Laird Ditch were low compared to the other watershed streams, Laird Ditch exhibited the second highest total suspended solids areal loading rate during storm flow. (Areal loading rate is the pollutant loading rate divided by drainage area. This allows for a comparison of loading rates in different sized drainages. Normally, pollutant loading rates in larger drainages are expected to be higher than the pollutant loading rates in smaller drainages.) The high (relative to other watershed streams) total suspended solids areal loading rate suggests that the stream may carry a significant suspended solid load and/or stream erosion during storm flow may be a considerable source of sediment in the ditch (Figure 16).

Figure 16. Typical stream bank erosion observed along Laird Ditch during a walking tour of the ditch.

3.3.2 Tick Creek

Like Laird Ditch, for many of the parameters measured, Tick Creek exhibited relatively good water quality. None of the temperature, dissolved oxygen, pH, nitrate-nitrogen, or ammonianitrogen measurements violated Indiana state standards. The creek's biological community and physical habitat exhibited the best health compared to the other watershed streams. Tick Creek received a mIBI score of 4.2, placing it in the slightly impaired category. This score however is

#JFNew

high enough to be considered fully supportive of its aquatic life beneficial use. Similarly, the creek possessed a QHEI score of 71, which is well above the threshold at which IDEM considers habitat to be supportive of aquatic life beneficial use.

Despite these good biological integrity and physical habitat scores, Tick Creek exhibited a few characteristics of concern. For example, the stream's nitrate-nitrogen concentrations during both base and storm flow were high. Following a storm event, the creek's nitrate-nitrogen concentration was 6.7 mg/L and its nitrate-nitrogen concentration under base flow conditions was 4.2 mg/L. (Appendix E contains the raw data for the 2004 stream and lake sampling.) These concentrations are well above the 1.0 mg/L level, which the Ohio EPA recommends as a standard for protecting aquatic life. Additionally, they are above the 3-4 mg/L concentration at which the Ohio EPA found a definite correlation with impaired biotic health (Ohio EPA, 1999). Tick Creek also exhibited relatively high E. coli concentrations. The E. coli concentrations following a storm event (690 cfu/100mL) and during base flow conditions (1000 cfu/100mL) exceeded both the state standard and the average E. coli concentration in Indiana streams. Finally, Tick Creek possessed the highest pollutant loading rates of the four watershed streams for all pollutants measured except total suspended solids, for which the creek possessed the second highest loading rate. This finding is not surprising since Tick Creek's drainage area is three to six times larger than the drainage areas of the other watershed creeks. Creeks with larger drainage areas typically possess high pollutant loading rates. When drainage size is normalized by dividing pollutant loading rates for each stream by drainage size, Tick Creek still generally exhibits the highest loading rates for the nitrogen parameters (nitrate-nitrogen, ammonianitrogen, and total Kjeldahl nitrogen). This suggests the Tick Creek subwatershed may be a hot spot or critical source for nitrogen based pollutants.

3.3.3 Howard Ditch

The water chemistry conditions in Howard Ditch were fairly similar to those observed in Laird Ditch and Tick Creek. None of temperature, dissolved oxygen, pH, nitrate-nitrogen, or ammonia-nitrogen measurements taken in Howard Ditch during either the storm event or under base flow conditions violated Indiana state standards. The ditch received a mIBI score of 3.9, placing the ditch's biological community in the moderately impaired category. This score is just short of the 4.0 threshold IDEM considers when determining whether a waterbody meets its aquatic life beneficial use.

Characteristics of concern within Howard Ditch include its high nitrate-nitrogen concentration, high *E. coli* concentration, high phosphorus and total suspended solids loading rates during storm flows relative to the ditch's drainage size, and poor habitat score. Howard Ditch exhibited a nitrate-nitrogen concentration of 3.8 mg/L and 4.3 mg/L during storm flow and base flow conditions, respectively. These concentrations are within the range found by the Ohio EPA to be correlated with biotic community impairment. Thus, high nitrate-nitrogen concentrations could be negatively impacting the fauna within Howard Ditch. Howard Ditch also possessed *E. coli* concentrations during both sampling efforts that exceeded the state standard of 235 cfu/100mL. When drainage size is normalized, Howard Ditch had the second highest total phosphorus and total suspended solid loading rates following a storm event. This suggests runoff related issues should be focused on when targeting management actions in this subwatershed. Finally, Howard Ditch received a low QHEI score (42). IDEM considers streams with QHEI scores

under 51 to be non-supportive of its aquatic life beneficial use. Unlike Laird Ditch and Tick Creek which appear to be natural drainages, Howard Ditch is primarily a manmade or highly modified feature so its low QHEI score is expected.

3.3.4 Shackelford Ditch

Shackelford Ditch exhibited the worst water quality of the four watershed streams. The ditch generally possessed the highest pollutant concentrations during each sampling effort. Of particular concern were the ditch's nitrate-nitrogen, total phosphorus, and *E. coli* concentrations. During each sampling effort, Shackelford Ditch exhibited nitrate-nitrogen concentration above 3.0 mg/L. High nitrate-nitrogen levels may be impairing the ditch's biotic community. Total phosphorus concentrations in the ditch exceeded 1.0 mg/L during each sampling effort. The *E. coli* concentrations in Shackelford Ditch were five to thirteen times higher than the state standard and two to five times greater than the average *E. coli* concentration in Indiana streams. Additionally, Shackelford Ditch exhibited relatively high pollutant loading rates. Shackelford Ditch possessed the highest phosphorus and suspended solids areal loading rates during base and storm flows. Finally, the biological and physical habitat assessments indicated impairment of these components of the ecosystem. Shackelford Ditch received a mIBI score of 1.6, placing it in the severely impaired category. Its QHEI score was 24.

3.3.5 Lake Perry

Lake Perry is best classified as a being on the border between a eutrophic and hypereutrophic lake. Eutrophic lakes often exhibit poor water clarity and elevated nutrient concentrations. The high nutrient concentrations feed algal populations, resulting in periodic algal blooms, and occasional scum formation, throughout the summer. During the summer, blue-green or nuisance algae typically dominate the algal populations in eutrophic lakes. Conditions are typically worse in hypereutrophic lakes. These lakes have higher nutrient concentrations than eutrophic lakes and experience more and longer algal blooms. In severely hypereutrophic lakes, algal blooms are so bad, the lake often appears the color of pea soup.

Lake Perry's nutrient concentrations were comparable to nutrient concentrations found in other eutrophic lakes (Vollenweider, 1975 and Carlson, 1977). Lake Perry's chlorophyll *a* (an indicator of algae) concentration, however, was comparable to chlorophyll *a* concentrations found in other hypereutrophic lakes (Carlson, 1977). Similarly, Lake Perry's water clarity was poorer than that found in many eutrophic lakes suggesting the lake may be hypereutrophic in nature.

While the data above suggest the lake is in poor shape, a comparison of data collected from Lake Perry with selected water quality data from other Indiana lakes suggests Lake Perry is certainly not atypical. Table 13 presents a comparison of Lake Perry data to data collected from 1994 through 2004 by the Indiana Clean Lakes Program. The CLP data summarized in the table are minimum, maximum, and median values obtained by averaging the epilimnetic (surface water) and hypolimnetic (bottom water) pollutant concentrations from each of the 456 lakes. At the time of sampling, Lake Perry was not stratified (i.e. there was no distinction based on temperature between surface and bottom water in the lake); consequently only one sample was collected from the midpoint in the water column.

Table 13. Water quality characteristics of 456 Indiana lakes sampled from 1994 through 2004 by the Indiana Clean Lakes Program compared to data collected from Lake Perry on July 21, 2004.

	Secchi Disk (ft)	NO ₃ -N (mg/L)	NH ₃ -N (mg/L)	TKN (mg/L)	SRP (mg/L)	TP (mg/L)	Chlorophyll a (µg/L)
Minimum	0.3	0.01	0.004	0.230	0.01	0.01	0.013
Maximum	32.8	9.4	22.5	27.05	2.84	2.81	380.4
Median	6.9	0.275	0.818	1.66	0.12	0.17	12.9
Lake Perry	0.8	1.67	0.06	0.97	0.013	0.09	34.28

In general, Lake Perry exhibits slightly lower nutrient concentrations than the typical (median) Indiana lake. The lake's ammonia-nitrogen, total Kjeldahl nitrogen, soluble reactive phosphorus, and total phosphorus concentrations were all lower than the median concentration for Indiana lakes. Lake Perry's nitrate-nitrogen concentration, however, was higher than the median concentration for Indiana lakes. As noted above, elevated nitrate-nitrogen concentrations were observed in Tick Creek and Laird Ditch which empty into Lake Perry. While Lake Perry's nutrient concentrations were lower than those in a typical Indiana lake, they were still high enough to support algal blooms. (Total phosphorus concentrations greater than 0.03 mg/L and inorganic nitrogen concentrations greater than 0.1 mg/L are known to support algal blooms.) The lake's high chlorophyll *a* concentration suggests the lake was experiencing an algae bloom at the time of sampling. Watershed stakeholders may want to reduce nutrient concentrations below the thresholds listed above to decrease likelihood of algae blooms.

3.4 Indiana Geological Survey

Data layers within the Indiana Geological Survey's GIS (Geographical Information Systems) Atlas for Indiana were reviewed to identify any additional water quality data or threats. A review of the data layers revealed that no known or permitted confined feeding operations, corrective action sites, construction demolitions waste sites, industrial waste sites, leaking underground storage locations, National Pollution Discharge Elimination System facilities or pipe locations, open dump sites, restricted waste sites, septage waste sites, solid waste landfills, Superfund sites, underground storage tank sites, or voluntary remediation program sites exist within the Eel River-Tick Creek watershed (IDEM, 2002a-b; IDEM, 2004a-e; IDEM, 2004g-q). At least two open waste sites that are not known to IDEM were identified by watershed stakeholders during public meetings. The content of these sites is unknown.

3.5 Other Sources

A variety of other sources were reviewed to assist in establishing baseline water quality conditions in the waterbodies of the Eel River-Tick Creek watershed. The current and historical 305(b) reports were studied (IDEM, 1994; IDEM, 1996; IDEM, 2000; IDEM, 2004f). No data specific to the tributaries of the Eel River within the Eel River-Tick Creek watershed were found in these reports. However, these reports indicate that the Eel River mainstem possesses as light concern for mercury contamination and a moderate concern for pathogenic (*E. coli*) contamination (IDEM, 2004f). None of the tributaries within the Eel River-Tick Creek watershed are listed on the 2004 303(d) list; however, the Eel River immediately upstream of its confluence with the Wabash River is listed for *E. coli* and mercury contamination (IDEM, 2004f). This

portion of the Eel River is slated for Total Maximum Daily Load (TMDL) development from 2013 to 2018. The Watershed Restoration Action Strategies (WRAS) for the Eel–Wabash Watershed (Whitman Hydro Planning Associates, Inc., 2002) and the Unified Watershed Assessment (UWA) (IDEM, 1999) do not contain data specific to the Eel River-Tick Creek watershed. Without providing specific data, the WRAS suggests that streambank erosion and stabilization, failing septic systems and straight pipes, non-point source pollution (including lack of education on non-point source pollution), point source pollution, and data management are water quality issues of concern within the larger Eel River Basin (HUC 05120104). The UWA suggests aquifer contamination and the high percent of agricultural land use may be water quality issues of concern within the eleven digit watershed containing the Eel River-Tick Creek watershed. Again, neither the WRAS nor the UWA contain specific watershed data confirming the validity of these concerns within the Eel River-Tick Creek watershed.

4.0 BASELINE WATERSHED CONDITIONS

Identifying areas of concern and selecting sites for future water quality improvement projects were the goals for this visual and watershed inspection. The Eel River-Tick Creek watershed was toured multiple occasions throughout the completion of the watershed management plan. Inspections and tours included a stream crossing survey completed in February 2004, a walking tour completed in November 2004, and additional observations completed during stream and lake sampling trips in May and July of 2004.

4.1 Stream Crossing Survey

In general, the stream crossing survey provided a basis for selecting water quality sampling sites. This assessment was designed to identify the best possible water quality sampling sites on the basis of stream accessibility. In addition to fulfilling its primary duty, this process allowed for the identification of a number of areas where water quality improvement projects could be implemented. Specific areas are mapped in Figure 17. Table 14 lists the sites in the Eel River-Tick Creek watershed where various concerns were observed during the stream crossing survey. Additionally, the table lists possible options for land management actions that could improve water quality within the Eel River-Tick Creek watershed. Appendix F contains photographs of each of the stream crossings as observed in February 2004.

Table 14. List of locations where the application of best management practices would improve water quality in the Eel River-Tick Creek watershed as identified during the stream crossing survey.

Site	Concern	Suggested Management Practice
S1	Steep streambanks; streambank sloughing	Streambank stabilization
S2	Steep streambanks	Streambank stabilization
S3	Natural vegetation has been removed	Restore riparian buffer
S4	Land appears to be grazed	Livestock fencing; Restore riparian buffer

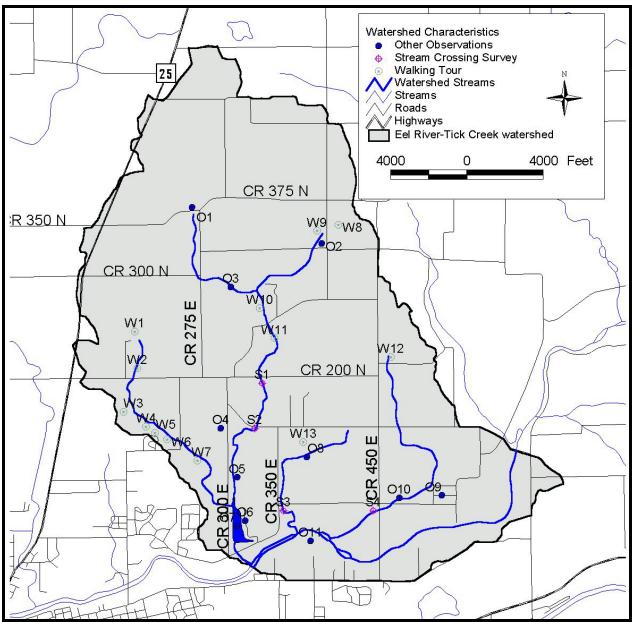


Figure 17. Watershed concerns identified during various watershed surveys in the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000'.

4.2 Walking Survey

In general, the stream crossing survey focused on the Laird Ditch and Tick Creek watersheds as these areas offered the greatest source of water quality improvement projects compared with the Howard and Shackelford Ditch subwatersheds. The walking tour consisted of individuals from JFNew and the Cass County NRCS District Conservationist walking the lengths of Laird Ditch and Tick Creek. These individuals recorded all potential watershed concern areas along the length of these two streams. Additional areas within the Eel River-Tick Creek watershed were also toured via a driving tour and are included herein. All areas of concern were noted during both the walking and driving tours and are listed in Table 15. Locations of these observations are

also included in Figure 17. Appendix F contains photographs of each of the areas as observed in November 2004.

Table 15. List of locations where the application of best management practices would improve water quality in the Eel River-Tick Creek watershed as identified during the

walking survey.

Site	Concern	Suggested Management Practice
W1	N/A	Wetland restoration is possible
W2	Land appears to be grazed	Livestock fencing; Restore riparian habitat; Filter strip installation
W3	Ravines are eroding	Stabilize ravines; Restore riparian habitat
W4	Soil/manure pile	Create filtration; Post signs and move manure pile away from stream
W5	Barn drainage piped to stream	Install vegetated filter or rain garden
W6	Banks are eroding	Stabilize streambanks; Restore riparian habitat
W7	Banks are eroding	Stabilize streambanks; Restore riparian habitat
W8	Potential pollution source	Investigate on-the-ground options for water quality improvement
W9	N/A	Wetland restoration is possible
W10	Land appears to be grazed	Livestock fencing; Restore riparian habitat; Filter strip installation
W11	Land appears to be grazed	Livestock fencing; Restore riparian habitat; Filter strip installation
W12	N/A	Wetland restoration is possible
W13	Natural vegetation has been removed	Restore riparian habitat; Stabilize streambanks as necessary

4.3 Other Observations

Observations of water quality concern areas were recorded throughout the completion of the watershed management plan. These areas were identified through information from watershed stakeholders during meetings and during stream and lake water quality assessment events. All observations identified through methods other than the stream crossing survey or the walking tour are included in this section and listed in Table 16. Specific areas are also mapped in Figure 17. Appendix F contains photographs of each of some of these areas observed during the completion of the watershed management plan.

Table 16. List of locations where the application of best management practices would improve water quality in the Eel River-Tick Creek watershed as identified during the

completion of the watershed management plan.

Site	Concern	Suggested Management Practice
O1	Land appears to be grazed	Livestock fencing; Restore riparian habitat; Filter strip installation
O2	Tile disrepair	Work with landowner(s) to identify specific solution
О3	Banks are eroding	Stabilize streambanks; Restore riparian habitat
O4	Potential pollution source	Investigate on-the-ground options for water quality improvement
O5	N/A	Wetland restoration is possible
O6	Potential pollution source	Investigate on-the-ground options for water quality improvement
О7	Potential pollution source	Investigate on-the-ground options for water quality improvement
О8	Natural vegetation has been removed	Restore riparian habitat; Stabilize streambanks as necessary
О9	Natural vegetation has been removed	Restore riparian habitat; Stabilize streambanks as necessary
O10	Natural vegetation has been removed	Restore riparian habitat; Stabilize streambanks as necessary
O11	N/A	Wetland restoration is possible

5.0 CLARIFYING OUR PROBLEMS

5.1 Linking Concerns to the Existing Data

Throughout the planning process watershed stakeholders were invited to share their concerns for the Eel River-Tick Creek watershed, its waterbodies, and their water quality. All of the stakeholder's concerns identified during the planning process are detailed in the Concerns Section of the Introduction (Section 1.3). The project sponsor and facilitating consultant developed a group of broad categories within which the stakeholder's concerns could fit. These same categories were used throughout the planning process to develop problem statements, identify priority areas, and set goals for watershed and water quality improvement. Table 17 reflects the stakeholder's concerns, any existing data identified that supports or refutes those concerns, and identifies the problem statement developed for that particular concern.

Table 17. Linking watershed stakeholders' concerns with existing data to develop problem statements.

statements.		Problem	
Concern	Existing Data	Statement	
Land Use			
Increase in erosion due to transition of old field habitat to active agriculture	No data from the watershed were available to verify this; however, research on pollutant runoff suggests that sediment loss rates are greater on active agricultural land than old field habitat.	1	
Effect of old dump on water quality	No data were available to confirm or refute the concern.		
Increase in erosion during site development, particularly when there is a delay in establishing ground cover	No data from the watershed were available to verify this; however, research on pollutant runoff suggests significant erosion occurs on active construction sites.	1	
Negative effect of ditch cleaning on water quality and habitat.	An assessment of ditch cleaning within the watershed was not available; however, Howard and Shackelford Ditch possessed the poorest habitat scores of the four watershed streams. Shackelford Ditch generally possessed the worst water quality (water chemistry and biological integrity).	1	
	Flooding/Property Loss		
Flooding due to tile damage and/or clogging drainage ditches Open drains should replace	During the watershed land inventory, flooding and a concurrent loss of property for agricultural use were observed. Discussions with local natural resource agencies confirm that a damaged tile prevents drainage from the flooded land to Shackelford Ditch. The land inventory and stream habitat assessment confirmed that sediment has accumulated in Shackelford Ditch. The substrate metric of the habitat score was extremely poor. No data from the watershed was available to establish which	2	
drainage tiles to increase drainage	drainage system drains land faster or more efficiently.		
Education Education			
Stakeholders need to be better informed with respect to water quality and how to manage the watershed to improve water quality	Discussions with the education coordinator for the SWCD and with individual landowners confirm that stakeholders could be better educated with respect to water quality and how to manage the watershed to improve water quality.	3	
Stakeholders need to participate more in the planning process	A core group of individuals attended all of the watershed planning meetings. Attendance fluctuated, but generally remained at levels similar to the number of individuals attending the first meeting.	4	
Recreation 11771			
Lake Perry suffers from poor water clarity	Water clarity sampling by volunteer monitors and JFNew indicate that the lake's water clarity is poorer than most Indiana lakes.	1	

Concern	Existing Data	Problem Statement	
Lake Perry has lost depth	Water depth measured by JFNew suggests the lake is approximately 5-6 feet shallower at its deepest point than the lake was designed to be. No as-builts are available to confirm that the lake was constructed according to its design.	1	
Natural age of Lake Perry	The natural age of Lake Perry could be, but has not been, estimated at this point.		
The rooted plants and algae populations are too dense in Lake Perry	No quantitative data was available on the rooted plant population. The lake has elevated levels of nutrients to support dense algal populations; however the lake's turbidity (poor clarity) may be limiting algal growth. The lake's chlorophyll <i>a</i> concentration was 34.28 µg/L.	5	
Health			
Existence of pollutants associated with silt in Lake Perry	No data was available on whether pollutants other than nutrients and silt are in Lake Perry. IDEM tested the water in Laird Ditch, one of Lake Perry's inlets, for a wide range of chemical constituents in 1998. None of the pollutants tested exceeded the state standards, and most pollutant concentrations were below the laboratory detection limits.		
High levels of bacteria in watershed streams and effect of this on residents	All of the watershed streams, both during base flow and following a storm event, possessed <i>E. coli</i> concentrations that exceeded the state standard of 235 cfu/100mL.	6	
Social			
Ditch assessment for property owners on Howard and Shackelford Ditches The remaining social concerns	Watershed stakeholders are investigating whether or not property owners on Howard and Shackelford Ditches are being assessed a fee for ditch maintenance. are not concerns for which data can be collected to confirm or ref	fute the	
concern. They are simply expressions of a desire for better conditions in the future.			

5.2 Developing Problem Statements

Problem statement development occurred throughout the planning process in an effort to tie watershed stakeholders' concerns with existing data to develop a clear pathway for future work in the Eel River-Tick Creek watershed. The problem statements reflect information gathered throughout the watershed planning process. Details regarding stressors, pollutant sources, and identified hot spots are listed for each problem statement. It should be noted that many of the critical areas are located within the Lake Perry drainages which include Laird Ditch and Tick Creek subwatersheds. It is likely that other critical areas are located within the watershed as the watershed touring process was not exhaustive.

Problem Statement 1: Silt and sediment are degrading and filling the watershed waterbodies and limiting their use for recreation, drainage, and aesthetic purposes. Poor water clarity (poorer than most lakes in Indiana) and elevated turbidity and total suspended solids concentrations document sediment issues within the Eel River-Tick Creek watershed. In total, waterbodies in the Eel River-Tick Creek watershed deliver approximately 1,410 tons of sediment to the Eel River annually. A review of the scientific literature and data collected during the land inventory of the watershed suggest streambank/ravine erosion and land use/land use changes (including active construction sites and areas converted from old field habitat to agricultural land) are likely

sources of silt and sediment in the Eel River-Tick Creek watershed. Additional sources of sediment in streams and lakes include unvegetated landscapes such as unvegetated stream banks, active farm fields, and active construction sites. Although not intuitive at first, hardscape (impervious surfaces) such as streets and parking lots can also be contributors of sediment to waterways (Bannerman et al., 1993). Dirt on these surfaces often washes directly to storm drains. Gravel roads can also add sediment to nearby waterways. Specific sources identified within the Eel River-Tick Creek watershed are listed below and displayed in the following figures. Management efforts to reduce sediment input from the Eel River-Tick Creek watershed should focus on the critical areas identified during the watershed tour (Figures 18 and 19).

Stressor: Silt/sediment

Source: Streambank erosion (Figures 20 and 21)

Ravine erosion

Active construction sites

Current land use (lack of buffers)

Changes in land use (future development)

Hydrological changes in watershed (loss of wetlands)

Row crop agricultural areas (especially those farmed on Highly Erodible Soils)

Livestock access locations

Hot spots/Critical areas: Laird Ditch and some ravines between County Road 250 East and

County Road 300 East (Figure 20)

Tick Creek south of County Road 200 North (Figure 21)

Residential areas along County Road 300 East

Future residential development sites

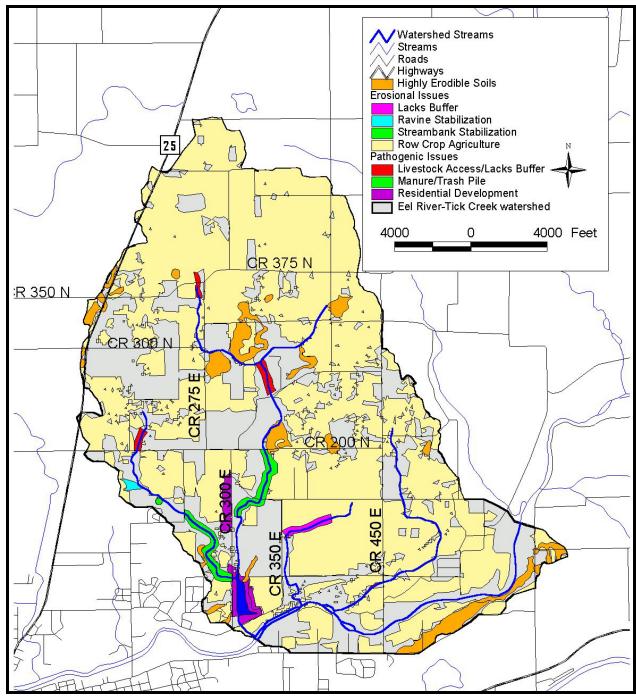


Figure 18. Critical areas targeted for sediment loading reduction in the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000'.

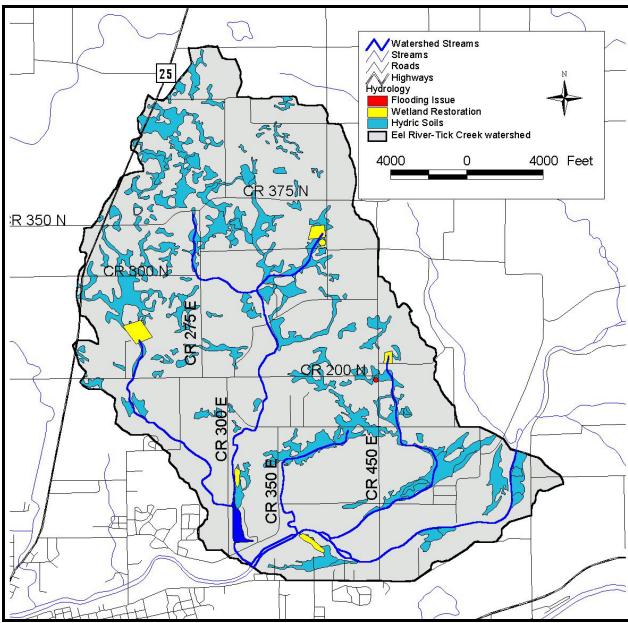


Figure 19. Critical areas targeted for wetland restoration and flood control in the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000".

Figure 20. Streambank erosion along Laird Ditch between County Road 250 East and County Road 300 East.

Figure 21. Streambank erosion along Tick Creek south of County Road 200 North.

Problem Statement 2: Flooding is preventing some landowners from fully utilizing their property. Damaged tiles that have not received proper care and maintenance are the primary cause for the flooding.

Stressor: Flooding

Source: Disrepair of tiles

Hot spots/Critical areas: Near the intersection of County Road 200 North and County Road

450 East (Figure 19)

Problem Statement 3: Many watershed stakeholders lack important knowledge regarding how to manage their individual properties to protect or improve water quality of nearby waterbodies.

Stressor: Lack of knowledge

Source: A specific watershed location cannot be identified as a source for this problem

statement.

Hot spots/Critical areas: Residential property owners

Agricultural property owners not currently working with NRCS

Problem Statement 4: Many watershed stakeholders are unaware of the planning process or lack the knowledge of the existence of the watershed group.

Stressor: Lack of knowledge

Source: A specific watershed location cannot be identified as a source for this problem

statement.

Hot spots/Critical areas: Residential property owners

Agricultural property owners

Cass County employees and officials

Problem Statement 5: Dense algal populations are limiting the recreational and aesthetic use of Lake Perry. Poor Secchi disk transparency (poorer than most lakes in Indiana), elevated chlorophyll a concentrations (three times higher than more than most lakes in Indiana), and dominance by blue-green algae provide evidence of algal populations within Lake Perry. Furthermore, nitrate-nitrogen and total phosphorus concentrations present within the inlet streams exceed levels identified by the Ohio EPA as levels at which biotic impairment occurs (Ohio EPA, 1999). Additionally, total phosphorus concentrations present within the lake and inlet streams exceed the level at which the waterbodies are considered eutrophic (Carlson, 1977; Dodd et. al, 1998, respectively). The primary cause of this problem is high levels of nutrients in the lake's water column. Likely sources of these pollutants include fertilizers, human and animal waste, organic materials, yard waste and other plant material that reaches the waterbody, soil (nutrients are often attached to the soil), hardscape, internal lake processes, and atmospheric deposition. A tour of the watershed and mapping of the watershed revealed that all of these sources as well as some others may contribute to the eutrophication of the lake and streams in the watershed. Fertilizers are commonly used in variety of settings. Specific hot spots or critical areas were identified throughout the planning process (Figure 22). Management efforts aimed at reducing nutrient loading to the watershed's waterbodies should target these sources.

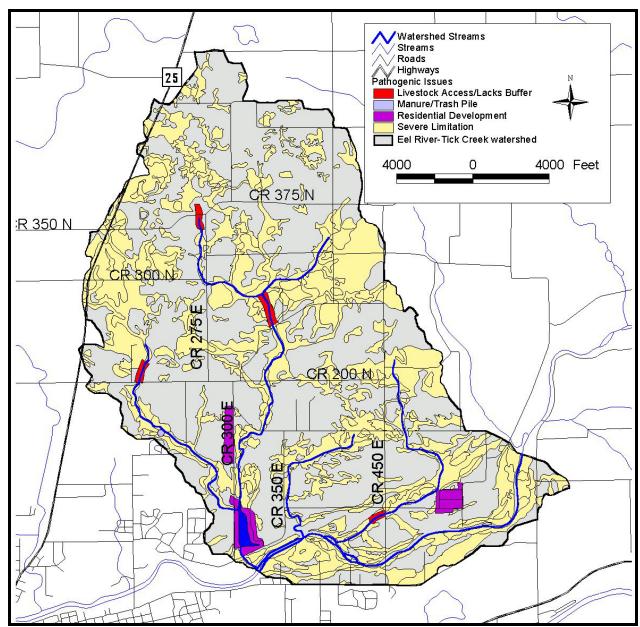


Figure 22. Critical areas targeted for nutrient loading and pathogen concentration reduction in the Eel River-Tick Creek watershed. Source: See Appendix A. Scale: 1"=4,000'.

Stressor: Nutrients

Source: Fertilizers

Human and animal waste

Organic materials

Soil erosion

Hot spots/Critical areas:

Residential land – particularly immediately adjacent Lake Perry or its two inlets (Laird Ditch and Tick Creek)

Manure disposal behind 4-H

Failing septic systems – particularly any adjacent to watershed waterbodies (Mapped in Figure 22 as soils with Severe

Limitation)

Livestock access points (Figure 23) Improper disposal of yard waste Future residential development sites

Figure 23. Representative location where livestock have access to waterbodies within the Lake Perry subwatershed.

Problem Statement 6: Pathogen levels in the watershed streams are high enough to be a human health concern. E. coli indicates the presence of pathogenic organisms in the water. E. coli concentrations measured in the watershed waterbodies exceed the Indiana state standard at all sites during both base and storm flow events. Pathogenic organisms can potentially harm the biota living in the stream. Such organisms can also make humans who come in contact with the water sick. Currently, none of the watershed streams meet the state standard for E. coli, an indicator for pathogens. Common sources of E. coli include human and wildlife wastes, fertilizers containing manure, previously contaminated sediments, septic tank leachate, and illicit connections. The potential sources of pathogens in the Eel River-Tick Creek watershed include failing or poorly sited/maintained septic systems and wildlife, livestock, and domestic animal waste. Specific hot spots or critical areas were identified throughout the planning process (Figure 22). Management efforts aimed at reducing nutrient loading to the watershed's waterbodies should target these sources.

Stressor: *E. coli* (pathogens)

Source: Human and animal (domestic, livestock, wildlife) waste

Hot spots/Critical areas: Livestock access to streams (Figure 24)

Manure disposal behind 4-H

Failing septic systems – particularly any adjacent to watershed waterbodies (The Cass County Health Department has not documented any failed septic systems within the Eel River-Tick Creek watershed (personal communication).)

Figure 24. Representative location where livestock have access to waterbodies within the Shackelford Ditch subwatershed.

5.3 Identifying Potential Goals

For each of the problem statements developed throughout the planning process, a potential goal was developed and potential technique identified to assist in the reaching the goal. During the identification stage, goals were listed (see below) following the same pattern as that identified during the problem statement development stage. During the March 8, 2005 public meeting, watershed stakeholders reviewed and refined the goals, then prioritized the goals based on order of importance. From a discussion that occurred during the June 7, 2005 public meeting, a sixth goal was developed. This goal targets the inclusion of more watershed stakeholders and community members in the planning and implementation process. The goals and potential techniques listed below were refined, then utilized as a basis for the goals, objectives, and action items that were developed later in the planning process. The goals are listed below in the order that they were developed; hereafter goals are listed as prioritized by watershed stakeholders.

<u>Potential Goal 1</u>: We want to reduce the sediment load to the waterbodies within the Eel River-Tick Creek watershed by 50% over the next five years.

Potential Techniques:

- a. Streambank stabilization (biolog installation, Palmiter techniques, soil encapsulated lifts)
- b. Ravine and gully stabilization (check dams, rip rap, filter cloth, vegetation)
- c. Erosion control ordinance
- d. Ditch buffers/grassed waterways
- e. Open space ordinance
- f. Wetland restoration (to reduce stress on stream bed and banks)

<u>Potential Goal 2</u>: We want to repair and maintain existing drainage tiles to ensure property owners have full use of their land.

<u>Potential Goal 3</u>: Within two years, each land owner within the watershed will learn and implement at least one water quality improvement practice/technique on his/her own property.

Potential Techniques:

a. Outreach (Newsletters, newspaper column, field days, web site, demonstration projects)

<u>Potential Goal 4</u>: We want to reduce the nutrient load reaching Lake Perry by 50% over the next 10 years.

Potential Techniques:

- a. Lakeside land management (develop lake side buffers, use phosphorus free fertilizers, proper yard and pet waste disposal, restricting car washing)
- b. Address 4-H problem
- c. Residential land management (use phosphorus free fertilizers, proper yard and pet waste disposal)
- d. Wetland restoration immediately upstream of Lake Perry
- e. Some of the same techniques listed under Goals 1 and 5

<u>Potential Goal 5</u>: We want to reduce the concentration of *E. coli* within the waterbodies in the Eel River-Tick Creek watershed so that water within the streams and lake meets the state standard for *E. coli*.

Potential Techniques:

- a. Address 4-H problem
- b. Replace failing septic systems; Connect with city sewer lines
- c. Restrict livestock access to streams
- d. Proper disposal of pet waste

<u>Potential Goal 6</u>: We want to increase participation by all stakeholders including local natural resources agencies/representatives, possibly resulting in the formation of a watershed group.

Potential Techniques:

a. Outreach (Newsletters, newspaper column, field days, web site, demonstration projects)

6.0 SETTING GOALS AND MAKING DECISIONS

The following goals and action plan are a result of several public meetings. Once the watershed inventory was completed and the baseline water quality data was reviewed, watershed stakeholders met to identify those issues that were of greatest concern in the watershed, develop problem statements, identify sources of water quality and watershed impairment, and set goals to address those issues. The sources identified through this process are the ones targeted in the action plan. The plan includes measures to address each of the identified sources in the agricultural community and from residential and county-owned land. The plan also includes mechanisms to help identify and pinpoint additional sources where not enough existing data could be identified.

As noted above, the stakeholders prioritized the goals over the course of two public meetings. Each stakeholder prioritized the goals individually. The results of the individual prioritizations were combined to achieve a final prioritization order. Stakeholders almost unanimously saw the need for increased participation in watershed management as critical to implementing the plan. The relatively small number of stakeholders who participated in the watershed plan's development was not enough to implement the plan. Thus, stakeholders elected to write an additional goal aimed at increasing participation in watershed management and give this goal the number one priority. All watershed management efforts will focus on achieving this goal before focusing on efforts to achieve the other plan goals.

Stakeholders considered the environmental, economic, and social impacts of their actions. As noted above the action plan was designed to target the specific stressors of concern (nutrients, sediment, flooding, *E. coli*) to improve the environmental quality of the streams and lake in the watershed. Stakeholders took economic concerns into consideration by designing a management plan that for the most part could be implemented by active volunteers. Additionally, the monitoring of the success of the plan could also be completed by volunteers. (See the MEASURING SUCCESS Section.) Most of the actions items that cannot be completed by a volunteer work force can potentially qualify for funding from a known source. This funding might be used to hire a consultant to complete the work that volunteers cannot undertake. The social impact of the plan was considered in the first goal. Stakeholders agreed increased stakeholder involvement in watershed management was of primary importance. The action plan also includes a number of action items designed to increase the public's awareness of the value of the natural resources in the Eel River-Tick Creek watershed.

The following are the prioritized goals and agreed upon action plan for the Eel River-Tick Creek watershed:

Goal 1: We want to increase participation by all stakeholders including local natural resources agencies/representatives, resulting in the formation of a watershed group.

Goal time frame: Except for annual/continuous tasks, the goal should be reached by Fall 2006. Objectives and action items required to meet Goal 1 are listed in Table 18.

Table 18. Goal 1 objectives and action items.

Objective	Action Item
Establish a group to generate interest in the plan and implementation Organize a watershed group to discuss issues and concerns	Contact possible core group members including the local IDNR conservation officer, local high school biology teacher, Lake Perry Estates Corporation members, Cass County Planning Commission representatives, Cass County SWCD representatives, local IDNR resource specialist, regional IDNR fisheries biologist, and Ducks Unlimited Advertise the formation of the group via the local newspapers and mailings Hold regular meetings Invite resource professionals to attend watershed group meetings
	Publish meeting minutes via an email list, newsletter, and/or web site posting
Participate in the	Identify groups that may be interested in participating in Riverwatch
Hoosier Riverwatch program	Identify landowners that would be willing to allow a group to conduct Riverwatch sampling on their property
	Attend a Riverwatch training session
	Advertise results of the work to the community through various forms of media
Participate in the Indiana Clean Lakes	Continue working through the Lake Perry Estates Corporation to maintain a lake monitoring volunteer for Lake Perry
volunteer monitoring program	Advertise results of the work to the community through various forms of media

Goal notes: As a small group of individuals have attended all of the watershed planning meetings to date, these individuals will likely be charged with maintaining the current attendance standard and will need to work with other community members to boost interest and participation in project implementation phase of this project. The core group of individuals working on planning in the Eel River-Tick Creek watershed should always contain a representative from the Lake Perry Estates Corporation and from the Cass County SWCD. Meeting this goal requires that a core group of individuals begin implementation of this plan and that these individuals meet at least on a quarterly basis.

<u>Associated cost</u>: With the exception of time costs, there are no real costs associated with this goal. The Cass County SWCD maintains a set of Hoosier Riverwatch sampling equipment, which the Eel River-Tick Creek watershed group could borrow for use during stream monitoring. The Indiana Clean Lakes Program provides lake monitoring equipment to the Lake Perry Estates Corporation free of charge.

<u>Estimated load reduction</u>: A load reduction cannot be attributed to this goal or any of its objectives or action items.

<u>Potential targets</u>: This goal targets the entirety of the Eel River-Tick Creek watershed and all of the individuals which live within it. This goal is designed to bring together community members, county officials, and individuals living in the Eel River-Tick Creek watershed. Their work towards forming a cohesive group directed at improving water quality and way of life within the Eel River-Tick Creek watershed will provide longevity for the Eel River-Tick Creek Watershed Management Plan.

<u>With no action</u>: If the Eel River-Tick Creek watershed group does not continue to meet, then there will be no checks or balances on any of the activities identified as part of this plan. Likewise, individual's completing work items through this plan will not have a forum to discuss

successes or failures. Additionally without an established watershed group, a mechanism to implement projects related to this plan or to review and update the plan will not be in place.

Objective 1: Establish a core group of individuals willing to generate interest in the watershed management plan and coordinate and oversee the implementation of the plan.

Actions:

Contact possible core group members including the local IDNR conservation officer, local high school biology teacher, Lake Perry Estates Corporation members, Cass County Planning Commission representative, Cass County SWCD representative, local IDNR resource specialist, regional IDNR fisheries biologist, and Ducks Unlimited.

Objective 2: Organize a watershed group to discuss the watershed management issues and water quality concerns in the watershed.

Actions:

- Advertise the formation of the group via the local newspapers and mailings to stakeholders using the existing stakeholder database.
- Hold regular meetings to discuss and address water quality issues in and around the Eel River-Tick Creek watershed.
- Biannually, invite local, regional, and state natural resource professionals to attend watershed group meetings. Have the invited speakers speak on local and state efforts/events to improve water quality (including regulatory efforts) and resources available to help watershed groups.
- Publish meeting minutes via an email list, newsletter, and/or web site posting. These publications should include information detailing current and future efforts for improving water quality and the aesthetic value of Lake Perry and its watershed and information on how stakeholders can participate in these efforts.

Objective 3: Participate in the Hoosier Riverwatch program.

Actions:

- Identify groups (local schools, girl/boy scouts, girls and boys club, 4-H, etc.) that may be interested in participating in Riverwatch.
- Identify landowners along Eel River-Tick Creek watershed tributaries that would be willing to allow a group to conduct Riverwatch sampling on their property. Target property owners at sites sampled during development of the watershed management plan.
- Attend a Riverwatch training session.
- Advertise results of the work to the community through various forms of media mentioned in Objective 2.

Objective 4: Participate in the Indiana Clean Lakes volunteer monitoring program.

Actions:

- Continue working through the Lake Perry Estates Corporation to maintain a lake monitoring volunteer for Lake Perry.
- Advertise results of the work to the community through various forms of media mentioned in Objective 2.

Goal 2: Within two years, each land owner within the watershed will learn and implement at least one water quality improvement practice/technique on his/her own property.

Goal time frame: Except for annual or continuous tasks, the goal should be reached by 2007. Objectives and action items required to meet Goal 2 are listed in Table 19.

Table 19. Goal 2 objectives and action items.

Objective Action Item		
Objective Organize one annual field day highlighting lake and stream values and protection Publicize the value of the watershed and ways to protect water quality and aquatic life	Identify members of the agricultural community that currently implement conservation projects Invite local experts to speak at field day Advertise the field day via newsletters, press release, and watershed stakeholders Develop list of BMPs for agricultural land Develop list of BMPs for residential land Summarize value of the watershed and watershed group Publish annual newsletter highlighting this information Develop a website highlighting this information	
Work with NRCS, SWCD, and agricultural property owners to promote BMP's	Identify property owners using conservation land programs. Hold one agricultural demonstration day annually to highlight landowners Attend one local SWCD meeting annually	
Work with NRCS, SWCD and residential property owners to promote BMP's Establish and maintain a watershed and water quality table at the Cass County Fair	Develop a list of activities that residential property owners can do Hold one demonstration day annually on residential property Develop list of grants for residential water quality projects Talk to fair representatives to establish a table or booth Develop program materials and handouts Develop group to manage table or booth during fair	

Goal notes: This goal is targeted at educating individual stakeholders within the Eel River-Tick Creek watershed. The actual implementation of the practice or technique will be handled by the landowner themselves. Specific grants or cost-share programs may be available for the implementation of these practices or techniques. However, as all of the objectives and action items target education, associated costs for this goal also target education not implementation.

<u>Associated costs</u>: All of the tasks associated with this goal will utilize personnel time. Actual dollar costs associated with newsletter production, stakeholder database maintenance, website development, and booth space rental at the Cass County Fair are low; likely total less than \$5,000 over the next two years.

Estimated load reduction: There is no exact load reduction that can be calculated for this goal. As this goal deals specifically with education, pollutant load reduction is not the ultimate goal. However, as many of the implementation tasks will result in a reduction in pollutant loads and the volume of pollutant loading reduction that will be observed will depend upon the type of water quality improvement project implemented, the following information sources provide a range of pollutant load reduction values. Current research suggests that the installation of structural management practices, such as wetland restoration or streambank stabilization, may remove more than 80% of the sediment and approximately 45% of the nutrients (Winer, 2000; Claytor and Schueler, 1996; Metropolitan Washington Council of Governments, 1992). Olem and Flock (1990) report 60 to 98% reduction in sediment loading and 40 to 95% reduction in phosphorus loading as a result of utilizing conservation tillage methods. Buffer strips can reduce up to 80% of the sediment and 50% of the phosphorus in runoff according to the Conservation Technology Information Center (2000). Removal efficiencies depend upon site conditions and factors related to the structure's design, operation, and maintenance. Nutrient removal efficiencies differ depending upon the form of the nutrient measured. For example, total phosphorus removal efficiencies are often greater than ammonia-nitrogen removal efficiencies.

<u>Potential targets</u>: The entire watershed and all of the watershed landowners (residential and agricultural) are targeted by this goal.

<u>With no action</u>: With no additional education, watershed landowners will continue to be informed by the Lake Perry Estates Corporation and by the Cass County SWCD and NRCS offices. However, it is unlikely that each and every landowner within the watershed will learn and/or implement a water quality improvement project as they will not all be exposed to the educational materials. Without the installation of water quality improvement projects, it is unlikely that water quality within the Eel River-Tick Creek watershed will improve.

Objective 1: Organize and hold one annual field day highlighting the value of the streams and lakes in the Eel River-Tick Creek watershed and how to protect the water quality and aquatic life of the watershed.

Actions:

- Work with the NRCS and SWCD representatives to identify members of the agricultural community in the watershed who are participating in a conservation program or utilizing conservation tillage. Work with those individuals to hold demonstrations on their properties.
- Invite IDNR biologists or other experts to speak at field days, particularly concerning the value of the waterbodies of the Eel River-Tick Creek watershed.
- Advertise the field days via press releases to the local media, an annual newsletter, and/or mailings to stakeholders using the existing stakeholder database and SWCD contacts.

Objective 2: Publicize the value of the Eel River-Tick Creek watershed, its waterbodies, and of ways to protect its water quality and aquatic life through various forms of media.

Actions:

- Develop a list of "Best Management Practices" that protect water quality in nearby waterways for agricultural land.
- Develop a list of "Best Management Practices" that protect water quality in nearby waterways for residential land.
- Summarize the value of the Eel River-Tick Creek watershed and the Eel River-Tick Creek watershed group in language understood by a non-technical audience.
- Publish an annual newsletter containing information outlined in the first three action items of this objective.
- Develop a web site containing information outlined in the first three action items of this objective.

Objective 3: Work with the NRCS, SWCD, and agricultural property owners in the watershed to promote water quality Best Management Practice in the watershed.

Actions:

- Work with the NRCS and SWCD to identify which property owners in the Eel River-Tick Creek watershed are using conservation tillage methods and/or land conservation programs. Where possible or appropriate, assist the NRCS and SWCD in encouraging agricultural property owners not using conservation tillage or not participating in conservation programs to utilize these programs.
- Work with NRCS and SWCD representatives to hold one demonstration day annually on properties where landowners are implementing conservation tillage methods and/or land conservation programs. This effort will help advertise available methods to reduce soil loss from land and pollutant loading to local streams.
- Attend local SWCD meetings.

Objective 4: Work with the NRCS, SWCD, and residential property owners in the watershed to promote residential water quality Best Management Practices in the watershed.

Actions:

- Work with the NRCS and SWCD to develop a list of potential activities that residential property owners can do to improve water quality within the Eel River-Tick Creek watershed.
- Work with NRCS and SWCD representatives to hold one demonstration day annually on residential properties where landowners are implementing water quality improvement projects. This effort will help advertise available methods to reduce soil loss from land and pollutant loading to local streams.
- Locate and develop a list of potential grant monies for residential water quality improvement project implementation.

Objective 5: Establish and maintain a watershed and water quality education table at the Cass County Fair.

Actions:

- Talk with fair representatives to determine the feasibility of establishing a table or booth at the Cass County Fair to target watershed and water quality education.
- Work with the NRCS, SWCD, and IDEM Project Manager to develop program materials and handouts for the table or booth.
- Establish a core group of individuals to manage the table or booth during the fair and provide educational information to attendees on the watershed, water quality, and the watershed management planning process.

Goal 3: We want to reduce the sediment load to the waterbodies within the Eel River-Tick Creek watershed by 50% over the next five years.

<u>Goal time frame</u>: Except for annual or continuous tasks, the goal should be reached by 2010. Objectives and action items required to meet Goal 3 are listed in Table 20.

Associated costs: Many of the tasks associated with this goal will utilize personnel time. Actual dollar costs associated with education of watershed stakeholders, local developers, and county employees and officials are quite low. Cost estimates for streambank stabilization total \$60,000, while final cost estimates for the wetland restoration and buffer installation projects are included as an action item for those objectives.

Estimated load reduction: Estimated load reductions can be calculated for only two of the seven objectives associated with this goal. For the remaining objectives and action items, an exact load reduction cannot be calculated. As mentioned above, the volume of pollutant loading reduction that will be observed will depend upon the type of water quality improvement project implemented. Estimates for potential sediment load reduction associated with wetland restoration, conservation tillage, and buffer/filter strips are detailed above. As detailed above, removal efficiencies will depend upon site conditions and factors related to the structure's design, operation, and maintenance. The expected load reductions associated with those objectives for which loads can be calculated are listed under each of the objectives.

<u>Potential targets</u>: Specific targets associated with this goal include two areas of streambank/ravine stabilization along Laird Ditch and Tick Creek as indicated in Figure 18. Two potential wetland restoration projects were identified during the watershed planning process. Those areas, as well as all of the hydric soils, are potential wetland restoration sites. These areas are also mapped in Figure 19. All other objectives target the entirety of the Eel River-Tick Creek watershed in some way.

Table 20. Goal 3 objectives and action items.

Objective	Action Item			
Implement	Contact landowners regarding using their land			
stabilization	Apply for funding for Laird Ditch stabilization			
techniques along	Apply for funding for Tick Creek stabilization			
Laird Ditch and Tick	Hire engineer to complete designs			
Creek	Hire contractor to install stabilization design			
Reduce erosion from	Become familiar with erosion control practices			
active construction	Work to require erosion control on all construction sites			
sites	Implement strict erosion control ordinances			
	Work to ensure that Rule 5 is being implemented at all applicable sites			
	Develop recognition for county builders implementing erosion control practices			
Implement soil	Identify agricultural producers using conservation practices			
conservation practices	Host annual demonstration day targeting conservation practice implementation			
in rural and	Apply for cost-share funding to install practices			
agricultural areas	Conduct on annual field day to demonstrate conservation practices			
Restore the	Work to understand hydrology in a wetland			
watershed's wetlands	Contact landowners to re: feasibility			
	Develop a restoration plan for the wetlands			
	Design the wetland restorations			
	Determine necessity of species control			
	Identify and apply for funding			
Improve the buffer	Educate homeowners about shoreline buffers			
around Lake Perry	Develop a planting plan for Lake Perry			
•	Discuss the feasibility of improving the buffer			
	Select appropriate demonstration project sites			
	Apply for funding to conduct planting			
	Hold a volunteer field day to plant buffer			
	Develop recognition system			
Increase awareness of	Establish a good working relationship with county officials			
development in the				
watershed	Attend one Cass County planning meeting annually			
Encourage county	Meet with Cass County Surveyor to determine the maintenance schedule for legal drains			
officials to maintain	within the watershed			
buffers along legal	Attend one Cass County Drainage Board meeting annually			
drains				
Monitor sediment	Identify individuals to complete monitoring training.			
load in the watershed	Complete monitoring on a monthly or quarterly basis.			
streams and water	M ' 4 ' 1' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
clarity in Lake Perry.	Maintain a water quality sampling database			
	Compare results from sampling.			
	Publish sampling results			

With no action: If water quality improvement projects, such as streambank or ravine stabilization, wetland restoration, buffer enhancement along Lake Perry and watershed streams, or soil erosion reduction practices, are not implemented it is anticipated that sediment loading will likely remain at its current levels or increase as erosion continues throughout the watershed. Based on load reduction calculations for streambank or ravine stabilization alone, it is anticipated that 100s of tons of sediment enter the Eel River-Tick Creek watershed. If stabilization is not completed, it is likely that erosion and sediment transport will continue from these and other sites within the Eel River-Tick Creek watershed.

Objective 1: Implement streambank/ravine stabilization techniques along Laird Ditch and Tick Creek.

Estimated load reduction: The current sediment load carried by Laird Ditch as estimated by two field samplings (base and storm flow) is 12.5 kg/d (5 tons/yr). Using IDEM's load reduction worksheet (Steffen, 1982), it is estimated that stabilizing half of the streambanks along the approximately 5,200 lineal feet of Laird Ditch identified for stabilization will result in a sediment load reduction of approximately 4 tons/yr or reduce sediment loading by greater than 50%. Stabilizing larger portions of the streambank or ravine will likely result in a larger sediment loading reduction. Similarly, the current sediment load as estimated by Tick Creek is 34.8 kg/d (14 tons/yr). Using IDEM's load reduction worksheet, it is estimated that by stabilizing half of the streambanks along the approximately 4,700 lineal feet of Tick Creek will result in a sediment load reduction of 12.6 tons/yr; a reduction of nearly 90% of the sediment loading within Tick Creek. As mentioned for Laird Ditch above, stabilizing larger portions of the streambank will likely result in a greater reduction. It should be noted that the measured total suspended solids is an estimate of the annual load rather than a calculation of it. It was estimated from the two sampling events. Consequently there is likely error associated with the estimate. Regardless, it is reasonable to expect a reduction in total suspended solids if the banks along the eroding portions of Laird Ditch and Tick Creek are stabilized.

Estimated cost: The total cost for streambank stabilization along Laird Ditch and Tick Creek will depend upon the specific technique implemented. The specific technique implemented will depend upon the specific location and degree of erosion at that location. Cost estimates are provided for installation through a cost-share grant program with the Cass County SWCD using volunteer labor and for installation through a contractor. The following list details estimated costs per lineal foot for each bank stabilization technique as estimated by JFNew (2005): Palmiter methods-\$45/foot without volunteer labor, \$10/foot with volunteers; coir fiber logs (with plants)-\$55/foot without volunteer labor, \$20/foot with volunteers; willow staking, fascines, or mats-\$35/foot without volunteer labor, \$5/foot or less with volunteers; bank reshaping, erosion control blanket and seeding-\$25/foot without volunteer labor, \$10/foot with volunteers. In total, it is estimated that the stabilization of the entire length of the two project reaches is \$60,000-160,000.

Actions:

- Contact the respective landowners to determine their willingness to allow streambank/ravine stabilization projects.
- Apply for Indiana Department of Environmental Management Section 319 Supplemental funds or Indiana Department of Natural Resources Lake and River Enhancement Program funds to implement streambank stabilization techniques along Tick Creek.
- Apply for Indiana Department of Environmental Management Section 319 Supplemental funds or Indiana Department of Natural Resources Lake and River Enhancement Program funds to implement ravine stabilization techniques along Laird Ditch.
- Once funding is obtained, hire an engineer to complete stabilization designs.
- Once the project is designed, hire a contractor to complete structural stabilization technique installation.

Objective 2: Reduce erosion from active construction sites.

Objective notes: This objective deals with the both the education of the watershed group and of developers in the area. As such, specific on-the-ground implementation tasks are not a part of this objective. Future iterations of the Eel River-Tick Creek Watershed Management Plan should account for any potential implementation practices and associated costs and sediment load reduction as information becomes available.

Actions:

- Become familiar with typical erosion control practices used at both small (1 acre) and large (>5 acres) construction sites.
- Work with county officials to require erosion control on all construction sites regardless of whether it is required by the state under Rule 5.
- Work with county officials to implement strict erosion control ordinances that include provisions requiring site clearing to be done in phases, eliminating the possibility of complete site clearing.
- Work with state and county officials to ensure that Rule 5 is being adhered to at all sites under which it is applicable.
- Develop a system of recognition for county builders actively implementing erosion control practices on active construction sites.

Objective 3: Implement soil conservation practices in rural and agricultural areas of the Eel River-Tick Creek watershed including conservation tillage, grassed waterways, vegetated stream buffers, and other structural Best Management Practices, as necessary and needed.

Objective notes: As indicated under Goal 2, the specific items that are identified and subsequently implemented will determine the implementation cost and sediment load reduction. As this objective is again targeted at cataloging and educating stakeholders rather than the specific implementation of practices, there is no load reduction associated with this objective.

Actions:

- Identify agricultural producers who are using no-till and other conservation practices.
- Facilitate interaction between those producers using conservation practices and other landowners interested in adopting conservation practices by hosting one demonstration day annually.
- Apply for cost-share funding to install practices.
- Conduct one annual field day to demonstrate practices for agricultural producers and watershed residents.

Objective 4: Restore the watershed's wetlands, if feasible.

Objective notes: In general, restoring wetlands, where feasible, will increase the storage potential of the watershed. In addition to storing sediment, wetlands serve as groundwater recharge sites and allow the watershed to regain its natural hydrological regime. This helps prevent bed and bank erosion in adjacent streams, since water is stored in wetlands during high flows, thereby protecting the streams from the energy associated with high flows. Two potential wetland

restoration projects were identified during the planning process. Individual landowners have expressed a desire to restore wetlands on their properties. However, additional wetland restoration sites may be located throughout the watershed. As such, all of the hydric soils (soils which developed under wetland conditions) are mapped in Figure 19 as target areas. It should be noted that the primary areas targeted by this objective are the wetland restoration sites mapped in Figure 19; however, additional wetland restoration opportunities mentioned above are not being ruled out for restoration opportunities.

Estimated load reduction: No model is available to predict a reduction in sediment loading by restoring wetlands in the watershed. The estimated load reduction notes (above) list general research on pollutant removal rates through wetland restoration. As specifics of wetland restoration opportunities are not yet determined for the Eel River-Tick Creek watershed, load reductions using these values were not calculated as part of this plan.

Estimated cost: Restoring wetlands can range from several thousand dollars to remove tile or upwards of \$5,000 per acre if additional excavation is required and/or the area seeded to promote the growth of native species. As exact plans have not been developed for the identified wetland restoration projects, final cost estimates have also not been developed. Therefore, final cost estimates are included as an action item for this objective.

Actions:

- Work with the NRCS District Conservationist to understand the expected hydrology in a restored or constructed wetland.
- Contact landowners where potential wetland restoration and/or creation sites are located to determine their willingness for restoration or creation to occur on their property.
- Work with the IDNR, NRCS, and/or SWCD to develop a restoration plan and cost estimates for the wetlands.
- Design the size, placement, and construction methods required for creating or restoring wetlands in the Eel River-Tick Creek watershed.
- Determine if control of exotic/nuisance species is necessary and control those species with the appropriate method (burning, herbicide, hand pulling, etcetera).
- Identify and apply for funding for restoration or creation of wetlands.
- Obtain permits and landowner permission and hire contractors to restore or create wetlands.

Objective 5: Improve the buffer around Lake Perry.

Estimated load reduction: The sediment load originating from shoreline properties adjacent to Lake Perry was not calculated as part of this project. As such, an estimate of the anticipated load reduction which will occur through the implementation of this objective can not be accurately calculated. However, current literature indicates that shoreline buffers can reduce up to 80% of the sediment and 50% of the phosphorus in runoff (CTIC, 2000).

Cost estimate: Typical costs for installing shoreline buffers range from \$5 per lineal foot for emergent plant installation to \$50 per lineal foot for more extensive planting and shoreline restoration.

Actions:

- Educate Lake Perry Estates Corporation homeowners about the need for shoreline buffers and their impact on water quality within Lake Perry.
- Work with the NRCS/SWCD to develop a planting plan for the shoreline of Lake Perry. A forested buffer would be best as it would help reduce wind mixing and resuspension of sediments that results from this mixing. However, an herbaceous buffer would also improve on the existing conditions.
- Meet with the appropriate individuals and lake shore owners to discuss the feasibility of improving the buffer around Lake Perry.
- Select appropriate sites to serve as demonstration projects and determine the appropriate buffer improvement technique and plants to be planted.
- Identify and apply for funding to purchase plants and conduct planting.
- Hold a volunteer field day to complete the recommended plantings in and around Lake Perry.
- Develop a system of recognition for Lake Perry residents participating in the shoreline buffer installation program.

Objective 6: Work with Cass County officials to increase awareness of any proposed development within the Eel River-Tick Creek watershed.

Actions:

Currently, the Eel River-Tick Creek watershed is not experiencing significant development pressure. However, establishing a good working relationship with Cass County planning officials is recommended. Therefore, watershed residents should attend at least one Cass County planning meeting annually.

Objective 7: Encourage county officials to maintain vegetated riparian buffer along legal drains and to reduce the use of chemical applications along Eel River-Tick Creek waterbodies.

Actions:

- Meet with the Cass County Surveyor to determine the maintenance schedule for legal drains within the Eel River-Tick Creek watershed.
- Attend one Cass County Drainage Board meeting annually.

Objective 8: Monitor the sediment load of each of the four Eel River-Tick Creek watershed streams and water clarity (Secchi disk transparency) in Lake Perry.

Objective notes: Monitoring should be completed monthly during the growing season (May to October) and quarterly the remainder of the year.

#JFNew

Actions:

- Identify individuals to complete the Hoosier Riverwatch and Indiana Clean Lakes Program Volunteer Monitoring Program training.
- Complete Hoosier Riverwatch and ICLVMP monitoring on a monthly or quarterly basis.
- Maintain a water quality sampling database to track results to allow comparison.
- Compare results from the lifetime of sampling.
- Publish sampling results to the watershed group (Goal 1) and in the local newspaper.

Goal 4: We want to repair and maintain existing drainage tiles to ensure property owners have full use of their land.

<u>Goal time frame</u>: This is a long-term goal. Watershed stakeholders should continue to work with the associated landowners over the next 10 years. This task should be considered concluded or be reevaluated for other possible solutions in 2015. Objectives and action items required to meet Goal 4 are listed in Table 21.

Table 21. Goal 4 objectives and action items.

Objective	Action Item
Work with landowners to determine solutions to the drainage tile issue	Examine the ecological and economic impact of the existing hydrologic condition
	Propose possible alternative solution and determine methods to address the problem
	Identify and apply for grants
	Complete design and construction
Work with landowners to identify	Identify all existing drainage tiles with the watershed
and maintain existing drainage tiles	Map the existing drainage tile
	Monitor and maintain existing tiles if they break or fall into disrepair

<u>Associated costs</u>: At this time, it is anticipated that a majority of the work associated with this goal includes personnel time. Real dollar cost estimates will need to be determined as individuals work through the objectives and action items associated with this goal. As such, the development of these cost estimates is included as an action item.

<u>Estimated load reduction</u>: This goal predominantly deals with a single flooding and drain maintenance issue. As such, an estimated sediment or nutrient load reduction is not associated with this goal.

<u>Potential targets</u>: Specific targets associated with Objective 1 include a single area near the intersection of County Road 200 North and County Road 450 East in the Shackelford Ditch subwatershed. All landowners within the Eel River-Tick Creek watershed are potential targets for work completed under Objective 2. However, a large portion of the targets for Objective 2 are likely those owners of the watershed's agricultural land. As such, these areas and associated property owners should be targeted prior to work being completed in more populated areas of the watershed.

With no action: If this issue is not resolved, it is anticipated that flooding will continue to occur on the properties identified through Objective 1 (Figure 19). Additionally, the associated landowners will not be able to fully appreciate the use of their property if this goal is not met. It

is anticipated that all other landowners would maintain their existing tile; however, assistance from the watershed group in doing so may be welcomed by these individuals. Additionally, it is possible that these tiles will not be maintained and only through work with the watershed group will any maintenance activity occur.

Objective 1: Work with landowners near County Road 200 North and County Road 450 East to determine the current condition and possible solutions to the drainage tile issue in the Shackelford Ditch subwatershed.

Actions:

- Conduct a study examining the ecological and economic impact of the existing hydrologic conditions.
- Propose possible alternative solutions and determine cost-effective methods for addressing the drainage problem.
- Identify and apply for available grant monies to complete the recommended action.
- Complete design and construction for the recommended action including obtaining permits, landowner permission, and easements and hiring contractors.

Objective 2: Work with landowners throughout the Eel River-Tick Creek watershed to identify and maintain existing drainage tiles.

Actions:

- Work with the Cass County Surveyor's office to identify all existing drainage tiles within the Eel River-Tick Creek watershed.
- Map the existing tiles on the watershed maps.
- Work with landowners to monitor and maintain existing tiles if they break or fall into disrepair.

Goal 5: We want to reduce the nutrient load reaching Lake Perry by 50% over the next 10 years.

<u>Goal notes</u>: All objectives and actions completed as listed under Goals 1 and 2 should also improve the likelihood of meeting Goal 5. Those objectives and actions are not listed here again. Please refer to Goals 1 and 2 for additional methods to reduce nutrient loading to Lake Perry. Objectives and action items required to meet Goal 5 are listed in Table 22.

<u>Goal time frame</u>: Except for continuous or annual tasks, this is a long-term goal. The goal should be reached by 2015.

Associated costs: All of the tasks associated with this goal will utilize personnel time. Actual dollar costs associated with educational tasks are low; likely total less than \$5,000 over the next ten years. Livestock restriction is estimated to cost \$2 per lineal foot. Posting signage at the 4-H Property should cost approximately \$300-500, while installing a vegetated filter could cost \$3,000-10,000, and hosting a volunteer day is estimated to cost \$2,500. Sediment trap maintenance costs will be determined following the next assessment of their capacity.

Table 22. Goal 5 objectives and action items.

Objective Object	Action Item			
Educate lakeshore residents	Identify techniques that residents can use to improve water quality.			
about what they can do to	Locate or develop educational materials for shoreline BMPs			
reduce nutrient loading to	Host one annual demonstration day highlighting lakeshore activities			
the lake	Host one annual demonstration day nighting takeshore activities			
Work with Cass County 4-H	Post signs at all animal barns regarding manure disposal			
program to educate users	Investigate and obtain funding to install a vegetated filter			
and reduce sediment,	Host a volunteer day to complete planting of the vegetated filter			
nutrient, and manure	Construct a vegetated swale and/or rain garden to filter manure runoff			
loading to Laird Ditch				
Restores the watershed's	Determine amount of sediment in existing sediment traps			
wetlands and maintain the	Establish an annual assessment plan			
existing or construct	Remove sediment from the traps			
additional sediment traps	Determine necessity of additional traps			
upstream of Lake Perry on	Identify grant funding			
Laird Ditch and Tick Creek	identity grant funding			
Promote the usage of	Disseminate fertilizers' impact on water quality literature			
alternative fertilizers and/or	Investigate the market potential of phosphorus free fertilizer			
the reduction in use of	mittongate and married potential of phoophics as not retained.			
fertilizer				
Work to identify any failing	Identify any failing septic systems in the watershed			
septic systems and promote	Develop list of BMPs to reduce pathogenic contamination			
proper septic system	Disseminate BMP information			
maintenance in the				
watershed				
Restrict livestock access to	Identify a feasible solution to restrict livestock access to Tick Creek			
watershed streams	Identify an alternative watering source for the livestock			
	Obtain funding for restriction			
	Complete the fence installation			
Monitor nutrient load in the	Identify individuals to complete monitoring training.			
watershed streams	Complete monitoring on a monthly or quarterly basis.			
	Maintain a water quality sampling database			
	Compare results from sampling.			
	Publish sampling results			

Estimated load reduction: Existing nutrient loading calculations were completed using phosphorus export coefficients developed by Reckhow and Simpson (1980). It is estimated that the current phosphorus load to Lake Perry is approximately 5,800 kg/ha-yr. As land use changes within the watershed and individuals implement water quality improvement projects, the nutrient load can be re-estimated and the load reduction calculated. Most of the objectives listed under this goal are education and assessment related. As landowners become more educated and implementation plans are developed from the anticipated assessments, it is likely that actual load reduction calculations can be developed. Objectives and action items listed for other goals, specifically Goals 1 and 2, possess associated load reductions, if applicable. Refer to these objectives for the anticipated reduction in nutrient loading to Lake Perry.

<u>Potential targets</u>: Specific targets associated with this goal include educating of lakeshore residents on their contribution to nutrient loading and the use of phosphorus free fertilizer, educating Cass County 4-H volunteers and participants about the use of their manure pile and its impact to the Eel River-Tick Creek watershed, monitoring of the existing sediment traps and

assessing future need for additional sediment trap construction, identifying and educating individuals about failing septic systems, and restricting livestock access to Tick Creek as indicated in Figure 22. Essentially, all watershed residents and user groups are targeted by this goal.

With no action: If water quality improvement projects, such as sediment trap maintenance, manure pile usage at the 4-H Fairgrounds, or livestock fencing upstream of Lake Perry and along watershed streams are not implemented it is anticipated that sediment and nutrient loading will likely remain at its current levels or increase as erosion continues throughout the watershed. If work is not completed, it is likely that erosion and sediment transport will continue from these and other sites within the Eel River-Tick Creek watershed.

Objective 1: Educate lakeshore residents about what they can do to reduce nutrient loading to the lake.

Actions:

- Identify potential techniques that individual lakeshore residents can do personally to improve water quality within Lake Perry. Potential techniques include, but are not limited to, establishing shoreline buffers, utilizing phosphorus-free fertilizer, establishing a protocol for yard and pet waste disposal, and encouraging residents to wash cars away from existing drains which flow directly to the lake.
- Work with the SWCD and IDEM Project Manager to locate or develop educational materials addressing shoreline Best Management Practices.
- Host one annual demonstration day highlighting activities that lakeshore residents can complete on their own.

Objective 2: Work with the Cass County 4-H Program to educate users and reduce sediment, nutrient, and manure loading to Laird Ditch.

Objective notes: It is likely that, once implemented, the educational action items identified for this objective will sufficiently reduce sediment, nutrient, and manure loading to Laird Ditch. The status of the use of the current manure pile should be evaluated prior to designing or constructing a vegetated swale or rain garden to treat runoff. If the pile is no longer is use, then construction of neither a swale nor a rain garden will be necessary. As education efforts should be sufficient to meet this goal, estimated load reductions were not completed during the planning process.

Actions:

- Post signs at all animal barns regarding the use of the compost pile as the appropriate disposal site for manure on the 4-H property.
- Investigate and obtain funding to install a vegetated filter between the existing manure pile and Laird Ditch.
- Host a volunteer day to complete planting of the vegetated filter.
- Identify funding, complete a design, and construct a vegetated swale and/or rain garden system to collect and filter runoff from the existing manure pile before it enters Laird Ditch.

Objective 3: Restore the watershed's wetlands and maintain existing or construct additional sediment traps upstream of Lake Perry on Laird Ditch and Tick Creek.

Objective notes: Goal 3, Objective 4 details the actions necessary to restore the watershed's wetlands; therefore, this objective only list actions required to maintain the existing or construct additional sediment traps along Laird Ditch and Tick Creek. This objective targets restoration of any and all wetlands within the Eel River-Tick Creek watershed. See Goal 3, Objective 4 for more details on wetland restoration possibilities within the Eel River-Tick Creek watershed.

Estimated load reduction: As specific sediment trap locations have not been identified, a specific load reduction cannot be attributed to the installation of these practices. Estimates for sediment and nutrient load reductions associated with wetland restoration are detailed under Goal 3 Objective 4. Additionally, the current sediment traps are designed to reduce sediment loading to Lake Perry. Maintenance of these traps will neither increase nor decrease sediment loading to the lake; it will, however, increase the longevity of these sediment traps.

Cost estimate: An assessment of the current status of the sediment traps will likely be completed with volunteer labor. After the assessment is completed, the group will then need to determine whether the sediment traps require maintenance. As such, a local contractor should be able to provide a cost estimate for any required maintenance or cleaning. Therefore, a cost estimate is not included at this time for maintenance or cleaning of the existing sediment traps.

Actions:

- Work with the Lake Perry Estates Corporation to determine the amount of sediment in the existing sediment traps and to establish a means of cleaning the sediment traps.
- Establish an annual assessment plan to determine the amount of sediment present in each of the sediment traps.
- If necessary, obtain a sediment disposal site and hire a contractor to remove sediment from the existing traps.
- Work with the landowner along Laird Ditch and Tick Creek to determine the feasibility of establishing additional sediment traps.
- Identify potential grant funding available for the creation of the trap(s).
- Obtain the necessary permits, landowner permission, and design plans and hire a contractor to build the trap(s).

Objective 4: Promote the usage of alternative fertilizers and/or the reduction in use of fertilizer.

Estimated load reduction: No actual measurements of soil phosphorus were completed during the planning process. As such, an exact estimate of phosphorus load reduction is not possible. However, Garn (2002) estimated that the use of phosphorus free fertilizer could reduce phosphorus runoff from near shore lawns by as much as 57%.

Actions:

- Disseminate information explaining how fertilizers impact water quality and the importance of reducing fertilizer usage in the watershed via a newsletter, email list, or if possible as a link to the Cass County SWCD web site. Residential watershed stakeholders should be provided information on how to test their soils to determine the need for phosphorus in residential fertilizer applications and how to obtain phosphorus free fertilizer. (The local SWCD can provide soil testing information.)
- Investigate the market potential of phosphorus free fertilizer within the vicinity of the Eel River-Tick Creek watershed. If the market is available, future iterations of the watershed management plan should include methods for marketing phosphorus free fertilizer.

Objective 5: Work with county sanitarian to identify any failing septic systems and promote proper septic system maintenance in the watershed.

Objective notes: Figure 7 suggests much of the watershed is mapped in a soil unit that is considered moderately to severely limited for use as a septic system. The areas mapped in the severely limited soil unit and those closest to the watershed's waterbodies should be targeted first.

Actions:

- Work with the Cass County Health Department to identify any failing septic systems in the watershed, targeting the areas noted above first.
- Develop list/summary of "Best Management Practices" available to reduce the risk of pathogenic contamination of watershed waterbodies. The list should include management techniques that address contamination from all sources, including domestic and wild animals, in the watershed. Additionally, the list should be written in language that is understood by a non-technical audience.
- Disseminate the list/summary of "Best Management Practices" available to reduce the risk of pathogenic contamination of watershed waterbodies via an email distribution list, newsletter, or if possible a link on the Cass County SWCD's web site.

Objective 6: Restrict livestock access to watershed streams.

Estimated load reduction: An exact estimate of sediment and phosphorus loading was not completed for the livestock currently pastured adjacent to Laird Ditch or Tick Creek. As such, it is difficult to estimate a reduction in sediment and phosphorus loading that will result from restricting livestock access to these streams. Using IDEM's load reduction worksheet (Steffen, 1982), it is estimated that livestock access to two areas within the Lake Perry portion of the Eel River-Tick Creek watershed results in and annual loading of 119 pounds of phosphorus to the entire watershed. By fencing livestock out of these three areas, the load reduction worksheet estimates that phosphorus loading would decrease to 36 lbs/yr. This would result in approximately 70% lower phosphorus loading to the Eel River-Tick Creek watershed. Using the same worksheet, it is estimated that livestock access at these locations produces 949 pounds of nitrogen per year. Restricting the livestock from these areas would result in a nitrogen load of 522 pounds per year, or approximately 55% less nitrogen entering the stream from these locations.

Estimated cost: It is estimated that livestock fencing will cost approximately \$2 per lineal foot of fencing installed. Additional potential costs include seeding, gate installation, and watering hole construction. Cost estimates for these items are not listed here as associated costs will depend upon the landowner's preference.

Actions:

- Work with the NRCS and the landowner along Tick Creek north of County Road 300 North and east of County Road 275 East to identify a feasible solution to restrict livestock access to Tick Creek
- Identify an alternative watering source for the livestock.
- Obtain funding to construct the alternative watering source, if necessary, and to install fencing along Tick Creek.
- Hire a contractor to complete the fence installation.

Objective 7: Monitor the nutrient load of each of the Lake Perry tributary streams.

Objective notes: Monitoring should be completed monthly during the growing season (May to October) and quarterly the remainder of the year.

Actions:

- Identify individuals to complete the Hoosier Riverwatch training.
- Complete Hoosier Riverwatch monitoring on a monthly or quarterly basis.
- Maintain a water quality sampling database to track results.
- Compare results from the lifetime of sampling.
- Publish sampling results to the watershed group (Goal 1) and in the local newspaper.

Goal 6: We want to reduce the concentration of *E. coli* within the waterbodies in the Eel River-Tick Creek watershed so that water within the streams and lake meets the state standard for *E. coli* within 10 years.

Goal time frame: This is a long-term goal. The goal should be reached by 2015. The tasks associated with TMDL development are subject to the development schedule of IDEM. This portion of the Eel River is slated for TMDL development from 2013 to 2018. Objectives and action items required to meet Goal 6 are listed in Table 23.

Goal notes: Many of the objectives included for Goals 2, 3, and 5 will also help to reduce the concentration of *E. coli* within the waterbodies of the Eel River-Tick Creek watershed. Completing specific tasks targeting maintenance or management of the manure pile at the Cass County 4-H property; identification of failing septic systems and/or the promotion of proper septic maintenance; establishment of shoreline buffers along Lake Perry and buffer strips adjacent to watershed streams; and livestock restriction from watershed water bodies will increase the likelihood of meeting this goal as well. Other potential tasks should target education of watershed residents and participation in development of the *E. coli* Total Maximum Daily Load (TMDL) for the Eel River watershed.

Table 23. Goal 6 objectives and action items.

Objective	Action Item
Learn more about identifying the sources of <i>E. coli</i> from the Total Maximum Daily Load	Attend and participate in the Total Maximum Daily Load development process for the Eel River.
development process for the Eel River	Create and distribute TMDL meeting minutes to watershed stakeholders
Publicize Best Management Practices available to reduce	Meet with the Cass County Health Department to discuss BMPs available to maintain septic systems
pathogenic contamination of	Develop a list of BMPs to reduce the risk of pathogenic contamination
the Eel River-Tick Creek watershed waterbodies	Publish a newspaper article targeting the list or summary of BMPs
Monitor E. coli load in the	Identify individuals to complete monitoring training.
watershed streams and water clarity in Lake Perry.	Complete monitoring on a monthly or quarterly basis.
j j	Maintain a water quality sampling database
	Compare results from sampling.
	Publish sampling results

<u>Associated costs</u>: All of the tasks associated with this goal will utilize personnel time. Actual dollar costs associated with educational tasks are low, totaling less than \$5,000 over the next ten years.

<u>Estimated load reduction</u>: As this is an educational goal and all implementation projects are included as part of Goals 2, 3, and 5. Additionally, this goal deals with a reduction in concentration not load. As such, a reduction in load cannot be calculated for this goal.

<u>Potential targets</u>: Specific targets associated with this goal include the entire Eel River-Tick Creek watershed and all of its stakeholders.

<u>With no action</u>: If water quality improvement projects, such as manure pile usage at the 4-H Fairgrounds or livestock fencing upstream of Lake Perry and along watershed streams are not implemented it is anticipated that *E. coli* concentrations will likely remain at their current levels or increase as erosion continues and population levels increase throughout the watershed.

Objective 1: Learn more about identifying the sources of *E. coli* from the Total Maximum Daily Load development process for the Eel River. (The Eel River is on the 303(d) list for *E. coli* contamination.)

Actions:

- Attend and participate in the Total Maximum Daily Load development process for the Eel River.
- Create and distribute TMDL meeting minutes to watershed stakeholders.

Objective 2: Publicize Best Management Practices available to reduce pathogenic contamination of the Eel River-Tick Creek watershed waterbodies.

Actions:

- Meet with the Cass County Health Department to discuss Best Management Practices available to maintain properly functioning septic systems.
- Develop a list or summary of Best management Practices available to reduce the risk of pathogenic contamination of watershed waterbodies. The list should include management techniques that address contamination from all sources, including domestic and wild animals in the watershed.
- Publish a newspaper particle targeting the list or summary of Best Management Practices available to reduce the risk of pathogenic contamination of watershed waterbodies.

Objective 3: Monitor the *E. coli* load of each of the four Eel River-Tick Creek watershed streams.

Objective notes: Monitoring should be completed monthly during the growing season (May to October) and quarterly the remainder of the year.

Actions:

- Identify individuals to complete the Hoosier Riverwatch training.
- Complete Hoosier Riverwatch monitoring on a monthly or quarterly basis.
- Maintain a water quality sampling database to track results.
- Compare results from the lifetime of sampling.
- Publish sampling results to the watershed group (Goal 1) and in the local newspaper.

7.0 MEASURING SUCCESS

Measuring stakeholders' success at achieving their goals and assessing progress toward realizing their vision for the Eel River-Tick Creek watershed is a vital component of the plan. The following describes concrete milestones for stakeholders to reach and tangible deliverables produced while they work toward each goal. Interim measures or indicators of success, which will help stakeholders evaluate their progress toward their chosen goals, are included in the Action Register contained in Appendix G. Monitoring plans, where appropriate, to evaluate whether or not stakeholders have attained their goals are also included below. Because several of the goals are long-term goals (i.e. it will take more than 5 years to attain), regular monitoring is essential to ensure the actions stakeholders take are helping achieve those goals. Monitoring will allow stakeholders to make timely adjustments to their strategy if the monitoring results indicate such adjustments are needed. Finally, potential funding sources for implementing these projects are included in Appendix H.

Goal 1: We want to increase participation by all stakeholders including local natural resources agencies/representatives, possibly resulting in the formation of a watershed group.

Milestones: (Except for annual/continuous tasks milestones should be reached by the end of 2006.)

- Identification of a point person to lead the implementation of the plan.
- Eel River-Tick Creek watershed group formed.
- Watershed group meetings held.
- Watershed group meeting minutes published.
- Watershed group newsletter published.
- Watershed group website developed.
- Website updates noting new members and participants.
- Hoosier Riverwatch volunteer training attended.
- Hoosier Riverwatch data collected and submitted.
- Clean Lakes Program volunteer training attended.
- Clean Lakes Program data collected and submitted.

Goal Attainment: This goal lacks a specific water quality target similar to that which the other goals possess. Rather than being attained this goal will be a continual effort by watershed stakeholders.

Goal 2: Within two years, each land owner within the watershed will learn and implement at least one water quality improvement practice/technique on his/her own property.

Milestones: (Except for annual/continuous tasks milestones should be reached by the end of 2007.)

- Property owners implementing conservation projects identified.
- Local experts invited to speak at field days.
- Field days advertised and held.
- List of agricultural Best Management Practices developed.
- Value of the watershed and watershed group summarized and promoted.
- Annual newsletter published.
- Group website developed.
- Property owners using conservation land programs identified.
- Agricultural demonstration day held.
- Local SWCD meeting attended.
- List of residential Best Management Practices developed.
- Residential demonstration day held.
- List of grants for residential water quality projects developed.
- Program materials and handouts regarding the watershed group and water quality developed.
- Table or booth established at Cass County Fair.
- Conservation practices implemented.

Goal Attainment: The goal is attained when each landowner learns about and implements one water quality improvement project or technique on his or he property. This does not involve a specific water quality target. Like Goal 1, this goal will be a continual effort by watershed

stakeholders. A list of all individuals living within the Eel River-Tick Creek watershed was developed as part of the planning process. This list will be updated to include information on individual's conservation practice history. Additionally, the Eel River-Tick Creek watershed group will use the list to track conservation practice implementation throughout the watershed.

Goal 3: We want to reduce the sediment load to the waterbodies within the Eel River-Tick Creek watershed by 50% over the next five years.

Milestones: (Except for annual or continuous tasks, this goal should be reached by 2010.)

- Landowners contacted regarding streambank stabilization opportunities.
- Funding for streambank stabilization along Laird Ditch obtained.
- Funding for streambank stabilization along Tick Creek obtained.
- Streambank stabilization completed.
- Construction site erosion control practices identified.
- Erosion control ordinances implemented.
- Recognition program for county builders developed.
- Annual conservation program demonstration day held.
- Cost-share funding identified for conservation program implementation.
- Annual field day held.
- Wetland restoration sites identified.
- Wetland restoration designed.
- Funding for wetland restoration obtained.
- Shoreline buffer education provided.
- Planting plan for Lake Perry's shoreline developed.
- Volunteer buffer planting day held.
- Planning commission meeting attended.
- Drainage board meeting attended.

Goal Attainment: The goal is attained when the sediment load in each of the waterbodies in the Eel River-Tick Creek watershed is only half of the current load. This can be measured using either total suspended solids (TSS) or turbidity.

Indicator to be monitored: Sediment loading measuring half of current sediment load within each waterbody.

Parameter assessed: Total suspended solids (streams); water clarity (lake)

Frequency of monitoring: Monthly during the growing season (May-September); Quarterly throughout the remainder of the year.

Location of monitoring: Each stream's sampling point as indicated in Figure 15.

Length of monitoring: The monitoring will be conducted for 5 years.

Protocol: Monitoring will be conducted according to the protocol identified in the QAPP for this project (Appendix D) or utilizing the Hoosier Riverwatch protocol for measuring turbidity (Crighton and Hosier, 2004). Lake clarity will be measured using the Indiana Clean Lakes Program Volunteer monitoring protocol (ICLVMP, 2001).

Monitoring equipment: Equipment required for TSS and discharge analysis following the QAPP protocol is identified in Appendix D. For equipment requirements for turbidity measurements using the Hoosier Riverwatch method, see the Hoosier Riverwatch Training Manual (Crighton and Hosier, 2004).

Data entry: The monitor will maintain data forms in a three-ring binder and share the information with the watershed group during meetings. The monitor will also enter TSS, turbidity, and flow measurements in an electronic database.

Data evaluation: The local SWCD or NRCS staff can provide assistance in interpreting the data as needed. Additionally, Hoosier Riverwatch staff or local instructors may also be available to provide assistance with data analysis.

Goal 4: We want to repair and maintain existing drainage tiles to ensure property owners have full use of their land.

Milestones: Watershed stakeholders should continue to work with the associated landowners over the next 10 years. (This task should be considered concluded or be reevaluated for other possible solutions in 2015.)

Interim Measures of Success:

- Economic and ecological impact of tile disrepair evaluated.
- Alternative solutions to tile repair proposed.
- Grant opportunities identified.
- Existing tile drains identified.
- Existing tile drains mapped.

Goal attainment: This goal lacks a specific water quality target similar that the other goals possess. Rather than being attained this goal will be a continual effort by watershed stakeholders.

Goal 5: We want to reduce the nutrient load reaching Lake Perry by 50% over the next 10 years.

Milestones: (Except for continuous or annual tasks, this is a long-term goal. The goal should be reached by 2015.)

- Techniques that can be used by residents to improve water quality identified.
- Educational materials for shoreline Best Management Practices developed.
- Annual demonstration day (shoreline) held.
- Manure management signs posted at the 4-H ground.
- Vegetated filter designed and funding applied for.
- Volunteer day hosted.
- Vegetated swale constructed.
- Sediment traps assessed.
- Sediment traps cleaned, if necessary.
- Phosphorus free fertilizer promoted.
- Market for phosphorus free fertilizer assessed.
- Failing septic systems identified.
- List of pathogenic Best Management Practices developed.
- Livestock restricted from watershed waterbodies.

The goal is attained when the nutrient load to Lake Perry is reduced by half of its current load. *Indicator to be monitored*: Phosphorus and nitrogen loads of less than half the current load for each waterbody.

Parameter assessed: Total phosphorus and nitrate+nitrite, ammonia-nitrogen, and total Kjeldahl nitrogen.

Frequency of monitoring: Monthly during the growing season; Quarterly the remainder of the year.

Location of monitoring: Each stream's sampling point as indicated in Figure 15.

Length of monitoring: The monitoring will occur for five years.

Protocol: Monitoring will be conducted according to the protocol identified in the QAPP for this project (Appendix D) or utilizing the Hoosier Riverwatch protocol for measuring total phosphorus and nitrate+nitrite (Crighton and Hosier, 2004).

Monitoring equipment: Equipment required for total phosphorus, nitrate+nitrite, ammonia-nitrogen, total Kjeldahl nitrogen, and discharge analysis following the QAPP protocol is identified in Appendix D. For equipment requirements for total phosphorus and nitrate+nitrite, ammonia-nitrogen, and total Kjeldahl nitrogen measurements using the Hoosier Riverwatch method, see the Hoosier Riverwatch Training Manual (Crighton and Hosier, 2004).

Data entry: The monitor will maintain data forms in a three-ring binder and share the information with the watershed group during meetings. The monitor will also enter total phosphorus, nitrate+nitrate, and flow measurements in an electronic database.

Data evaluation: The local SWCD or NRCS staff can provide assistance in interpreting the data as needed. Additionally, Hoosier Riverwatch staff or local instructors may also be available to provide assistance with data analysis.

Goal 6: We want to reduce the concentration of *E. coli* within the waterbodies in the Eel River-Tick Creek watershed so that water within the streams and lake meets the state standard for *E. coli* within 10 years.

Milestones: (Except for continuous or annual tasks, this is a long-term goal. The goal should be reached by 2015.)

- Total Maximum Daily Load development meetings attended.
- Meeting minutes distributed.
- Meeting with health department held.
- List of pathogenic Best Management Practices developed.
- Newspaper article published.

Goal attainment: The goal is attained when the *E. coli* concentration in each of the watershed waterbodies meets the state standard (235 colonies/100 ml).

Indicator to be monitored: E. coli concentration less than 235 colonies/100 ml for each watershed waterbody.

Parameter assessed: E. coli concentration

Frequency of monitoring: Monthly during the growing season.

Location of monitoring: Each stream's sampling point as indicated in Figure 15.

Length of monitoring: The monitoring will occur for ten years.

Protocol: Monitoring will be conducted according to the protocol identified in the QAPP for this project (Appendix D) or utilizing the Hoosier Riverwatch protocol for measuring *E. coli* (Crighton and Hosier, 2004).

Monitoring equipment: Equipment required for E. coli analysis following the QAPP protocol is identified in Appendix D. For equipment requirements for E. coli measurement using the

Hoosier Riverwatch method, see the Hoosier Riverwatch Training Manual (Crighton and Hosier, 2004).

Data entry: The monitor will maintain data forms in a three-ring binder and share the information with the watershed group during meetings. The monitor will also enter *E. coli* concentrations in an electronic database.

Data evaluation: The local SWCD or NRCS staff can provide assistance in interpreting the data as needed. Additionally, Hoosier Riverwatch staff or local instructors may also be available to provide assistance with data analysis.

8.0 FUTURE CONSIDERATIONS

There are several considerations stakeholders should keep in mind as they implement the Eel River-Tick Creek Watershed Management Plan. Many of these considerations are noted in the proceeding sections of this text, but due to their importance, they warrant reiteration.

Permits, Easements, and Agreements

Revegetation of Lake Perimeter: Permission to improve the buffer around Lake Perry (Goal 3, Objective 5) through supplemental tree plantings and shoreline/shallow water plantings must be obtained from the property owners before any plantings occur.

Operation and Maintenance

Wetland Restoration: Two wetland restoration projects were identified in the watershed. In the long term, these areas will provide water quality benefits while requiring little maintenance. In the short term, certain management activities may be employed to help these areas recover faster than they would if they were left alone. Such activities included prescribed burns, spot herbicide treatments, and supplemental plantings. These maintenance activities which are designed to increase the plant diversity of the wetland will also increase functionality of the wetland. They also increase the pace of wetland restoration. Additional burns, herbicide spot treatments, and plantings may further increase the wetland's recovery. As wetland recovery progresses, additional maintenance activities may be deemed necessary in the future.

Vegetated Swale: The need for a vegetated filter to filter runoff from the 4-H Fairgrounds was identified as a need in the watershed. Any filtration area built to treat erosion and prevent sediment loading to Laird Ditch will require periodic maintenance. This maintenance simply involves removing any sediment accumulated that prevents proper filtration of the stormwater directed to the area. Sediment accumulation should be checked on an annual basis and actual removal of accumulation is expected to occur once every three to five years.

Monitoring

Monitoring is an important component of this watershed management plan. Without monitoring, stakeholders will not know when or whether they have achieved their goals; or worse, they will not make timely refinements to their actions to ensure the actions they are taking will achieve their goals. The **MEASURING SUCCESS** Section details how stakeholders will monitor their progress toward achieving the goals set in this watershed management plan.

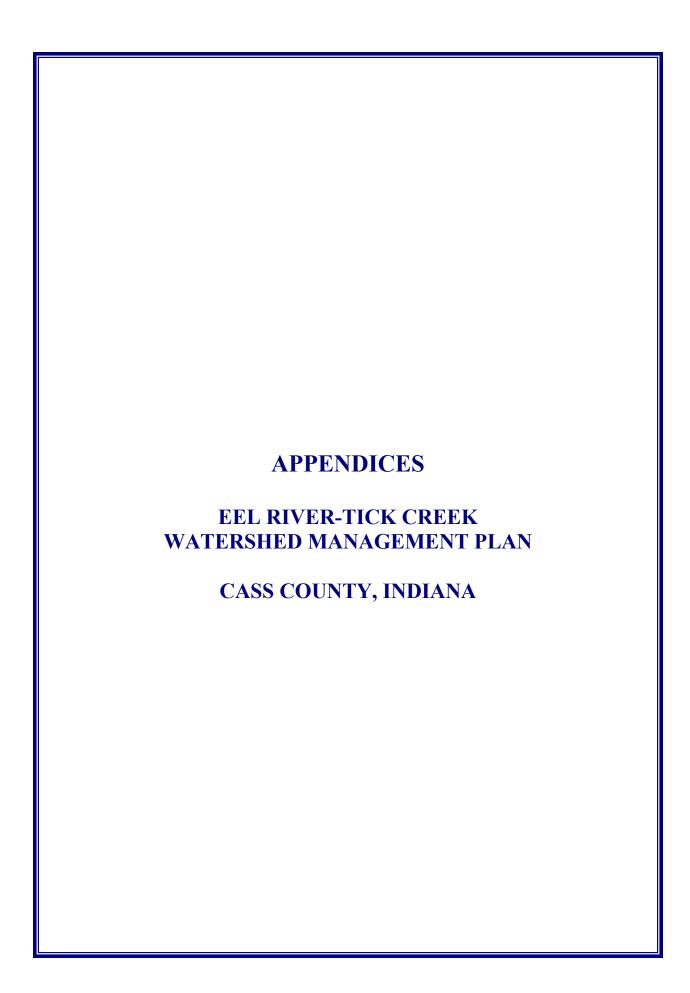
Plan Revisions

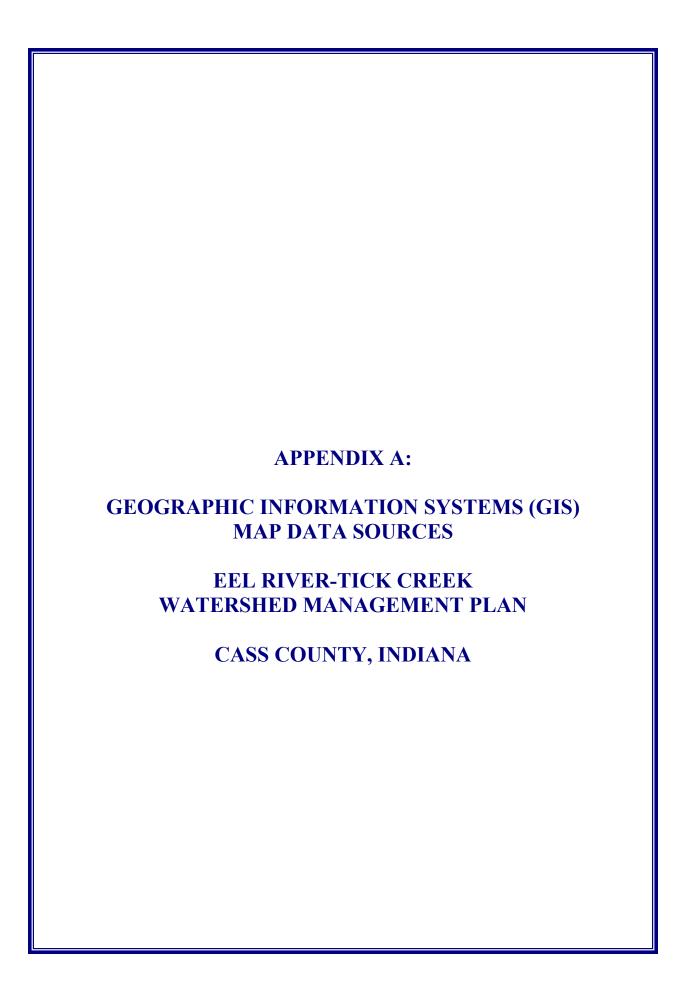
This watershed management plan is meant to be a living document. Revisions and updates to the plan will be necessary as stakeholders begin to implement the plan and as other stakeholders become more active in implementing the plan. The LPEC will be responsible for holding and revising the Eel River-Tick Creek Watershed Management Plan as appropriate based on stakeholder feedback. To assist with record keeping and to ensure action items outlined in the plan are being completed, stakeholders should complete the simple Action Tracker form provided in Appendix I. This form should be returned to the LPEC. The LPEC will keep completed action registers in three ring binder and review action registers to ensure tasks are being completed. The forms will also help document the success of actions taken in the watershed.

9.0 LITERATURE CITED

- Bannerman, R., R. Dodds, D. Owens, and P. Hughes. 1992. Sources of Pollutants in Wisconsin Stormwater. Wisconsin Department of Natural Resources, Madison, Wisconsin.
- Bell, C. (January 29, 2004). [Personal Communication]. Located at: Indiana Department of Environmental Management (IDEM), Assessment Information Management System (AIMS) Database, Indianapolis, Indiana.
- Camp, M. and Richardson, G. 1999. Roadside Geology of Indiana. Mountain Press Publishing Company. Missoula, Montana.
- Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography 22(2): 361-369.
- Chamberlain, E. 1849. Cass County Retrospective. In: Branson, R. 2004. Cass County. [web page] Crossroads of America: Early Indiana History. http://www.countyhistory.com/cass [Accessed April 22, 2004]
- Claytor, R. A. and T.R. Schueler. 1996. Design of Stormwater Filter Systems. Center for Watershed Protection, Ellicott City, Maryland.
- Cogger, C.G. 1989. Septic System Waste Treatment in Soils. Washington State University Cooperative Extension Department. EB1475.
- Conservation Technology Information Center. 2000. Conservation Buffer Facts. [web page] http://www.ctic.purdue.edu/core4/buffer/bufferfact.html [Accessed March 3, 2000].
- Crighton, L. and J. Hosier. 2004. Hoosier Riverwatch Training Manual. Indiana Department of Natural Resources, Division of Soil Conservation, Indianapolis, Indiana.
- Davis, T. (January 29, 2004). [Personal Communication]. Located at: Indiana Department of Environmental Management (IDEM), Assessment Information Management System (AIMS) Database, Indianapolis, Indiana.
- Deam, C.C. 1921. Trees of Indiana. Department of Conservation. Indianapolis, Indiana.
- DeLorme. 1998. Indiana Atlas and Gazetteer.
- Dodd, W. K., J.R. Jones, and E. B. Welch. 1998. Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Wat. Res. 32:1455-1462.
- Douglas, W. 1981. Soil Survey of Cass County, Indiana. USDA Soil Conservation Service and Purdue Agricultural Experiment Station.

- Garn, H.S. 2002. Effects of lawn fertilizer on nutrient concentrations in runoff from lakeshore lawns, Lauderdale Lakes, Wisconsin. U.S. Geological Survey, Water-Resources Investigation Report 02-1430.
- Gray, H. H. 1983. Map of Indiana showing thickness of unconsolidated deposits. Miscellaneous Map 37, Indiana Geological Survey.
- Gray, H.H. 1989. Quaternary Geologic Map of Indiana, Indiana Geological Survey Miscellaneous Map 49.
- Gray, H.H., Ault, C.H., and Keller, S.J. 1987. Bedrock Geologic Map of Indiana, Indiana Geological Survey Miscellaneous Map 48
- Gutschick, R.C. 1966. Bedrock Geology. In: Linsey, A.A. (ed.) Natural Features of Indiana. Indiana Academy of Science, Indiana State Library, Indianapolis, Indiana, p. 1-20.
- Hasenmueller, W. A., 2001, Preliminary database of abandoned sand and gravel pits, Coal and Industrial Minerals Section Memorandum Report 98, Indiana Geological Survey, Bloomington, 3 p., and a CD-ROM.
- Hill, J. 1981. Some Environmental Geologic Factors as Aids to Planning in Cass County, Indiana. Department of Natural Resources, Geological Survey Special Report 22. pp.30.
- Historic Landmarks Foundation. 1984. Cass County Interim Report: historic sites and structures inventory. Indianapolis, Indiana.
- Homoya, M.A., B.D. Abrell, J.R. Aldrich, and T.W. Post. 1985. The Natural Regions of Indiana. Indiana Academy of Science. Vol. 94. Indiana Natural Heritage Program. Indiana Department of Natural Resources, Indianapolis, Indiana.
- Indiana Agricultural Statistics Service. 1999. Indiana Farm Land Use History, Cass County, Indiana. [web page] U.S. Census of Agriculture. http://www.nass.usda.gov/in [Accessed April 8, 2004]
- Indiana Clean Lakes Program. 2001. Indiana Volunteer Lake Monitoring Program Expanded Monitoring Handbook. Bloomington, Indiana.
- Indiana Department of Environmental Management. 1994. 1992-1993 305(b) Report. Indiana Department of Environmental Management, Office of Water Quality, Indianapolis, Indiana...
- Indiana Department of Environmental Management. 1996. 1994-1995 305(b) Report. Indiana Department of Environmental Management, Office of Water Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2000. Indiana Water Quality Report. Indiana Department of Environmental Management, Office of Water Quality, Indianapolis, Indiana. IDEM/34/02/001/2000.


#JFNew


- Indiana Department of Environmental Management. 1999. Unified Watershed Assessment. Division of Water. Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2002a. Facilities in the National Pollutant Discharge Elimination System with Assigned UTM Coordinates in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Water Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2002b. Pipe Locations in the National Pollutant Discharge Elimination System with Assigned UTM Coordinates in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Water Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004a. Active Permitted Solid Waste Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004b. Composting Facilities in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004c. Confined Feeding Operation Facilities in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004d. Construction and Demoliton Waste Facilities in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004e. Corrective Action Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management, 2004f. Indiana Integrated Water Quality Monitoring and Assessment Report. Indiana Department of Environmental Management, Office of Water Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004g. Industrial Waste Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004h. Leaking Underground Storage Tanks in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.

- Indiana Department of Environmental Management. 2004i. Open Dump Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004j. Restricted Waste Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004k. Septage Waste Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004l. Superfund Program Facilities in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004m. Treatment. Storage, and Disposal Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004n. Underground Storage Tanks in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004o. Voluntary Remediation Program Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004p. Waste Tire Sites in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Environmental Management. 2004q. Waste Transfer Stations in Indiana (Point Shapefile). Indiana Department of Environmental Management, Office of Land Quality, Indianapolis, Indiana.
- Indiana Department of Natural Resources. 2004. Cass County Tillage Transect Data. [web page] http://www.in.gov/dnr/soilcons/publications/tillagereports/cass.html [Accessed August 29, 2005]
- Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser. 1986. Assessing biological integrity in running waters: A method and its rationale. Illinois Natural History Survey, Special Publication 5.

- Lindsey, A. A., W. B. Crankshaw, and S. A. Qadir. 1965. Soil relations and distribution map of the vegetation of presettlement Indiana Bot. Gaz. 126:155-163. Cited in: Lindsey, A.A. (ed.) Natural Features of Indiana. Indiana Academy of Science, Indiana State Library, Indianapolis, Indiana, p. 264-296.
- Looker, B. 2004. Early Cass County History. [web page] Cass County Historical Society. http://casscountyin.tripod.com/index.htm [Accessed April 22, 2004]
- Metropolitan Washington Council of Governments. 1992. Design of Stormwater Wetland Systems: Guidance for Creating Diverse and Effective Stormwater Wetland Systems in the Mid-Atlantic Region. Anacostia Restoration Team, Department of Environmental Programs, Metropolitan Washington Council of Governments, Washington, D.C.
- Montgomery, R. unpublished. Lake Perry Watershed memo to Walter Wolf, 24 June 1998.
- Omernik, J.M. and A.L. Gallant. 1988. Ecoregions of the Upper Midwest States. U. S. Environmental Protection Agency, Corvallis, Oregon. EPA/600/3-88/037.
- Ohio EPA. 1999. Association between nutrients, habitat, and aquatic biota in Ohio rivers and streams. Ohio EPA Technical Bulletin MAS/1999-1-1, Columbus.
- Olem, H. and G. Flock, eds. 1990. Lake and Reservoir restoration guidance manual. 2nd edition. EPA 440/4-90-006. Prepared by NALMS for USEPA, Washington, D.C.
- Petty, R.O. and M.T. Jackson. 1966. Plant communities. In: Lindsey, A.A. (ed.) Natural Features of Indiana. Indiana Academy of Science, Indiana State Library, Indianapolis, Indiana, p. 264-296.
- Purdue Applied Meteorology Group. 2004. Department of Agronomy. Indiana Climate Page. [web page] No date. http://shadow.agry.purdue.edu/sc.index.html [Accessed January 10, 2005]
- Reckhow, K.H. and J.T. Simpson. 1980. A procedure using modeling and error analysis for the prediction of lake phosphorus concentration from land use information. Can. J. Fish. Aquat. Sci., 37:1439-1448.
- Simon, T.P. and R.L. Dufour. 1998. Development of Index of Biotic Integrity Expectations for the Ecoregions of Indiana V. Eastern Cornbelt Plain. U.S. Environmental Protection Agency, Region V, Water Division, Watershed and Non-Point Branch, Chicago. IL. EPA 905/R-96/004.
- Sobat, S. (January 29, 2004). [Personal Communication]. Located at: Indiana Department of Environmental Management (IDEM), Assessment Information Management System (AIMS) Database, Indianapolis, Indiana.

- State Legislature. 1938. Cass County Retrospective. In: Branson, R. 2004. Cass County. [web page] Crossroads of America: Early Indiana History. http://www.countyhistory.com/cass [Accessed April 22, 2004]
- Steffen, L.J. 1982. Channel Erosion (personal communication), as printed in "Pollutants Controlled Calculation and Documentation for Section 319 Watersheds Training Manual," June 1999 Revision. Michigan Department of Environmental Quality, Surface Water Quality Division, Nonpoint Source Unit, Lansing, Michigan. EQP 5841 (6/99).
- Steinberger and Wolf, 1997. Correspondence to the Lake Perry Estates Corporation Board of Directors.
- Thomas, J.A. 1996. Soil Characteristics of "Buttermilk Ridge" Wabash Moraine, Wells County Indiana. Notes for the IU/PU (Ft. Wayne) Soils Course: Characteristics of Fine-Grained Soils and Glacial Deposits in Northeastern Indiana for On-Site Wastewater Disposal Systems.
- United States Environmental Protection Agency. 2000. Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria Rivers and Streams in Nutrient Ecoregion VI. United States Environmental Protection Agency, Office of Water, Washington, D.C. EPA 822-B-00-017.
- Vollenweider, R.A. 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz Z. Hydrol, 37(1):53-84.
- White, G. Unpublished. Typical ranges of nine chemical tests. Adapted from Indiana Department of Environmental Management records.
- Whitman Hydro Planning Associates, Inc. 2002. Watershed Restoration Action Strategies for the Eel–Wabash Watershed. Indiana Department of Environmental Management, Office of Water Quality, Indianapolis, Indiana.
- Winer, R.R. 2000. National Pollutant Removal Database for Stormwater Treatment Practices: 2nd Edition. Center for Watershed Protection, Ellicott City, Maryland.

Figure 2. Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage (2002). Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set.

- U.S. Department of Agriculture, Natural Resources Conservation Service, Indiana Department of Environmental Management, Indiana Department of Natural Resources, Division of Water. 2002. WATERSHEDS_HUC14_SUBWATERSHEDS_USGS_IN: Subwatersheds, 14-digit, Hydrologic Units, in Indiana, (US Geological Survey, 1:24000 Polygon Shapefile).
- U.S. Department of Commerce, U.S. Census Bureau, (conversion): AVENZA Systems Inc. 2002. ROADS_TIGER00_IN: Indiana Roads from TIGER Files (U.S. Census Bureau, 1:100,000, Line Shapefile).

Indiana Geological Survey. 2000. HIGHWAYS_TIGER_IGS_IN: U.S. and State Highways in Indiana, Derived from TIGER Files (U.S. Census Bureau, 1:100,000, Line Shapefile).

U.S. Geological Survey and U.S. Environmental Protection Agency. 2001. HYDROGRAPHY_LINE_NHD_IN: Streams, Rivers, Canals, and Ditches in Indiana (United States Geological Survey, 1:100,000, Polygon Shapefile).

Figure 3. Eel River basin.

Watershed boundaries are from the 8-digit Hydrologic Unit Code coverage (2002). Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set.

U.S. Department of Agriculture, Natural Resources Conservation Service, Indiana Department of Environmental Management, Indiana Department of Natural Resources, Division of Water. 2002. WATERSHEDS_HUC08_CATALOG_UNITS_USGS_IN: Cataloging Units, 8-digit, Hydrologic Units, in Indiana, (Derived from US Geological Survey, 1:24,000 Polygon Shapefile).

Figure 4. Subwatersheds of the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Subwatershed boundares were generated using ArcView 3.3 Spatial Analyst with a hydrological modeling extension available from ESRI. Computer generated boundaries were field checked for accuracy. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set.

Figure 5. The major soil associations covering the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. The soil association coverage was generated by JFNew based on soil associations from the U.S. Department of Agriculture (Douglas, 1981). Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set.

Figure 6. Highly erodible and potentially highly erodible soils in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. Soils coverage is from the Natural Resources Conservation Service National Ssurgo Soils Database. Highly erodible and potentially soils criteria were set by the NRCS and obtained from Douglas (1981).

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. 2004. Soil Survey Geographic (SSURGO) Database for Cass County, Indiana. [http://soildatamart.nrcs.usda.gov/Survey.aspx?County=IN017]. [Accessed November 20, 2004.]

Figure 7. Soil septic field absorption suitability in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. Soils coverage is from the Natural Resources Conservation Service National Ssurgo Soils Database. Soil septic tank limitations were set by the NRCS and are reported in Douglas (1981).

Figure 8. National wetland inventory map.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. Wetland location source is U.S. Fish and Wildlife Service National Wetland Inventory GIS coverage.

U.S. Fish & Wildlife Service. 1981. National Wetlands Inventory. St. Petersburg, Florida.

Figure 9. Hydric soils in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. Soils coverage is from the Natural Resources Conservation Service National Ssurgo Soils Database. Hydric soil classifications were previously set by the NRCS.

Figure 10. Historical structures and sites in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. The historical structures coverage was generated by JFNew based on information from the Historic Landmarks Foundation (1984)

Figure 11. Land use in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. Land use comes from the USGS Indiana Land Cover Data Set. The data set was corrected by JFNew based on 2003 aerial photographs.

U.S. Geological Survey. 1998. Indiana Land Cover Data Set, Version 98-12.

Figure 13. Tracts of land owned by public entities within the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. The public entities coverage was generated by JFNew from the Cass County Plat Book.

Figure 15. Stream sampling locations.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. JFNew recorded stream sampling locations during the macroinvertebrate and habitat assessment conducted on August 17, 2004. The locations were recorded using a Trimble Pro XRS global positioning system with sub-meter accuracy.

Figure 17. Watershed concerns identified during various watershed surveys in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. JFNew recorded watershed survey locations during the various assessments completed during 2004.

Figure 18. Critical areas targeted for sediment loading reduction in the Eel River-Tick Creek watershed.

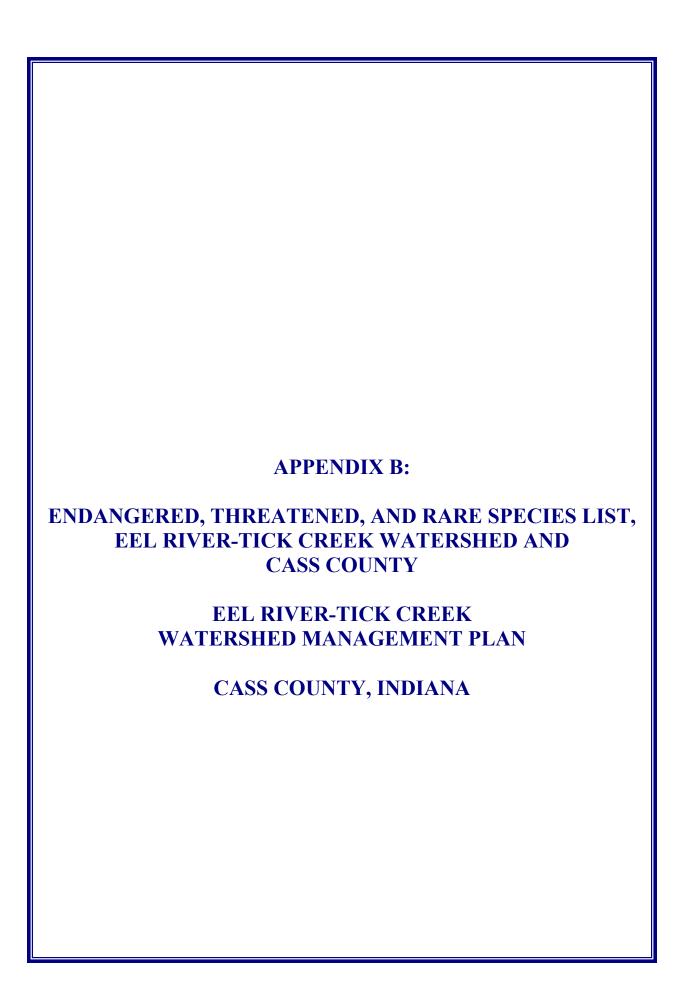

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. The agricultural lands coverage comes from the U.S. Geological Survey Indiana Land Cover Data Set, Version 98-12. Highly erodible soils coverage is generated from information contain in Douglas (1981) and from the Ssurgo soils coverage. JFNew generated the critical areas coverage based on field assessments and information provided by stakeholders during the planning process.

Figure 19. Critical areas targeted for wetland restoration and flood control in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage. Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. The hydric soils coverage was generated from information contained in Douglas (1981) and from the Ssurgo soils coverage. JFNew generated the critical areas coverage based on field assessments and information provided by stakeholders during the planning process.

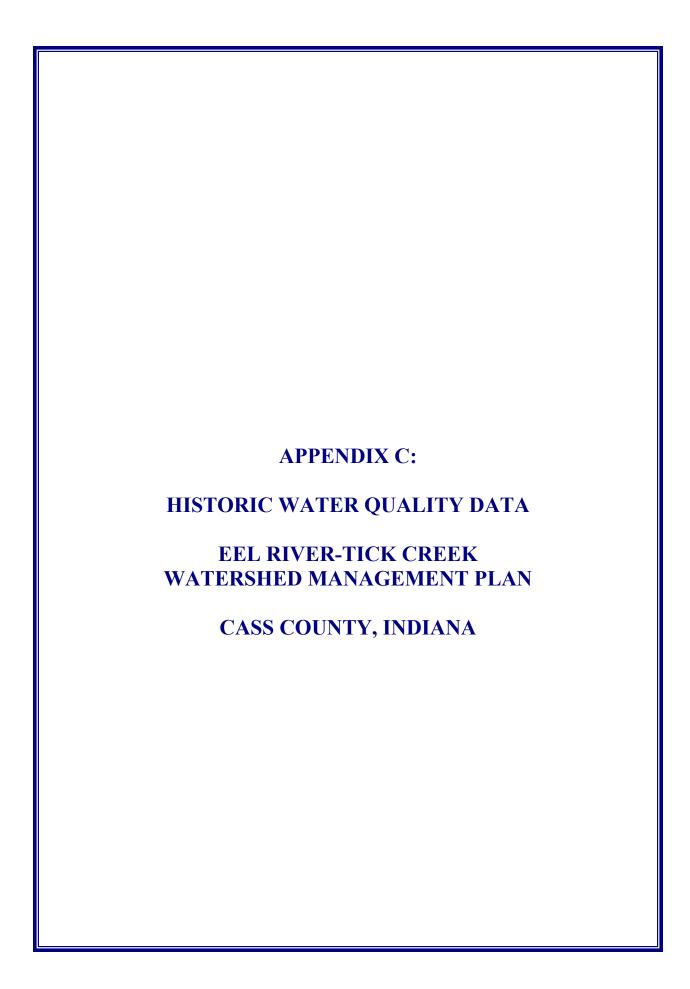
Figure 22. Critical areas targeted for nutrient loading and pathogen concentration reduction in the Eel River-Tick Creek watershed.

Watershed boundaries are from the 14-digit Hydrologic Unit Code coverage Road (2002), highway (2000), and stream (2001) coverages are from the U.S. Census Bureau TIGER data set. The severely limited soils coverage was generated from information contained in Douglas (1981) and the Ssurgo soils coverage. JFNew generated the critical areas coverage based on field assessments and information provided by stakeholders during the planning process.

ENDANGERED, THREATENED AND RARE SPECIES, HIGH QUALITY NATURAL COMMUNITIES, AND SIGNIFICANT NATURAL AREAS DOCUMENTED FROM THE LAKE PERRY WATERSHED, CASS COUNTY, INDIANA

TYPE	SPECIES NAME	COMMON NAME	STATE	<u>FED</u>	LOCATION	DATE COMMENTS
LOGANSPO	PRT					
Fish	AMMOCRYPTA PELLUCIDA	EASTERN SAND DARTER	SSC	**	T27NR02E 14	1941
Fish	ETHEOSTOMA CAMURUM	BLUEBREAST DARTER	SE	**	T27NR02E 14	1941
Fish	MOXOSTOMA VALENCIENNESI	GREATER REDHORSE	SE	**	T27NR02E 20 SEQ	1992

ENDANGERED, THREATENED AND RARE SPECIES DOCUMENTED FROM CASS COUNTY, INDIANA


SPECIES NAME	COMMON NAME	STATE	FED	SRANK	GRANK
⊒	MICHAUX'S STITCHWORT LAKE CRESS FORKED ASTER	S S S 전 전 전 전	* * * * * *	\$2 \$2 \$2	G5 G4? G3
CAREX SPARGANIOIDES VAR CEPHALOIDEA CAREX STRAMINEA	THINLEAF SEDGE STRAW SEDGE	ST	* * * *	S S S	G5 G5
COELOGLOSSUM VIRIDE VAR VIRESCENS	LONG-BRACT GREEN ORCHIS	ST	*	22	GSTS
	SMALL YELLOW LADY'S-SLIPPER	SR	* -	82	G 5
DESCHAMPSIA CESPITOSA RPIODHORIM ANGIISTIROITIM	TOFTED HAIRGRASS NAPPOM-TEAVED COTTON-CPASS	X X D	* * * *	22 C	d T
ERYSIMUM CAPITATUM	PRAIRIE-ROCKET WALLFLOWER	ST	* *	8 8 8 7 8 7	G G
	CLUSTER FESCUE	SE	*	S1	GS
JUGLANS CINEREA	BUTTERNUT reason programm	ML	* +		G3G4
MATTEUCCIA STRUTHIOPTERIS	OSTRICH FERN	Z Z	: *	22 E	. G.S.
MELANTHIUM VIRGINICUM	VIRGINIA BUNCHFLOWER	SE	*	S1	GS
MILIUM EFFUSUM	TALL MILLET-GRASS	SR	*	S2	G5
MYRIOPHYLLUM VERTICILLATUM	WHORLED WATER-MILFOIL	ST	* *	S2	G5
NAPAEA DIOICA	GLADE MALLOW	SR	*	S2	ტუ
ORYZOPSIS RACEMOSA	BLACK-FRUIT MOUNTAIN-RICEGRASS	ST	* * * *	22	נט נ
PASSIFION BONEAUE PASSIFIORA INCARNATA	NOKIMEKU WIICHGKABB PIRPI,R PASSION-FI,OWRR	7 C	: *	0 U	ם ניי ביי
RHYNCHOSPORA MACROSTACHYA	TALL BEAKED-RUSH	SR	*	8 8 8	G4
SANGUISORBA CANADENSIS	CANADA BURNET	SE	*	S1	GS
SATUREJA GLABELLA VAR ANGUSTIFOLIA	CALAMINT	SE	*	S1	G5
SCHIZACHNE PURPURASCENS	PURPLE OAT	N E	* -	S1	G5
SCIKPUS PURSHIANUS	WEAKSTALK BULKUSH	N G	* -	ST	G4G5
SCUIELLAKIA PAKVULA VAK PAKVULA Stenantim ceamineim	SMALL SKULLCAP PASHEDN PPATHEDBELLS	X Z	* * * *	S S	64.T.?
TOFTET.DIS CITITATIONS	FAILER ASOHONET.	υ υ Ε1 Ε2	*	ם מ	ה לילי לי
THE CITARIA PURPUREA	PITEDIA BIADDERWORT	S C	*	2	35
VALERIANA EDULIS	HAIRY VALERIAN	S 日 日	*	S1	G5
ZIGADENUS ELEGANS VAR GLAUCUS	WHITE CAMAS	SR	*	S2	G5T4T5
MOLLUSCA: BIVALVIA (MUSSELS)					
	EASTERN FANSHELL PEARLYMUSSEL	S E E	LE F	S1	G1
EPIOBLASMA TRIQUETRA	SNOFFBOX	N C	*)	T C	63
LAMPSILIS FASCIOLA TAMPSILIS TERRES	WAYI-KAIED LAMPMOSSEL VRIIOW SANDSHRII) * 2 * 2	< *	0 U	# LC
LIGUMIA RECTA	BLACK SANDSHELL	*	*	2 S	GS
	CLUBSHELL	SE	[일	S1	G2
PLEUROBEMA CORDATUM OTBORITA CYT.INDRICA CYT.INDRICA	OHIO PIGTOE Rarrighoot	SS C	* * * *	22 E	G3 G33∏3
COMPAGE CIPINDAICA CIPINDAICA	NABBIISTOOI	ŭ		T C	G1 C5

SX=extirpated, SE=endangered, ST=threatened, SR=rare, SSC=special concern, WL=watch list, SG=significant,** no status but rarity warrants concern
LE=endangered, LT=threatened, LELT=different listings for specific ranges of species, PE=proposed endangered, PT=proposed threatened, E/SA=appearance similar to LE species, **=not listed FEDERAL: STATE:

ENDANGERED, THREATENED AND RARE SPECIES DOCUMENTED FROM CASS COUNTY, INDIANA

SPECIES NAME	COMMON NAME	STATE	FED	SRANK	GRANK
TOXOLASMA PARVUM	LILLIPUT	*	* *	S2	GS
FISH ETHEOSTOMA CAMURUM ETHEOSTOMA PELLUCIDUM ICHTHYOMYZON BDELLIUM MOXOSTOMA VALENCIENNESI PERCINA EVIDES	BLUEBREAST DARTER EASTERN SAND DARTER OHIO LAMPREY GREATER REDHORSE GILT DARTER	0 0 * 0 0 0 * E E	* * * * * * * *	S2 S2 S2 S1	G4 G3 G3G4 G4
AMPHIBIANS HEMIDACTYLIUM SCUTATUM	FOUR-TOED SALAMANDER	SE	* *	S2	GS
REPTILES CLEMMYS GUTTATA SISTRURUS CATENATUS	SPOTTED TURTLE EASTERN MASSASAUGA	S S E E	* * * *	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	G5 G3G4T3T4
BIRDS ARDEA HERODIAS TYTO ALBA	GREAT BLUE HERON BARN OWL	* \(\mathbf{I} \)	* *	S4B,SZN S2	G5 G5
MAMMALS LUTRA CANADENSIS LYNX RUFUS TAXIDEA TAXUS	NORTHERN RIVER OTTER BOBCAT AMERICAN BADGER	SSE	* * * * * *	S: S1 S2	G5 G5 G5
HIGH QUALITY NATURAL COMMUNITY FOREST - FLOODPLAIN MESIC PRIMARY - CLIFF LIMESTONE	MESIC FLOODPLAIN FOREST LIMESTONE CLIFF	SG SG	* *	S1 S1	G3? GU

SX=extirpated, SE=endangered, ST=threatened, SR=rare, SSC=special concern, WL=watch list, SG=significant,** no status but rarity warrants concern
LE=endangered, LT=threatened, LELT=different listings for specific ranges of species, PE=proposed endangered, PT=proposed threatened, E/SA=appearance similar to LE species, **=not listed FEDERAL: STATE:

Site Information

Site:TICK CREEKLocation:Bridge nearest mouthCounty:CASSLatitude:40 46 6Longitude:86 19 2IASNatRegion:4Segment:31

Ecoregion: ECBP-TPS DrainageArea (sq.miles): 8 Gradient (ft/mile):

Sample Information

SampleNumber: 94040 SampleDate: 6/11/94

Electrofishing Equipment: Totebarge Voltage: 300 Distance Fished (m): Seconds Fished:

Fish Community Index of Biotic Integrity (IBI) Information

Actual Observ	ation	Metric Score	Actual Observation		Metric Score
SpeciesCount:	31	5	SensitiveSpeciesCount:	8	5
Darter/Madtom/SculpinSpeciesCount:	5	5	%TolerantIndividuals:	24.5	5
DarterSpeciesCount:	5		%OmnivoreIndividuals:	17.1	5
%LargeRiverIndividuals:			%InsectivoreIndividuals:	72.5	5
%HeadwaterIndividuals:	1.2	1	%PioneerIndividuals:	28.2	3
SunfishSpeciesCount:	7		%CarnivoreIndividuals:	1.8	
CentrarchidaeSpeciesCount:			Total #of Individuals(CPUE):	433	5
MinnowSpeciesCount:	13	5	CPUElessGizzardShads:		
SuckerSpeciesCount:	3		%SimpleLithophilicInd.:	22.9	3
RoundBodySuckerSpeciesCount:			%Ind.withDeformities,	0.0	5
SalmonidaeSpeciesCount:			ErodedFins,Lesions,&Tumors:		
			TotalIBIScore 52		

max=60

Metrics are dependent on Ecoregion and Drainage Area. (min 6=nofish):
Metrics can score a 1, 3, or 5 depending on calibration.

Friday, January 30, 2004 Page 1 of 2

SampleNumber:	94040	County: CASS	
StreamName:	TICK CREEK	Location Description: Bridge nearest n	mouth

	LocationDesc	ription: Bridg	ge nearest m	outh	
Individual Fish Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple
4					
41					
42					
18					
14					
3					
1					
2					
13					
23					
31					
1					
12					
4					
2					
1					
17					
11					
5					
5					
1					
2					
95					
1					
1					
2					
37					
12					
1					
30					
1					
	4 41 42 18 14 3 1 2 13 23 31 1 12 4 2 1 17 11 5 5 1 2 95 1 1 2 37 12 1 30	Individual Fish Count Deformities 4 41 42 18 18 14 3 1 2 13 23 31 1 12 4 2 1 17 11 5 5 5 1 2 95 1 1 2 37 12 1 30	Individual Fish Count 4 41 42 18 14 3 1 2 13 23 31 1 12 4 2 1 17 11 5 5 5 1 1 2 95 1 1 1 2 30	Individual Fish Count 4 4 41 42 18 14 3 1 2 13 23 31 1 1 12 4 2 1 17 11 5 5 5 1 1 2 95 1 1 1 2 37 12 13 30	41 42 18 14 3 1 2 13 23 31 1 1 12 4 2 1 17 11 5 5 1 1 2 95 1 1 1 2 37 12 1 30

Friday, January 30, 2004 Page 2 of 2

Site Information

 SubBasin: Eel
 14 digit HUC: 05120104070060
 LSite: WAE070-0002

 Site: Laird Ditch
 Location: CR 300 E
 County: Cass

Latitude: 40 46 46 Longitude: -86 19 21 IASNatRegion: 4 Topo: C-34 Segment: 33

Ecoregion: S. Michican/N. Indiana Drift Plains DrainageArea (sq.miles): 2 Gradient (ft/mile): 37.97

Sample Information

SampleNumber:DA11531EventID:98008SampleMediumCollected:Water + Macro + FishCommSampleDate:7/15/98SurveyCrewChief:RLDSampleTime:1:15:00 PMHydroLabNumber: 4WaterFlowType:WaterAppearance:SkyConditions:CloudyAirTemperature: > 86

WindDirection: West (270 degrees) WindStrength: Calm

DissolvedO2 (mg/l): 8.33 pH: 7.88 WaterTemp (°C): 20.0 SpecificConductivity (µS/cm): 555 Turbidity (NTU): 36

SpecialNotes:

ElectrofishingEquipment: Backpack Voltage: 300 Avg.StreamWidth (m): 2 DistanceFished (m): 50

SecondsFished: 654 WaterDepthAvg (m): 0.1 WaterDepthMax (m): 0.3 TimeAtSite: 1:15

BridgeInReach: ReachRepresentative: WhyReachNotRepresentative:

SpecialComments:

Habitat Information

TotalScore (max100): 60 SubstrateScore (max20): 13 InstreamCoverScore (max20): 11 ChannelMorphologyScore (max20): 14

RiparianZone&BankErosionScore(max10): 9 Pool/GlideQualityScore (max12): 3 Riffle/RunScoreQuality (max8): 2 GradientScore (max10): 8 %Pool: 30 %Riffle: 15 %Run: 55 %Glide: 0 CanopyCoverPctOpen:

SubjectiveRating: 7 **AestheticRating:** 9 **NOTES:**

Fish Community Index of Biotic Integrity (IBI) Information

Actual Observa	tion	Metric Score	Actual Observation		Metric Score
SpeciesCount:	5	3	SensitiveSpeciesCount:	0	1
Darter/Madtom/SculpinSpeciesCount:	1	3	%TolerantIndividuals:	54.3	1
DarterSpeciesCount:	0	0	%OmnivoreIndividuals:	0.0	5
%LargeRiverIndividuals:			%InsectivoreIndividuals:	74.1	5
%HeadwaterIndividuals:	63.0	5	%PioneerIndividuals:	35.8	3
SunfishSpeciesCount:	2	0	%CarnivoreIndividuals:	0.0	0
CentrarchidaeSpeciesCount:			Total #of Individuals(CPUE):	81	3
MinnowSpeciesCount:	2	3	CPUElessGizzardShads:		
SuckerSpeciesCount:	0	0	%SimpleLithophilicInd.:	18.5	1
RoundBodySuckerSpeciesCount:			%Ind.withDeformities,	0.0	5
SalmonidaeSpeciesCount:			ErodedFins,Lesions,&Tumors:		
			TotalIBIScore 38		

(min 6=nofish):

max=60

Metrics are dependent on Ecoregion and Drainage Area. Metrics can score a 1, 3, or 5 depending on calibration.

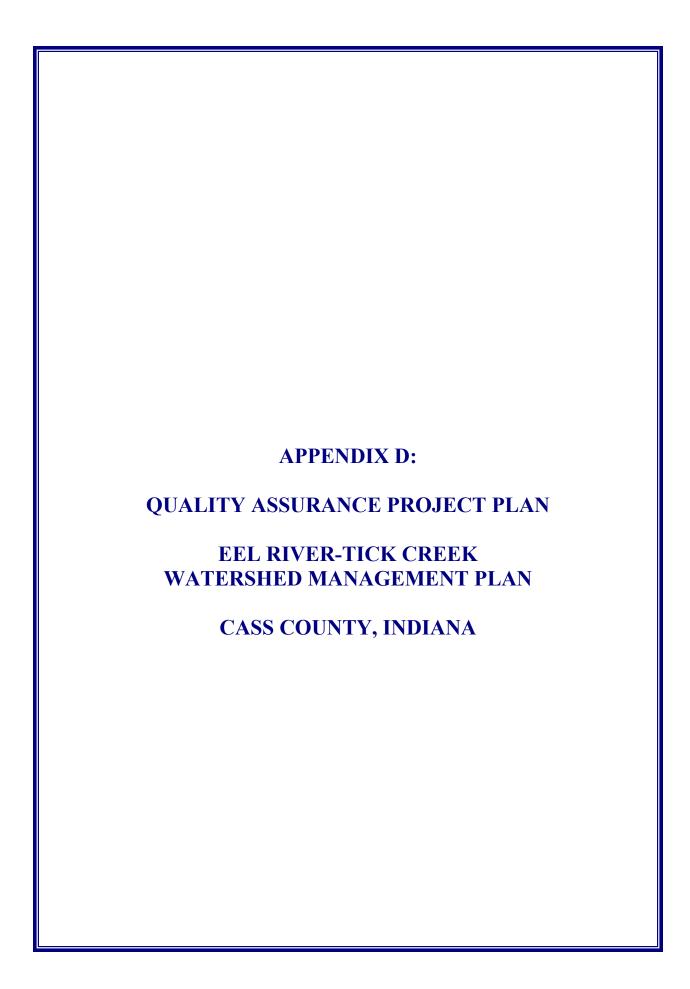
Friday, January 30, 2004 Page 1 of 2

SampleNumber: StreamName:	DA11531 Laird Ditch	EventID: 98008	LSite:	WAE070-0002 LocationDesc	Courription:	cR 300		
Common Name		Individual Fi	sh Count	Deformities	Eroded Fins	Lesions	Tumors	Multiple
Blacknose Dace		1:	5	0	0	0	0	0
Bluegill		1		0	0	0	0	0
Creek Chub		6	•	0	0	0	0	0
Green Sunfish		2:	3	0	0	0	0	0
Mottled Sculpin		30	6	0	0	0	0	0

Friday, January 30, 2004 Page 2 of 2

Table C1. Data collected by the Indiana Department of Environmental Management during macroinvertebrate community assessments in the Eel River-Tick Creek watershed.

STREAMNAME	Tick Cr	Tick Cr	Trib of Tick Cr
SAMPLEDATE	28-Aug-91	19-Aug-98	15-Jul-98
	Bridge Nearest	Bridge Nearest	13-341-76
DESCRIPSHORT	Mouth	Mouth	CR 300 E
CTYNAME	Cass	Cass	Cass
DRAINAGEAREA	8	8	2
GRADIENT	25.6	25.6	37.97
SUBSTRATESCORE	16	17	13
INSTREAMCOVERSCORE	20	11	11
CHANNELSCORE	16	9	14
RIPARIANSCORE	4	4	9
POOLGLIDESCORE	4	8	3
RIFFLERUNSCORE	5	4	2
GRADIENTSCORE	10	10	8
TOTALSCORE	75	63	60
HBISCORE	4.55	4.66	4.49
EPTTOCHIRONOMIDRATIO	1.46	1.5	2.27
NUMBEROFTAXA	1.46	1.3	11
	412	224	
NUMBEROFINDIVIDUALS			104 34
EPTCOUNT	188	96	
CHIRCOUNT	129	64	15
DOMINANTTAXONPCT	31.3	30.8	24
EPTINDEX	5	5	3
EPTTOTOTALRATIO	0.46	0.43	0.33
xIndividualsPerSquare	412	224	34.67
METRICSCOREHBI	4	4	6
METRICSCORENUMBEROFTAXA	6	4	4
METRICSCORENUMBEROFINDIVIDUALS	8	6	2
METRICSCOREEPTINDEX	4	4	2
Expr1043	6	6	2
METRICSCOREEPTCOUNT	6	6	2
Expr1			
METRICSCORECHIRCOUNT	2	2	6
METRICSCOREDOMINANTTAXON	4	6	6
METRICSCOREEPTTOTOTALRATIO	4	4	4
Expr2			
MIBIMETRICSCORE	4.8	4.4	3.6
WATERTEMP	81		20.05
DISSOLVEDO2			8.33
РН			7.88
SPECIFICCONDUCTIVITY			555


Table C2. Water chemistry data collected by the Indiana Department of Environmental Management from Laird Ditch at County Road 300 east on July 15, 1998.

Parameter Parameter	Value	Parameter	Value
DO (mg/L)	8.33	Mercury (Total) (ug/L)	< 0.2
Temp (C)	20.05	Nickel (Total) (ug/L)	< 2
pH	7.88	Potassium (ug/L)	2200
Cond (mS/mohs)	555	Selenium (Total) (ug/L)	< 1 (Q)
Turb (NTU)	36	Silver (Total) (ug/L)	< 6
Alk (mg/L)	250	Sodium (ug/L)	15000
Cl (mg/L)	23 (Q)	Thallium (Total) (ug/L)	< 0.5
COD (mg/L)	12	Vanadium (ug/L)	< 10
Cyanide (Total) (mg/L)	< 0.005	Zinc (Total) (ug/L)	38
Hard (mg/L)	270 (Q)	1-Methylnaphthalene (ug/L)	< 0.1
NO3 (mg/l)	0.11	2,3-Dichlorobiphenyl (ug/L)	< 0.1
NO3+NO2 (mg/l)	0.92	2,4,5-Trichlorobiphenyl (ug/L)	< 0.1
TP (mg/l)	0.32	2,4-Dinitrotoluene (ug/L)	< 0.1
SO4 (mg/L0	22 (Q)	2,4-Dinitrotoluene (ug/L) 2,6-Dinitrotoluene (ug/L)	< 0.5
	380		< 0.3
TDS (mg/L)		2-Methylnaphthalene (ug/L)	_
TKN (mg/L)	0.68	Acenaphthylene (ug/L)	< 0.1
TOC (mg/L)	3.6	Anilazine (ug/L)	< 0.1
TS (mg/L)	380	Anthracene (ug/L)	< 0.1
TSS (mg/L)	< 4	Benzo_a_anthracene (ug/L)	< 0.1
Aluminum (Total) (ug/L)	190	Benzo a pyrene (ug/L)	< 0.02
Antimony (Total) (ug/L)	< 5	Benzo_b_fluoranthene (ug/L)	< 0.1
Arsenic (Total) (ug/L)	< 4	Benzo g,h,i perylene (ug/L)	< 0.1
Barium (Total) (ug/L)	68	Benzo k fluoranthene (ug/L)	< 0.1
Beryllium (Total) (ug/L)	< 3	Butylbenzylphthalate (ug/L)	< 1
Cadmium (Total) (ug/L)	< 1	Chrysene (ug/L)	< 0.1
Calcium (ug/L)	74000 (Q)	Di(2-ethylhexyl)phthalate (ug/L)	< 0.6
Chromium (Total) (ug/L)	< 3 (Q)	Di-n-butyl Phthalate (ug/L)	< 1
Cobalt (ug/L)	< 12	Di-n-octyl Phthalate (ug/L)	< 1
Copper (Total) (ug/L)	16	Dibenzo_a,h_anthracene (ug/L)	< 0.1
Iron (Total) (ug/L)	330	Diethylphthalate (ug/L)	< 1
Lead (Total) (ug/L)	2.2	Dimethoate (ug/L)	< 0.1
Magnesium (ug/L)	19000 (Q)	Dimethylphthalate (ug/L)	< 1
Manganese (Total) (ug/L)	41	Fluoranthene (ug/L)	< 0.1
Naphthalene (ug/L)	< 0.1	Fluorene (ug/L)	< 0.1
PCB 154 (ug/L)	< 0.1	Hexachlorobenzene (ug/L)	< 0.1
PCB 171 (ug/L)	< 0.1	Hexachlorocyclopentadiene (ug/L)	< 0.1
PCB 200 (ug/L)	< 0.1	Indeno_1,2,3-cd_pyrene (ug/L)	< 0.1
PCB 47 (ug/L)	< 0.1	Chlorpyrifos (ug/L)	< 0.1
PCB 98 (ug/L)	< 0.1	Clomazone (ug/L)	< 0.1
Phenanthrene (ug/L)	< 0.1	Coumaphos (ug/L)	< 0.1
Pronamide (ug/L)	< 0.1	Cyanazine (Bladex) (ug/L)	< 0.1
Pyrene (ug/L)	< 0.1	Cycloate (ug/L)	< 0.1
Trifluralin (ug/L)	< 0.1	DCPA (ug/L)	< 0.1
2-Chlorobiphenyl (ug/L)	< 0.1	Delta-BHC (ug/L)	< 0.1
4,4'-DDD (ug/L)	< 0.1	Demeton (ug/L)	< 0.1

Parameter	Value	Parameter	Value
4,4'-DDE (ug/L)	< 0.1	Desethylatrazine (ug/L)	< 1
4,4'-DDT (ug/L)	< 0.1	Desisopropylatrazine (ug/L)	< 1
Acetochlor (ug/L)	< 0.1	Di(2-ethylhexyl)adipate (ug/L)	< 0.6
Alachlor (ug/L)	< 0.1	Diazinon (ug/L)	< 0.1
Aldrin (ug/L)	< 0.1	Dichlobenil (ug/L)	< 0.1
Alpha-BHC (ug/L)	< 0.1	Dichlofenthion (ug/L)	< 0.1
Ametryn (ug/L)	< 0.1	Dichloran (ug/L)	< 0.1
Aspon (ug/L)	< 0.1	Dichlorvos (ug/L)	< 0.1
Atraton (ug/L)	< 0.1	Dieldrin (ug/L)	< 0.1
Atrazine (Aatrex) (ug/L)	0.1	Diphenamid (ug/L)	< 0.1
Azinphos-methyl (ug/L)	< 0.1	Disulfoton (ug/L)	< 0.1
Benfluralin (ug/L)	< 0.1	Disulfoton Sulfone (ug/L)	< 0.1
Beta-BHC (ug/L)	< 0.1	Dyfonate (ug/L)	< 0.1
Bolstar (ug/L)	< 0.1	Endosulfan I (ug/L)	< 0.1
Bromacil (ug/L)	< 0.1	Endosulfan II (ug/L)	< 0.1
Butachlor (ug/L)	< 0.1	Endosulfan sulfate (ug/L)	< 0.1
Butylate (Sutan Plus) (ug/L)	< 0.1	Endrin (ug/L)	< 0.01
Carboxin (ug/L)	< 0.1	Endrin aldehyde (ug/L)	< 0.1
Chlordane, Alpha- (ug/L)	< 0.1	EPTC (ug/L)	< 0.1
Chlordane, Gamma- (ug/L)	< 0.1	Ethalfluralin (ug/L)	< 0.1
Chlorobenzilate (ug/L)	< 0.1	Ethion (ug/L)	< 0.1
Chloroneb (ug/L)	< 0.1	Ethoprop (ug/L)	< 0.1
Chloropropylate (ug/L)	< 0.1	Etridiazole (ug/L)	< 0.1
Chlorothalonil (Bravo) (ug/L)	< 0.1	Famphur (ug/L)	< 0.1
Fluometuron (ug/L)	< 0.1	Fenamiphos (ug/L)	< 0.1
Heptachlor (ug/L)	< 0.04	Fenthion (ug/L)	< 0.1
Heptachlor Epoxide (ug/L)	< 0.02	Fluazifop-butyl (ug/L)	< 0.1
Hexazinone (ug/L)	< 0.1	Fluchloralin (ug/L)	< 0.1
Lindane (ug/L)	< 0.02	Pentachlorophenol (ug/L)	< 0.04
Malathion (ug/L)	< 0.1	Permethrin, cis (ug/L)	< 0.1
Merphos (ug/L)	< 0.1	Permethrin, trans (ug/L)	< 0.1
Methoxychlor (ug/L)	< 0.1	Phorate (ug/L)	< 0.1
Methyl Paraoxon (ug/L)	< 0.1	Profluralin (ug/L)	< 0.1
Metolachlor (ug/L)	< 0.1	Prometon (ug/L)	< 0.1
Metribuzin (ug/L)	< 0.1	Prometryn (ug/L)	< 0.1
Mevinphos (ug/L)	< 0.1	Propachlor (ug/L)	< 0.1
MGK 264, isomers a & b (ug/L)	< 0.1	Propanil (ug/L)	< 0.1
MGK 326 (ug/L)	< 0.1	Propazine (ug/L)	< 0.1
Molinate (ug/L)	< 0.1	Simazine (ug/L)	< 0.07
Napropamide (ug/L)	< 0.1	Simetryn (ug/L)	< 0.1
Nonachlor, trans- (ug/L)	< 0.1	Stirofos (ug/L)	< 0.1
Oxadiazon (ug/L)	< 0.1	Terbacil (ug/L)	< 0.1
Pebulate (ug/L)	< 0.1	Terbufos (ug/L)	< 0.1
Pendimethalin (ug/L)	< 0.1	Terbutryn (ug/L)	< 0.1
Tribufos (ug/L)	< 0.1	Thiobencarb (ug/L)	< 0.1
Vernolate (ug/L)	< 0.1	Triadimefon (ug/L)	< 0.1

Table C3. Indiana Clean Lakes Volunteer Monitoring Program data.

	Sample	Water	Secchi Disk	
Sample Date	Time	Color	Transparency	Comments
09-Jun-00	1:00 pm	8	2.40	Recent rains, water somewhat high and silty.
25-Jun-00	3:15 pm	8	3.30	3" rain this week
08-Jul-00	3 pm	13	2.20	misplaced my id number
24-Jul-00	2:10 pm	11	2.10	No significant rain for two weeks
12-Aug-00	1:30 PM	8	1.80	
22-Aug-00	2:10 PM	14	1.95	
11-Sep-00	3:00 pm	14	1.80	Windy and fairly rough.
01-Jul-01	3 pm	14	1.80	slightly choppy
31-Jul-01	1:30 PM	12	2.20	
12-Aug-01	2:45 PM	8	1.60	
05-Sep-01	2:15 PM	13	2.20	
18-Jun-02	2:00 p.m.	1	2.60	
03-Jul-02	1:00 p.m.	2	3.80	Calm sunny day, no rain for 2 weeks or so. Clearest ever.
19-Jul-02	1:45 PM	2	2.40	No rain for three weeks
03-Aug-02	2:15 PM	2	1.80	Some recent rain, and silt trap dug out.
28-Aug-02	3:40 p.m.	12	1.80	
03-Jul-03	12 PM	2	2.20	Partly sunny.
24-Jul-03	11:50 AM	13	2.60	Clear sky; smooth surface
07-Aug-03	10:58 AM	12	2.80	
27-Aug-03	1:10 PM	12	1.80	No rain for 2 weeks or so
7/10/2004			2.40	

Quality Assurance Project Plan For Eel River-Tick Creek Watershed Management Plan In Cass County, Indiana A305-3-737

Prepared by:

JFNew
Cass County SWCD
Lake Perry Estates Corporation

APR 26 11 43 M OU

Prepared for:

Indiana Department of Environmental Management Office of Water Management Watershed Management Section

Final Draft April 22, 2004

Approved By:

Project Manager:	Marianne Siolitto Marianne Giolitto	<u>4/23/0</u> 4 /Date
WMS QA Manager:	Betty Ratcliff Betty Ratcliff	
WMS Section Chief:	MSS chmidt Linda Schmidt	4/2 7/04 Date
Planning Branch Chief: _	Martha Clark Mettler	Date

TABLE OF CONTENTS

	PAGE
Table of Contents	1
List of Appendices	
List of Figures	
List of Tables	
Distribution List	
Section 1: Study Description	
Historical Information	
Study Goals	
Study Site	
Sampling Design	
Study Schedule	
Section 2: Study Organization and Responsibility	
Key Personnel	
Project Organization	
Section 3: Data Quality Objectives for Measurement of Data	
Precision and Accuracy	
Completeness	
Representativeness	
Comparability	16
Section 4: Sampling Procedures	
Section 5: Custody Procedures	
Section 6: Calibration Procedures and Frequency	
Section 7: Sample Analysis Procedures	
Section 8: Quality Control Procedures	
Section 9: Data Reduction, Analysis, Review, and Reporting	
Data Reduction.	
Data Analysis	24
Data Review	
Data Reporting	24
Section 10: Performance and System Audits	25
Section 11: Preventative Maintenance	25
Section 12: Data Quality Assessment	25
Precision and Accuracy	25
Completeness	
Representativeness	
Comparability	
Section 13: Corrective Action	
Section 14: Quality Assurance Reports	
References	28

List of Appendices

Appendix A Sampling Station Locations

Appendix B EIS Analytical Services Laboratory QA/QC Plan and Chain of Custody Record Appendix C Indiana University School of Public and Environmental Affairs QA/QC Plan and

Chain of Custody Record

Appendix D Water Quality Data Sheets Appendix E Macroinvertebrate Data Sheet

Appendix F QHEI Data Sheet

List of Figures

Figure 1 Eel River-Tick Creek Watershed Map

Figure 2 Sampling Stations

List of Tables

Table 1 Parameters Studied

Table 2 Data Quality Objectives for Field and Laboratory Methods

Table 3 Sampling Procedures
Table 4 Analytical Procedures

Distribution List

Betty Ratcliff, IDEM Quality Assurance Manager

Watershed Management Section Indiana Department of Environmental Management 100 North Senate Avenue P.O. Box 6015 Indianapolis, Indiana 46206-6015

Kathleen Hagan, IDEM Project Manager

Watershed Management Section 100 North Senate Avenue P.O. Box 6015 Indianapolis, Indiana 46206-6015

Marianne Giolitto, Project Manager, JFNew

708 Roosevelt Road Walkerton, Indiana 46574

Judy Buttice, Cass County SWCD

906 W. Broadway Logansport, Indiana 46947

Peter Riggle, Lake Perry Estates Corporation

603 Lakeview Road Logansport, Indiana 46947

Sara Peel, Project Technician, JFNew

P.O. Box 243 Walkerton, Indiana 46574

Joe Exl, Project Technician, JFNew

P.O. Box 243 Walkerton, Indiana 46574

Section 1: Study Description

Historical Information

The Eel River-Tick Creek watershed encompasses one 14-digit watershed (HUC 05120104070060) within the larger Wabash River Basin (HUC 05120104). The watershed includes nearly 7,910 acres or 12.4 square miles. Drainage from the watershed flows into Howard and Shackelford Ditches and Tick Creek located near Logansport, Indiana. Water drains from these three ditches into the Eel River, which conveys water downstream to the Wabash River.

An initial review of data revealed that nonpoint source pollution is currently impacting the waterbodies in this watershed. Sediment loading from Tick Creek and Laird Ditch is impairing Lake Perry's water quality and its recreational and aesthetic value. Indiana Clean Lakes Program Volunteer Monitoring on the lake indicates that the lake has an average Secchi disk transparency depth of approximately two feet, which is well below the median Secchi disk transparency depth for Indiana lakes. Additionally, sediment traps located upstream of the lake require extra care due to heavy sediment loads from the watershed. Given that land use in Lake Perry's watershed is very similar to land use in other subwatersheds of the Eel River-Tick Creek watershed (USGS land use data shows over 85% of the Eel River-Tick Creek watershed is in agricultural use with approximately 70% of this being row crop agriculture), it is likely that these subwatersheds also carry high sediment loads to their receiving waterbody (Eel River). However, comprehensive water quality monitoring has not been conducted in this watershed. Sampling conducted during the development of the watershed management plan will provide information on some watershed streams that have not been previously sampled.

Similarly, nonpoint source pollution is impairing water quality in waterbodies downstream of the Eel River-Tick Creek watershed. The City of Logansport is currently dredging the Eel River immediate upstream of its dam, which is located within this watershed. While not all of the removed sediment originated in the 14-digit watershed immediately adjacent to the dam, efforts to identify sources of sediment loading in the watershed would play a role in helping to prevent the need for such dredging in the future. *E. coli* concentrations were elevated in four of the five samples collected in 1998 at the USGS monitoring station on the Eel River (located at the downstream end of the Eel River-Tick Creek watershed). Concentrations ranged from 240 colonies/100 ml to 2400 colonies/100 ml with a geometric mean of 840 colonies/100 ml. This portion of the Eel River also appears on Indiana's 303(d) list of impaired waterbodies for polychlorinated biphenyls (PCBs), mercury, and pathogens. Additionally, the Wabash River downstream of the Eel River-Tick Creek watershed is listed on IDEM's 2002 303(d) list for pathogens. Waterbodies in the Eel River-Tick Creek watershed may be contributing to this problem.

Recognizing the need to address nonpoint source pollution from the entire 14-digit watershed, the Lake Perry Estates Corporation began working with the Cass County SWCD to include the entire 14-digit watershed in their ecological restoration efforts. To this end, the Cass County SWCD, along with watershed stakeholders, will develop a watershed management plan for the Eel River-Tick Creek watershed. Once completed, the plan will help prevent further ecological

degradation of the watershed and guide future watershed management efforts to ensure the area's ecological health.

Study Goals

The goal of the sampling/water quality collection portion of this study is to determine the quality of water in Lake Perry and the major tributaries to the Eel River within this 14-digit watershed. Chemical conditions of Lake Perry and chemical, biological, and physical conditions of the selected inlet streams will be documented. The collection of this data will allow for the identification of problem areas, characterization of the watershed, and implementation of broad management decision making for the development of a watershed management plan for the Eel River-Tick Creek watershed. This information will be supplemented with historical data documenting the conditions of the watershed such as land use, soils, and cultural resources and stakeholder concerns and issues discussed through watershed meetings. Data collected during this sampling will be combined with previously collected data to determine changes in the watershed and will serve as baseline data for the tracking of water quality improvement success.

In summary, the goal of the sampling/water quality collection portion of this study is to determine the quality of water in Lake Perry and the major tributaries to the Eel River within this 14-digit watershed. This goal will be achieved with the following actions:

Action 1: Field and laboratory water chemistry data collection at each of the four stream sites will include dissolved oxygen, temperature, pH, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, soluble reactive phosphorus, total phosphorus, turbidity, total suspended solids, biological oxygen demand, and *E. coli*.

Action 2: Collect discharge measurements at each stream sampling site for each of the two sampling events to use in the calculation of pollutant loading.

Action 3: Conduct macroinvertebrate collection at each of the four stream sample sites to assess the biological community.

Action 4: Conduct habitat assessment at each of the four stream sample sites to assess physical stream conditions.

Action 5: Analyze stream chemical, biological, and physical data to allow for comparison with historical data and to provide baseline water quality information.

Action 6: Water quality data collected from the deepest point of Lake Perry will include dissolved oxygen, temperature, pH, the 1% light level, light attenuation, Secchi disk transparency, chlorophyll a, plankton, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, soluble reactive phosphorus, total phosphorus, turbidity, and total suspended solids.

Action 7: Use lake water quality data to calculate the Indiana Trophic State Index and to evaluate lake water quality to develop recommendations for watershed and in-lake water quality improvement project prioritization and implementation.

Action 8: Use chemical, biological, and physical data collected from the four stream sites and Lake Perry to evaluate and rank priority areas in the watershed and to develop recommendations for appropriate Best Management Practices to improve watershed water quality.

To achieve the goal of evaluating and ranking priority areas within the watershed, standardized data collection methodology and analysis will be used for each of the lake and stream sampling stations. Consistencies in methodology will ensure sampling stations can be compared to one

JFNew File# 02-03-04

another, enabling the Project Manager to determine which sites are most degraded relative to others in the watershed. Methodologies will follow those established and accepted by the scientific community and regulatory agencies (Indiana Department of Environmental Management (IDEM), Ohio Environmental Protection Agency (OEPA), and U.S. Environmental Protection Agency (USEPA)). For example, macroinvertebrates will be collected to assess the biological community using protocol developed by IDEM for rapid bioassessment. Macroinvertebrate data will then be analyzed using IDEM's macroinvertebrate Index of Biotic Integrity (mIBI). Standardized methodology and analysis will also allow comparisons to be made to past studies within and outside of the Eel River-Tick Creek watershed that have used these methodologies.

Study Site

The project site is the Eel River-Tick Creek watershed encompassing 12.4 square miles in Cass County, Indiana (Figure 1). The Eel River-Tick Creek watershed includes Tick Creek, Laird Ditch, Lake Perry, Howard Ditch, and Shackelford Ditch. Because the project's goal is to document the ecological conditions in the Eel River-Tick Creek watershed to guide management of the watershed, the study will examine/identify the following parameters: 1. stream water chemistry (dissolved oxygen, temperature, pH, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, total phosphorus, soluble reactive phosphorus, total suspended solids, turbidity, biological oxygen demand, and *E. coli*), 2. riparian/stream habitat quality, 3. biological (aquatic macroinvertebrate) populations in watershed streams, and 4. lake water quality (dissolved oxygen, temperature, pH, light attenuation, Secchi disk transparency, 1% light level, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, soluble reactive phosphorus, total phosphorus, total suspended solids, turbidity, plankton, and chlorophyll *a*).

Sampling Design

The first three parameters (stream water chemistry, macroinvertebrates, and habitat) will be collected and analyzed at each of the four stream sample sites. Sample sites were selected to achieve an accurate representation of the variety of stream habitat types found within the watershed. Preliminary site selection was based on map analysis. The map analysis consisted of locating tributaries with relatively large watersheds and accessible sampling points (road crossings). This approach was also taken in an attempt to have sampling stations that may be able to indicate which subwatersheds are contributing the most pollutants to the Eel River-Tick Creek watershed. The sampling stations selected based on this map analysis were then field checked by the Project Manager for confirmation of site accessibility and appropriateness for the biological and physical assessment protocols (mIBI and OHEI). Following the field inspection, four stream sampling stations were selected for water chemistry, macroinvertebrate, and habitat assessment. Approximate locations of these sites are shown in Figure 2 and will be georeferenced during the course of the study. Appendix A provides additional details on the site locations. Landowners at these sampling stations will be contacted to obtain permission to conduct sampling in those areas. Should permission be denied, acceptable substitute stations will be selected using the same criteria outlined above. Any changes in sampling locations will be submitted as an addendum to this QAPP.

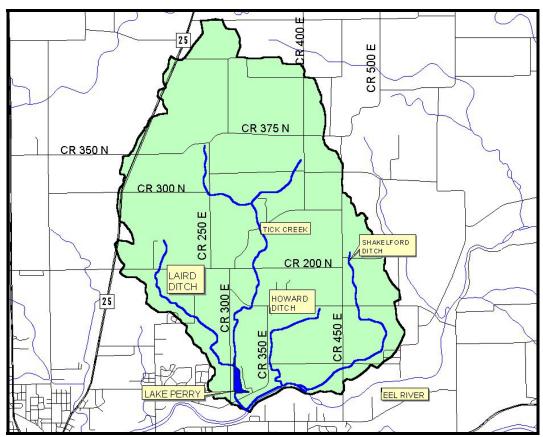


Figure 1. Eel River-Tick Creek Watershed.

JFNew will collect baseline stream water chemistry data at four sites within the Eel River-Tick Creek watershed (Figure 2). Specifics detailing sample site selection are included in Section 3. Details about each sample site including location and stream name is included in Appendix A. Water chemistry parameters to be sampled include nitrate+nitrite, ammonia, total Kjeldahl nitrogen, total suspended solids, total phosphorus, soluble reactive phosphorus, pH, turbidity, dissolved oxygen, *E. coli*, biological oxygen demand, and temperature. Temperature, pH, and dissolved oxygen will be analyzed *in situ* with field equipment. Discharge will be measured at each site to allow loading calculations and comparison of relative contributions of each of the tributaries.

Stream water chemistry samples will be collected twice times during the study period. Samples will be taken once during base flows and once during a storm (peak) flow event. Water chemistry sampling events will be timed to capture samples from base flow and peak flow (1" or more of rain in a 24-hour period) events. If soils are saturated by previous storm events, a storm event releasing 0.75" of rain may be sufficient to produce runoff and will be used as a storm event sample. JFNew will use best professional judgment to determine if a rain event of less than 1" qualifies as a storm event. This timing allows collection during a wide range of temporal and seasonal factors that may impact water quality. The stream water chemistry sampling schedule is flexible to prevent sampling during inappropriate weather or when equipment is not working. Following each sampling event, water chemistry samples will be delivered to the appropriate, contracted laboratory. JFNew will deliver biological oxygen demand and *E. coli* samples to EIS

Analytical Services, Inc. in South Bend, Indiana. The remaining samples (nitrate+nitrite, ammonia, total Kjeldahl nitrogen, total phosphorus, soluble reactive phosphorus, total suspended solids, and turbidity) will be sent to the Clean Lakes Program (CLP) Laboratory in Bloomington, Indiana for analysis of the remaining parameters. Water chemistry data gathered during this study will be compared to state and USEPA recommended criteria.

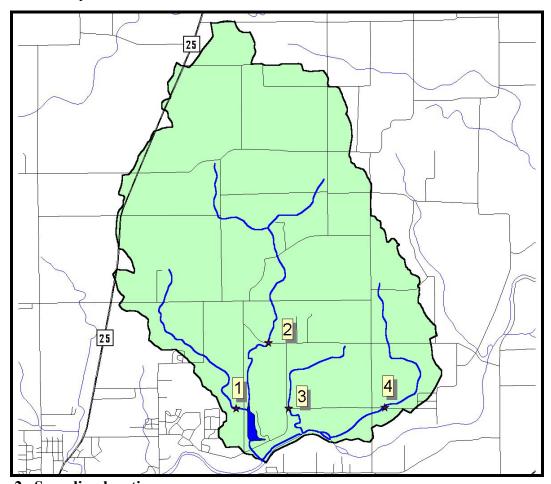


Figure 2. Sampling locations.

Macroinvertebrate and habitat sampling will occur once during the study period at each of the four stream sampling sites. The biological sampling event will take place during low flow conditions in the summer, typically the greatest period of environmental stress for aquatic macroinvertebrate communities. Macroinvertebrates will be identified to family level to satisfy the project goal of surveying the entire watershed while staying within the project budget. Several researchers (Hilsenhoff, 1988, USEPA, 1989, and IDEM, Unpublished) have confirmed the appropriateness of using family level identification (vs. species level) to make broad scale management decisions as is the goal with this project. The aquatic macroinvertebrate community will be assessed using the Indiana Department of Environmental Management (IDEM) Rapid Bioassessment protocol (IDEM, unpublished). Habitat quality will be assessed using Ohio Environmental Protection Agency (OEPA) Qualitative Habitat Evaluation Index (QHEI) protocol (OEPA, 1989).

Lake water quality samples will be collected once during the study following IDEM Clean Lakes Program protocols (IDEM, 2002). Sample collection typically occurs during July or August to provide a "worst case" glimpse at lake water quality. Lake water quality samples will include the following parameters: temperature, dissolved oxygen, light attenuation, Secchi transparency, pH, turbidity, total suspended solids, soluble reactive phosphorus, total phosphorus, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, chlorophyll *a*, and plankton. Temperature, pH, dissolved oxygen, light attenuation, and Secchi transparency will be analyzed *in situ* with field equipment. A vertical plankton tow will be conducted during the chemical water quality collection. The Indiana Clean Lakes Program (CLP) laboratory at Indiana University School of Public and Environmental Affairs located in Bloomington, Indiana will analyze the remaining parameters at their laboratory. This will include the plankton sample, which will be preserved so that a total plankton count and species distribution can be determined. Water quality data gathered from Lake Perry during this study will be compared to state and regional guideline values, peer accepted standards, and USEPA recommended criteria. Results from the analysis will also be used to calculate the Indiana Trophic State Index.

This sampling design reflects our sampling goals. Furthermore, the design allows JFNew to meet the goals to determine the quality of water in the major tributaries to the Eel River-Tick Creek watershed and to evaluate and rank the conditions of the Lake Perry and Eel River-Tick Creek streams for subwatershed prioritization.

Study Schedule

Stream sampling station specific chemical, biological, and physical parameters and lake water quality will be sampled periodically throughout the project (Table 1). Biological and habitat sampling will occur once during the summer, while chemical sampling will occur twice during both base and storm flow conditions. Geolocation of sample sites will occur once during the sampling period.

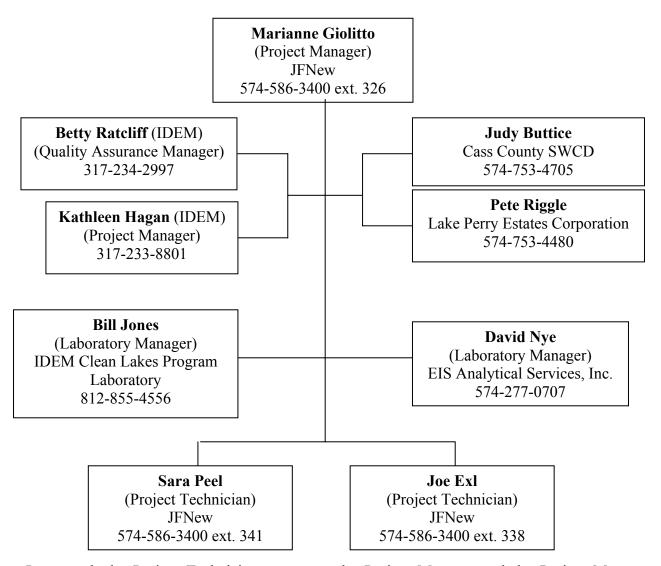
Table 1. Parameters studied.

	Type of Sample/ Parameter	Number of Sampling Stations	Sampling Event Frequency	Sampling Period
Biological	Macroinvertebrate	4	1	Summer 2004
	Plankton	1	1	Summer 2004
Physical	Habitat	4	1	Summer 2004
Chemical	Stream Water Chemistry*	4	2	Spring-Fall 2004
	Stream Discharge	4	2	Spring-Fall 2004
	Lake Water Quality**	1 [§]	1	Summer 2004
Geolocation	GPS	4	1	Spring-Fall 2004

^{*}Stream water chemistry samples will be analyzed for temperature, dissolved oxygen, pH, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, soluble reactive phosphorus, total phosphorus, turbidity, biological oxygen demand, total suspended solids, and *E. coli*.

JFNew File# 02-03-04

Page 9


^{**}Lake water quality samples will be analyzed for temperature, dissolved oxygen, pH, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, soluble reactive phosphorus, total phosphorus, turbidity, light attenuation, Secchi disk transparency, 1% light level, and chlorophyll *a*.

[§]It is anticipated that the depth of Lake Perry will only allow for the collection of an epilimnetic sample; however, if the lake is stratified a hypolimnetic sample will be collected in addition to the epilimnetic sample. The number of sampling stations would then be two (2).

Section 2: Project Organization and Responsibility

Key Personnel

In general, JFNew will be responsible for the design, planning, execution, analysis and documentation of technical aspects of the project. JFNew will also assist with coordination of public input and development of the watershed plan. The water-testing laboratories (Indiana CLP and EIS Analytical Services, Inc.) will be responsible for chemical water quality analysis. The Cass County SWCD and Lake Perry Estates Association will be responsible for providing forums for public input and documenting the public's concerns and goals. Indiana Department of Environmental Management (IDEM) will provide the overall project guidance and assistance. Specific duties and responsibilities are outlined below.

In general, the Project Technicians report to the Project Manager and the Project Manager coordinates with EIS Analytical Services, the Indiana Clean Lakes Program Laboratory, IDEM Quality Assurance Manager, IDEM Project Manager, Cass County SWCD, and Lake Perry Estates Association.

Project Organization

Project Technician is responsible for:

- QAPP development
- Collection of general watershed parameters
- Collection of historical water quality data
- Geolocation of sampling sites
- Lake and stream water quality sampling
- Macroinvertebrate sampling
- Macroinvertebrate identification
- Stream habitat sampling
- Data entry for water quality, macroinvertebrate, and habitat samples
- Analysis of collected information

Project Manager is responsible for:

- Oversight of Project Technician's duties listed above
- Selection of sampling site locations
- Review water quality and habitat field data sheets prior to leaving sampling site
- Implementation of QAPP
- Lake and stream water quality sampling
- Macroinvertebrate and plankton sampling
- Macroinvertebrate QA/QC
- Review water quality, macroinvertebrate, and habitat data entry for completeness and accuracy
- Analysis of collected information

Section 3: Data Quality Objectives for Measurement of Data

The project goal is to obtain an overview of water quality in the Eel River-Tick Creek watershed from which a watershed management plan can be developed. Like many projects, this project has financial, temporal, and other constraints. For examples, we will collect physical, biological, and chemical data from each of the major tributaries to the Eel River. Sites sampled on each of the tributaries will provide information on the relative pollutant inputs of each tributary. This information will prioritize one tributary's watershed over another tributary's watershed when evaluating where to spend limited funding. The sampling design will not; however, provide representative data for the whole watershed. Specificity will be sacrificed in order to obtain a greater quantity of general information on of the entire watershed, rather than specific information on a portion of it. For example, family level identification will be used rather than species level of the macroinvertebrate communities. This will allow for the collection of more data per level of effort. Researchers have already confirmed the acceptable use of family level identification to make broad management decisions and prioritize areas for future specific work (USEPA, 1989; IDEM, Unpublished; Hilsenhoff, 1988). Collecting information on this larger scale will allow for the collection of more data for the same cost as the collection of a lesser quantity of data at a small scale. Based on this, the general data quality objectives are to gather representative information on the ecosystem's health at a watershed scale, collect broad,

watershed scale data to make broad conclusions, and perform collection by accepted protocols to ensure the effort can be repeated in the future.

Like any project, this project has financial and temporal constraints. The project goal is to document the ecological conditions of the watershed with special emphasis on water quality from which a watershed management plan can be developed. The project's data quality goals are based on this overall project goal. Based on this, the general data quality objectives for measurement of data are to gather representative information on the ecosystem to make broad conclusions, and perform collection by accepted protocols to ensure the effort can be repeated in the future. The data quality objectives for measurement of data are precision, accuracy, representativeness, comparability, and completeness.

DQO: Precision and Accuracy

Field Water Chemistry Parameters (Stream and Lake)

Field equipment will be calibrated in accordance with manufacturer's specifications as detailed in Section 6. Field equipment that cannot be calibrated, such as a tape measure and Secchi disk, will not be calibrated. Field equipment calibration will be performed the day of sampling prior to its use in the field. The YSI Model 55 oxygen and temperature probe is auto-calibrated based on the altitude and salinity of the sample prior to time of use. The LI-COR data logger and spherical quantum light sensor are adjusted to surface incident light at the time of sampling. The Pocket Pal pH meter is calibrated using Fisher calibration buffer (pH 4.0 and 7.0). The Marsh McBirney Model 2000 flow meter and the Aquatic Ecosystems model DMP depth finder are calibrated by the manufacturer prior to shipping.

Replicate field measurements will be taken with the following stream assessment field equipment: the Hach Pocket Pal pH Meter, the YSI Model 55, and Marsh McBirney model 2000 portable flow meter for stream sites. One replicate will be taken in every four stream measurements or once per sampling event. Replicate field measurements will be collected for the following field equipment for the analysis of lake water quality: the Hach Pocket Pal pH Meter, the YSI Model 55, the LI-COR model LI-1400 data logger and LI-193SA spherical quantum light sensor, the Aquatic Ecosystems model DMP depth finder, the Marsh McBirney model 2000 portable flow meter, and the Secchi disk. Precision will be calculated using the Relative Percent Difference equation:

RPD =
$$\frac{(C - C') \times 100\%}{(C + C')/2}$$

Where:

C =the larger of the two values

C' = the smaller of the two values

Regular, schedule maintenance in accordance with manufacturer's instructions will be used to insure equipment precision and accuracy. The acceptable relative percent difference for field water chemistry parameters (RPD<5%) is detailed in Table 2.

Field equipment will be calibrated following manufacturers specifications on the day of sample collection. Field equipment use will follow recommended usage by the equipment manufacturer.

Expected accuracy measurements for field equipment measurements are those listed by the equipment manufacturers and are displayed in Table 2.

Laboratory Water Chemistry Parameters (Stream and Lake)

The Project Manager and Project Technician (or two Project Technicians if the Project Manager is not available) will collect samples in accordance with the contracted laboratories' Quality Assurance/Quality Control (QA/QC) requirements. For all parameters analyzed by EIS Analytical and the Indiana CLP Laboratory, this will include the collection of one duplicate sample in every four stream samples collected, or one duplicate sample per stream sampling event. (If both epilimnetic and hypolimnetic samples are collected from Lake Perry then a duplicate sample will be collected at one of these sites.) One set of field blank samples (one sample per parameter) will be collected during each sampling trip. Duplicate and field blank sample analysis will occur following the laboratory procedure detailed in the laboratory QA/QC plans (Appendices B and C). The contracted laboratories will implement QA/QC measures to ensure data quality as detailed in the laboratories' QA/QC documents (Appendices B and C). Section 3 of the CLP Laboratory QAPP provides information on the procedures followed for these DQO's. The laboratory standards are sufficient to meet the stated goals of this project. Table 2 summarizes the data quality objectives for measurement of data for the water chemistry parameters. Data not meeting laboratory standards for duplicates or field blanks will be removed from the sample set and will not be used for watershed prioritization.

Biological and Habitat Parameters

To ensure precision, all sampling protocols will be carried out as required in the procedural documentation by qualified individuals. The same field crew, consisting of the Project Manager and a Project Technician (or two Project Technicians if the Project Manager is not present) will sample each stream site using the same procedure to maintain consistency among sites. The consistency of field personnel and procedural organization will enhance precision by minimizing sampling variability.

Macroinvertebrates will be identified by an experienced and trained Project Technician. The Project Manger will check identification accuracy of at least 10% of the macroinvertebrate specimens identified by the Project Technician. Based on IDEM's sampling and subsampling methodology, each sample will consist of 100 organisms; 10% of each subsample, or 10 organisms, will be checked for accuracy. Any discrepancies between identification will be noted and discussed in order to obtain the correct identification through collaboration on the specific specimen in question. This level of quality control will allow for making broad management decisions. The accuracy and precision in identification is expected to be high given the limited number of technicians involved, their technical expertise, and the level of oversight they receive in the collection and identification of macroinvertebrates. Table 2 outlines the parameters, measurement range, accuracy, and precision of macroinvertebrates evaluation.

Habitat evaluation will be conducted by an experienced/trained Project Manager and a Project Technician (or two Project Technicians if the Project Manager is unavailable). Habitat will be evaluated on an individual basis then compared. Any discrepancies in habitat scoring will be noted and discussed in order to obtain an accurate and precise habitat score through collaboration. If a score can not be determined through collaboration, then the Project Manager's

(or Lead Technician if the Project Manger is not present) will be used for scoring purposes. Table 2 outlines the parameters, measurement range, accuracy, and precision of habitat evaluation.

Global Positioning System Parameters

Location coordinate data precision is expected to be high, while accuracy is submeter. Table 2 lists detailed precision and accuracy information for the Trimble Pro XRS GPS.

Table 2. Data quality objectives for field and laboratory methods.

Parameter	Precision	Accuracy	Completeness*
pН	RPD<5%	± 0.1 at 20°C	S: 75% L: 50%
Temperature	RPD<5%	± 2%	S: 75% L: 50%
Dissolved Oxygen	RPD<5%	± 2%	S: 75% L: 50%
Flow	RPD <5%	±2% +zero stability zs=±0.03 ft/sec	S: 75%
E. coli	See Appendix C.	See Appendix C.	S: 75%
Ammonia	See Appendix B.	See Appendix B.	S: 75% L: 50%
Nitrate+nitrite	See Appendix B.	See Appendix B.	S: 75% L: 50%
Total Kjeldahl Nitrogen	See Appendix B.	See Appendix B.	S: 75% L: 50%
Total Phosphorus	See Appendix B.	See Appendix B.	S: 75% L: 50%
Total Suspended Solids	See Appendix B.	See Appendix B.	S: 75% L: 50%
Biological Oxygen Demand	See Appendix C.	See Appendix C.	S: 75%
Soluble Reactive Phosphorus	See Appendix B.	See Appendix B.	S: 75% L: 50%
Turbidity	See Appendix B.	See Appendix B.	S: 75% L: 50%
Chlorophyll a	See Appendix B.	See Appendix B.	L: 50%
Lake Depth	RPD<5%	±0.1 ft	L: 50%
Light Attenuation	±0.15% per °C	±2%	L: 50%
Transparency	Individual variation too great to assign values		L: 50%
GPS	High	$50 \text{ cm} \pm 1 \text{ ppm}$	S/L: 100%
Macroinvertebrates	High	High	S: 100%
Habitat Analysis	High	High	S: 100%
Plankton	Qualitati	L: 100%	

^{*}S=stream completeness data quality objective; L=lake completeness data quality objective

DQO: Completeness

In the event that some catastrophic event (i.e. weather anomaly, chemical spill, or other event that would prohibit access to sampling sites) were to take place, the first action taken would be to delay the sampling to a later time that year, in hopes that sampling would occur under more representative conditions. There is flexibility built into the project schedule to allow sampling to occur during favorable conditions, preserving data quality.

Stream Field and Laboratory Water Chemistry Parameters

One hundred percent (100%) collection of field and laboratory water chemistry samples is expected. Sampling locations have been field checked to ensure sampling access and proper

Page 14

sampling hydrology is present at each site. However, climatic or other changes beyond the project's control may alter conditions in the watershed. Refusal of landowners to grant access to the property may also limit the sample collection. Equipment malfunction or problems during sample collection and analysis could also limit the amount of water chemistry data over the term of the project. Loss of one stream sample site would not prevent the project from attaining its goal of developing and watershed management plan. Based on this 75% completeness (see equation below) for water chemistry samples will be acceptable for completion of the project.

% completeness= (number of valid measurements)
$$\times$$
 100% = $6 \times 100\%$ = 75 % (number of valid measurements expected)

Macroinvertebrate and Habitat Parameters

Again, one hundred percent (100%) collection of macroinvertebrate and habitat samples is expected. Sampling will occur at the same sites as those utilized for steam water chemistry sample collected. Sample locations have been field checked to ensure sampling access and proper sampling hydrology is present at each site. Climatic or other changes beyond the project's control may alter the condition of the watershed; however, since macroinvertebrate and habitat data is being collected once over the lifetime of the project sample collection could be rescheduled to allow for data collection. Still, the refusal of landowners to grant access to the property may also limit the sample collection at the selected sites. Again, the loss of one stream sample site would not prevent the project from attaining its goal of developing and watershed management plan. Based on this 75% completeness (see equation below) will be acceptable for completion of the project.

% completeness= (number of valid measurements)
$$\times$$
 100% = $3 \times 100\%$ = 75 % (number of valid measurements expected)

Lake Water Quality Sampling

One hundred percent collection of lake water quality samples is expected. Sampling will occur at the deepest point in the lake. Climatic or other changes beyond the project's control may alter the conditions of the watershed limiting lake sample collection within the preferable two-month window (July-August); however, since lake water quality is being collected once over the life of the project sample collection could be rescheduled to allow for data collection to occur. The lake residents will provide access to the lake and access can be attained from a variety of locations; therefore accessibility to the lake is likely not an issue, which will affect sample collection. Lake water quality samples are expected to be collected from both the epilimnion (surface waters) and hypolimnion (bottom waters). If the lake is equally mixed (not stratified), then samples will only be collected from the epilimnion. Based on this, 50% completeness for lake water quality sample collection (see equation below) will be acceptable for completion of the project.

% completeness= (number of valid measurements)
$$\times$$
 100% = $1 \times 100\%$ = 50 % (number of valid measurements expected)

Global Positioning System Parameters

The geolocation of the sample sites is not dependent upon the weather or other climatic situations (barring the loss of satellites). Since GPS data can be collected over the length of the project, 100% completeness should be achieved.

DQO: Representativeness

Representativeness is the most important data quality metric in the project since the project objective is to provide watershed scale data. Representativeness of stream sampling sites was achieved by performing a desktop review of potential sampling sites. The number of major watershed streams draining to the Eel River within the Eel River-Tick Creek watershed is equal to the number of sites that can be sampled by this project given the limited resources; however, not all of the tributaries to the major streams could be samples. The following criteria were used to narrow the set of potential sites. Potential sites were selected based on accessibility (proximity to a road) and location in the watershed (ensuring that all perennial streams draining directly to Lake Perry and the Eel River are sampled). Potential sites were then field checked by the Project Manager to ensure accessibility to sampling stations and that the variety of physical, riparian, and in-stream habitats in the watershed were all represented in the sampling stations. Landowner permission will confirm potential sampling locations usability as sampling sites. An additional criterion for choosing sites is whether it has been used in historical studies to which this project's data may be compared.

Lake water quality samples will be collected from the deepest point in the lake. This point is considered to be the most representative by many researchers and sampling from this point follows the Indiana Clean Lakes Program sampling protocol (Appendix B).

DQO: Comparability

Water chemistry parameters are expected to be comparable to other studies if sampling and laboratory protocols and data quality objectives for measurement of data are similar. Results of this study can be compared to other studies that use this protocol and similar data quality objectives. All laboratory water chemistry analysis will be conducted using common, EPA-approved methods. All chemical data to be used for direct comparison with the data collected during the present study will be reviewed prior to its use to ensure comparability. As noted in the Sampling Design section, any non-analogous historical data (data collected under a different protocol with different data quality objectives) used in the study will be cited as such in the final product.

The macroinvertebrate and habitat samples are expected to be comparable because the project will follow macroinvertebrate sampling and habitat assessment procedures set forth by IDEM's Rapid Bioassessment protocol for macroinvertebrates, using the macroinvertebrate Index of Biotic Integrity (IDEM, unpublished) and OEPA's Quality Habitat Evaluation Index (QHEI). Results of this study can be compared to other studies using these protocols. All macroinvertebrate and habitat data to be used for direct comparison with the data collected during the present study will be reviewed prior to its use to ensure comparability.

Lake water quality samples are expected to be comparable to other samples collected throughout the state of Indiana because the project will follow lake sampling procedures set forth by IDEM's Indiana Clean Lakes Program (Appendix B). Results of this study can be compared to other studies using this protocol. All lake water quality dta to be used for direct comparison with the data collected during the present study will be reviewed prior to its use to ensure comparability.

Section 4: Sampling Procedures

The sampling methods and equipment are summarized in Table 3.

Stream Water Quality Sampling

Water quality sampling will be taken at each station to test the parameters listed in Table 2. Temperature, dissolved oxygen, pH, and flow measurements will be made in the field using the following instruments: YSI Model 55 dissolved oxygen/temperature meter, Hach Pocket Pal pH meter, and Marsh McBirney Model 2000 portable flow meter. All measurements will be taken according to the standard operating procedures provided by the manufacturer of the equipment. Project biologists will record water quality field measurements on standardized field log data sheets (Appendix D). Sampling location, sample number/field ID, date, time, weather, Universal Transerve Mercator (UTM) coordinates (North American Decent 1983, Zone 16), and any additional field notes will also be recorded on the data sheet.

Flow measurements will be taken utilizing protocols outlined in Marsh-McBirney (1990). A tape measure will be staked across the width of the channel prior to any measurements being taken. If the stream is less than two inches (2") deep, then multiple point velocity measurements will be taken throughout the width of the channel. Channel depths will be measured at a minimum of five points across the channel. Discharge will be calculated using the following formula:

Discharge =
$$\underbrace{\left(\sum d_i\right)}_{(n+1)}$$
 w*v

where d equals stream depth, n equals the number of streams depths measured, w equals the width of the stream, and v equals the velocity of the stream (0.9 times the fastest velocity recorded). This equation has been modified from EPA (1997).

If the stream is greater than two inches in depth, then the trapezoid channel method will be utilized to calculate stream discharge. The interval width, thus the number of flow measurements recorded across the channel, is determined by the channel width. If the channel width is less than fifteen feet, then the interval width will be equal to the stream width divided by five. If the channel is greater than fifteen feet wide, then the interval width will be equal to the channel width multiplied by 0.1. Stream depths will be recorded at the right and left edges of the predetermined trapezoid (SI_0 and SI_1). Flow measurements will be recorded at the midpoint of each trapezoid ($SI_{0/2}$). All data will be recorded on the data sheet included in Appendix D. Discharge will be calculated using a calibrated Excel spreadsheet to minimize data errors involved in performing hand calculations.

Grab samples will be collected for the remaining water quality parameters (nitrate+nitrite, ammonia, total Kjeldahl nitrogen, total phosphorus, soluble reactive phosphorus, total suspended solids, turbidity, biological oxygen demand, and E. coli), field duplicates, and field blanks. The collection of field duplicates will allow for determination of field collection precision. The collection of field blanks will allow for the determination of whether sample results are biased high due to contamination from field equipment, preservatives, or sampling techniques. Samples will be placed in prepared, plastic containers supplied by the Indiana CLP laboratory in Bloomington, Indiana and EIS Analytical Services in South Bend, Indiana. The labs will provide the appropriate preservative in the pre-packaged containers as necessary. collection will proceed in a manner similar to that outlined in EPA Volunteer Stream Monitoring: A Methods Manual (1997). One member of the field crew will wade to the center of the stream's thalweg to collect the water sample. The crewmember will invert a clean sample bottle (an extra one, not one used for sample storage) from the laboratory into the stream's thalweg. At a depth of approximately 8 to 12 inches below the water surface, the crewmember will turn the bottle into the current to allow for collection of water. (If the stream at the sampling station is shallower than 16 inches, water collection will occur mid-way between the water's surface and the stream bottom.) Once the bottle is full, the crewmember will scoop the bottle up toward the surface. Water in this bottle will be poured into the sample container.

The sample containers will be labeled as outlined in the proceeding section, stored on ice and transported to the appropriate laboratory for analysis. *E. coli* and biological oxygen demand samples will be stored on ice and transported to EIS Analytical in South Bend. Required chain of custody procedures as outlined in EIS Analytical's QA/QC plan (Appendix C) will be followed. All other samples (turbidity, nitrate+nitrite, ammonia, total Kjeldahl nitrogen, soluble reactive phosphorus, total phosphorus, turbidity, and total suspended solids) will be stored on ice and shipped to the CLP Laboratory in Bloomington, Indiana. Required chain of custody procedures as outlined in the laboratory's QA/QC plan (Appendix B) will be followed. Water chemistry samples will be processed at both labs using standard operating protocol (see Table 3). Both water chemistry samples collection events will follow this protocol for each of the four sample sites, duplicates, and field blanks. Analytical results from the water quality labs will be based on their schedule, but are anticipated within 2-3 weeks of sample collection.

Lake Water Quality Sampling

Water quality sampling will be collected at the deepest point of the lake to test the parameters listed in Table 3. Water depth, temperature and dissolved oxygen profiles, pH, and light attenuation at three feet and the 1% light level will be made in the field using the following instruments: Aquatic Ecosystems Model DMP depth finder, YSI Model 55 dissolved oxygen/temperature meter, Hach Pocket Pal pH meter, and LI-COR LI-1400 data logger with LI-192SA spherical underwater quantum sensor. All measurements will be taken according to the standard operating procedures provided by the manufacturer of the equipment. Transparency will be measured using a standard eight inch, black and white Secchi disk attached to a graduated rope marked in feet. The disk will be lowered into the water until it is no longer visible. The depth will be noted, then the disk lowered a few more feet and raised again until it becomes visible. This depth will also be noted. The midpoint between the two measurements will be recorded as the Secchi disk depth. Project biologists will record water quality field measurements on standardized field log data sheets (Appendix D). Sampling location (epilimnetic or

hypolimnetic), water depth, sample number/field ID, date, time, weather, UTM coordinates, and any additional field notes will be recorded on the field sheet.

One plankton sample will be collected from the deepest point of the lake. Plankton collection will proceed in a meaner similar to that outlined by the IDEM Clean Lakes Program (2002). One member of the field crew will lower the conical tow net with a mesh bucket attached to the 1% light level, as determined during lake sampling. This level should be sufficient to obtain a representative sample of plankton in the water column. The net will be brought back to the surface and rinsed to concentrate the plankton sample. After the net is brought to the surface, the sample will be transferred from the bucket to the appropriate sample container labeled with the lake name, tow depth, and sample collection date. Once preservative is added, the sample will be stored on ice and transported to the Clean Lakes Program Laboratory for identification and quantification following the laboratory protocol as outlined in the laboratory's QA/QC plan (Appendix B).

A Kemmerer bottle will be used collect grab samples for the remaining water quality parameters from the deepest location of the lake. Sample collection will proceed in a manner similar to that established by IDEM's Indiana Clean Lakes Program (2002). If the lake is stratified, then samples will be collected from the epilimnion (within one meter of the lake's surface) and the hypolimnion (one meter above the substrate surface). If the lake is not stratified, then the samples will be collected mid-way between the lake's surface and its bottom. One field or crew member will lower the Kemmerer bottle to the correct depth as determined by the dissolved oxygen profile. Once the bottle has reached the correct depth, the crew member will send the Kemmerer bottle messenger to the bottom, thus closing the bottle. Once the bottle is closed, it will be pulled back to the surface. Water from the Kemmerer bottle will be emptied into the appropriate sample containers. One set of field blanks will be collected during the lake sampling trip in sample containers provided by the appropriate laboratory. Sample containers will be labeled as outlined in the preceding paragraphs, stored on ice, and transported to EIS Analytical Laboratory (BOD) and the Indiana CLP laboratory (all other samples) for sample analysis. Required chain of custody procedures as outlined in the laboratories' QA/QC plan (Appendices B and C) will be followed. Water quality samples will be processed at the lab following standard operating procedures (See Table 2). Analytical results from the laboratory will be based on their schedule but are anticipated within 2-3 weeks of sample collection.

Macroinvertebrate Sampling

Methods for sampling macroinvertebrates will follow standard methods established by IDEM's Rapid Bioassessment protocol. Two samples using a 1×1 meter, $600 \mu m$ kick net will be performed at each of the sample stations. Since the water is no more than chest deep at any one site, each site lends itself to the use of a kick net. Organisms collected in the net will be placed in clean, wide-mouth plastic collection jugs containing 70-80% alcohol and stored on ice. Macroinvertebrate samples will be transported on ice to the JFNew laboratory immediately following collection of the samples. Macroinvertebrate samples will be identified and checked within one week of collection to limit any potential deterioration of the identifying features of the organisms. During the identification and confirmation time period, macroinvertebrate samples will be stored on ice or in a refrigerated cooler. Macroinvertebrate identification results will be recorded on data sheets (Appendix E).

Habitat Evaluation

Habitat evaluation will be conducted at each station using Ohio EPA's Quality Habitat Evaluation Index (QHEI). The field crew will adhere to OEPA QHEI standard procedures. Assessments will be made by the field crew and noted on QHEI data sheets (Appendix F).

Table 3. Sampling procedures.

Parameter	Sample Frequency [§]	Sample Container*	Sample Volume	Holding Time
pН	L: 2; S: 4	N/A	N/A	N/A
Temperature	L: 2; S: 4	N/A	N/A	N/A
Dissolved Oxygen	L: 2; S: 4	N/A	N/A	N/A
Flow	S: 4	N/A	N/A	N/A
E. coli	S: 4	HDPE Nalgene	100 ml	6 hours†
Light Attenuation	L: 2	N/A	N/A	N/A
Transparency	L: 2	N/A	N/A	N/A
Ammonia	L: 2; S: 4	HDPE Nalgene	125 ml	28 days
Nitrate+nitrite	L: 2; S: 4	HDPE Nalgene	125 ml	28 days
Total Kjeldahl Nitrogen	L: 2; S: 4	HDPE Nalgene	125 ml	28 days
Total Phosphorus	L: 2; S: 4	Glass Media	125 ml	28 days
Soluble Reactive Phosphorus	L: 2; S: 4	Glass Media	125 ml	48 hours
Biological Oxygen Demand	S: 4	HDPE Nalgene	1000 ml	7 days
Turbidity	L: 2; S: 4	HDPE Nalgene	125 ml	7 days
Total Suspended Solids	L: 2; S: 4	HDPE Nalgene	1000 ml	7 days
Chlorophyll a	L: 2	HDPE Opaque Nalgene	30 ml	3 weeks
GPS	L: 2; S: 4	N/A	N/A	N/A
Macroinvertebrates	S: 4	Clean, wide-mouth plastic collection jugs containing 70-80% alcohol	N/A	7 days
Habitat Analysis	S: 4	N/A	N/A	N/A
Plankton	L: 1	HDPE Opaque Nalgene	500 ml	1 year

[§]L=Lake samples; S=Stream samples

Section 5: Custody Procedures

The field crew consisting of the Project Manager and Project Technician (or two Project Technicians if the Project Manager is not present) will collect the lake and stream water quality samples using the procedure outlined in Section 4. Samples will be labeled with the sampling location, sample number (same as "Field ID" on the laboratory Chain of Custody Record), date and time of collection, sample parameters, sampler name(s), and plankton tow depth (where appropriate). This information along with the project name and project number will be recorded on the laboratory Chain of Custody Record (Appendices B and C). Appendices B and C contain

Page 20

^{*}Sample containers will be provided and preserved by the contracted laboratory. EIS Analytical will provide and preserve containers for *E. coli* sampling. The CLP Laboratory will provide and preserve sample bottles for all remaining laboratory parameters.

[†]This value refers to the maximum time between sample collection and analysis, not the holding time from the time the sample arrives at the lab. That holding time is 2 hours.

blank Chain of Custody Records for the Indiana Clean Lakes Program laboratory and EIS Analytical, respectively.

Biological oxygen demand and *E. coli* samples will be stored on ice and transported within 6 hours to the EIS Analytical Services laboratory. The Project Manager (or Lead Project Technician if the Project Manager is not a member of the field crew) will sign the Chain of Custody Record in the presence of the laboratory technician when samples are released to the laboratory. EIS Analytical Services will review sample labels and remove any samples from the dataset that cannot be attributed to specific samplers, have not been properly preserved, or that exceed the maximum holding time. The laboratory manager will also sign-off on laboratory bench sheets after all checks have been completed. A copy of the chain of custody form will accompany sample result documents from EIS Analytical Services. The report from EIS Analytical Services is expected within 2-3 weeks of sampling.

All other water quality samples (water chemistry and plankton) will be preserved and stored on ice prior to transportation to the Indiana Clean Lakes Program laboratory within 24 hours of sample collection. The Project Manager or Lead Project Technician will sign the Chain of Custody Record prior to shipping the samples to the CLP laboratory. Clean Lakes Program staff will review sample labels and remove any samples from the dataset that cannot be attributed to specific samplers, have not been properly preserved, or that exceed the maximum holding time. The report from the Clean Lakes Program laboratory is expected within one month of sampling. A copy of the chain of custody form will accompany sample results.

The field crew consisting of the Project Technician and Project Manager (or two Project Technicians if the Project Manager is not present) will use IDEM's Rapid Bioassessment Protocol to collect macroinvertebrates samples. All macroinvertebrates removed from the sites will be placed in wide-mouth plastic containers with a preservative and labeled with the sample location, sample number, date and time of collection, sample parameter, and sampler(s) name(s). Sample bottles will be stored on ice. Samples will be transported to the JFNew laboratory and stored in a cooler until identification is completed. Identification will be completed within one week of sampling. Identifications will be made by a Project Technician and checked for precision by the Project Manager using the following taxonomic references: Merritt and Cummins (1996), McCafferty (1981), Thorp and Covich (1991) and Pennak (1978). Appendix E contains the data sheet to be used for macroinvertebrate identification. Macroinvertebrates and data sheets used during identification will remain in JFNew's custody; therefore, chain of custody does not apply to these measurements.

Habitat measurements will be noted on the QHEI data sheet located in Appendix F. Samples are not collected as part of this procedure. Habitat assessment data sheets will remain in JFNew's custody; therefore, chain of custody does not apply to these measurements.

Section 6: Calibration Procedures and Frequency

Calibration measures will be performed on all field equipment to be used (where appropriate) based upon the manufacturers recommendations as outlined in the users manual for each individual piece of equipment. Field equipment that cannot be calibrated, such as a tape measure

and Secchi disk, will not be calibrated. Field equipment calibration will be performed the day of sampling prior to its use in the field. The YSI Model 55 oxygen and temperature probe is auto-calibrated based on the altitude and salinity of the sample prior to time of use. The LI-COR data logger and spherical quantum light sensor are adjusted to surface incident light at the time of sampling. The Pocket Pal pH meter is calibrated using Fisher calibration buffer (pH 4.0 and 7.0). The Marsh McBirney Model 2000 flow meter and the Aquatic Ecosystems model DMP depth finder are calibrated by the manufacturer prior to shipping. If equipment cannot be property calibrated, then sampling will be rescheduled. If the GPS cannot be property calibrated, then GPS measurements will be recorded at a later date following proper calibration and all other sampling will proceed as scheduled. See Appendix B for Clean Lakes Program laboratory and Appendix C for EIS Analytical Services calibration procedures and frequency.

Section 7: Sample Analysis Procedure

Table 4 summarizes the analytical procedures for each water quality parameter. The laboratories have the capability, as shown in their respective Quality Assurance documents (Appendices B and C), to analyze the water samples according to the procedures listed in Table 4.

Table 4. Analytical procedures.

Matrix*	Parameter	Method	Detection Limits
Water; S/L	рН	Hach Pocket Pal pH meter	0.1
Water; S/L	Temperature	YSI Model 55	1°C
Water; S/L	Dissolved Oxygen	YSI Model 55	0.1 mg/l
Water; S	Flow	Marsh McBirney Model 2000	0.1 ft/s
Water; L	Light Attenuation	LI-COR LI-1400 data logger; LI-193SA spherical quantum sensor	3μ A/ 1000μmol-s-m ²
Water; L	Transparency	Secchi Disk	N/A
Water; S/L	Nitrate+nitrite	Cadmium Reduction	0.018 mg/l
Water; S/L	Ammonia	Alkaline phenol and hypochlorite	0.022 mg/l
Water; S/L	Total Kjeldahl Nitrogen	EPA Method 351.2	0.230 mg/l
Water; S/L	Total Phosphorus	Standard Method 4500-PF	0.005 mg/l
Water; S/L	Total Suspended Solids	Standard Method 2540 D	1 mg/l
Water; S/L	Soluble Reactive Phosphorus	Standard Method 4500-PF	0.005 mg/l
Water; S	Biological Oxygen Demand	Standard Method 5210 B	0.1 mg/l
Water; S	E. coli	Standard Methods 9223 B	1 colony/100 ml
Water; S/L	Turbidity	Standard Method 2540	0.01 NTU
Water; L	Chlorophyll a	Standard Method 10200-H	$2\mu g/l$
GPS	GPS	Trimble Pathfinder Pro XRS	N/A
Substrate	Macroinvertebrates	IDEM (unpublished)	N/A
Habitat	Habitat Analysis	OEPA QHEI (1989)	N/A
Water	Plankton	Standard Method 10200-F	N/A

^{*}S=Stream samples; L=Lake samples

All procedures that will be used to analyze the macroinvertebrate samples, plankton, and habitat assessments will strictly adhere to the IDEM Rapid Bioassessment protocol, IDEM Indiana Clean Lakes Program, or the OEPA QHEI protocol, respectively. Because these tools were designed to make rapid assessments at large scales, the use of these tools will enable the achievement of project goals. In general, detection limits are not applicable to the biological and physical habitat assessment used in this project. However, small macroinvertebrates (600 µm) may not be collected due to mesh size of the sampling net. Similarly, the field picker may overlook small macroinvertebrates caught in the net. Macroinvertebrate nets will be double checked to prevent this. Table 4 provides an overview of the analytical procedures.

Section 8: Quality Control Procedures

Quality control will be achieved by strict adherence to written protocol. To achieve precision in field measurements, replicate measurements will be taken at one of the four stream sample sites and one of the two lake sample locations (epilimnetic or hypolimnetic) for each sampling event. To achieve accuracy in field measurements, equipment will be properly maintained and equipment calibration will occur as detailed in Section 6. To achieve precision in laboratory measurements, replicate samples will be analyzed for one of the four stream sites and one of the two lake sample locations for each sampling event. The contracted laboratories have established control limits for all quality control checks established by their protocols (Appendices B and C). To achieve accuracy in laboratory measurements, field blanks collected concurrently with sample collection will be analyzed. Field blank collection will ensure that no outside contamination occurs during the process of sample bottle preparation or sample collection. Additional laboratory QA/QC checks for accuracy and precision will be implemented by EIS Analytical and the Indiana Clean Lakes Program Laboratory (Appendices B and C). Field work will be performed by the same crew at each site. The Project Manager or Lead Project Technician will ensure consistency in sample collection and field work. This quality control procedure will allow for comparison to be made among sampling sites, and thus, achieve the project's goal of identifying hot spots in the watershed for more targeted, intensive management.

Quality control in the field will be obtained by adherence to standard operation protocols. This quality control includes duplicate samples, equipment calibration, and adherence to standard operating procedures as detailed in Section 3. Quality control of laboratory water chemistry and plankton analysis will be performed as outlined in the respective laboratories' QA/QC plans (Appendices B and C). This quality control for water quality samples includes the use of field duplicates, lab duplicates, split samples, field blanks, reference standards, and method blanks where appropriate. This level of quality control is sufficient to achieve project goals.

Quality control of macroinvertebrate identification will be achieved by having a single initial identifier of each sample with 10% of each sample being checked by the Project Manager. Inaccuracies greater than 25% of the checked portion will trigger reevaluation of the entire sample unless deemed unnecessary. (For example, technician is consistently misidentifying one family; in that case, only the individuals of that family will be reevaluated.) Consistency in protocol will allow for comparisons to be made among sample sites, and thus, achieve the project goals of identifying priority areas within the watershed for targeted intensive management.

Independent QHEI assessments will be made by each member of the field crew to ensure precision and accuracy of habitat assessment. Any differences in assessments will be averaged, if possible, based on the metric. Where averaging of a metric is not possible, the value given by the Project Manager will be accepted. Fieldwork will be performed by the same crew at each site. The Project Manager or Lead Project Technician will ensure consistency in sample collection and fieldwork.

Section 9: Data Reduction, Analysis, Review, and Reporting

Data Reduction

Field data sheets will be inspected for completeness and signed by the Project Manager or Lead Project Technician before leaving the site. The Project Manager or Lead Project Technician will calculate the RPD before leaving the site to ensure the precision data quality objectives for measurement of data for the field measurements are met (RPD<5%). It will be assumed that accuracy data quality objective of field measurements are met if there is no problem with equipment calibration. The field sheet contains fields showing whether the RPD met the data quality objective (precision), if calibration was completed (accuracy), if the measurement was taken (completeness), and if protocol was followed (comparability). Data from the field data sheets and macroinvertebrate identification data sheets will be used to calculate the Indiana Trophic State Index (ITSI), macroinvertebrate Index of Biotic Integrity (mIBI), and QHEI to indicate the water quality, biological integrity, or habitat quality of the aquatic system at the specific sites studied. The Project Manager will review macroinvertebrate identification and TSI, mIBI, and QHEI score calculations. Field measurements need no further reduction. Any data reduction in the laboratory will be done in accordance with Indiana Clean Lakes Program laboratory and EIS Analytical QA/QC protocol (Appendices B and C).

Data Analysis

Discharge and loadings will be calculated using an electronic spreadsheet database program designed for this project and compatible with software used by JFNew, IDEM, Cass County SWCD, and the Lake Perry Estates Corporation to minimize errors involved with performing hand calculations. Once the raw data has been reviewed by the Project Manger, discharge will be calculated using methodology detailed in Section 4 (Marsh McBirney, 1990). Once discharge has been calculated, the pollutant load will be calculated by multiplying the specific site discharge by the concentration of a pollutant found at that site. Pollutant loads among sites will be compared to identify which sites provide the greatest load of pollutant to the Eel River-Tick Creek watershed.

Data Review

The Project Technician will enter all data into a computerized spreadsheet/database program designed for this project and compatible with software used by JFNew, IDEM, the Cass County SWCD, and the Lake Perry Estate Corporation. The Project Manager will review data entry for completeness and errors.

Data Reporting

EIS Analytical and the Indiana Clean Lakes Program laboratory will provide sample results with qualifying information for any results which fall outside of control limits. A copy of the chain of custody form for each laboratory will be returned with the sample results.

The Project Manager will be responsible for report production and distribution. The Project Technicians will provide assistance in these tasks. The report will contain the data results, interpretation of the data, Best Management Practice project proposals for existing watershed conditions, a compilation of watershed stakeholders' concerns and goals, and proposals for future development in the watershed.

Section 10: Performance and System Audits

Specific audits such as those conducted on the contracting laboratory by outside auditors are not applicable to this type of project. Such audits are not necessary to achieve the project goals given the scope of this study and the intended use of the data. However, the following checks and oversight will be utilized to ensure data quality:

- The Project Manager will provide oversight to all technical staff ensuring strict adherence to all protocols.
- Field data sheets will be reviewed for completeness prior to leaving the field.
- Two individuals will make QHEI assessments at each site.

Both the Indiana Clean Lakes Program laboratory and EIS Analytical Services have built in audits (Appendices B and C). The Project staff is open to IDEM's audits upon IDEM's request. The Project Manager will conduct a system audit following the first sampling event and at the end of the project to ensure data quality objectives are met.

Section 11: Preventative Maintenance

JFNew will utilize a pH meter (Hach Pocket Pal pH meter), dissolved oxygen meter/thermometer (YSI Model 55), flow meter (Marsh McBirney Model 2000), underwater spherical quantum sensor (LI-COR LI-193SA) and data logger (LI-COR LI-1400), global positioning system (Trimble Pathfinder Pro XRS), depth finder (Aquatic Ecosystems Model DMP), tape measure, Secchi disk, plankton net, and kicknet for water quality sampling. To keep these instruments and equipment in proper working order, all maintenance will be performed as outlined in the users manuals provided with the equipment, where appropriate. Additional batteries for the dissolved oxygen meter, data logger, GPS, and depth finder; a separate thermometer; and replacement dissolved oxygen membranes will be present in the field for any necessary field repairs. An additional set of collection bottles and nets will be taken along on each sampling trip (where applicable). Preventative maintenance in the laboratories is covered in Appendices B and C.

Section 12: Data Quality Assessment

DQO: Precision and Accuracy

As stated in the Study Goals in Section 1, the goal of the project is to document the physical, biological, and chemical condition of the Eel River-Tick Creek watershed. Collected data will

File# 02-03-04

be utilized to identify priority areas in the watershed that may be contributing more non-point source pollutants to the Eel River-Tick Creek watershed. Data quality controls outlined in the sections above will be sufficient to meet the objectives of the study. Data quality assessments conducted by the contracting laboratories will be sufficient to meet the objectives of the project (Appendices B and C). Laboratory analysis of precision and accuracy checks, including control levels for duplicate and replicate sample and field and laboratory blanks, will be kept on file in the contract laboratories. All laboratory data will be assessed by EIS Analytical and the Clean Lakes Program Laboratory to determine if data falls within the required precision and accuracy levels specified by each laboratory (Appendices B and C). The laboratories will follow established protocols to determine if data is valid. Any data that is determined to not meet laboratory quality control guidelines (ie. result is greater than ±2 standard deviations) will not be reported or used for subwatershed prioritization. All QA/QC measures for each run of the samples will be included with the lab's final data analysis and will be included as an appendix in the final report.

Field water chemistry measurements and biological and habitat data will be accepted as valid provided no significant problems occur during calibration and sampling. Field water chemistry measurements (temperature, dissolved oxygen, and pH) will be repeated *in situ* if precision failures are observed (RPD>5%). Data that does not meet precision goals will not be included in sample analysis and subwatershed prioritization. The accuracy of field measurements and biological and habitat data will not be quantified. However, the data will be acceptable provided that no significant problems occurred during equipment calibration or sampling. Sampling will be rescheduled if problems occur during equipment calibration. Field measurements will be repeated if difficulties occur during sampling.

DQO: Completeness

All data determined to be accurate and precise will be considered valid and will be reported even if completeness objectives are not met. Due to flexibility in scheduling of sampling events, 50-100% completeness is anticipated. If for some reason (such as ones outlined in previous sections) 100% collection of samples is not possible, the data will be evaluated to determine whether the watershed has been sufficiently represented in the data collection to date.

DQO: Representativeness

Meeting the goal of representation is of primary importance since it is one of the study's goals. Data will be evaluated for representativeness based primarily on the following criteria: all sampling stations have been sampled at least once and water chemistry samples have been collected during storm and base flow events. Those criteria are listed in order of importance. The first one listed will have more importance in deciding whether the project is complete despite not having collected 100% of the samples. Any decisions to deem the project complete without 100% collection of data will be made by the Project Manager. The IDEM Project Manager will be included in all such decisions.

DQO: Comparability

Data collected during this study will meet comparability requirements if standard operating procedures as outlined in Section 4 are followed. Water chemistry data will be comparable with other data collected using the same protocol. Likewise, macroinvertebrate and habitat data will

JFNew File# 02-03-04

be comparable to IDEM data only if the standard operating procedures are followed. If problems occur during sample collection that requires the use of non-standardized operating procedures, then the data will be evaluated for comparability. This will likely result in the removal of this data from the data set.

Section 13: Corrective Action

Should extraordinary events occur that could adversely affect the collection of accurate, representative data (extreme climatic conditions, chemical spill, etc.) testing shall be rescheduled during the same year when conditions are more favorable. The data can then be analyzed so that reports can be written. Since stream water chemistry sampling is to be done twice and lake water quality, biological, and habitat sampling is to occur once during the study period, it is feasible to schedule sampling at a time when conditions permit within the project's timeframe. If, for reasons beyond the project's control, samples cannot be collected during the project's timeframe, the prohibitive conditions will be noted and discussed with the IDEM Project Manager.

Corrective actions that need to be taken by the Indiana Clean Lake Program laboratory for the chemical water quality data and plankton data quality analysis are noted in Appendix B. Likewise, EIS Analytical Services corrective actions that will be taken for the chemical water quality analysis are noted in Appendix C. Although it is not anticipated, should data received from either laboratory be unusable given the project's data goals, another sampling event will occur to replace effected data. Assurance from the respective laboratory that similar problems in data quality will not be repeated will be obtained prior to submission of any samplings.

Less than 75% accuracy of checked portion (10%) of the macroinvertebrate sample will trigger corrective actions for the macroinvertebrate identification. Such corrective actions could include discussion with sampler and identifier to determine the source of error, re-identification of part of or the entire sample, and/or discarding an unusable sample where appropriate. Any habitat data collected according to standard operating protocols will meet the data collection objectives. Corrective actions are not applicable to this form of assessment.

Section 14: Quality Assurance Reports

Quality Assurance reports will be submitted to IDEM's Watershed Management Section every three months as part of the Quarterly Progress Report and/or Final Report. Any problems that are found with the data will be documented in the quarterly reports. Quality assurance issues that may be addressed in the quarterly report include, but are not limited to the following:

- Assessment of such items as data accuracy and completeness
- Significant QA/QC problems and recommended solutions
- Results of performance and/or systems audits
- Discussion of whether the QA objectives were met and the resulting impact on decision making
- Limitations on use of the measurement data

If no QA/QC problems arise, this will be noted in the report.

References Cited

- APHA et al. 1995. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, Washington, D.C.
- Hilsenholf, W.L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. J.N. Am. Benthol. Soc. 7(1): 65-68.
- IDEM, Unpublished. Macroinvertebrate Index of Biological Integrity
- Marsh-McBirney. 1990. Model 2000 Installation and Operations Manual.
- McCafferty, W.P. 1981. Aquatic Entomology. Jones and Bartlett Publishers, Sudbury, Massachusetts 447 pp.
- Merritt, R.W., and K.W. Cummins. 1996. Aquatic Insects of North America. Kendall/Hunt Publishing Company, Berkeley 862 pp.
- Ohio Environmental Protection Agency. 1989. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Division of Water Quality Monitoring and Assessment, Columbus, Ohio.
- OI Analytical. 2000. The FLOW solution operations manual for segmented flow analysis. College Station, Texas.
- Pennak, R.W. 1978. Fresh Water Invertebrates of the United States. John Wiley & Sons, Inc. New York 803 pp.
- Standard Methods for the Examination of Water and Wastewater, 18th Ed., APHA-AWWA-WEF; Washington D.C., 1992, Method 9223B.
- Thorp, J.H. and A.P. Covich. 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc. San Diego, California 911 pp.
- U.S. Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79/020.
- U.S. Environmental Protection Agency. 1979. Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Method 351.2.
- U.S. Environmental Protection Agency. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. Revised ed. EPA/440/4-89-001.
- U.S. Environmental Protection Agency. 1997. Volunteer Stream Monitoring: A Methods Manual. EPA-841-B-97-003.

JFNew File# 02-03-04

APPENDIX A

Sampling Station Locations

PROPOSED SAMPLING SITES

Site 1

Site 1 provides information on one of Lake Perry's tributaries, Laird Ditch. The sample site is located approximately 100 yards upstream of the intersection of Laird Ditch with County Road 300 East. The ditch begins in predominantly row crop agriculture and pasture, flowspast the Cass County 4-H Fairgrounds, and winds its way through several contiguous woodlots. Sycamore, oak, and maple trees vegetate the floodplain of Laird Ditch at the sample site. The streambanks are dominated by shrubs and herbaceous plants. The streambanks are high measuring three to five feet in height, while the channel is moderately wide measuring four to six feet in width. The exact depth of the stream could not be determined at the time of inspection, but appears to be less than two feet deep at the sampling site, and contains a gravel and sand substrate. Landowner permission has been granted for this site.

Site 2

Site 2 is located on Tick Creek at County Road 150 North. This stream is the second tributary to Lake Perry. Upstream of the road, the site is bordered by low steep banks vegetated, while steep banks form the channel downstream of the bridge. A steep hill confines the stream's forested floodplain downstream of the bridge. Channel substrate appears to be gravel and cobble. The channel is four to six feet in width with a depth of less than one foot. Sampling is proposed on the south side of the road as it offers the best access point.

Site 3

Site 3 is located along Howard Ditch at its intersection with County Road 75 North immediately east of County Road 350 East. Howard Ditch flows through a predominantly agricultural watershed; however, residential land use dominates the watershed near the sample site. The stream channel is moderately narrow measuring two to six feet in width with a depth of less than one foot. Mowed grass and maintained lawn vegetate the eroded streambanks downstream of the bridge, while uplands grasses and shrubs vegetated the portion of the stream located upstream of the bridge. Channel substrate appears to be sand and gravel substrate covered by a heavy layer of silt. Landowner permission is currently being sought for this location.

Site 4

Site 4 is located on Shackelford Ditch at its intersection with County Road 75 North. The stream flows through predominantly agricultural row crop and pastureland. The streambanks are steep measuring four to six feet high. The stream is narrow averaging two to three feet in width with an average depth of less than one foot. Small trees, shrubs, and upland grasses vegetate the streambanks at this site. Channel substrate is predominantly sand and gravel covered by a layer of silt. Sampling is limited downstream of the road, therefore sampling is proposed on the upstream side of the bridge. Landowner permission is currently being sought for this location.

APPENDIX B

Indiana Clean Lakes Program Laboratory Laboratory QA/QC Plan and Chain of Custody Form CHAIN OF CUSTODY RECORD

				Total No.	//////	Lab O	Lab Order ID
SAMPLERS: (Print Name & Sign)	Sig	e e	sue couldidad. Dee collo	of		of bearing bendance	de nogell .
FIELD DATE TIME	00 2 4	0 K < B	STATION LOCATION	Con- tainers	Sample	TAT	Lab
	\vdash						2004
	+		OF BIG	VVVV. DE 25 (DUB 190 UMB) BD BHO	and adv states belong	DE LO	10 to
	+						
200	1000		THE COLUMN TWO DOORS	no yes ma beaschoom in stron vota	Year was	HS-GT-TO-F	
ind time.	32.	2	get in a temperal detail in	now be upon at miles on the month	March 12	No.	
	2			SELLEN GENERAL SELLEN S	25-110-1280-2		
od ve bestvor	87	0	Board Jeann Blaco Dagenton	OF DESCRIPTION OF SHARE BROWN IN OUR SHARE			
	+				0		
Relinquished By: (Signature)	<u>ē</u>		Date Time	Received By: (Signature)	EIS QUOTE NO:		
Relinquished By: (Signature)	(eu		Date Time	Received By: (Signature)	Ship To:		
Relinquished By: (Signature)	<u>s</u>		Date Time	Received By: (Signature)	T		

NOTES: 1) If you were issued a quote number, it must appear on this document.
2) Instructions & area for comments are on reverse side.

EIS ANALYTICAL SERVICES, INC. • 1701 NORTH IRONWOOD DRIVE SUITE B •SOUTH BEND IN 46635 • Phone (219)277-0707 • Fax (219)273-5699 Form: Chain-of-Custody (6-12-97)

Form Completion Instructions

- 1. Each slanted line represents specific container types from which specific tests are conducted. Use additional record sheets if # of samples or # of tests exceed allotted spaces.
- 2. List tests (per container type) on the slanted lines & give # of containers in boxes below tests.
- 3. Sum all containers and place in column labeled Total No. Containers.
- For the column labeled Sample Type, give brief description such as soil, MW, oil, etc. 4
- 5. For column labeled TAT use one of the following:

Meaning	2 4 weeks for written report based entirely on test complexity and number of samples	In general, prior authorization is required from the lab to request a 5 day furnaround time. Surcharges may or may not be applicable, depending entirely on test complexity.	$\underline{\text{Must}}$ have been authorized by the Lab and increased costs $\underline{\text{must}}$ have been authorized by the client.	<u>Must</u> have been authorized by the Lab and increased costs <u>must</u> have been authorized by the client.
Request	Normal	1 week	3 days	1 day

Submission Comments

APPENDIX C

EIS Analytical Services Laboratory QA/QC Plan and Chain of Custody Form

CHAIN OF CUSTODY RECORD

				Total No.	//////	Lab O	Lab Order ID
SAMPLERS: (Print Name & Sign)	Sig	e e	sue couldidad. Dee collo	of		of bearing bendance	de nogell .
FIELD DATE TIME	00 2 4	0 K < B	STATION LOCATION	Con- tainers	Sample	TAT	Lab
	\vdash						2004
	+		OF BIG	VVVV. DE 25 (DUB 190 UMB) BD BHO	and adv states belong	DE LO	10 to
	+						
200	1000		THE COLUMN TWO DOORS	no yes ma beaschoom in stron vota	Year was	HS-GT-TO-F	
ind time.	32.	2	get in a temperal detail in	now be upon at miles on the month	March 12	No.	
	2			SELLEN GENERAL SELLEN S	25-110-1280-2		
od ve bestvor	87	0	Board Jeann Blaco Dagenton	OF DESCRIPTION OF SHARE BROWN IN OUR SHARE			
	+				0		
Relinquished By: (Signature)	<u>ē</u>		Date Time	Received By: (Signature)	EIS QUOTE NO:		
Relinquished By: (Signature)	(eu		Date Time	Received By: (Signature)	Ship To:		
Relinquished By: (Signature)	<u>s</u>		Date Time	Received By: (Signature)	T		

NOTES: 1) If you were issued a quote number, it must appear on this document.
2) Instructions & area for comments are on reverse side.

EIS ANALYTICAL SERVICES, INC. • 1701 NORTH IRONWOOD DRIVE SUITE B •SOUTH BEND IN 46635 • Phone (219)277-0707 • Fax (219)273-5699 Form: Chain-of-Custody (6-12-97)

Form Completion Instructions

- 1. Each slanted line represents specific container types from which specific tests are conducted. Use additional record sheets if # of samples or # of tests exceed allotted spaces.
- 2. List tests (per container type) on the slanted lines & give # of containers in boxes below tests.
- 3. Sum all containers and place in column labeled Total No. Containers.
- For the column labeled Sample Type, give brief description such as soil, MW, oil, etc. 4
- 5. For column labeled TAT use one of the following:

Meaning	2 4 weeks for written report based entirely on test complexity and number of samples	In general, prior authorization is required from the lab to request a 5 day furnaround time. Surcharges may or may not be applicable, depending entirely on test complexity.	$\underline{\text{Must}}$ have been authorized by the Lab and increased costs $\underline{\text{must}}$ have been authorized by the client.	<u>Must</u> have been authorized by the Lab and increased costs <u>must</u> have been authorized by the client.
Request	Normal	1 week	3 days	1 day

Submission Comments

APPENDIX D

Water Quality Sampling Data Sheets

WATER QUALITY SAMPLING FIELD LOG SHEET

DATE:	PROJECT NAME:	
TIME:		
FIELD CREW:		
	Date):	
EIELD DAD AMETEDS	REPLICATE (if taken)	
FIELD PARAMETERS		DDD —
pH:	pH:	
Temperature:	Temperature:	
Dissolved Oxygen:		
DO % Saturation:		
Conductivity: Calculated Flow:		RPD =
Relative Percent Difference (RPD	n)= (sample, sample,)	
Relative Percent Difference (RPD	$((\text{sample}_1+\text{sample}_2)/2)$	
LAB PARAMETERS		
E. Coli:		
Ammonia:		
Nitrate+Nitrite:		
Kjeldahl Nitrogen:		
Total Phosphorus:		
Soluble Reactive Phosphorus:	_	
Total Suspended Solids:		
Turbidity:		
Biological Oxygen Demand:		
	Field Crew Leader Signature:	

Discharge Measurement

Site:	Date:	Time:
Project #:	Project Name:	
Crew Members:	Equipment:	
Physical Site Description:		
GPS Coordinates:		
If the stream is <2" deep:		
Stream Width:feet		
Stream Depths:,,,,	_,,,,,,	,feet
U:,,,,,,,	,,,,	_ft/s
II · ft/c		

If the stream is >2" deep:

Stream Width (W):____feet

Interval Width (IW) (If W<15', then IW=W/5. If W>15, then IW=W*0.1):_____feet

Segment	$\underline{SI_0}$		$\frac{\mathbf{SI}_1}{\mathbf{I}_1}$		½ IW		$\underline{\mathbf{U_{0.4}}}$		$\frac{\underline{U}_{0.8}}{\text{Set}}$		Set	
	Location	Depth (ft)	Location	Depth (ft)	Location	Depth (ft)	Set Depth	Rate (ft/s)	Set Depth	Rate (ft/s)	Set Depth	Rate (ft/s)
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												

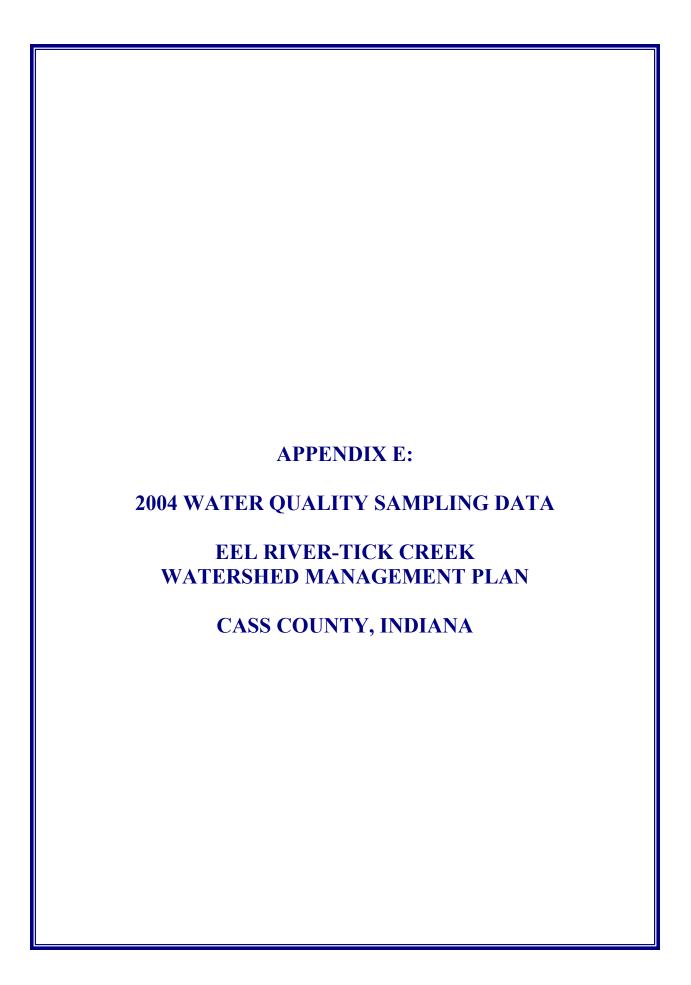
Field Crew Leader	Signature:	
1 1010 C10	21811111111	

LAKE ASSESSMENT FIELD DATA SHEET

SITE:			SAMPLERS:
DATE:	TIME:	WEATHER:_	
DEPTH TEM (m) (°C		D.O (mg/l)	
Sur			
1.0			%TRANSM.@3'=
1.5			1% level (ft) =
2.0			SECCHI (m) =
3.0			ANCHOR DEPTH (ft & m)
4.0			HYPO (m)
5.0			PLANKTON TOW (m)
6.0			CHL a FILTERED (ml)
7.0			
8.0			
9.0			
10.0			
11.0			
12.0			
13.0			
14.0			RAMP TYPE:
15.0			Latitude:
16.0			Longitude:
17.0			INITIALS:
18.0			COMMENTS:

APPENDIX E

Macroinvertebrate Data Sheet


INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OWM - BIOLOGICAL STUDIES BENTHIC MACROINVERTEBRATE BENCH SHEET PHASE 1 TAXONOMY

SAMPLE NUMBER:	MPLE NUMBER: SITE: COUNTY:		UNTY:	CREW CHIEF:	
LOCATION:		HYDROLOGIC UNIT:	DATE OF CO	OLLECTION:	
ECOREGION:	IASNRI:	SORTER:		LABEL CHECK:	
EPHEMEROPTERA					
SIPHLONURIDAE (7)	METRETOPODIDAE (2)	BAETIDAE (4)	BAETISCIDAE (3)	HEPTAGENIIDAE (4)	
EPHEMERELLIDAE (1)	TRICORYTHIDAE (4)			LEPTOPHLEBIIDAE (2)	
POTAMANTHIDAE (4)	EPHEMERIDAE (4)	POLYMITARCYIDAE (2)			
ODONATA ZYGOPTERA					
CORDULEGASTRIDAE (3)	GOMPHIDAE (1)	AESHNIDAE (3)	MACROMIIDAE (3)	CORDULIDAE (3)	
		LESTIDAE (9) COE			
PLECOPTERA					
PTERONARCYIDAE (0) T/	AENIOPTERYGIDAE (2)	NEMOURIDAE (2)	LEUCTRIDAE (0)	CAPNIDAE (1)	
		CHLOROPERLIDAE (1)		- I (III)	
HEMIPTERA					
MACROVELIDAE () VELID	DAE() GERRIDAE()_	BELOSTOMATIDAE ()	NEPIDAE ()	CORIXIDAE ()	
NOTONECTIDAE () PLEID	OAE() SALDIDAE()_			MESOVELIIDAE ()	
MEGALOPTERA SIALIDAE (4)	CORYDALIDAE (1)				
TRICHOPTERA					
PHILOPOTAMIDAE (3)	PSYCHOMYIIDAE (2)	POLYCENTROPODIDAE (6)	HYDBOBSVSUIT	AF (4)	
	GLOSSOSOMATIDAE (0)	HYDROPTILIDAE (4)			
	EPIDOSTOMATIDAE (1)	HELICOPSYCHIDAE (3)			
ODONTOCERIDAE (0)	MOLANNIDAE (6)	LIMNEPHILIDAE (4)			
LEPIDOPTERA PYRALIDAE (5)	NOCTUIDAE ()				
ELE IDOFTEION FINALDAE (0)	NOCTORAE ()				
COLEOPTERA					
GYRINIDAE() HALIPLIDAE()	DYTISCIDAE() HYDE	ROPHILIDAE() PSEPHENIC	AE (4) DRYOPIDAE	(5) ELMIDAE(4)	
SCIRTIDAE () STAPHYLINIDAE	() CHRYSOMELIDAE	() CURCULIONIDAE ()	HYDRAENIDAE ()_		
DIPTERA					
BLEPHARICERIDAE (0)	TIPULIDAE (3)		TABANIDAE (6)	ATHERICIDAE (2)	
CHIRONOMIDAE(blood red)(8)	CHIRONOMIDAE(all other)(6)	SYRPHIDAE (10)	EPHYDRIDAE (6)		
DOLICHOPODIDAE (4)	EMPIDIDAE (6)	CERATOPOGONIDAE (6)			
COLLEMBOLA ISOTOMIDAE ()	PODURIDAE ()	_ SMINTHURIDAE()	ENTOMOBRYIDA	E()	
OTHER ARTHROPODA		1 110000	_		
ACARI (4) ASELLIDAE	(8) GAMMARIDAE ((4) TALITRIDAE (8)	ASTACIDAE (6)		
WOLLUSCA					
	HELICOMA (6) I VIANA	EA (6)			
GASTROPODA FERRISSIA (6)	GYRAULUS (8) PHYS	SA (8) PLANORBIDAE ()	PLEUROCERIDAE ()	VIVIPARIDAE ()	
PELECYPODA SPHAERIIDAE (8)	CORBICULA()	DRIESSENIA ()	HYDROBIDAE ()	ANCYLIDAE ()	
		A STATE OF THE PARTY OF THE PAR			
PLATYHELMINTHES TURBELLARIA (RRANCHIORDELLIDA()			
NUMBER OF VIALS FORWARDED:	PRELIMINARY NUMBI	ER OF TAXA:NUMB	ER OF INDIVIDUALS:	NEMATODA ()	
IBI: EPT COUNT:					
6 DOMINANT TAXON: EPT I					
HASE 1 IDENTIFICATION COMPLETED				2	
THE PERSON OF THE PERSON	DATE COMPLE	COUNTS	& CALCULATION CHECK:		

APPENDIX F

Qualitative Habitat Evaluation Index (QHEI) Data Sheets

STREAM:	RIVER MILE:	DATE:	QHEI SCORE
1) SUBSTRATE: (Check ONLY Two Sul	GRAVEL(7) SAND(6) BEDROCK(5) DETRITUS(3) ARTIFIC(0) >>4(2) SCOTE is based on natural substrates)	SUBSTRATE ORIGIN (all) LIMESTONE(1) RIP/RAP(0) TILLS(1) HARDPAN(0) SANDSTONE(0) SHALE(-1) COAL FINES(-2)	SUBSTRATE SCORE SILT COVER (one) SILT-HEAVY(-2) SILT-HOD(-1) SILT-FREE(1) Extent of Embeddedness (check one) EXTENSIVE(-2) LOW(0) MODERATE(-1) NONE(1)
2) INSTREAM COVER: TYPE (UNDERCUT BANKS(1) OVERHANGING VEGETATION(1) SHALLOWS (IN SLOW WATER)(1) COMMENTS:	Check all that apply) DEEP POOLS(2) ROOTWADS(1) BOULDERS(1) AQUATIC MACROF LOGS OR WOODY	PHYTES(1)	COVER SCORE eck only one or Check 2 and AVERAGE) EXTENSIVE >75%(11) MODERATE 25-75%(7) SPARSE 5-25%(3) NEARLY ABSENT <5%(1)
3) CHANNEL MORPHOLOGY: (Check C SINUOSITY DEVELOPMENT HIGH(4) EXCELLENT(7) MODERATE(3) GOOD(5) LOW(2) FAIR(3) NONE(1) POOR(1) COMMENTS:	ONLY ONE per Category or Check 2 and AN CHANNELIZATION NONE(6) RECOVERED(4) RECOVERING(3) RECENT OR NO RECOVERY(1)	STABILITY MODIFI HIGH(3) SNAGG MODERATE(2) RELOC LOW(1) CANOI DREDG DREDG	CATION ISLAND PY REMOVAL LEVEED
4) RIPARIAN ZONE AND BANK EROSIC River Right Looking Downstream RIPARIAN WIDTH (per bank) L R (per bank) WIDE >150 ft.(4) MODERATE 30-150 ft.(3) NARROW 15-30 ft.(2) VERY NARROW 3-15 ft.(1) NONE(0) COMMENTS:	EROSION/RUNOFF-FLOODPLAIN QUAL L R (most predominant per bank) FOREST, SWAMP(3) OPEN PASTURE/ROW CROP(0) RESID.,PARK,NEW FIELD(1) FENCED PASTURE(1)		BANK EROSION L R (per bank) NONE OR LITTLE(3) MODERATE(2) HEAVY OR SEVERE(1)
5) POOL/GLIDE AND RIFFLE/RUN QUA MAX.DEPTH (Check 1) >4 ft.(6) 2.4-4 ft.(4) 1.2-2.4 ft.(2) <1.2 ft.(1) <0.6 ft.(Pool=0)(0) COMMENTS:	MORPHOLOGY (Check 1) POOL WIDTH>RIFFLE WIDTH(2) POOL WIDTH+RIFFLE WIDTH(1) POOL WIDTH <riffle td="" width(0)<=""><td></td><td>POOL SCORE RENT VELOCITY (Check all that Apply) EDDIES(1) INTERSTITIAL(-1) INTERMITTENT(-2)</td></riffle>		POOL SCORE RENT VELOCITY (Check all that Apply) EDDIES(1) INTERSTITIAL(-1) INTERMITTENT(-2)
RIFFLE/RUN DEPTH GENERALLY >4 in. MAX.>20 in.(4) GENERALLY >4 in. MAX.<20 in.(3) GENERALLY 2-4 in.(1) GENERALLY <2 in.(Riffle=0)(0) COMMENTS:	RIFFLE/RUN SUBSTRATE STABLE (e.g., Cobble,Boulder)(2) MOD.STABLE (e.g., Pea Gravel)(1) UNSTABLE (Gravel, Sand)(0) NO RIFFLE(0)	RIFFLE/RUN EXTENSIVE(- MODERATE(I LOW(1)	
6) GRADIENT (FEET/MILE):	% POOL % R	IFFLE % RUN	GRADIENT SCORE

WATER CHEMISTRY DATA

Table E1. Physical parameter data collected during base and storm flow sampling events in the Eel River-Tick Creek watershed waterbodies on May 19, 2004 and July 20, 2004.

Site	Stream Name	Date	Event	Flow (cfs)	Temp (deg C)	DO (mg/L)	% Sat	pН	Turbidity (NTU)	TSS (mg/L)
1	Laird Ditch	5/19/04	storm	1.7	15.5	8.3	82.3	8.0	2.9	1.5
1	Land Diten	7/20/04	base	0.5	18.5	8.2	98.7	8.0	4.3	14.5
2	Tick Creek	5/19/04	storm	8.3	14.3	9.6	93.7	8.1	2.5	2.3
2	TICK CIEEK	7/20/04	base	3.0	18.6	9.7	104.5	7.8	2.1	3.3
2	Howard	5/19/04	storm	1.6	14.8	9.0	88.5	7.9	2.8	5.0
3	Ditch	7/20/04	base	0.5	17.5	9.4	97.2	7.8	2.4	2.7
4	Shackelford	5/19/04	storm	2.1	14.0	7.5	73.4	7.9	6.3	26.0
4	Ditch	7/20/04	base	0.7	16.6	9.1	90.9	7.7	5.05	16.8

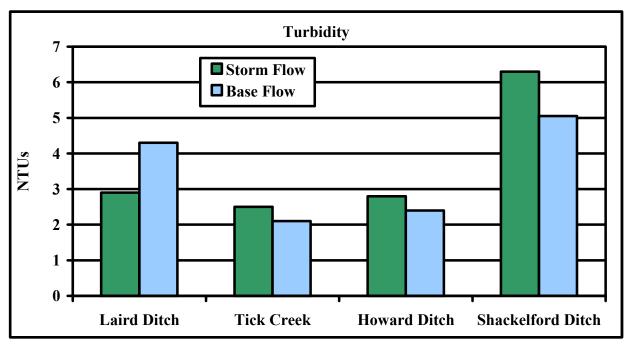


Figure E1. Turbidity concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

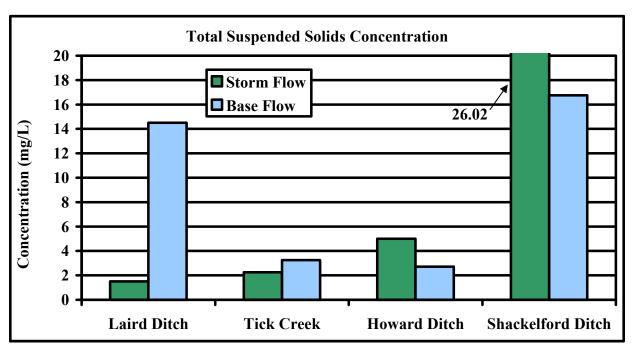


Figure E2. Total suspended solids concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

Table E2. Chemical and bacterial characteristics of the Eel River-Tick Creek watershed waterbodies as sampled on May 19, 2004 and July 20, 2004.

Site	Stream Name	Date	Event	NH ₃ -N (mg/L)	NO ₃ -N (mg/L)	TKN (mg/L)	SRP (mg/L)	TP (mg/L)	BOD (mg/L)	E. coli (col/100 mL)
1	Laird Ditch	5/19/04	storm	0.065	1.614	0.817	0.052	0.081	<2	390
1	Land Diten	7/20/04	base	0.067	2.127	0.475	0.040	0.088	<2	490
2	Tick Creek	5/19/04	storm	0.116	6.661	0.963	0.032	0.081	<2	690
2	TICK CIEEK	7/20/04	base	0.018	4.222	0.486	0.025	0.063	<2	1,000
2	Howard	5/19/04	storm	0.087	3.751	0.559	0.053	0.080	<2	870
3	Ditch	7/20/04	base	0.018	4.316	0.349	0.026	0.081	<2	545
4	Shackelford	5/19/04	storm	0.113	3.770	0.724	0.071	0.137	<2	3,150
4	Ditch	7/20/04	base	0.053	3.028	0.468	0.036	0.101	<2	1,240

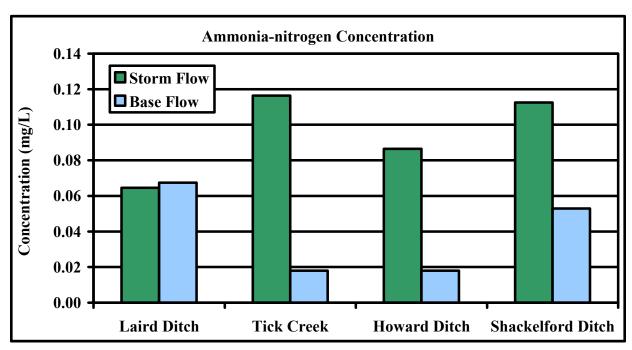


Figure E3. Ammonia-nitrogen concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

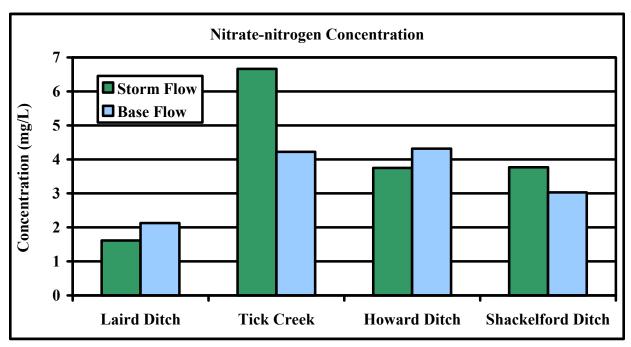


Figure E4. Nitrate-nitrogen concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

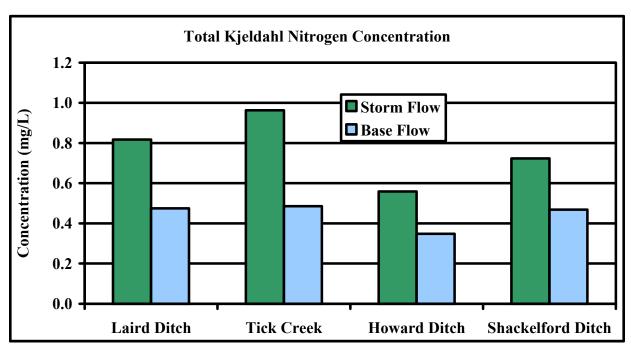


Figure E5. Total Kjeldahl nitrogen concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

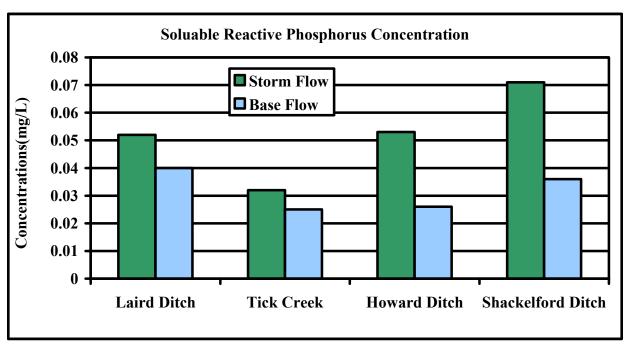


Figure E6. Soluble reactive phosphorus concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

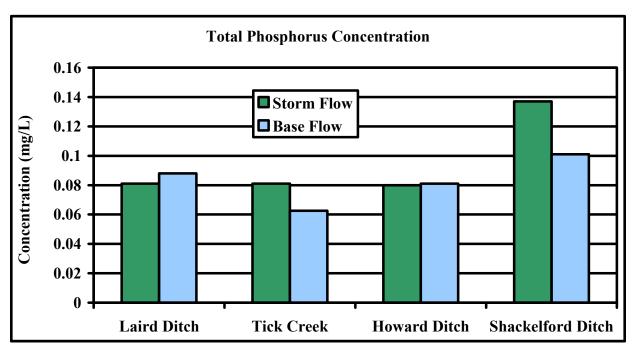


Figure E7. Total phosphorus concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

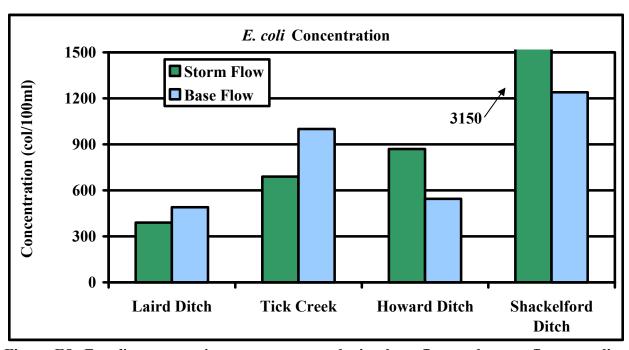


Figure E8. E. coli concentration measurements during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

Table E3. Chemical loading data for the Eel River-Tick Creek watershed waterbodies as sampled on May 19, 2004 and July 20, 2004.

Site	Stream Name	Date	Event	NH ₃ -N Load (kg/d)	NO ₃ -N Load (kg/d)	TKN Load (kg/d)	SRP Load (kg/d)	TP Load (kg/d)	TSS Load (kg/d)	E. coli Load (mil col/d)
1	Laird Ditch	5/19/04	storm	0.264	6.606	3.345	0.213	0.332	6.140	15963
1	Land Ditti	7/20/04	base	0.088	2.777	0.620	0.052	0.115	18.933	6398
2	Tick Creek	5/19/04	storm	2.373	135.793	19.637	0.652	1.651	45.866	140656
2	TICK CIEEK	7/20/04	base	0.132	31.044	3.572	0.184	0.460	23.896	73525
3	Howard	5/19/04	storm	0.334	14.500	2.160	0.205	0.309	19.329	33632
3	Ditch	7/20/04	base	0.024	5.646	0.456	0.034	0.106	3.551	7129
4	Shackelford	5/19/04	storm	0.586	19.623	3.766	0.370	0.713	135.451	163978
4	Ditch	7/20/04	base	0.093	5.324	0.823	0.063	0.178	29.447	21800

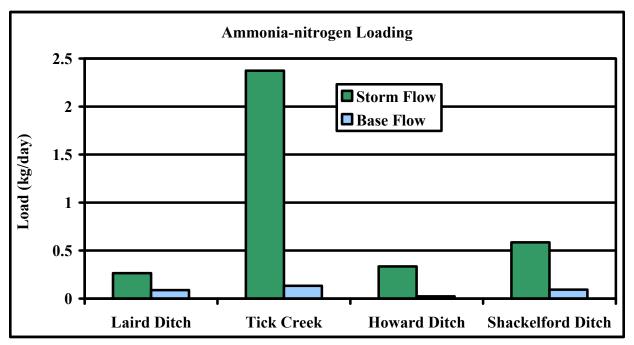


Figure E9. Ammonia-nitrogen loading rates during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

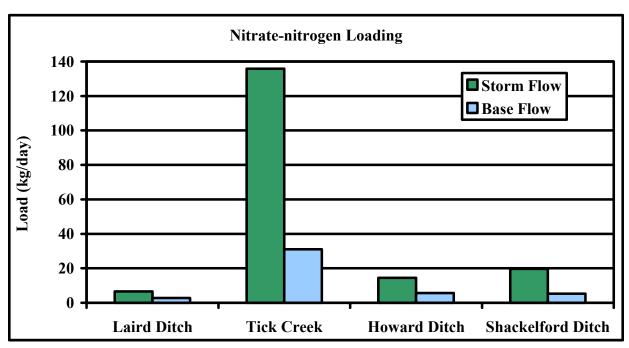


Figure E10. Nitrate-nitrogen loading rates during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

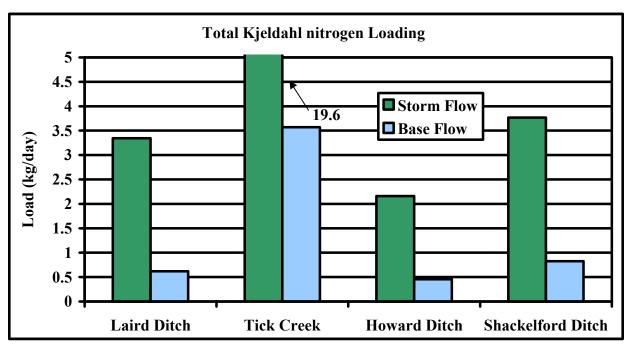


Figure E11. Total Kjeldahl nitrogen loading rates during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

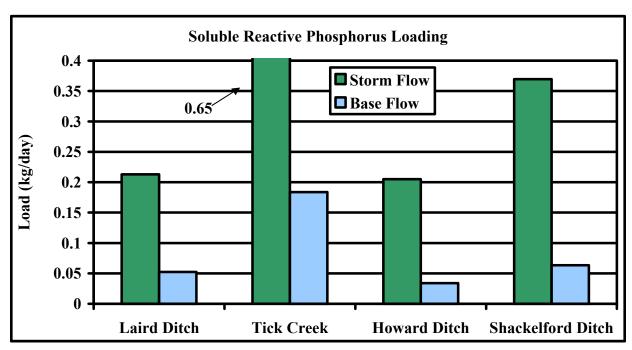


Figure E12. Soluble reactive phosphorus loading rates during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

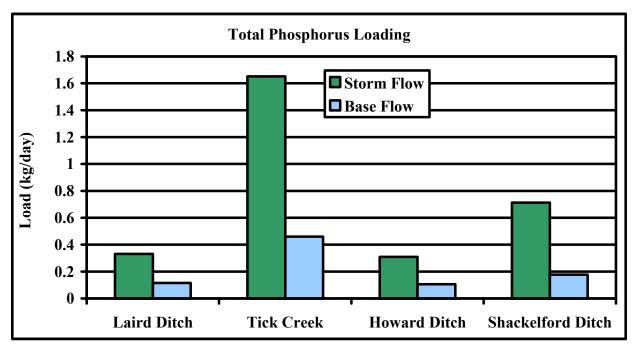


Figure E13. Total phosphorus loading rates during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

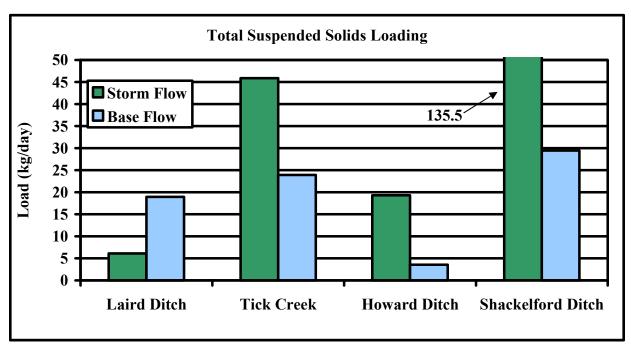


Figure E14. Total suspended solids loading rates during base flow and storm flow sampling of the Eel River-Tick Creek watershed streams.

Table E4. Areal loading of sediment and nutrients for base and storm flow sampling events.

Site	Stream Name	Date	Event	NH ₃ -N Load (kg/ha-yr)	NO ₃ -N Load (kg/ha-yr)	TKN Load (kg/ha-yr)	SRP Load (kg/ha-yr)	TP Load (kg/ha-yr)	TSS Load (kg/ha-yr)
1	Laird Ditch	5/19/04	storm	0.245	6.126	3.102	0.197	0.307	5.694
1	Land Ditti	7/20/04	base	0.082	2.575	0.575	0.048	0.107	17.557
2	Tick Creek	5/19/04	storm	0.459	26.282	3.800	0.126	0.320	8.877
2	TICK CIECK	7/20/04	base	0.026	6.008	0.691	0.036	0.089	4.625
3	Howard Ditch	5/19/04	storm	0.350	15.191	2.263	0.215	0.324	20.250
3	Howard Ditch	7/20/04	base	0.025	5.915	0.478	0.036	0.111	3.720
4	Shackelford	5/19/04	storm	0.419	14.027	2.692	0.264	0.510	96.827
4	Ditch	7/20/04	base	0.066	3.806	0.588	0.045	0.127	21.050

HABITAT DATA

Table E5. QHEI scores for the Eel River-Tick Creek watershed streams as sampled August 17, 2004.

Site	Substrate Score	Cover Score	Channel Score	Riparian Score	Pool Score	Riffle Score	Gradient Score	Total Score
Maximum Possible Score	20	20	20	10	10	10	10	100
Laird Ditch (Site 1)	16	12	15	7	5	4	4	63
Tick Creek (Site 2)	14	13	15	8	7	3.5	10	71
Howard Ditch (Site 3)	11	6	8	3	4	2	8	42
Shackelford Ditch (Site 4)	1	5	4	5	0	1	8	24

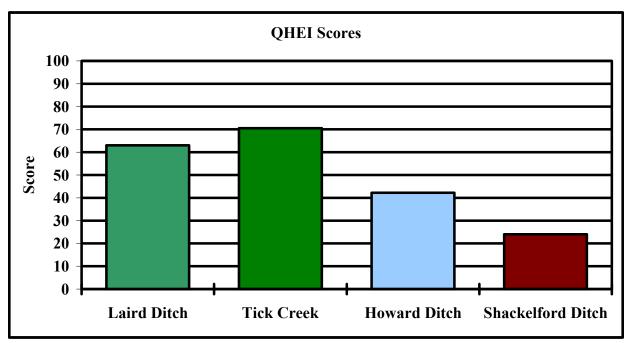


Figure E15. QHEI scores in the Eel River-Tick Creek watershed waterbodies as observed August 17, 2004.

MACROINVERTEBRATE DATA

Table E6. Number and type of macroinvertebrates collected from Eel River-Tick Creek

watershed streams as sampled August 17, 2004.

Class/Order	Family	Laird Ditch (Site 1)	Tick Creek (Site 2)	Howard Ditch (Site 3)	Shackelford Ditch (Site 4)
Coleoptera	Elmidae	31	47	18	3
Diptera	Chironomidae	8	4	6	1
Diptera	Ephydridae		1	1	
Diptera	Simuliidae	13	18	7	
Ephemeroptera	Baetidae	4	7	12	
Ephemeroptera	Heptageniidae	3	3	-	
Ephemeroptera	Oligoneuriidae		1	1	
Hempitera	Veliidae			1	1
Odonata	Aeshnidae		1	-	1
Odonata	Calopterygidae			1	1
Plecoptera			1	-	
Arthropoda	Asellidae	1		1	-
Platyhelminthes	Hirudinidae	1		1	3
Trichoptera	Hydropsychidae	53	28	1	4
Trichoptera	Philopotamidae		4	81	
Arthropoda	Asellidae		1	4	95
Total Number of Ind	lividuals	114	116	129	109

Table E7. Metric values for the Eel River-Tick Creek watershed streams as sampled

August 17, 2004.

Metric	Laird Ditch (Site 1)	Tick Creek (Site 2)	Howard Ditch (Site 3)	Shackelford Ditch (Site 4)
HBI	4.41	4.37	4.34	7.68
Number of Taxa (family)	8.00	12.00	7.00	8.00
Number of Individuals	114.00	116.00	129.00	109.00
% Dominant Taxa	46.49	40.52	62.79	87.16
EPT Index	3.00	5.00	2.00	1.00
EPT Count	60.00	43.00	93.00	4.00
EPT Count/Total Count	0.53	0.37	0.72	0.04
EPT Abundance/Chironomid Abundance	7.50	10.75	15.50	4.00
Number of Individuals Per Square	12.67	10.55	9.21	6.41
Chironomid Count	8.00	4.00	6.00	1.00

Table E8. Metric classification scores and mIBI scores for the Eel River-Tick Creek

watershed streams as sampled August 17, 2004.

Metric	Laird Ditch (Site 1)	Tick Creek (Site 2)	Howard Ditch (Site 3)	Shackelford Ditch (Site 4)
HBI	6	6	6	0
Number of Taxa (family)	2	4	0	2
Number of Individuals	2	2	2	2
% Dominant Taxa	2	4	1	0
EPT Index	2	4	0	0
EPT Count	4	4	6	0
EPT Count/Total Count	6	4	8	0
EPT Abundance/Chironomid Abundance	6	6	8	4
Number of Individuals Per Square	0	0	0	0
Chironomid Count	6	8	8	8
mIBI Score	3.6	4.4	3.9	1.6

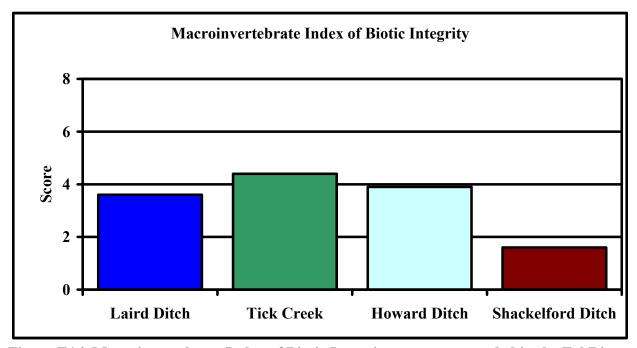
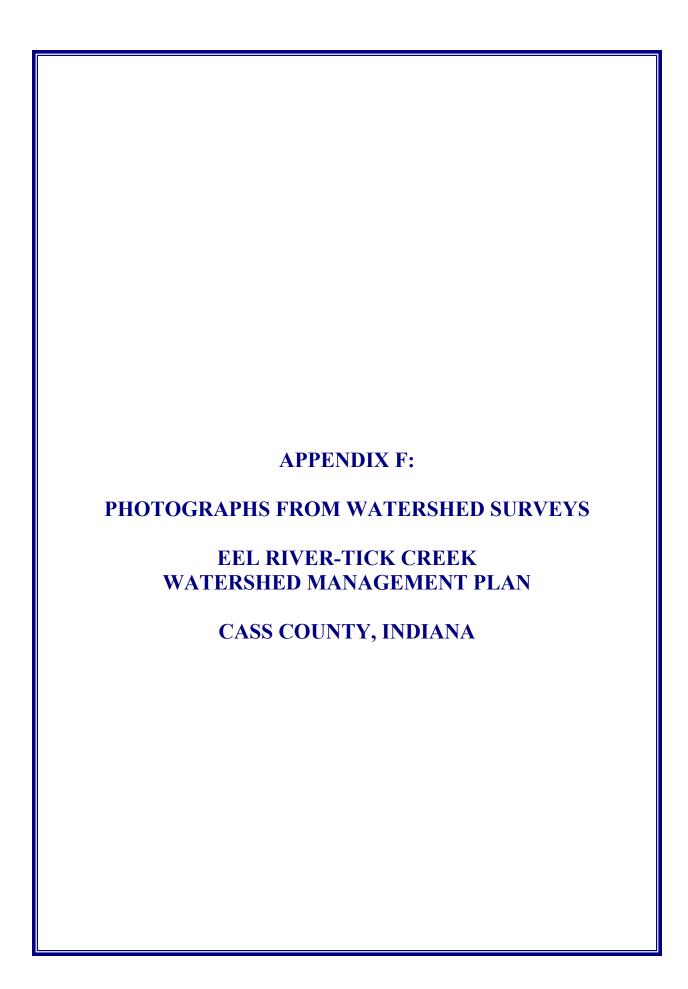


Figure E16. Macroinvertebrate Index of Biotic Integrity scores as sampled in the Eel River-Tick Creek waterbodies on August 17, 2004.

Table E9. Water quality sampling locations and coordinates.


Sample Site	Stream Name	northing	easting
1	Laird Ditch	557338.7	4514053
2	Tick Creek	557940.5	4515296
3	Howard Ditch	558328.8	4514053
4	Shackelford Ditch	560134.4	4514072

LAKE DATA

Table E10. Water quality characteristics of Lake Perry.

Parameter	Epilimnetic	Hypolimnetic	Indiana TSI Points
	Sample	Sample	(based on mean values)
рН	8.25		-
Alkalinity	218 mg/L	mg/L	-
Secchi Depth Transparency	0.25 meters	-	6
Light Transmission @ 3 ft.	90.4%	-	0
1% Light Level	7 feet	-	-
Total Phosphorous	0.091 mg/L	mg/L	3
Soluble Reactive Phosphorous	0.013 mg/L	mg/L	0
Nitrate-Nitrogen	1.6726 mg/L	mg/L	3
Ammonia-Nitrogen	0.0636 mg/L	mg/L	0
Organic Nitrogen	0.9073 mg/L	mg/L	3
Oxygen Saturation @ 5ft.	110%	-	0
% Water Column Oxic	100%	-	0
Plankton Density	2284	-	0
Blue-Green Dominance	yes	-	10
Chlorophyll a	34.28 μg/L	-	-

TSI score 25

WATERSHED SURVEYS

Stream Crossing Survey

Laird Ditch at County Road 250 East.

Laird Ditch at County Road 300 East.

Sediment trap at Laird Ditch outlet to Lake Perry.

Tick Creek at County Road 200 North (downstream). Note the steep streambanks that would benefit from streambank stabilization.

Tick Creek at County Road 150 North (upstream). Note the suggestion of steep streambanks. Further examination at this site is required to determine if streambank stabilization is required.

Tick Creek at County Road 150 North (downstream).

Tick Creek at Private Road 125 North.

Howard Ditch at County Road 75 North/County Road 350 East (upstream).

Howard Ditch at County Road 75 North/County Road 350 East (downstream). Note the lack of riparian buffer at this location.

Shackelford Ditch at County Road 75 North (upstream).

Shackelford Ditch at County Road 75 North (downstream).

Shackelford Ditch at County Road 450 East (downstream). Note bank trampling and sloughing due to livestock grazing.

Walking Survey

Headcut in a ravine in the Laird Ditch headwaters.

Streambank erosion along the length of Laird Ditch.

Area of streambank erosion along Laird Ditch. This area would benefit from the use of biologs or other streambank stabilization technique.

Typical bank sloughing present along the length of Tick Creek.

Typical area of bank sloughing along the length of Tick Creek.

Area of head-cutting and streambank erosion along Tick Creek.

Typical head-cut observed during the walking tour along Tick Creek.

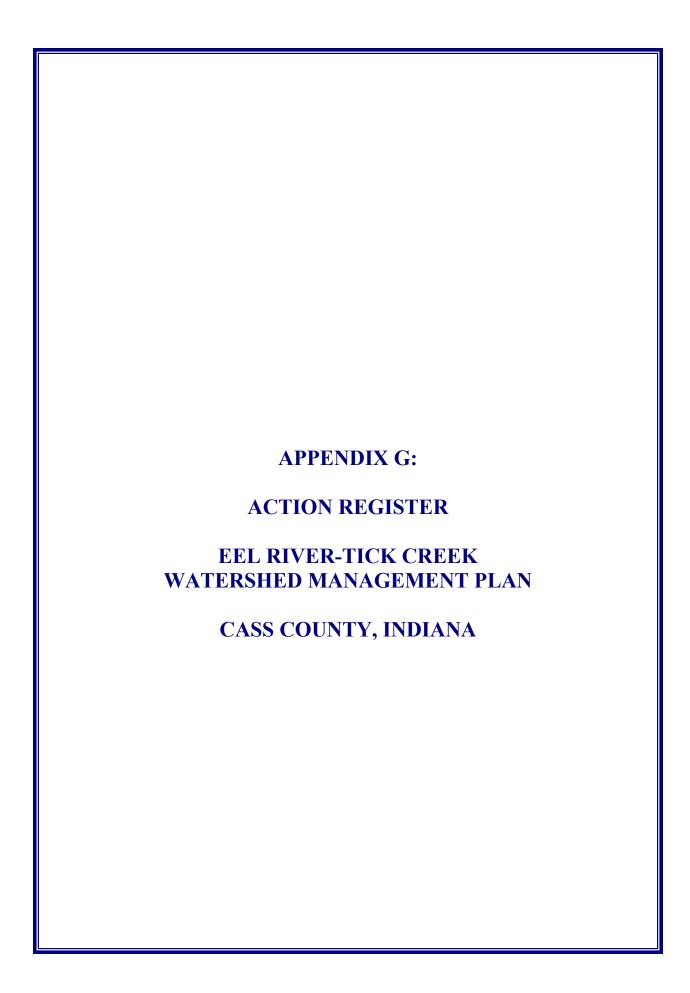
Typical head-cutting observed along Tick Creek during the walking tour.

Livestock access area within the Tick Creek watershed.

Streambank erosion and compaction where livestock have access to Tick Creek.

Other Observations

Lack of shoreline buffer around Lake Perry.


Lack of riparian buffer along Howard Ditch.

Low flow channel present within Shackelford Ditch.

Area of streambank erosion and sloughing along Laird Ditch.

Goal 1: We want to increase participation by all stakeholders including local natural resources agencies/representatives, possibly resulting in the formation of a watershed group.

ings francis	J	·da		
Objective	Action Item	Potentially Responsible Party	Schedule	Indicators
Establish a group to generate interest in the plan and implementation	Contact possible core group members including the local IDNR conservation officer, local high school biology teacher, Lake Perry Estates Corporation members, Cass County Planning Commission representatives, Cass County SWCD representatives, local IDNR resource specialist, regional IDNR fisheries biologist, and Ducks Unlimited	Group	Fall 2006	# of individuals contacted # of individuals willing to attend meeting
Organize a watershed group to discuss issues and concerns	Advertise the formation of the group via the local newspapers and mailings Hold regular meetings Invite resource professionals to attend watershed group meetings Publish meeting minutes via an email list, newsletter, and/or web site posting	Group	First Meeting: 10/2006 Quarterly meetings after that	# of meetings held # of individuals attending meetings # of speakers invited and attending meetings # of individuals reached by minutes
Participate in the Hoosier Riverwatch program	Identify groups that may be interested in participating in Riverwatch Identify landowners that would be willing to allow a group to conduct Riverwatch sampling on their property Attend a Riverwatch training session Advertise results of the work to the community through various forms of media	Group	Groups contacted: Spring 2006 Landowners contacted: Spring 2006 Training attended: Summer 2006	# of groups contacted # of landowners contacted # of sampling sites established # of individuals trained # of sampling events conducted # of individuals reached with results
Participate in the Indiana Clean Lakes volunteer monitoring program	Continue working through the Lake Perry Estates Corporation to maintain a lake monitoring volunteer for Lake Perry Advertise results of the work to the community through various forms of media	Group	Continuous	# of individuals trained # of sampling events conducted # of individuals reached with results

Goal 2: Within two years, each land owner within the watershed will learn and implement at least one water quality improvement practice/technique on his/her own property.

		A		
Objective	Action Item	Potentially Responsible Party	Schedule	Indicators
Organize one annual field day	Identify members of the agricultural community that currently implement		Agricultural community identification: January	# of agricultural community members identified
highlighting Jake and stream	conservation projects Invite local experts to speak at field day	SWCD	2006	# of experts invited to speak
values and	Advertise the field day via newsletters, press		Field Day I: 2006	# of people who receive information
protection	release, and watershed stakeholders		Field Day II: 2007	# of people attending field days
Publicize the	Develop list of BMPs for agricultural land	Planning	Ag BMP list: Fall 2006	# of agricultural BMPs identified
value of the	Develop list of BMPs for residential land	Commission	Residential BMP list: Fall	# of residential BMPs identified
watershed and ways to protect	Summarize value of the watershed and watershed group	Group	2006	# of layman who receive information
water quality	Publish annual newsletter highlighting this		Newsletter I: 2006	# of people who receive newsletter
and aquane me	ınformatıon	SWCD	Newsletter II: 2007	# - C
	Develop a website highlighting this information		Website: Fall 2006	# of people who visit website
Work with	Identify property owners using conservation		Property identification:	# landowners identified
NRCS, SWCD,	land programs.		Spring 2006	# of individuals attending demonstration
and agricultural property owners	Hold one agricultural demonstration day annually to highlight landowners	LPEC	Dem. Day I: 2006	day
to promote BMP's	Attend one local SWCD meeting annually		Dem. Day II: 2007	# of SWCD meetings attended
Work with	Develop a list of activities that residential		List development: 2006	# of activities on list
NRCS, SWCD	property owners can do		Dem Day I: 2006	# of individuals attending demonstration
and residential	Hold one demonstration day annually on	LPEC		day
property owners	residential property		Dem. Day II: 2007	
to promote BMP's	Develop list of grants for residential water quality projects		Grants: Fall 2006	# of funding sources identified
Establish and	Talk to fair representatives to establish a table		Establish table: Fall 2005	# of years table is established for
maintain a	or booth		Program materials: Fall	amount of materials available for
watershed and	Develop program materials and handouts	SWCD	2005	distribution
table at the Cass	Develop group to manage table of boom during fair		Attend fair: 2006; 2007	volume of materials distributed
County I am				

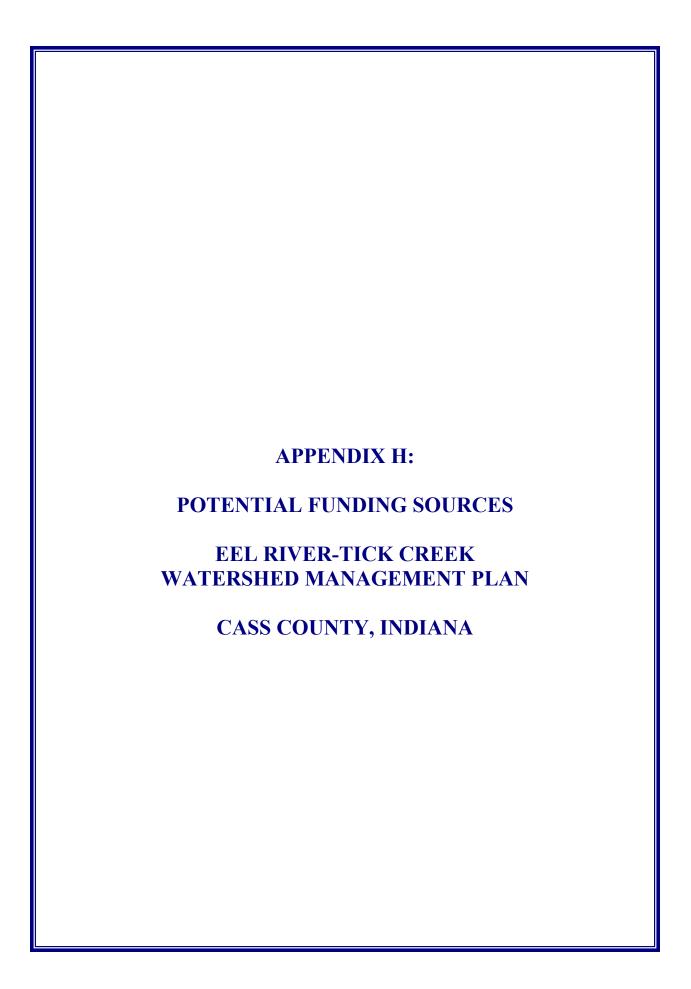
Goal 3: We want to reduce the sediment load to the waterbodies within the Eel River-Tick Creek watershed by 50% over the next five years.

mar mar jem s				
Objective	Action Item	Potentially Responsible Party	Schedule	Indicators
Implement stabilization techniques along Laird Ditch and Tick Creek	Contact landowners regarding using their land Apply for funding for Laird Ditch stabilization Apply for funding for Tick Creek stabilization Hire engineer to complete designs Hire contractor to install stabilization design	SWCD	Landowner contact: 2005 Funding application: 2005 Design/Construction: by 2007	Landowners contacted Funding applications submitted Designs completed Construction completed
Reduce erosion from active construction sites	Become familiar with erosion control practices Work to require erosion control on all construction sites Implement strict erosion control ordinances Work to ensure that Rule 5 is being implemented at all applicable sites Develop recognition for county builders implementing erosion control practices	Group	Meet with county officials: 2006 Meet with state officials: 2007 Recognition plan: 2007	Amount of erosion control materials installed # of ordinances enacted # of sites where Rule 5 is in use # of builders recognized
Implement soil conservation practices in rural and agricultural areas	Identify agricultural producers using conservation practices Host annual demonstration day targeting conservation practice implementation Apply for cost-share funding to install practices Conduct on annual field day to demonstrate conservation practices	NRCS; SWCD	Identify users: 2007 Demonstration Days: 2007-2010 Funding application: 2008 Field days: 2007-2010	# of producers identified # of individuals attending demonstration days # of cost-share funding sources identified and applied for # of individuals attending field days
Restore the watershed's wetlands	Work to understand hydrology in a wetland Contact landowners to re: feasibility Develop a restoration plan for the wetlands Design the wetland restorations Determine necessity of species control Identify and apply for funding	NRCS; SWCD	Hydrology: 2008 Landowner permission: 2008 Restoration plan and funding submitted: 2009	Were landowners contacted? Was restoration plan developed? # of funding sources identified Amount of funding received
Improve the buffer around Lake Perry	Educate homeowners about shoreline buffers Develop a planting plan for Lake Perry Discuss the feasibility of improving the buffer Select appropriate demonstration project sites Apply for funding to conduct planting Hold a volunteer field day to plant buffer Develop recognition system	LPEC	Buffer education: 2007 Planting plan: 2008 Funding: 2009 Field day: 2009	# of homeowners receiving materials # of planting plans developed length of demonstration project # of volunteers attending field day amount of funding received

		Potentially		
Objective	Action Item	Responsible Party	Schedule	Indicators
Increase	Establish a good working relationship with		Relationship established:	# of individuals attending planning
awareness of	county officials	COM	2009	meetings
development in	Attend one Cass County planning meeting	SWCD	Meeting attendance: 2006-	# of meetings attended
the watershed	annually			
Encourage	Meet with Cass County Surveyor to determine		Meeting with surveyor:	# of drainage board meetings attended
county officials	the maintenance schedule for legal drains	Dlessing	2008	
to maintain	within the watershed	Commission		
buffers along	Attend one Cass County Drainage Board	Commission	Meeting attendance: 2006-	
legal drains	meeting annually		2010	
Monitor	Identify individuals to complete monitoring			
sediment load in	training.			
the watershed	Complete monitoring on a monthly or			
streams and	quarterly basis.			
water clarity in	Maintain a water quality sampling database			
Lake Perry.	Compare results from sampling.			
	Publish sampling results			

Goal 4: We want to repair and maintain existing drainage tiles to ensure property owners have full use of their land.

		Potentially		
Objective	Action Item	Responsible	Schedule	Indicators
		raity		
Work with	Examine the ecological and economic impact		Examination: 2007	Study of condition completed
landowners to	of the existing hydrologic condition		Colutions identified: 2000	The second of a constant of a continuous of the
determine	Propose possible alternative solution and	Groun	Solutions identified, 2008	# of possible afternatives identified
solutions to the	determine methods to address the problem	Oroup	Grant application: 2008	# of grant applications submitted
drainage tile	Identify and apply for grants		Construction: 2000	Construction commists
issue	Complete design and construction		Construction: 2003	Construction complete
Work with	Identify all existing drainage tiles with the		Tiles identified: 2007	# and length of tiles identified
landowners to	watershed		T:1234. 2008	Mouning commelated
identify and	Map the existing drainage tile	Group	i nes mapped. 2008	Mapping compieted
maintain	Monitor and maintain existing tiles if they	dinoio	Tile monitoring:	
existing	break or fall into disrepair		continuous	
drainage tiles				


Goal 5: We want to reduce the nutrient load reaching Lake Perry by 50% over the next 10 years.

Som St. Wallt Co.		, which is the state of the sta		
Objective	Action Item	Potentially Responsible Party	Schedule	Indicators
Educate lakeshore residents about what they	Identify techniques that residents can use to improve water quality.		Techniques identified: 2008	# of techniques identified
can do to reduce nutrient	Locate or develop educational	LPFC	BMP list distributed: 2008	# of residents receiving information
loading to the lake	materials for shoreline BMPs		Divit tist distributed, 2000	# of attendees at demonstration day
	Host one annual demonstration day highlighting lakeshore activities		Demonstration days: 2006-2016	
Work with Cass County	Post signs at all animal barns		Post signs: 2006	# of signs posted
4-H program to educate	regarding manure disposal		Funding application: 2008	# of individuals informed about problem
users and reduce sediment, nutrient, and	Investigate and obtain funding to install a vegetated filter		Volunteer Day: 2009	# of volunteers participating in planting
manure loading to Laird	Host a volunteer day to complete	SWCD	Construction of rain	A mount of runoff treated
Ditch	planting of the vegetated filter		garden/swale: 2010	Allouit of fulloff treated
	Construct a vegetated swale and/or rain oarden to filter manure rinoff			
Restores the watershed's	Determine amount of sediment in		Determine sediment	Volume of sediment in traps
wetlands and maintain the	existing sediment traps		volume: 2007	Dlan actablished
existing or construct	Establish an annual assessment plan		Plan established: 2009	r iair estaurished
additional sediment traps	Remove sediment from the traps	LPEC	i ian established. 2007	Sediment removed from traps
upstream of Lake Perry	Determine necessity of additional		Funding application: 2011	Funding applications submitted
Oli Laild Diteli and 11ek Creek	traps			Amount of funding received
crocar.	Identily grant funding			
Promote the usage of	Disseminate fertilizers' impact on		Literature: 2012	# of individuals receiving literature
and/or the reduction in	Investigate the market potential of	LPEC	P-free fertilizer: 2015	# of facilities carrying P-free fertilizer
use of fertilizer	phosphorus free fertilizer			# of lbs. of P-free fertilizer sold
Work to identify any	Identify any failing septic systems		Failing systems identified:	# of septic systems tested
failing septic systems and	in the watershed	(2013	# of BMPs identified
promote proper septic system maintenance in the	Develop list of BMPs to reduce nathogenic contamination	Group	BMP list: 2010	# of individuals receiving information
watershed	Disseminate BMP information		Info. distributed: 2011	0
Restrict livestock access	Identify a feasible solution to restrict		Solution identified: 2010	# of solutions investigated
to watershed streams	livestock access to Tick Creek		Watering source	Feasible alternative identified
	Identify an alternative watering source for the livestock	NRCS; SWCD	identified: 2010	Volume of livestock restricted
	Obtain funding for restriction		Funding: 2011	
	Complete the fence installation			

Monitor nutrient load in	Monitor nutrient load in Identify individuals to complete
the watershed streams	monitoring training.
	Complete monitoring on a monthly
	or quarterly basis.
	Maintain a water quality sampling
	database
	Compare results from sampling.
	Publish sampling results

Goal 6: We want to reduce the concentration of *E. coli* within the waterbodies in the Eel River-Tick Creek watershed so that water within the streams and lake meets the state standard for *E. coli*.

		Potentially		
Objective	Action Item	Responsible Party	Schedule	Indicators
Learn more about	Attend and participate in the Total		A necessary	# of meetings attended
identifying the sources of	Maximum Daily Load development			# of noon la racaiving minited
E. coli from the Total	process for the Eel River.	S. Cr.		# or people receiving minutes
Maximum Daily Load		drono		
development process for	Create and distribute TMDL meeting			
the Eel River	minutes to watershed stakeholders			
Publicize Best	Meet with the Cass County Health		Meeting: 2006	meeting attended
Management Practices	Department to discuss BMPs		DMD 1:64:20: 2007	
available to reduce	available to maintain septic systems		DIMIF IISUIIB. 2007	# or people receiving initiates
pathogenic	Develop a list of BMPs to reduce the	Group	Newspaper article: 2007	# of BMPs listed
contamination of the Eel	risk of pathogenic contamination			erticles miblished
River-Tick Creek	Publish a newspaper article targeting			articles published
watershed waterbodies	the list or summary of BMPs			
Monitor E. coli load in	Identify individuals to complete			
the watershed streams	monitoring training.			
and water clarity in Lake	Complete monitoring on a monthly			
Perry.	or quarterly basis.			
	Maintain a water quality sampling			
	database			
	Compare results from sampling.			
	Publish sampling results			

Potential Funding Sources.

There are several cost-share grants available from both state and federal government agencies specific to watershed management. Community groups and/or Soil and Water Conservation Districts can apply for the majority of these grants. The main goal of these grants and other funding sources is to improve water quality though the use of specific BMPs. As public awareness shifts towards watershed management, these grants will become more and more competitive. Therefore, any association interested in improving water quality through the use of grants must become active soon. Once an association is recognized as a "watershed management activist" it will become easier to obtain these funds repeatedly. The following are some of the possible major funding sources available to lake and watershed associations for watershed management.

Lake and River Enhancement Program (LARE)

LARE is administered by the Indiana Department of Natural Resources, Division of Soil Conservation. The program's main goals are to control sediment and nutrient inputs to lakes and streams and prevent or reverse degradation from these inputs through the implementation of corrective measures. Under present policy, the LARE program may fund lake and watershed specific construction actions up to \$100,000 for a single project or \$300,000 for all projects on a lake or stream. The LARE program also provides a maximum of \$100,000 for the removal of sediment from a particular site on a lake and a cumulative total of \$300,000 for all sediment removal projects on a lake. An approved sediment removal plan must be on file with the LARE office for projects to receive sediment removal funding. Finally, the LARE program will provide \$100,000 for a one-time whole lake treatment to control aggressive, invasive aquatic plants. A cumulative total of \$20,000 over a three year period may be obtained for additional spot treatment following the whole lake treatment. As with the sediment removal funding, an approved aquatic plant management plan must be on file with the LARE office for the lake association to receive funding. All approved projects require a 0 to 25% cash or in-kind match, depending on the project. LARE also has a "watershed land treatment" component that can provide grants to SWCDs for multi-year projects. The funds are available on a cost-sharing basis with landowners who implement various BMPs. More information about the LARE program can be found at http://www.in.gov/dnr/soilcons/programs/lare.

Clean Water Act Section 319 Nonpoint Source Pollution Management Grant

The 319 Grant Program is administered by the Indiana Department of Environmental Management (IDEM), Office of Water Management, Watershed Management Section. 319 is a federal grant made available by the Environmental Protection Agency (EPA). 319 grants fund projects that target nonpoint source water pollution. Nonpoint source pollution (NPS) refers to pollution originating from general sources rather than specific discharge points (Olem and Flock, 1990). Sediment, animal and human waste, nutrients, pesticides, and other chemicals resulting from land use activities such as mining, farming, logging, construction, and septic fields are considered NPS pollution. According to the EPA, NPS pollution is the number one contributor to water pollution in the United States. To qualify for funding, the water body must meet specific criteria such as being listed in the state's 305(b) report as a high priority water body or be identified by a diagnostic study as being impacted by NPS pollution. Funds can be requested for up to \$300,000 for individual projects. There is a 25% cash or in-kind match requirement.

To qualify for implementation projects, there must be a watershed management plan for the receiving waterbody. This plan must meet all of the current 319 requirements. This diagnostic study serves as an n excellent foundation for developing a watershed management plan since it satisfies several, but not all, of the 319 requirements for a watershed management plan. More information about the Section 319 program can be obtained from http://www.in.gov/idem/water/planbr/wsm/319main.html.

Section 104(b)(3) NPDES Related State Program Grants

Section 104(b)(3) of the Clean Water Act gives authority to a grant program called the National Pollutant Discharge Elimination System (NPDES) Related State Program Grants. These grants provide money for developing, implementing, and demonstrating new concepts or requirements that will improve the effectiveness of the NPDES permit program that regulates point source discharges of water pollution. Projects that qualify for Section 104(b)(3) grants involve water pollution sources and activities regulated by the NPDES program. The awarded amount can vary by project and there is a required 5% match. For more information on Section 104(b)(3) grants, please see the IDEM website at: http://www.in.gov/idem/water/planbr/wsm/104main.html.

Section 205(j) Water Quality Management Planning Grants

Funds allocated by Section 205(j) of the Clean Water Act are granted for water quality management planning and design. Grants are given to municipal governments, county governments, regional planning commissions, and other public organizations for researching point and non-point source pollution problems and developing plans to deal with the problems. According to the IDEM Office of Water Quality website: "The Section 205(j) program provides for projects that gather and map information on non-point and point source water pollution, develop recommendations for increasing the involvement of environmental and civic organizations in watershed planning and implementation activities, and implement watershed management plans. No match is required. For more information on and 205(j) grants, please see the IDEM website at: http://www.in.gov/idem/water/planbr/wsm/205jmain.html.

Other Federal Grant Programs

The USDA and EPA award research and project initiation grants through the U.S. National Research Initiative Competitive Grants Program and the Agriculture in Concert with the Environment Program.

Watershed Protection and Flood Prevention Program

The Watershed Protection and Flood Prevention Program is funded by the U.S. Department of Agriculture and is administered by the Natural Resources Conservation Service. Funding targets a variety of watershed activities including watershed protection, flood prevention, erosion and sediment control, water supply, water quality, fish and wildlife habitat enhancement, wetlands creation and restoration, and public recreation in small watersheds (250,000 or fewer acres). The program covers 100% of flood prevention construction costs or 50% of construction costs for agricultural water management, recreational, or fish and wildlife projects.

Conservation Reserve Program

The Conservation Reserve Program (CRP) is funded by the USDA and administered by the Farm Service Agency (FSA). CRP is a voluntary, competitive program designed to encourage farmers to establish vegetation on their property in an effort to decrease erosion, improve water quality, or enhance wildlife habitat. The program targets farmed areas that have a high potential for degrading water quality under traditional agricultural practices or areas that might make good wildlife habitat if they were not farmed. Such areas include highly erodible land, riparian zones, and farmed wetlands. Currently, the program offers continuous sign-up for practices like grassed waterways and filter strips. Participants in the program receive cost share assistance for any plantings or construction as well as annual payments for any land set aside.

Wetlands Reserve Program

The Wetlands Reserve Program (WRP) is funded by the USDA and is administered by the NRCS. WRP is a subsection of the Conservation Reserve Program. This voluntary program provides funding for the restoration of wetlands on agricultural land. To qualify for the program, land must be restorable and suitable for wildlife benefits. This includes farmed wetlands, prior converted cropland, farmed wet pasture, farmland that has become a wetland as a result of flooding, riparian areas which link protected wetlands, and the land adjacent to protected wetlands that contribute to wetland functions and values. Landowners may place permanent or 30-year easements on land in the program. Landowners receive payment for these easement agreements. Restoration cost-share funds are also available. No match is required.

Grassland Reserve Program

The Grassland Reserve Program (GRP) is funded by the USDA and is administered by the NRCS. GRP is a voluntary program that provides funding the restoration or improvement of natural grasslands, rangelands, prairies or pastures. To qualify for the program the land must consist of at least a 40 acre contiguous tract of land, be restorable, and provide water quality or wildlife benefit. Landowners may enroll land in the Grassland Reserve Program for 10, 15, 20, or 30 years or enter their land into a 30-year permanent easement. Landowners receive payment of up to 75% of the annual grazing value. Restoration cost-share funds of up to 75% for restored or 90% for virgin grasslands are also available.

Community Forestry Grant Program

The U.S. Forest Service through the Indiana Department of Natural Resources Division of Forestry provides three forms of funding for communities under the Community Forestry Grant Program. Urban Forest Conservation Grants (UFCG) are designed to help communities develop long term programs to manage their urban forests. UFCG funds are provided to communities to improve and protect trees and other natural resources; projects that target program development, planning, and education are emphasized. Local municipalities, not-for-profit organizations, and state agencies can apply for \$2,000-20,000 annually. The second type of Community Forestry Grant Program, the Arbor Day Grant Program, funds activities which promote Arbor Day efforts and the planting and care of urban trees. \$500-1000 grants are generally awarded. The Tree Steward Program is an educational training program that involves six training sessions of three hours each. The program can be offered in any county in Indiana and covers a variety of tree care and planting topics. Generally, \$500-1000 is available to assist communities in starting a county or regional Tree Steward Program. Each of these grants requires an equal match.

Forest Land Enhancement Program (FLEP)

FLEP replaces the former Forestry Incentive Program. It provides financial, technical, and educational assistance to the Indiana Department of Natural Resources Division of Forestry to assist private landowners in forestry management. Projects are designed to enhance timber production, fish and wildlife habitat, soil and water quality, wetland and recreational resources, and aesthetic value. FLEP projects include implementation of practices to protect and restore forest lands, control invasive species, and preserve aesthetic quality. Projects may also include reforestation, afforestation, or agroforestry practices. The IDNR Division of Forestry has not determined how they will implement this program; however, their website indicates that they are working to determine their implementation and funding procedures. More information can be found at http://www.in.gov/dnr/forestry.

Wildlife Habitat Incentive Program

The Wildlife Habitat Incentive Program (WHIP) is funded by the USDA and administered by the NRCS. This program provides support to landowners to develop and improve wildlife habitat on private lands. Support includes technical assistance as well cost sharing payments. Those lands already enrolled in WRP are not eligible for WHIP. The match is 25%.

Environmental Quality Incentives Program

The Environmental Quality Incentives Program (EQIP) is a voluntary program designed to provide assistance to producers to establish conservation practices in target areas where significant natural resource concerns exist. Eligible land includes cropland, rangeland, pasture, and forestland, and preference is given to applications which propose BMP installation that benefits wildlife. EQIP offers cost-share and technical assistance on tracts that are not eligible for continuous CRP enrollment. Certain BMPs receive up to 75% cost-share. In return, the producer agrees to withhold the land from production for five years. Practices that typically benefit wildlife include: grassed waterways, grass filter strips, conservation cover, tree planting, pasture and hay planting, and field borders. Best fertilizer and pesticide management practices, innovative approaches to enhance environmental investments like carbon sequestration or market-based credit trading, and groundwater and surface water conservation are also eligible for EQIP cost-share.

Small Watershed Rehabilitation Program

The Small Watershed Rehabilitation Program provides funding for rehabilitation of aging small watershed impoundments that have been constructed within the last 50 years. This program is newly funded through the 2002 Farm Bill and is currently under development. More information regarding this and other Farm Bill programs can be found at http://www.usda.gov/farmbill.

Farmland Protection Program

The Farmland Protection Program (FPP) provides funds to help purchase development rights in order to keep productive farmland in use. The goals of FPP are: to protect valuable, prime farmland from unruly urbanization and development; to preserve farmland for future generations; to support a way of life for rural communities; and to protect farmland for long-term food security.

Debt for Nature

Debt for Nature is a voluntary program that allows certain FSA borrowers to enter into 10-year, 30-year, or 50-year contracts to cancel a portion of their FSA debts in exchange for devoting eligible acreage to conservation, recreation, or wildlife practices. Eligible acreage includes: wetlands, highly erodible lands, streams and their riparian areas, endangered species or significant wildlife habitat, land in 100-year floodplains, areas of high water quality or scenic value, aquifer recharge zones, areas containing soil not suited for cultivation, and areas adjacent to or within administered conservation areas.

Partners for Fish and Wildlife Program

The Partners for Fish and Wildlife Program (PFWP) is funded and administered by the U.S. Department of the Interior through the U.S. Fish and Wildlife Service. The program provides technical and financial assistance to landowners interested in improving native habitat for fish and wildlife on their land. The program focuses on restoring wetlands, native grasslands, streams, riparian areas, and other habitats to natural conditions. The program requires a 10-year cooperative agreement and a 1:1 match.

North American Wetland Conservation Act Grant Program

The North American Wetland Conservation Act Grant Program (NAWCA) is funded and administered by the U.S. Department of Interior. This program provides support for projects that involve long-term conservation of wetland ecosystems and their inhabitants including waterfowl, migratory birds, fish, and other wildlife. The match for this program is on a 1:1 basis.

National Fish and Wildlife Foundation (NFWF)

The National Fish and Wildlife Foundation is administered by the U.S. Department of the Interior. The program promotes healthy fish and wildlife populations and supports efforts to invest in conservation and sustainable use of natural resources. The NFWF targets six priority areas which are wetland conservation, conservation education, fisheries, neotropical migratory bird conservation, conservation policy, and wildlife and habitat. The program requires a minimum of a 1:1 match. More information can be found at http://www.nfwf.org/about.htm.

Bring Back the Natives Grant Program

Bring Back the Natives Grant Program (BBNG) is a NFWF program that provides funds to restore damaged or degraded riverine habitats and the associated native aquatic species. Generally, BBNP supports on the ground habitat restoration projects that benefit native aquatic species within their historic range. Funding is jointly provided by a variety of federal organizations including the U.S. Fish and Wildlife Service, Bureau of Land Management, and U.S. Department of Agriculture and the National Fish and Wildlife Foundation. Typical projects include those that revise land management practices to remove the cause of habitat degradation, provide multiple specie benefit, include multiple project partners, and are innovative solutions that assist in the development of new technology. A 1:1 match is required; however, a 2:1 match is preferred. More information can be obtained from http://www.nfwf.org.

Native Plant Conservation Initiative

The Native Plant Conservation Initiative (NPCI) supplies funding for projects that protect, enhance, or restore native plant communities on public or private land. This NFWF program

typically funds projects that protect and restore of natural resources, inform and educate the surrounding community, and assess current resources. The program provides nearly \$450,000 in funding opportunities annually awarding grants ranging from \$10,000-50,000 each. A 1:1 match is required for this grant. More information can be found at http://www.nfwf.org/programs/grant apply.htm.

Freshwater Mussel Fund

The National Fish and Wildlife Foundation and the U.S. Fish and Wildlife Service fund the Freshwater Mussel Fund which provides funds to protect and enhance freshwater mussel resources. The program provides \$100,000 in funding to approximately 5-10 applicants annually. More information can be found at http://www.nfwf.org/programs/grant apply.htm.

Non-Profit Conservation Advocacy Group Grants

Various non-profit conservation advocacy groups provide funding for projects and land purchases that involve resource conservation. Ducks Unlimited and Pheasants Forever are two such organizations that dedicate millions of dollars per year to projects that promote and/or create wildlife habitat.

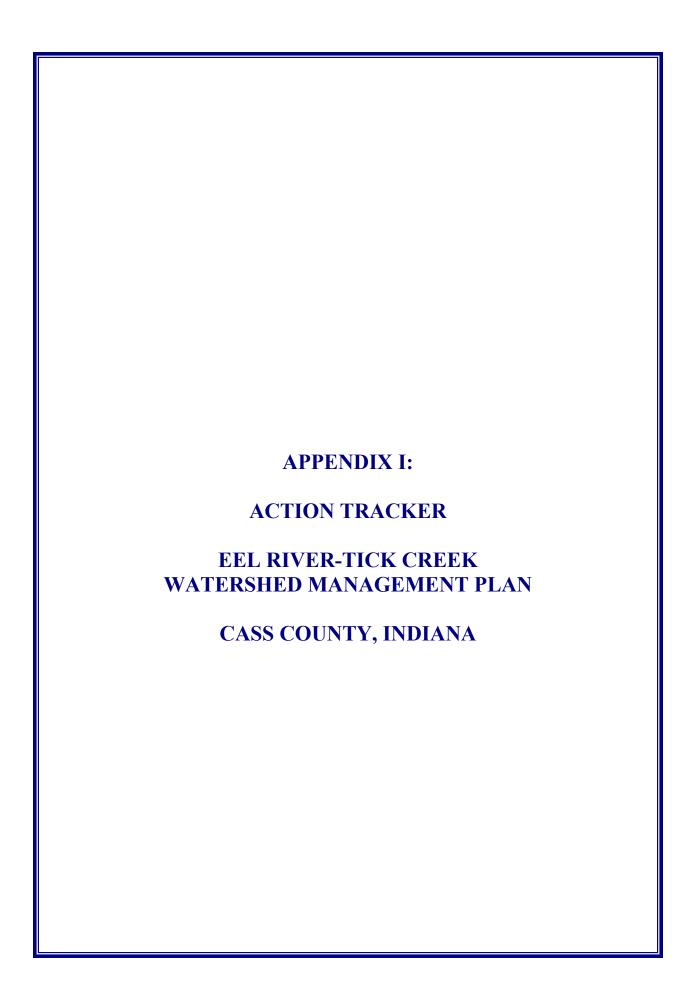
U.S. Environmental Protection Agency Environmental Education Program

The USEPA Environmental Education Program provides funding for state agencies, non-profit groups, schools, and universities to support environmental education programs and projects. The program grants nearly \$200,000 for projects throughout Illinois, Indiana, Michigan, Minnesota, Wisconsin, and Ohio. More information is available at http://www.epa.gov/region5/ened/grants.html.

Core 4 Conservation Alliance Grants

Core 4 provides funding for public/private partnerships working toward Better Soil, Cleaner Water, Greater Profits and a Brighter Future. Partnerships must consist of agricultural producers or citizens teaming with government representatives, academic institutions, local associations, or area businesses. CTIC provides grants of up to \$2,500 to facilitate organizational or business plan development, assist with listserve or website development, share alliance successes through CTIC publications and other national media outlets, provide Core 4 Conservation promotional materials, and develop speakers list for local and regional use. More information on Core 4 Conservation Alliance grants can be found at

http://www.ctic.purdue.edu/CTIC/GrantApplication.pdf.


Indianapolis Power and Light Company (IPALCO) Golden Eagle Environmental Grant

The IPALCO Golden Eagle Grant awards grants of up to \$10,000 to projects that seek improve, preserve, and protect the environment and natural resources in the state of Indiana. The award is granted to approximately 10 environmental education or restoration projects each year. Deadline for funding is typically in January. More information is available at

http://www.ipalco.com/ABOUTIPALCO/Environment/Golden Eagle.html

Nina Mason Pulliam Charitable Trust (NMPCT)

The NMPCT awards various dollar amounts to projects that help people in need, protect the environment, and enrich community life. Prioritization is given to projects in the greater Phoenix, AZ and Indianapolis, IN areas, with secondary priority being assigned to projects throughout Arizona and Indiana. The trust awarded nearly \$20,000,000 in funds in the year 2000. More information is available at www.nmpct.org

Action Tracker

Date:	
Goal (choose	from goals listed below):
Task complete	ed:
Type of task (circle appropriate task type):
Meeting	Who attended:
Education	Number attended: Number distributed: Distributed to:
Investigation	Sources of information:
Field Work	
Other	
	cription of the task in the space below. Please include what portion of the goal(s) or his task completes, a listing of other actions required based on this task, and any are actions.
Additional not	
Task completed by:	

Goals:

- Increase stakeholder participation/form watershed group. 1.
- Each land owner learn/implement at least one water quality improvement practice/technique. 2.
- Reduce the sediment load to the waterbodies. 3.
- 4. Repair and maintain existing drainage tiles.
- 5.
- Reduce the nutrient load reaching Lake Perry.
 Reduce the concentration of *E. coli* within the waterbodies.