### VFC Index - Watershed (Plan)

| Program:            | Watershed                                 |
|---------------------|-------------------------------------------|
| IDEM Document Type: | Plan                                      |
| Document Date:      | 3/15/2007                                 |
| Security Group:     | Public                                    |
| Project Name:       | Kessinger Ditch Watershed Management Plan |
| Plan Type:          | Watershed Management Plan                 |
| HUC Code:           | 05120202 Lower White                      |
| Sponsor:            | Knox County SWCD                          |
| Contract #:         | 5-75                                      |
| County:             | Knox                                      |
| Cross Reference ID: | 21203135                                  |
| Comments:           |                                           |

#### **Additional WMP Information**

| Checklist:          | 2003 Checklist |
|---------------------|----------------|
| Grant type:         | 205j           |
| Fiscal Year:        | 2004           |
| IDEM Approval Date: | 3/15/2007      |
| EPA Approval Date:  |                |
| Project Manager:    | Alice Rubin    |
|                     |                |

# The Kessinger Ditch Watershed Management Plan

Working together to improve water quality in the Kessinger Ditch Watershed.

Prepared by the Knox County Soil and Water Conservation District with funding through an Indiana Department of Environmental Management205(j) grant.

### **Table of Contents**

| List of Appe  | endices                                                     | 5  |
|---------------|-------------------------------------------------------------|----|
| List of Figur | res                                                         | 7  |
| Glossary of   | Terms                                                       | 9  |
| Acronyms      |                                                             | 13 |
| Chapter 1     | Project Introduction                                        | 15 |
| Chapter 2     | The Kessinger Ditch Watershed                               | 17 |
| Chapter 3     | Water Quality Studies and Data                              | 27 |
| Chapter 4     | Problem Causes and Stressors                                | 35 |
| Chapter 5     | Prioritizing Pollutants and Sources                         | 47 |
| Chapter 6     | Goals and Load Reduction Estimates                          | 53 |
| Chapter 7     | Choosing Measures to Apply                                  | 61 |
| Chapter 8     | Implementing, Monitoring, Evaluating, and Adapting the Plan | 65 |

### Appendices

- Appendix A Advisory Group Participants
- Appendix B Initial Concerns
- Appendix C SWCD Water Quality Data
- Appendix D IDEM Sampling Data
- Appendix E Knox County Tillage Transect and Soil Loss Estimates
- Appendix F Water Sampling Sites in the SWCD Study
- Appendix G Water Sampling Sites in the IDEM Study
- Appendix H Soils in the Kessinger Ditch Watershed
- Appendix I Endangered, Threatened, and Rare Species in Knox County

# **List of Figures**

| Figure 1  | Location of Knox County                                                                 | 18 |
|-----------|-----------------------------------------------------------------------------------------|----|
| Figure 2  | Location of Kessinger Ditch Watershed                                                   | 19 |
| Figure 3  | Knox County Population 1910-2005                                                        | 20 |
| Figure 4  | Agricultural Land Use in Knox County 1905-2002                                          | 21 |
| Figure 5  | Land Use in the Kessinger Ditch Watershed                                               | 22 |
| Figure 6  | Aerial Photograph of Kessinger Ditch Headwaters Watershed                               | 23 |
| Figure 7  | Aerial Photograph of Roberson Ditch Watershed                                           | 24 |
| Figure 8  | Aerial Photograph of Kessinger Ditch Watershed                                          | 25 |
| Figure 9  | Comments on Initial Concerns                                                            | 33 |
| Figure 10 | Highly Erodable Land in the Kessinger Ditch Watershed                                   | 39 |
| Figure 11 | Tillage Transect Data for Knox County                                                   | 40 |
| Figure 12 | Soil Loss Estimates for Knox County<br>by Crop and Management Practice in tons per acre | 40 |
| Figure 13 | Total Soil Loss Estimates for Knox County<br>by Crop and Management Practice            | 41 |
| Figure 14 | Critical Areas in the Kessinger Ditch Watershed                                         | 42 |
| Figure 15 | NPDES Permits in the Kessinger Ditch Watershed                                          | 44 |
| Figure 16 | CFOs and CAFOs in the Kessinger Ditch Watershed                                         | 45 |
| Figure 17 | Problem Statements                                                                      | 46 |
| Figure 18 | Priority Matrix of Pollution Types by Source                                            | 52 |
| Figure 19 | Goals and Action Register                                                               | 55 |
| Figure 20 | Measures to Apply                                                                       | 61 |

### **Glossary of Terms**

**303 (d)** List - a list identifying water bodies that are impaired by one or more water quality elements thereby limiting the performance of the designated beneficial uses.

**Benthic Macroinvertebrates** – Insects, worms, snails, mussels, crustaceans, and other invertebrates that live on or in stream beds.

**Best Management Practice (BMP)** – practices implemented to control or reduce non-point source pollution.

Channelization – straightening of a stream; often the result of human activity.

**Coliform** – intestinal bacteria, the presence of which in streams indicates fecal contamination. Exposure may lead to human health risks.

**Designated Uses** – state established uses that waters should support, e.g. fishing, swimming, etc.

**Dissolved Oxygen** – oxygen dissolved in water that is available for aquatic organisms.

**Dredge** – to clean, deepen, or widen a water body; usually done to remove sediment from a streambed.

*E. coli* – a type of Coliform bacteria found in the intestines of warm-blooded organisms, including humans.

**Endocrine Disruptor** – a substance that causes adverse biological effects by interfering with the endocrine system and disrupting the physiologic function of hormones.

**Erosion** – the removal of soil particles by the action of water, wind, ice, or other agent.

Groundwater – water that flows or seeps downward and saturates soil or rock.

Headwater – the origins of a stream.

**Hydrologic Unit Code (HUC)** – unique numerical code created by the U.S. Geological Survey to indicate the size and location of a watershed within the United States.

**Impaired Waterway** – a waterway which does not meet federal or state water quality standards. Waterways may be impaired for recreational use due to the presence of *E. coli*, for fish consumption due to high levels of PCBs or mercury, for high levels of nutrients, or other causes.

**Impervious Surface** – any material covering the ground that does not allow water to pass through or infiltrate, e.g. roads, roofs, parking lots.

Infiltration – downward movement of water through the uppermost layer of soil.

**Macroinvertebrates** – animals lacking a backbone that are large enough to see without a microscope.

**Maximum Contaminant Level (MCL)** – the highest level of a contaminant that is allowed in drinking water.

**National Pollutant Discharge Elimination System (NPDES)** – national program in which pollutant dischargers such as factories and treatment plants are given permits with set limits of discharge allowable.

**Non-point Source Pollution (NPS)** – pollution generated from large areas with no identifiable source, e.g. storm water runoff from commercial areas, sediment laden runoff from farm fields.

Nutrients – nitrogen (nitrate) and phosphorous (orthophosphate)

**Permeable** – capable of being passed through.

**Point Source Pollution** – pollution originating from a point such as a pipe or culvert.

**Pollutant** – as defined by the Clean Water Act (Section 502(6)): "dredged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water.

**Riparian Zone** – and area adjacent to a water body which is often vegetated and constitutes a buffer zone between land and water.

**Run off** – water from precipitation, snowmelt, or irrigation that flows over the ground to a water body.

Sediment – soil, sand, and minerals washed from the land into a water body.

**Sedimentation** – the process by which soil particles enter, accumulate, and settle to the bottom of a water body.

**Soil Association** – a landscape that has a distinctive pattern of soils in defined proportions. Typically named for the major soils.

**Storm water** – the surface water runoff resulting from precipitation falling within a watershed.

Substrate – the material that makes up the bottom layer of a stream.

**Suspended Sediment** – the fraction of sediment that remains suspended in water and does not settle out or accumulate in the stream bed.

**Total Maximum Daily Load (TMDL)** – calculation of the maximum amount of a pollutant that a water body can receive before becoming unsafe. Also, a plan to lower identified pollution to a level that is considered safe.

**Tributary** – a stream that contributes its water to another stream or water body.

**Turbidity** – cloudiness or opacity of a liquid created by sediment or other suspended particles such as algae.

Water Quality – the condition of water with regard to the presence or absence of pollution.

Water Quality Standard – recommended or enforceable maximum contaminant levels of chemicals or materials in water.

**Watershed** - the area of land that water flows over or under on its way to a common water body.

**Wetlands** – lands where water saturation is the dominant factor in determining the nature of soil development and the types of plant and animal communities.

### Acronyms

| AFT   | American Farmland Trust                         |
|-------|-------------------------------------------------|
| BMP   | Best Management Practice                        |
| BOD   | Biological (or biochemical) Oxygen Demand       |
| CRP   | Conservation Reserve Program                    |
| EPA   | Environmental Protection Agency                 |
| EQIP  | Environmental Quality Incentives Program        |
| FSA   | Farm Service Agency                             |
| GAP   | Gap Analysis Program                            |
| HEL   | Highly Erodable Land                            |
| HUC   | Hydrologic Unit Code                            |
| IAC   | Indiana Administrative Code                     |
| IBI   | Index of Biological Indicators                  |
| IDEM  | Indiana Department of Environmental Management  |
| IDNR  | Indiana Department of Natural Resources         |
| NPDES | National Pollution Discharge Elimination System |
| NPS   | Non-Point Source                                |
| NRCS  | Natural Resources Conservation Service          |
| PPM   | Part Per Million                                |
| PPB   | Parts Per Billion                               |
| PPY   | Pounds Per Year                                 |
| QAPP  | Quality Assured Project Plan                    |
| QHEI  | Qualitative Habitat Evaluation Index            |
| SWCD  | Soil and Water Conservation District            |
| RUSLE | Revised Universal Soil Loss Equation            |
| TMDL  | Total Maximum Daily Load                        |
| TPY   | Tons Per Year                                   |
| USDA  | United States Department of Agriculture         |
| USGS  | United States Geological Survey                 |
| WC    | Watershed Coordinator                           |
| WHIP  | Wildlife Habitat Incentives Program             |
| WRP   | Wetland Reserve Program                         |
| WMP   | Watershed Management Plan                       |
|       |                                                 |

## Chapter 1

#### **Project Introduction**

Between July 24, 2001 and August 22, 2001, the Indiana Department of Environmental Management conducted a water quality survey of Kessinger Ditch, collecting samples at 16 sampling sites within the watershed. Of the 80 samples collected, 73 exceeded the water quality standard of 125 coliforms per 100ml as set forth in Indiana law (327 IAC 2-1-6), and 43 of the samples were higher than 600 coliforms per 100ml, or 5 times the standard. As a result of these high levels of *E. coli*, Kessinger Ditch was placed on the state's 303(d) list of impaired waterways as required by the Clean Water Act. Having been designated as impaired, the watershed became eligible for planning grant funds through IDEM.

In the winter of 2003 the Knox County Soil and Water Conservation District (SWCD) realized that an opportunity existed to develop a watershed management plan (Plan) for the Kessinger Ditch Watershed. The SWCD applied for a 205(j) watershed planning grant in March of 2004 and the project was selected for funding.

The SWCD hired a watershed coordinator to manage the project and to insure that the grant requirements were met. The watershed coordinator sought input from landowners, farmers, and residents in the watershed and an effort was made to establish an advisory committee to guide the effort. The watershed coordinator met individually with landowners, farmers, and residents of the watershed in an effort to insure that a wide variety of stakeholder concerns and ideas were heard. "Working together to improve water quality in the Kessinger Ditch Watershed" was adopted as the mission statement for the project.

Water quality data were compiled during the project and combined with historical data from previous studies conducted by the IDEM and the U.S. Geological Survey. The data were analyzed and compared to public perceptions and concerns to determine which concerns were valid and in need of being addressed. A land use survey was conducted to identify stressors or potential stressors to be addressed during the implementation phase of the project.

Soil erosion, stream bank erosion, stream bank maintenance, livestock in streams, failed septic systems, and sediment laden runoff from coal mine surface operations were the initial concerns expressed by advisory group members. Watershed residents and farmers were interviewed and were found to have similar concerns, but they also expressed concern for fish and wildlife and frequently commented on the unattractive appearance of Kessinger Ditch. In general, farmers who have land adjoining the ditch were more concerned with keeping debris out of the ditch, keeping trees from growing on the ditch banks, controlling bank erosion, and reducing sediment buildup in the stream bed. Non-farming watershed residents were more concerned with the lack of riparian borders and

corridors, wildlife habitat degradation, unattractive and murky water, and reduced fish populations.

The watershed coordinator worked with the county septic inspector to identify methods and funding sources for repairing failed septic systems in the watershed and to educate watershed residents on the importance of maintaining septic systems in good working order.

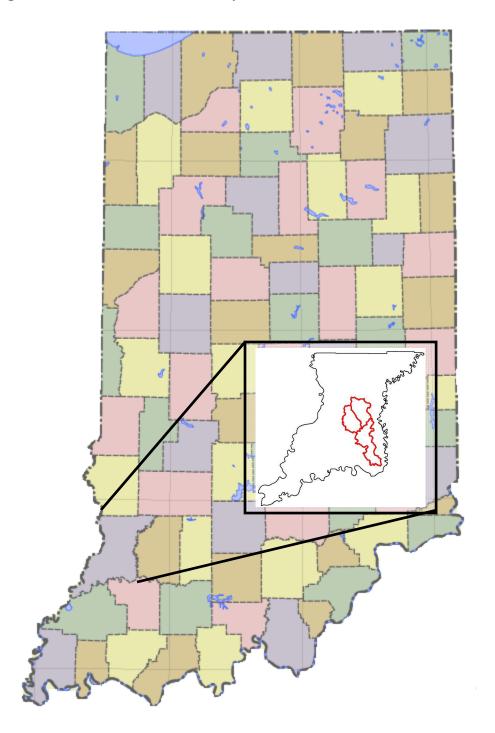
Farmers, landowners, watershed residents, SWCD supervisors and staff, and NRCS staff provided input for the development of the Plan by helping to identify water quality problems, suggesting ways to improve water quality, providing technical materials and assistance, and promoting the project to others.

# Chapter 2

#### The Kessinger Ditch Watershed

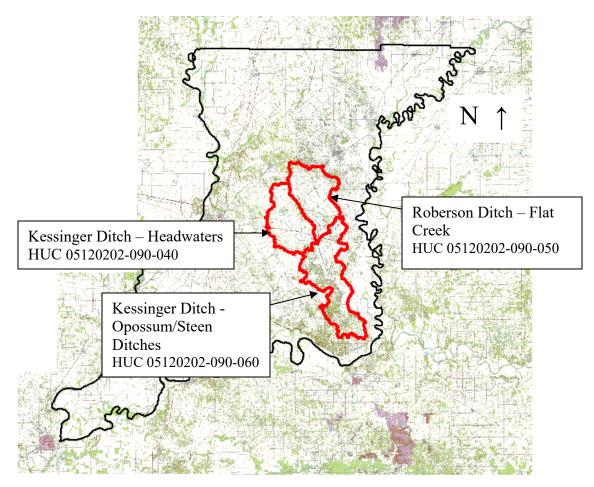
The Kessinger Ditch watershed is comprised of three sub-watersheds as defined by the U.S. Geological Survey:

- Kessinger Ditch Headwaters (HUC 05120202-090-040)
- Roberson Ditch Flat Creek (HUC 05120202-090-050)
- Kessinger Ditch Opossum/Steen Ditches (HUC 05120202-090-060)


The Kessinger Ditch watershed lies entirely within Knox County, Indiana and drains a total of 37,103 acres, or 11% of Knox County's 335,129 acres. Land use in the watershed is predominantly agricultural cropland and pasture with the remainder being forest, residential, and coal mine. The towns of Wheatland, Monroe City, Frichton, and Ragsdale lie partially within the watersheds. U.S. HWY 50 bisects the watershed west to east.

The watershed lies within the Lower White River Watershed in the Wabash Lowland physiographic region and is underlain by McLeansboro Group and Carbondale Group bedrock formations comprised of shale, sandstone, limestone, and coal. The surfical geology of the watershed's floodplain is Wisconsin-age lake deposits of clay, silt, and sand. The uplands of the watershed are Wisconsin-age loess silt deposits. Soils in the upland portions of the watershed are of the Alford-Sylvan and Hosmer-Sylvan associations formed in loess and are deep to moderately deep, well-drained to slowly permeable silt loams. Soils in the creek and river flood plains are of the Selma-Armiesburg-Vincennes association formed in outwash or alluvium and are deep to moderately deep permeable loams (see Appendix H).

The topography in the upper part of the watershed varies from nearly level to gently sloping uplands with some broad creek bottoms and a few steeply sloping ravines near the top of the watershed. The lower part of the watershed varies from nearly level creek bottoms to gently to very steeply sloping uplands. The upper two-thirds of the watershed is farmed almost in its entirety, while the lower third of the watershed has significant areas that are very steeply sloping land that remain in timber or pasture.


Kessinger Ditch, Roberson Ditch, and Flat Creek are the major streams in the watershed and they are fed by scores of named and unnamed tributaries. Kessinger Ditch and Roberson Ditch are legal drains and are governed by ditch associations, as true ditches they have been channelized for nearly their entire lengths, and they are periodically dredged. Most of the tributaries have also been channelized except in places where the land is too steep for row crop agriculture. Few wetlands remain in the watershed with the exception of some wooded creek bottoms near the bottom of the watershed.

### Figure 1 – Location of Knox County



N

#### Figure 2 - Location of Kessinger Ditch Watershed



Prior to European settlement, the watershed consisted of upland forests, lowland forests, and extensive wetlands and ponds. European settlement began in the late eighteenth century and the towns of Monroe City and Wheatland were laid out in 1856 and 1858 respectively. The forest was gradually cleared and the land was put into agricultural production on all but the steepest slopes and the marshy lowlands. Coal mining operations began in the nineteenth century and mining continues today at Peabody's Air Quality #1 underground mine near Wheatland. The watershed is dominated by row crop agriculture and is sparsely populated with the exception of the towns of Monroe City (2000 pop. 548) and Wheatland (2000 pop. 504) and the hamlets of Frichton and Ragsdale, all of which lie partly in the watershed.

Kessinger Ditch is approximately 18 miles long and flows from the NNW to the SSE. Its main tributaries (see Figure 5) are Reel Creek, Steen Ditch, and Roberson Ditch which is fed by Flat Creek and Indiana Creek. Frick Ditch enters Kessinger Ditch near its confluence with the White River but the Frick Ditch watershed is not included in this study. The Kessinger Ditch watershed is comprised of three sub-watersheds: Kessinger Ditch Headwaters, Roberson Ditch, and Kessinger Ditch (Figures 6-8)

Census data (Figure 3) show that the population of Knox County has been trending downward from a high of 46,195 in 1920 to 38,366 in the 2005 Census Bureau estimate. Given the slow decline in population in the county, it appears unlikely that the Kessinger Ditch watershed will experience significant development pressure in the foreseeable future.

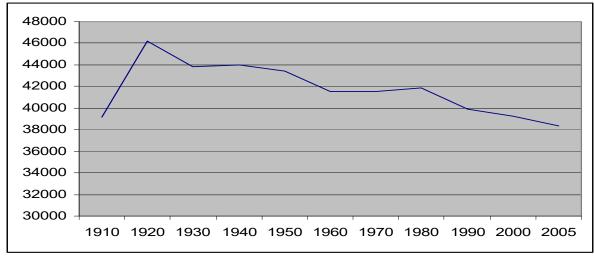



Figure 3 - Knox County Population 1910-2005

Source: U.S. Census Bureau

Agriculture has been the dominant land use in the watershed from the beginning of European settlement until today. The uplands began to be cleared and farmed in the late 1700s, and by 1877 there were roughly 150,000 acres in farms in Knox County, 90,000 of which were harvested acres with the balance being in meadow and improved pasture (Indiana). Dredging and channeling of streams began in earnest in the 1880s in order to drain the malarial swamps, an effort which also opened up the broad creek and river bottom lands to agriculture (Batman). Around 1910 Kessinger Ditch was dug to drain Montour Pond, an extensive area of marshes and ponds that stretched nearly eight miles from near the White River to Highway 50 near Robinson Grain.

U.S. Census of Agriculture statistics for Knox County show that agricultural land use has accounted for roughly 90% of the county's 335,000 acres since at least 1900 (Figure 4). While the number of acres in farms has remained steady for at least the past one hundred years, the number of harvested acres increased from 177,000 in 1930 to 256,000 in 2002, an increase which came partly at the expense of pastured land which decreased from 59,000 acres in 1950 to 14,000 acres in 1997 (NASS). Although these land use statistics are for Knox County as a whole, it is reasonable to assume that they are representative of the Kessinger Ditch watershed since the topography and apparent land use in the watershed are not significantly different from the remainder of the county with the exception of the very flat Wabash Lowlands in the southwestern part of the county.

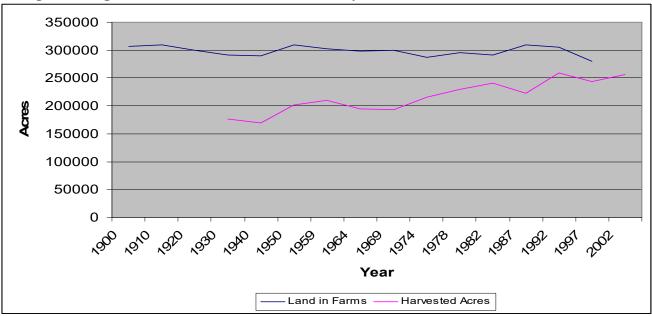
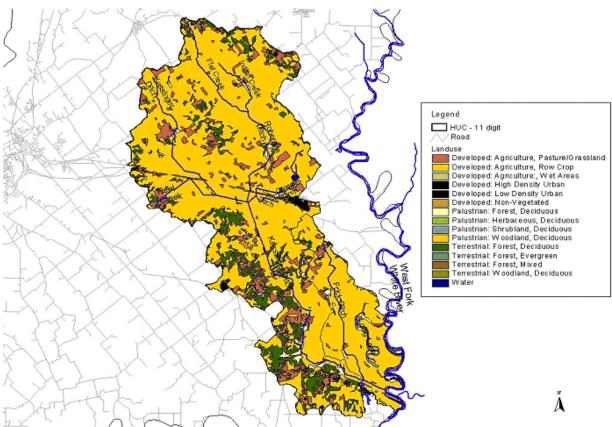




Figure 4 - Agricultural Land Use in Knox County 1905-2002

Source: Indiana Agricultural Statistics Service

A land use analysis of the Kessinger Ditch watershed was conducted in 1992 using the U.S. Geological Survey's Gap Analysis Program, and land use was estimated to be 88% agricultural, 0.82% developed, 3% wetlands, 9% forest and woodland, and 0.33% water (See Figure 5). This analysis is still regarded as valid in spite of its age because of the very low rate of development in the watershed and also because it is confirmed by U.S. Census of Agriculture statistics for Knox County as discussed above. Anecdotal evidence from conversations with landowners suggests that some woodlands and pasture have been converted to crop land since the GAP analysis was performed, but the number of acres converted is not known. Due to the very high prices for commodity crops and the strong outlook on future prices at the time of the writing of the Plan in 2007, it appears likely that cropped acres in the Kessinger Ditch watershed will increase at the expense of the few remaining pastures and woodlands.

Agriculture will continue to be the dominant land use in the Kessinger Ditch watershed for the foreseeable future, although the number of harvested acres will vary somewhat with fluctuations in grain prices and changes in government incentive programs and conservation programs.



#### Figure 5 – Land use in the Kessinger Ditch Watershed

Source: TMDL for Kessinger Ditch Watershed, Indiana Department of Environmental Management, 2004

Agricultural crop management practices have changed significantly over time as slash and burn agriculture gave way to the draft animal and the plow, the draft animal gave way to the tractor, the moldboard plow and row cultivator gave way to the chisel plow and selective herbicides, and the chisel plow has begun to give way to no till.

As in much of the rolling terrain in the Midwest, soil erosion has been a significant, and in places severe, problem in the Kessinger Ditch watershed for as long as there has been row crop agriculture. The soil loss estimates in Figures 12-13 show the extent of the soil erosion problem in Knox County and, by inference, in the Kessinger Ditch watershed. The estimates also demonstrate that soil erosion can be significantly reduced with the use of no till, and, when combined with the tillage transect data in Figure 11, show that the potential exists for significant reductions in soil erosion by increasing the percentage of acres under continuous no till.

Granted, not all of the estimated 834,000 tons of soil lost in 2005 were carried into Knox County's streams and rivers as suspended sediment, but a significant percentage were as evidenced by the high levels of the suspended portion of eroded soil present in Kessinger Ditch and its tributaries after significant rainfall events (see data in Appendix C).

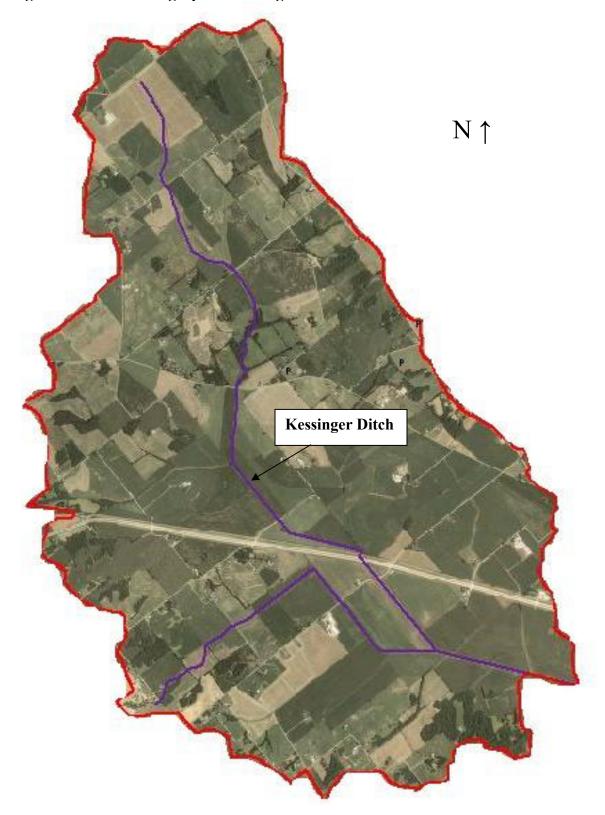



Figure 6 - Aerial Photograph of Kessinger Ditch Headwaters Watershed

Figure 7 - Aerial Photograph of Roberson Ditch Watershed

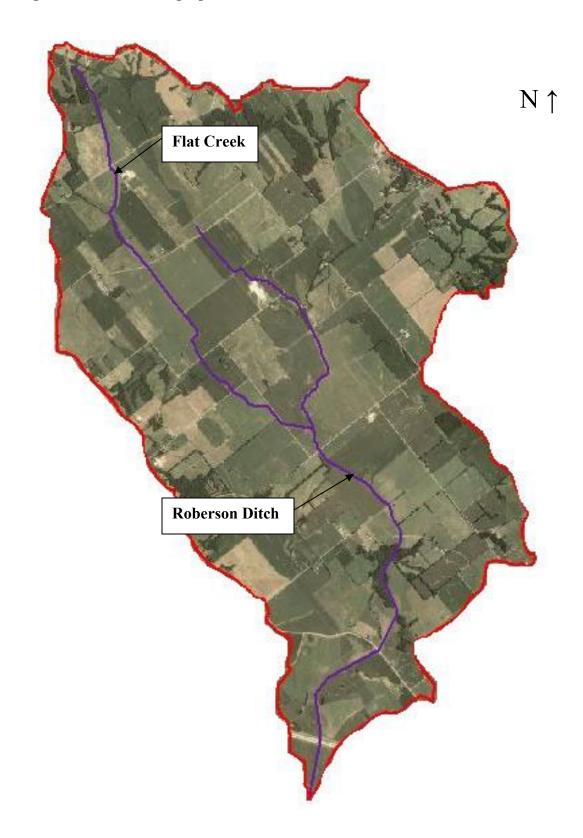
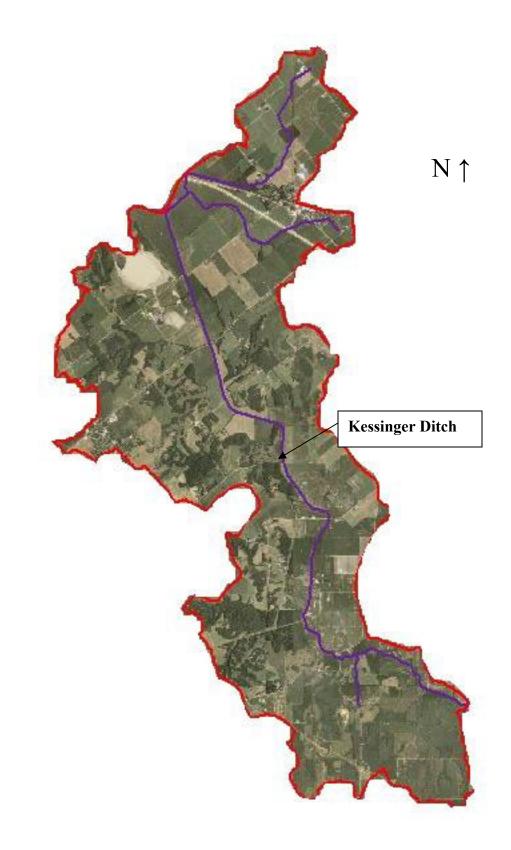




Figure 8 - Aerial Photograph of Kessinger Ditch Watershed



Knox County is home to several endangered, threatened, and rare species (see Appendix I). Although a comprehensive species survey has never been conducted for the Kessinger Ditch watershed, it would seem reasonable to assume, given the watershed's similarity to rest of the county, that many of the species of concern are present in the watershed. Special care should be taken during the implementation of this plan to insure that rare, endangered, and threatened species are not harmed.

### Chapter 3

#### Water Quality Studies and Data

# Total Maximum Daily Load for *Escherichia coli (E. coli*) for the Kessinger Ditch Watershed, Knox County

The staff of the Indiana Department of Environmental Management sampled sixteen sites (see Appendix G) along Kessinger Ditch between July 24 and August 22, 2001 to evaluate *E. coli* levels. The data from the assessment (see Appendix D) revealed that *E. coli* levels in Kessinger Ditch are consistently above the Indiana State standard of 125 *E. coli* per 100ml (327 IAC 2-1-6). At fifteen of the sixteen sites the geometric mean of the five samples was higher than the state standard, ranging from 151 CFU/100mL to 1693 CFU/100mL. One sample site consistently tested at <1 CFU/100mL. Fourteen samples returned the maximum value (2419 CFU/100mL) for the test protocol used in the study, and one of the study, the Kessinger Ditch watershed was added to Indiana's 303(d) list of impaired watersheds.

#### **USGS Study**

In 1991, the U.S. Geological Survey began the National Water-Quality Assessment (NAWQA) Program. The long-term goals of the NAWQA Program are to describe the status and trends in the quality of a large and representative part of the Nation's surface and ground water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources.

The NAWQA Program uses an integrated approach to assess water quality. Multiple lines of evidence, including physical, chemical, and biological information, are collected to determine water-quality conditions at each site. This integrated approach is important because chemical monitoring alone can miss impacts such as habitat degradation, flow alterations, and heated effluent that can greatly influence the integrity of biological communities in streams.

The NAQWA uses two indices to determine the health and habitability of streams, and thus water quality. The Index of Biological Integrity (IBI) describes the habitability of streams and is determined by counting species of fish present and total numbers of fish present at a given stretch of stream. IBI scores range from a low of 0 to a high of 60. The Qualitative Habitat Evaluation Index (QHEI) describes the physical characteristics of a stream that affect fish communities and other stream life. QHEI scores range from a low of 0 to a high of 100. Generally speaking, a high degree of correlation is expected between IBI and QHEI scores for a given stream since good habitat generally results in healthy fish communities. A lower than expected IBI relative to the QHEI would suggest poor water quality.

The Kessinger Ditch watershed was selected as one of eleven sites in the White River Basin to take part in the NAQWA, and assessments were conducted in the summer of 1993 and the summer of 1995 near the mouth of the ditch. Although the QHEI results of the 1993 assessment are not published, in the 1995 assessment Kessinger Ditch had a QHEI score of 81, ranking it as "Good" and "Able to support exceptional biological community". The IBI scores of 40 in 1993, and 38 in 1995, were significantly lower than expected given the relatively high QHEI ranking, indicating poor water quality. The establishment of poor water quality was strengthened by the very low percentage of pollution intolerant fish species present in Kessinger Ditch in both years of the study. Fish studies are an important part of the NAWQA because the presence or absence of certain species provides clues to long-term water quality.

Fish communities reflect water-quality conditions in a stream because they are sensitive to a wide variety of environmental factors including habitat degradation, siltation, pesticides, nutrients, and change in flow regimes. The structure of the fish communities, including the types and numbers of species present and the age and health of the fish populations, can help investigators to determine the water quality of the stream. For example, warm-water streams in Indiana that contain great numbers of species typically indicate better water quality than a stream with fewer species." (Frey)

The disparity between IBI and QHEI scores and the absence of pollution tolerant fish species indicates that Kessinger Ditch is carrying a significant burden of pollutants. As a partial explanation for high pollution levels, the U.S.G.S. states that, "The more permeable deposits of the glacial lowland region permit quicker transport of pesticides and nutrients to streams than do deposits in the till plain. Kessinger Ditch flows through the glacial lowland region, and the highest pesticide concentrations were found there." (Frey, 1996)

Concentrations of atrazine, the most commonly used corn herbicide, in the White River spike as high as 13 ppb during peak application months of April – July, and the highest concentrations occur during the first couple of heavy rains after application. Atrazine levels in smaller streams in the White River basin, such as Kessinger Ditch, have maximum concentrations nearly twice as high as in the White River. The NAWQA study found average atrazine concentrations in Kessinger Ditch to be 22 ppb in May and 7 ppb in June between 1993 and 1995 (Fenelon), and found a maximum concentration of 100 ppb (Crawford), well in excess of the USEPA maximum contaminant level of 3 ppb. Surface runoff and drainage tile discharge from cropped fields carry atrazine into the ditch without the need for sediment as a carrier, meaning that even a clear running stream can be carrying very high levels of atrazine and other water-borne herbicides.

The NAWQA study also discovered that the herbicide butylate was found in high concentrations in Kessinger Ditch during the spring and early summer (Crawford, 199-96). Although butylate is not considered a health hazard for humans or other mammals, it is highly toxic to fish and the EPA requires that products containing butylate carry a warning label.

The USGS collected data on nitrate concentrations in streams in the White River Basin during the years 1981-90. Nitrate concentrations in the White River Basin were high relative to other NAWQA study sites nationwide, and the Kessinger Ditch watershed ranked among the top 25 percent of NAWQA sites with a median nitrate concentration of 5 ppm.

#### **SWCD Study**

The watershed coordinator collected and analyzed water samples in order to define problems and set priorities for this Plan. Fifteen sample sites were selected throughout the watershed and fifteen samples were collected from each of the sampling sites. Samples were tested for pH, turbidity, dissolved oxygen, temperature, five-day biological oxygen demand, *E. coli*, nitrate, and orthophosphate. The data are presented in Appendix C.

*E. coli* - The Kessinger Ditch watershed was placed on IDEM's 303(d) list of impaired watersheds because high levels of *E. coli* made the water unsafe for human contact or recreational use. The presence of high levels of *E. coli* was confirmed in the SWCD study. All fifteen sample sites exceeded the 125 CFU/100ml standard on at least eight of the fifteen samples, and fourteen of the fifteen sites had at least one sample that exceeded the test protocol limit of 2419 CFU/100ml. As expected, *E. coli* counts were highest during high flow periods, but high readings were also recorded during very low flow periods at most of the sampling sites.

Given the average *E. coli* count of 780 CFU/100ml from site #14 near the mouth of Kessinger Ditch and the USGS average flow rate for Kessinger Ditch of 65 cubic feet per second, the IDEM's load calculation tool gives an annual load of 3.16E+14 CFU.

There were three sample sites that were included in both the SWCD and IDEM water quality surveys. The following are the site names and the geometric means (in CFU/100mL) of the *E*. coli data from the sites:

| Kessinger Ditch at Coonce Road        | TMDL 528 | SWCD 634 |
|---------------------------------------|----------|----------|
| Kessinger Ditch at Old Wheatland Road | TMDL 414 | SWCD 454 |
| Kessinger Ditch at Wheatland Road     | TMDL 910 | SWCD 438 |

The data for Coonce Road and Old Wheatland Road are in agreement, but there is more variance in the data for Wheatland Road than one might expect. The variance could be due to the greater number of samples in the SWCD study, 15 samples versus 5 samples in the IDEM study, variations in contributions of contributing tributaries due to uneven rainfall, etc. It should be noted that in both the SWCD and IDEM studies the *E. coli* counts at some sites varied by as much as two orders of magnitude, so some variance between the two studies is to be expected when doing single-site comparisons. The geometric means for all of the *E. coli* data collected in the IDEM and SWCD studies were 434 CFU/100mL and 491 CFU/100mL respectively.

**pH** - Samples typically tested between 6.5 - 8 pH, well within the Indiana standard of 6-9. The lower readings occurred during high flow periods immediately after a rain, an expected result since rain typically is ~5.5pH. The lowest reading of 4 was taken at sample site 6 where runoff from the reclaimed spoils bank of the old Oliphant mine enters Kessinger Ditch. The runoff from the spoils bank contains acid mine drainage following a heavy rain, but the effect is limited in duration and does not seem to have a lasting effect as evidenced by the 6 - 8.5 pH range of the next downstream sampling site a mile away. The effects of low pH and high levels of oxidized iron seem to be confined to the drainage ditch exiting the mine and a short stretch of Kessinger Ditch downstream from the confluence of the mine drainage ditch.

**Nitrate** - The data on nitrate levels is consistent with what would be expected in a primarily agricultural watershed with well drained soils and extensive use of field drainage tile. Nitrate levels ranged from 0 to 88 ppm throughout the watershed with an average of 17 ppm (median 15) at the sample site nearest the mouth of Kessinger Ditch compared to an Indiana average of 12.3 ppm reported by Hoosier Riverwatch. Levels are somewhat higher during the period April – September than during the rest of the year and are higher during high flow periods than during low flow periods. The NAWQA study recorded a median of 5 ppm nitrate which is significantly lower than the median of 15 ppm recorded in this study. There are factors which could account for this disparity, such as flow rate at the time of sampling or rainfall intervals, but those data are not published as part of the NAWQA study and thus it not possible at present to determine if the disparity is real or could be controlled for. In the SWCD study, nitrate levels were generally in the 2-10 ppm range during July and August except after rain events when nitrate levels would increase to 15-20 ppm.

Given the average nitrate concentration of 17 ppm from site #14 near the mouth of Kessinger Ditch and the USGS average flow rate for Kessinger Ditch of 65 cubic feet per second, the IDEM's load calculation tool gives an annual load of 2.17 million pounds per year of nitrate.

**Orthophosphate** - In general, orthophosphate levels were in the .1 to .3 ppm range which is consistent with the typical range for the state of Indiana, although levels were considerably higher than the Indiana average of .05 ppm reported by Hoosier Riverwatch. At sites five and ten the median levels were 2.4 ppm and 1.8 ppm respectively, and a maximum value of 6 ppm was recorded at site 5. High levels at these two sites are likely due to septic effluent and/or raw sewage, site ten being directly downstream from Wheatland and site five being near the top of the watershed and downstream from Frichton, and neither site downstream from livestock facilities or fields where manure is being applied.

Given the average orthophosphate concentration of .2 ppm from site #14 near the mouth of Kessinger Ditch and the USGS average flow rate for Kessinger Ditch of 65 cubic feet per second, the IDEM's load calculation tool gives an annual load of 25,578 pounds per year of orthophosphate.

**Dissolved Oxygen** - Water is able to dissolve and hold a certain amount of gaseous oxygen which is necessary for fish and aquatic insects and other aquatic animals. Dissolved oxygen is measured in mg/L and is compared to water temperature to determine the percent saturation. The percent saturation is the percentage of the total amount of oxygen that water can hold at a given temperature. For example, water at 20° C with 9.2 mg/L of oxygen is considered 100% saturated. Cold water, being more dense than warm water, will hold more dissolved oxygen than warm water, so the same 9.2 mg/L of oxygen would only be an 80% saturation in 10° C water and would be a 120% saturation in 30° C water.

There was wide variability in dissolved oxygen levels in water samples over the course of the study due to seasonal variations in water temperature, rainfall, and nutrient loads. Sites high in the watershed had much greater seasonal variability than sites lower in the watershed. For example, site 3 near the top of the watershed had a low of 48% saturation and a high of 131% and a median of 88%, while site 14 near the mouth of Kessinger Ditch had a low of 61% saturation and a high of 85% and a median of 70%. The lower saturation in the lower part of the watershed is likely due in large part to the high levels of sediment suspended in the water which raises water temperatures and retards the growth of oxygen-producing aquatic plants and mosses by blocking sunlight.

The Indiana water quality standard calls for average dissolved oxygen levels to be greater than 5mg/L and not to go below 4mg/L. Dissolved oxygen levels in the Kessinger Ditch watershed ranged from 2 to 11 mg/L.

**Biochemical Oxygen Demand (BOD 5)** – Biochemical oxygen demand is the oxygen used by bacteria to break down water borne organic matter over a period of time, five days in this study. Five-day biochemical oxygen demand averaged 2-3 mg/L throughout the watershed, well within the range of typical values for Indiana but somewhat higher than the state average of 1.5 mg/L. Site 10 was the exception and had an average five-day BOD of 4 mg/L, not unexpected since the site is directly downstream from Wheatland where septic effluent is being discharged into the stream.

**Turbidity** – Turbidity is a measure of the opacity of a liquid and is expressed as a number of Nephelometer Turbidity Units (NTU); the higher the NTU the more turbid and opaque the water. Suspended sediment (soil particles), dissolved minerals, and free-floating algae can cause water to be turbid. Suspended sediment is by far the largest contributor to turbidity in the Kessinger Ditch watershed. According to Hoosier Riverwatch, the typical turbidity range in Indiana is 0-173 NTU with the state average being 36 NTU.

The data on turbidity in the Kessinger Ditch watershed covered a broad range of values and varied widely from site to site and also varied widely at individual sites over time. At site 14 near the mouth of Kessinger Ditch the turbidity averaged 61 NTU over the fifteen samples and ranged from a low of 30 NTU to a high of >100 NTU. At site 1 near the top of the watershed turbidity averaged 23 NTU and ranged from a low of <15 NTU to a high of 92 NTU. Sites 11-14 are downstream from the Peabody coal mine (see Figure 15 and Appendix F) and samples from these sites were consistently more turbid than samples from sites upstream from the mine except during high flow periods when all sites tended to be highly turbid. High turbidity readings correlated to rainfall and high flow periods for sites higher in the watershed, but turbidity levels at sites 11-14 did not appear to be affected by rainfall or flow levels owing to the high ratio of mine runoff to natural drainage present in the stream at these sites during low flow periods.

Given the average turbidity of 61 NTU at site #14 near the mouth of Kessinger Ditch, a conversion ratio from NTU to TSS of 1.44 : 1, and the USGS average flow rate for Kessinger Ditch of 65 cubic feet per second, the IDEM's load calculation tool gives an annual load of 2,708 tons per year of suspended sediment.

#### Land Use Survey

A informal land use survey was conducted by the watershed coordinator to identify specific concerns, e.g. cattle in streams or incidents of gully erosion, and to assess the validity of some of the initial concerns. The survey was comprised of a windshield survey of the watershed, analysis of aerial photographs, and walking stretches of a few streams and ditches. Tillage practices, gullies, bank erosion, livestock operations, and riparian borders were noted.

#### **Initial Concerns**

The initial concerns regarding water quality as expressed by landowners, residents, and farmers in the watershed were discussed in Chapter 1. Figure 9 contains a list of the concerns and comments regarding the validity of the concerns in light of the data as discussed in this chapter.

One water quality concern that is conspicuous in its absence is pesticides. Although watershed residents and landowners did not articulate a concern over the presence or effects of pesticides in Kessinger Ditch and its tributaries, the NAWQA study demonstrated that pesticides are present in Kessinger Ditch in concentrations high enough to have a significant negative impact on some aquatic species. Neither pesticides nor their impacts on aquatic life are readily apparent to the casual or occasional observer, but they are not the less significant for being inconspicuous. For this reason they are included in the Plan as a concern to be addressed.

| Concern                                  | Comments                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| soil erosion                             | The data show this to be a valid concern. High turbidity readings<br>following rain events demonstrate that considerable amounts of soil<br>are being transported to streams and ditches. The land use survey<br>also found that there are areas where significant soil erosion is<br>occurring in the form of classic gullies and sheet/rill erosion.                   |
| stream bank erosion                      | Stream bank erosion does not appear to be a widespread problem,<br>although some bank sloughing does occur in places where the banks<br>are too steeply sloped. Under-cutting of banks is virtually<br>nonexistent due to the prevalence of channelizing. Channel slopes<br>are generally vegetated, and the ditches and streams are periodically<br>dredged and shaped. |
| stream bank maintenance                  | A landowner expressed his concern that other landowners were not<br>keeping the trees away from the ditch bank, thus making it difficult,<br>although not impossible, to use heavy equipment to maintain the<br>channel. This concern is valid insofar that it is a true statement, but<br>the impact on water quality is uncertain.                                     |
| livestock in streams                     | This concern is valid. There are several places in the lower half of the watershed where cattle have access to streams and ditches.                                                                                                                                                                                                                                      |
| failed septic systems                    | This concern is valid as demonstrated by high <i>E. coli</i> counts in areas of the watershed which have houses but which do not have livestock.                                                                                                                                                                                                                         |
| sediment laden mine runoff               | This concern is valid as demonstrated by turbidity levels which are higher downstream from the mine than upstream.                                                                                                                                                                                                                                                       |
| acid mine drainage from<br>Oliphant mine | The data do not support this concern. Low pH levels and iron oxide<br>sediments are largely confined to the intermittent ditch which drains<br>the mine property. Acid mine drainage appears to have little if any<br>significant impact on Kessinger Ditch.                                                                                                             |
| loss of wildlife habitat                 | This concern is related to the lack of riparian borders and as such is a valid concern. See "lack of riparian borders" below.                                                                                                                                                                                                                                            |
| water is murky and<br>unattractive       | This concern is validated by the high turbidity readings, especially<br>in the Kessinger Ditch mainstem downstream from the coal mine.<br>The ditches and streams run brown following rainfall, and at most<br>other times Kessinger Ditch is runs a light grey.                                                                                                         |
| lack of riparian borders                 | This is a valid concern. The land use survey revealed that, with very few exceptions, adequate riparian borders exist only in areas that are too steep or too wet for row crop agriculture.                                                                                                                                                                              |

Figure 9 – Comments on Initial Public Concerns

| Concern                  | Comments                                                                                                                                                                                                                                                                                                           |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| high E. coli levels      | The data from the IDEM and SWCD studies show this to be a valid concern.                                                                                                                                                                                                                                           |
| heavy sediment loads     | This is a valid concern as demonstrated by the high turbidity levels recorded in the SWCD study.                                                                                                                                                                                                                   |
| brine contaminated sites | The brine contaminated sites are on flat ground and are not eroding<br>or in danger of eroding and thus are not impacting water quality.<br>The landowners of these sites were approached about the possibility<br>of reclaiming the sites but they did not see a need for reclamation<br>and were not interested. |

### **Chapter 4** Problem Causes and Stressors

As discussed in Section 3, data from water quality studies of Kessinger Ditch have demonstrated that water quality is suffering in many key indicators. Turbidity and nitrate levels are high throughout the watershed and *E. coli* is present everywhere and at relatively high counts. Herbicides are present in high concentrations relative to other streams in the NAWQA study and the diversity of aquatic organisms is lower than should be expected given the quality of aquatic habitat. High levels of nutrients were found in both the NAWQA and SWCD studies, and high *E. coli* counts were found in both the IDEM and SWCD studies.

#### **Agricultural Stressors**

#### Pesticides

Kessinger Ditch and its tributaries were shown in the NAWQA study to have some of the highest pesticide concentrations in the nation. The high percentage of agricultural land use in the watershed, extensive use of field tile, a high percentage of highly erodable land, the absence of riparian buffers, and the tendency of the soils to be moderately to well drained all contribute to the high levels of atrazine, acetochlor, and butylate found in Kessinger Ditch. Although these pesticides are not regarded as serious threats to human health in the concentrations found in Kessinger Ditch, they can have an impact on aquatic organisms at those concentrations and thus must be considered as stressors.

Butylate, although not currently in common use, was used widely until the mid 1990's and was found in relatively high concentrations of 1.5 ppb in the USGS NAWQA study. Butylate is considered highly toxic to fish and the USEPA requires a warning label on all products containing butylate (EPA), but it does not typically result in fish mortality until concentrations are in excess of 300 ppb. Although the hazardous effects on fish of concentrations of 1.5 ppb are not known, it seems unlikely that butylate was a major cause of the absence of pollution tolerant fish in Kessinger Ditch noted in the NAWQA study.

Atrazine remains one of the most widely used corn herbicides and, as noted in Section 3, it was found in concentrations as high as 100 ppb in the NAWQA study. Atrazine is not generally considered a human health hazard at the concentrations found in the study, but it is considered a potential endocrine disruptor and thus may have an effect on the hormonal systems of fish and amphibians. Even at levels as low as .1 ppb, "...male leopard frogs are extremely sensitive to atrazine exposure during metamorphosis from tadpole to adult." "... [T]he lab studies confirm that male gonadal development in leopard frogs can be disrupted by extremely low levels of atrazine. The field studies reveal widespread gonadal abnormalities in regions where atrazine contamination is within the range shown by the laboratory studies to disrupt development. This does not prove with certainty that the effects observed in wild leopard frog populations are caused

by atrazine, but it is strong circumstantial evidence" (Hayes, el al). The watershed coordinator was unable to find studies on the possible effects of atrazine on populations of aquatic species present in Kessinger Ditch, but, given the suspected endocrine disrupting action of the herbicide, it would seem reasonable to assume that the relatively high levels of atrazine in the Kessinger Ditch are acting as a stressor on aquatic life.

The NAWQA study found peak concentrations of 3 ppb of the herbicide acetochlor (Crawford, 058-97) which, like atrazine, is a suspected endocrine disruptor and thus may well be having an impact on populations of fish, amphibians, and other aquatic organisms as demonstrated by the absence of sensitive species.

Glyphosate was not used on a large scale when the NAWQA studies were done and thus the USGS did not test for its presence, but today it is the most widely used herbicide in the watershed and it is reasonable to assume that it is present in surface water during the growing season. Glyphosate, like the other herbicides, is very unlikely to be present at levels that are acutely toxic to aquatic organisms or wildlife although it can potentially produce chronic effects at concentrations far below toxic levels.

It is important to note that the NAWQA study did not find herbicides in concentrations that would be acutely toxic to fish, mammals, birds, or amphibians. The concentrations were, however, sufficient to act as stressors on aquatic plants and wildlife, for example by altering gender ratios within fish and amphibian populations or seasonally inhibiting the growth of aquatic plants and algae. The effects of such low concentrations, if any, would be chronic (e.g. declining populations) instead of acute (e.g. fish kills) and thus would not be apparent in short-term studies or casual observations.

None of the water quality studies conducted in the Kessinger Ditch watershed have tested for the presence of insecticides other than diazinon, which is not widely used in agriculture. The commonly used chlorpyrifos (Lorsban), clothianidin (Poncho), imidacloprid (Gaucho, Prescribe), and thiamethoxam (Cruiser) have not been included in any water quality assessments and thus we do not know whether they are present in concentrations significant to act as stressors. Studies have demonstrated that insecticides can be transported via leaching and surface runoff from farm fields to surface waters (Schulz, 2004) and thus it is likely that one or more of the commonly used agricultural insecticides is present in surface waters during the growing season. Insecticides can have an impact on some common water dwelling insect larva and nymphs (benthic macroinvertebrates) at concentrations of just a few part per billion (Moore), and since they are at or near the bottom of the food chain their scarcity or absence has a direct negative impact on fish, amphibians, and other predators higher up the food chain. Although the primary effects of pesticides on these benthic macroinvertebrates may be seasonal as pesticide levels spike in late spring, their populations may not recover for several months and thus the food chain effects can persist for months.

Given the absence of data demonstrating the presence of significant concentrations of insecticides in surface waters in the Kessinger Ditch watershed, we cannot say unequivocally that insecticides are stressing aquatic ecosystems in the watershed.

However, it would seem reasonable to assume that such stresses are occurring at least locally and occasionally in the watershed given the predominance of agriculture, the high percentage of highly erodable land which promotes surface runoff, the permeability of the soils, the extensive use of drainage tile, and the rarity of riparian buffers.

#### Nutrients

Both the NAWQA and SWCD studies found high nitrate levels in Kessinger Ditch, although the median of 5 ppm in the NAWQA was considerably lower than the median of 15 ppm in the SWCD study. Possible reasons for this disparity are discussed in Chapter 3. The SWCD study found elevated levels of orthophosphate as well, 0.2-0.4 ppm being typical, which, although well within a typical range for Indiana, are several times the average levels in the state. Elevated nitrate and orthophosphate rates contribute to increases in algal growth and super saturation of dissolved oxygen in the upper parts of the watershed and presumably contribute to lowered dissolved oxygen rates lower in the watershed where high levels of suspended sediment reduce light penetration and thus promote algal death and oxygen deficiency.

Aside from the stress caused dissolved oxygen levels that are either too high or too low, amphibians and aquatic animals are directly affected by nitrate at levels found in the NAWQA and SWCD studies. Studies by Rouse (1999), Carmargo (2005), and others have demonstrated that nitrate concentrations of 13-40 ppm are lethal to many species of frogs and toads, and concentrations of 10 ppm or less produce chronic effects on various species of fish, amphibians, and invertebrates. It would seem reasonable to assume, therefore, that stresses caused by high nutrient levels are at least partially responsible for the unexpectedly low IBI scores found in the NAWQA study.

Although it is not possible with the current data set to differentiate between nutrients contributed by agriculture and nutrients contributed by other sources such as septic systems or livestock manure, we know that the population density of the watershed is relatively low, that row crop agriculture accounts for roughly ninety percent of the land use, and that livestock populations are small. It would seem reasonable to assume, therefore, that the great majority of the nutrients are coming from crop fields. This assumption is reinforced in the case of nitrate since it has been shown that nitrate levels increase dramatically in the spring and summer when various forms of nitrogen fertilizer are being applied to corn fields.

#### E. coli

Both the IDEM and SWCD studies found high levels of *E. coli* throughout the watershed. There are several locations in the watershed where livestock have access to streams and thus we must assume that livestock are contributing to the *E. coli* load in Kessinger Ditch and its tributaries. Given the very high *E. coli* levels found at sample site ten immediately downstream from Wheatland, we also can safely assume that improperly treated sewage or septic effluent are also contributing to the *E. coli* load.

Although specific strains of *E. coli* can be a human health concern, its effects, if any, on aquatic organisms are uncertain. E. coli is useful as an indicator of manure and/or untreated sewage and its presence in relatively large amounts typically suggests elevated levels of nitrate and phosphorous and the potential for other pathogens such as Hepatitis and Shigella. The presence of high levels of *E. coli* does render Kessinger Ditch and it tributaries unsuitable for recreation, although it is likely that few, if any, of the streams in the watershed could be used for recreational purposes given that their steeply sloped banks make all but the smallest ditches relatively inaccessible.

#### Sediment

As discussed in Chapters 2 and 3, suspended and streambed sediment is present in large amounts in Kessinger Ditch and its tributaries. High suspended sediment levels, especially in streams north and west of Wheatland Road, are directly attributable to row crop agriculture and more specifically to excessive tillage on highly erodable acres and the general absence of ground cover from November through April.

The Knox County Soil and Water Conservation District has conducted a county-wide cropland transect survey for eight of the last ten years to collect data on cropland tillage practices, and although the data are for Knox County's 330,000 acres as a whole they are assumed to be representative of the 37,000 acres in the Kessinger Ditch watershed as well. The data from the transects (Figure 11) show that, while no till has made significant inroads in Knox County, it is still the minority management practice. It is important to note that while the percentage of no till soybean acres has increased from 24% in 1996 to 53% in 2005 and has averaged nearly 40% for the ten year period, no till corn acres have varied from a high of 29% in 2000 to a low of 16% in 2005 and have averaged only 19% for the ten year period. This disparity between corn and soybean acres no tilled means that as of 2005 only 16% of acres were under continuous no till management. The soil tilth and erosion reducing benefits of no till are only realized after several years of continuous no till, and the practice of intermittent no till provides few of the soil erosion reducing benefits of continuous no till. The typical no till/beans tillage/corn rotation compounds the problem since the tillage is done on bean stubble which means that very little surface residue remains and the potential for sheet and rill erosion is greater.

This slow adoption of no till has serious consequences for water quality in the Kessinger Ditch watershed because nearly twenty one thousand acres, or 56% of the watershed, is classified as highly erodable land (HEL) as seen in Figure 10, and eighteen thousand of the HEL acres are in crop land (see Appendix H, Soils in the Kessinger Ditch Watershed).

Average annual soil loss for Knox County between 1996 and 2005 was 4.8 tons per acre for corn and 2.6 tons per acre for soybeans (Figure 12). Total soil loss estimates for Knox County for the period 1996-2005 averaged 802,776 tons per year (TPY) according to the Indiana T by 2000 Watershed Soil Loss Transects. Although these numbers are for Knox County as a whole, the soil loss averages for the Kessinger Ditch watershed can safely be assumed to be on par with, if not slightly higher than, the averages for the county since the watershed has a high percentage of HEL and tillage practices are not noticeably different from the rest of the county.

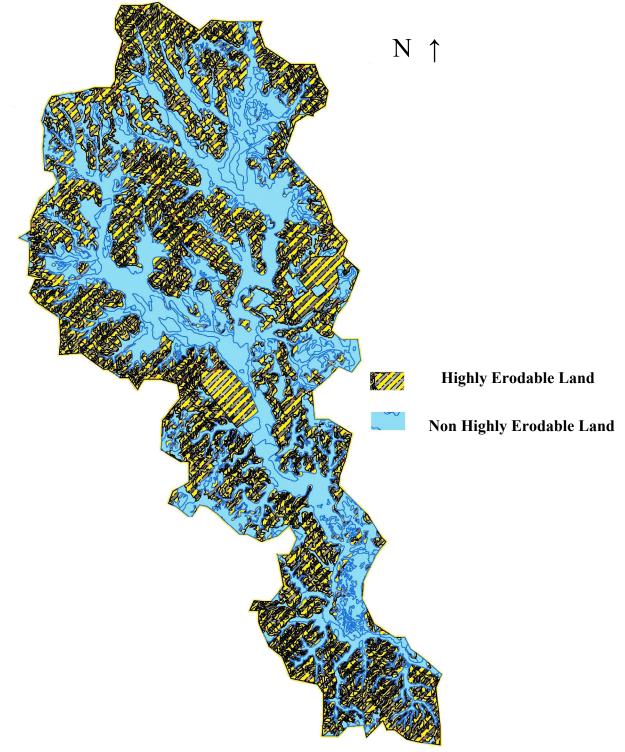



Figure 10 – Highly Erodable Land in the Kessinger Ditch Watershed

Source: USDA NRCS

| -       | _       | Cor     | n          |        | -       | Bea     | ns   |        |
|---------|---------|---------|------------|--------|---------|---------|------|--------|
|         | Acres   | Total   | % No       | %      | Acres   | Total   | % No | %      |
| Year    | No Till | Acres   | Till       | Tilled | No Till | Acres   | Till | Tilled |
| 1996    | 23,823  | 123,241 | 19%        | 81%    | 21,075  | 85,673  | 25%  | 75%    |
| 1997    | 12,921  | 107,376 | 12%        | 88%    | 28,960  | 87,327  | 33%  | 67%    |
| 1998    | 13,411  | 100,132 | 13%        | 87%    | 36,209  | 89,851  | 40%  | 60%    |
| 2000    | 34,421  | 120,695 | 29%        | 71%    | 24,586  | 94,321  | 26%  | 74%    |
| 2002    | 26,400  | 108,581 | 24%        | 76%    | 48,116  | 112,839 | 43%  | 57%    |
| 2003    | 19,620  | 115,588 | 17%        | 83%    | 46,065  | 107,484 | 43%  | 57%    |
| 2004    | 30,251  | 126,888 | 24%        | 76%    | 29,411  | 85,712  | 34%  | 66%    |
| 2005    | 21,428  | 132,770 | 16%        | 84%    | 46,218  | 87,393  | 53%  | 47%    |
| Average |         |         | <b>19%</b> | 81%    |         |         | 39%  | 61%    |

#### Figure 11 – Tillage Transect Data for Knox County

Source: Knox County Tillage Transect

Soil loss estimates for Knox County based on tillage transect data are calculated by Purdue using the Universal Soil Loss Estimator (USLE). Figure 13 shows tons of soil loss by crop and management practice, and Figure 12 shows average tons of soil loss per acre by crop and management practice. Again, these numbers are for all of Knox County's 330,000 acres, but they serve as a reasonable proxy for the 37,000 acres in the Kessinger Ditch watershed.

### Figure 12 – Soil Loss Estimates for Knox County by Crop and Management Practice in Tons per Acre

|      | Average Soil Loss in Tons Per Acre for Corn Acres |       |         |              |         | Average Soil Loss in Tons Per Acre for Bean Acres |       |         |              |         |
|------|---------------------------------------------------|-------|---------|--------------|---------|---------------------------------------------------|-------|---------|--------------|---------|
| Year | No-till                                           | Mulch | Reduced | Conventional | Average | No-till                                           | Mulch | Reduced | Conventional | Average |
| 1996 | 2.6                                               | 2.2   |         | 6.2          | 5.1     | 1.2                                               | 1.8   |         | 4.8          | 3.6     |
| 1997 | 2.5                                               | 3     |         | 5            | 4.3     | 1.7                                               | 2.2   |         | 3.1          | 2.3     |
| 1998 | 3.1                                               | 2.4   |         | 6.8          | 5.5     | 2.1                                               | 2.2   |         | 4.1          | 2.8     |
| 2000 | 2.9                                               | 2.5   | 5.4     | 5.6          | 4.2     | 1.7                                               | 2.1   | 2.4     | 3.7          | 2.3     |
| 2002 | 3.1                                               | 2.7   | 3.5     | 6.8          | 5.4     | 1.3                                               | 1.9   | 2       | 3.6          | 2.2     |
| 2003 | 3.1                                               | 1.8   | 1.6     | 5.7          | 5.1     | 1.5                                               | 2.3   | 4.1     | 4.2          | 2.6     |
| 2004 | 2.6                                               | 2.1   |         | 6.2          | 4.8     | 1.7                                               | 2.3   |         | 4.2          | 2.9     |
| 2005 | 3.3                                               | 1.8   |         | 6.3          | 4.8     | 1.6                                               | 2.2   |         | 5.7          | 2.6     |

Indiana T by 2000 Watershed Soil Loss Transect

|      | Tons of | Tons of Soil Loss on Corn Acres by Management |         |              |         |         | Tons of Soil Loss on Soybean Acres by Management |         |              |         |           |
|------|---------|-----------------------------------------------|---------|--------------|---------|---------|--------------------------------------------------|---------|--------------|---------|-----------|
| Year | No-till | Mulch                                         | Reduced | Conventional | Total   | No-till | Mulch                                            | Reduced | Conventional | Total   | Soil Loss |
| 1996 | 61,501  | 24,622                                        | -       | 534,008      | 620,131 | 24,774  | 13,743                                           | -       | 270,601      | 309,117 | 929,248   |
| 1997 | 31,346  | 64,493                                        | -       | 358,865      | 454,703 | 49,026  | 64,766                                           | -       | 88,164       | 201,956 | 656,659   |
| 1998 | 41,656  | 43,904                                        | -       | 452,880      | 538,440 | 73,761  | 46,449                                           | -       | 134,160      | 254,371 | 792,811   |
| 2000 | 99,867  | 56,423                                        | 152,845 | 194,342      | 503,477 | 42,802  | 67,868                                           | 56,770  | 47,508       | 214,948 | 718,425   |
| 2002 | 81,830  | 27,269                                        | 15,111  | 459,836      | 584,045 | 60,936  | 41,466                                           | 6,745   | 139,726      | 248,872 | 832,917   |
| 2003 | 59,635  | 6,052                                         | 696     | 485,946      | 552,329 | 67,436  | 54,514                                           | 24,539  | 129,842      | 276,331 | 828,660   |
| 2004 | 76,606  | 35,083                                        | -       | 477,993      | 589,682 | 48,593  | 47,825                                           | -       | 143,298      | 239,716 | 829,398   |
| 2005 | 71,542  | 56,683                                        | -       | 485,183      | 613,407 | 73,736  | 53,473                                           | -       | 93,506       | 220,715 | 834,122   |

Figure 13 – Total Soil Loss Estimates for Knox County by Crop and Management Practice

Source: Indiana T by 2000 Watershed Soil Loss Transect

Although there are no data from the NAWQA or SWCD studies that describe the specific and direct effects of suspended sediment on aquatic organisms in Kessinger Ditch and its tributaries, there can be little doubt that the high levels of suspended and streambed sediment act as major stressors on aquatic communities by increasing water temperature, reducing photosynthesis, reducing oxygen levels, reducing visibility, and reducing stream bed habitat through siltation.

#### Lack of riparian borders

Because of the high percentage of agricultural land use in the watershed and the dominant practice of farming up to the stream bank, riparian borders are absent in most of the watershed (see Figure 14). Kessinger Ditch and its tributaries have been channelized for nearly their entire lengths and, with a few exceptions, riparian borders exist only on steeply sloping or swampy ground that is not suitable for row crop agriculture. Runoff from fields generally flows directly into the streams via surface flow or field tile without the benefit of filtering that riparian borders provide.

Kessinger and Roberson ditches are periodically dredged and the sediment is piled along the stream banks to form levees which are then farmed to prevent the growth of trees and weeds. The levees do not function as riparian borders except in that they prevent runoff from adjacent fields from cutting gullies into the stream bank. Runoff in levee protected areas is directed into subsurface drainage tile and discharged into the streams.

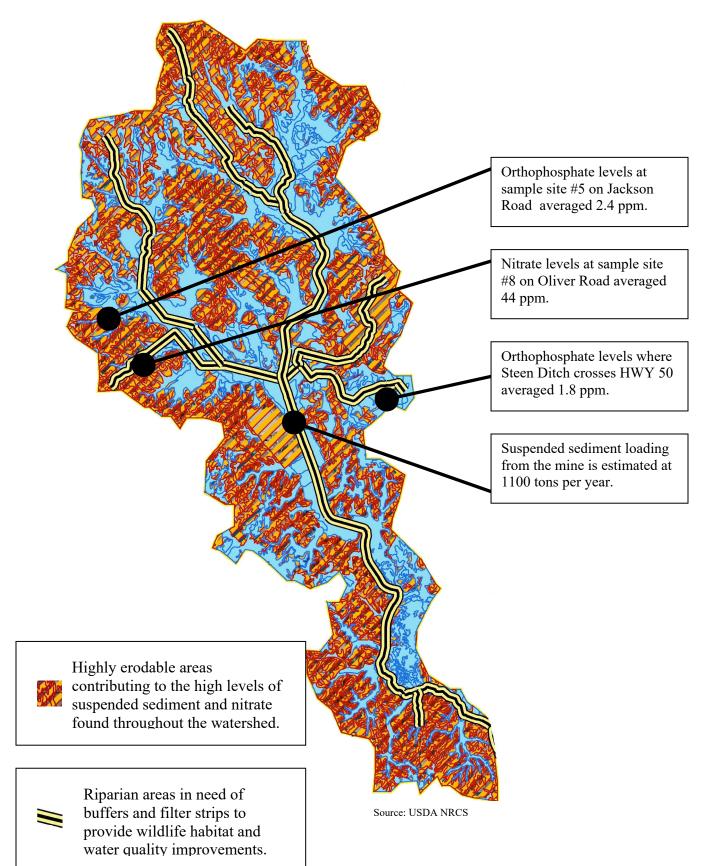
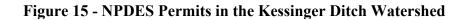
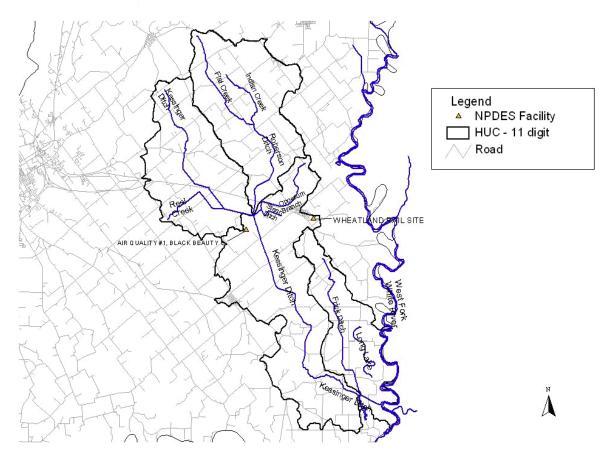



Figure 14 – Critical Areas in the Kessinger Ditch Watershed

42


### **NPDES Stressors**


"As authorized by the Clean Water Act, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources that discharge pollutants into waters of the United States. Point sources are discrete conveyances such as pipes or man-made ditches. Individual homes that are connected to a municipal system, use a septic system, or do not have a surface discharge do not need an NPDES permit; however, industrial, municipal, and other facilities must obtain permits if their discharges go directly to surface waters. In most cases, the NPDES permit program is administered by authorized states" (EPA).

The Wheatland Rail Site on the eastern edge of Wheatland and the Peabody Air Quality #1 mine on Wheatland Road southwest of Wheatland are the two NPDES facilities in the watershed (Figure 15). The Wheatland Rail Site is a transfer station where coal is brought in on trucks, stockpiled, and loaded onto trains. It has a relatively small footprint and runoff is captured in a detention pond and only discharged during and after heavy rainfall events. It is not considered a significant stressor.

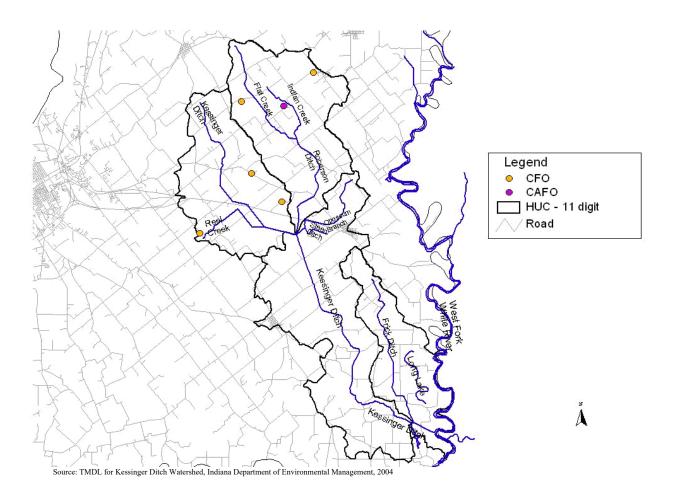
Peabody's Air Quality #1 mine is an underground coal mine with significant surface operations covering several hundred acres. The site contains two very large spoils banks, storage and load out facilities, and several settling ponds. The spoils banks are comprised of shale and clay, are constructed with steep slopes, and are highly eroded. The larger bank on the north-west side of the site is currently being covered with soil and will presumably be stabilized with grass within a couple of years. The spoils bank on the south-east side of the site will continue to grow until the mine ceases operation and thus it will continue to contribute a considerable load of suspended sediment to Kessinger Ditch for several years.

Runoff from the spoils banks carries a heavy load of colloidal clay in electrostatic suspension which does not settle out in the settling ponds and is discharged into Kessinger Ditch. The load of suspended sediment in the discharge is high enough to color the stream a chalky-gray nearly year-round. Turbidity measurements downstream from the mine are typically 50 - 100 NTU with an average of 63 NTU, while readings upstream from the mine are generally less than 20 NTU except after rainfall events when soil erosion occurs on farm fields and temporarily increases turbidity levels. Aside from the merely aesthetic effects, the high sediment load increases water temperature and reduces photosynthetic efficiencies which result in lower dissolved oxygen saturation, and the increased opacity makes the stream virtually uninhabitable for aquatic species that rely on sight for hunting or mating. The mine is the single largest stressor on Kessinger Ditch.





Source: TMDL for Kessinger Ditch Watershed, Indiana Department of Environmental Management, 2004


The DNR inspector for the mine reported in a phone conversation with the watershed coordinator that the Peabody mine is in compliance with state mining regulations for discharge of total suspended sediment, and the watershed coordinator has confirmed that IDEM and EPA records show no history of violations. Peabody's environmental manager for the region said that the company is aware of the impact the mine runoff has on Kessinger Ditch, but the cost of removing the suspended sediment with present technology or techniques would be prohibitive.

In a search for a solution to the problem, the watershed coordinator conducted informal experiments to determine the effectiveness of gypsum as a flocculating agent for suspended sediment in the mine discharge. The experiments demonstrated that gypsum is effective and an effort is underway to enlist the aid of Purdue University to conduct controlled experiments to determine application rates. Conversations have begun with Duke Energy and Indianapolis Power and Light to determine the possibility of their donating gypsum, a byproduct from the flue-gas desulferization operations at their power plants, to reduce the cost of removing suspended sediment from mine runoff.

## **CFO and CAFO Stressors**

There are five CFOs and one CAFO in the Kessinger Ditch Watershed, as shown in Figure 16. *E. coli* counts and orthophosphate levels in water samples collected downstream from the CFOs and CAFOs did not appear to be significantly higher than in other parts of the watershed. Nitrate levels were elevated at one site and the watershed coordinator has initiated conversations with the operator to determine the source of the nitrate. IDEM's online database contains no record of permit violations at this site.

#### Figure 16 - CFOs and CAFOs in the Kessinger Ditch Watershed



## **Cultural Stressors**

Of the various cultural practices impacting Kessinger Ditch, channelization is perhaps the greatest stressor. Kessinger Ditch and its tributaries have been dredged and straightened so completely that natural stream forms exist only near the mouth and in short stretches in the upper parts of the watershed. Even the smallest intermittently flowing tributaries have been straightened and are periodically dredged to increase drainage capacity.

Channelization and dredging result in greater amplitude in flow levels, increased flow velocity, and the reduction of habitat, all of which act as stressors on aquatic life and increase the probability of scouring and bank erosion.

Part of the reason that channelization is so extensive is that much of Kessinger Ditch and the lower part of Roberson Ditch are man-made ditches and did not exist as natural streams. From its intersection with HWY 50 to near its intersection with Petersburg Road at sample site 14, Kessinger Ditch is a true ditch in that it was dug around 1910 to drain the extensive wetland area known as Mountour Pond.

Stream bank deforestation goes hand-in-hand with channelization and thus Kessinger Ditch and its major tributaries are without shade for nearly their entire lengths and the smaller tributaries, with very few exceptions, are shaded only in places where the land is too steep for row crop agriculture. This lack of shade results in higher water temperatures, but the negative effects of higher water temperature on dissolved oxygen levels is mitigated in the upper half of the watershed by the increase in oxygen produced by the algae that thrive in the high sunlight, nutrient rich conditions.

Homes with a failed septic system, or no septic system, are discharging effluent or raw sewage into the streams in the watershed. The effluent contains relatively high levels of phosphorous, some nitrate, and pathogens. Phosphorous being the limiting nutrient in most aquatic environments, the phosphorous in septic effluent produces an increase in algal biomass and thus contributes to hypoxic conditions during dry periods or to hypoxic zones further downstream.

Figure 17 contains a list of the known water quality problems and stressors in the Kessinger Ditch watershed distilled from the narrative in this Chapter and in Chapter 3.

| Problem                                                     | Cause                                                                                                       | Location                                           | Extent                                                                                                                                     |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| High turbidity<br>and high<br>suspended<br>sediment levels. | Runoff from the Peabody<br>Mine on Wheatland Road<br>is high in colloidal clay<br>that will not settle out. | Downstream of the<br>mine at Wheatland<br>Road     | Turbidity measurements<br>downstream from the mine are<br>typically 70 – 90 NTUs.<br>Upstream from the mine<br>readings are generally <20. |
|                                                             | Runoff from tilled fields<br>carries considerable loads<br>of suspended sediment.                           | Throughout the<br>watershed<br>following rainfall. | Turbidity readings are typically<br>70-80 NTUs following heavy<br>rain.                                                                    |
| Elevated <i>E</i> .<br><i>coli</i> .                        | Septic systems, livestock,<br>and wildlife are suspected<br>contributors                                    | Throughout the watershed.                          | Samples routinely test at levels that exceed IAC allowances.                                                                               |

#### Figure 17 - Problem statements.

| Problem                                               | Cause                                                                                                                              | Location                                                                                                                                     | Extent                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lack of<br>vegetated<br>riparian buffers.             | Stream banks are cleared<br>of trees to facilitate bank<br>maintenance and dredging.<br>Cropped land extends to<br>the ditch bank. | Throughout the<br>watershed                                                                                                                  | Riparian buffers are virtually<br>nonexistent in the 80+% of the<br>watershed that is cropped.                                                                                                                                                                                                                                                                                                        |
| Elevated nitrate levels.                              | Sewage, septic effluent,<br>leaching and runoff from<br>fields.                                                                    | All sites exceeded<br>10 ppm on at least<br>one occasion                                                                                     | Site 8 regularly tests at 44 ppm.<br>Sites 12, 13, and 14 at the<br>bottom of the watershed<br>regularly test at 13 ppm.                                                                                                                                                                                                                                                                              |
| Elevated<br>orthophosphate<br>levels.                 | Uncertain, but septic<br>effluent is suspected.                                                                                    | Sites 5 and 10.                                                                                                                              | Orthophosphate regularly tests from 2 ppm to 6 ppm.                                                                                                                                                                                                                                                                                                                                                   |
| Lack of<br>streambed<br>structure for<br>habitat      | Streams are dredged, trees<br>are cleared away from the<br>banks, and the banks are<br>steeply sloped.                             | Throughout the<br>watershed,<br>especially in the<br>main channel and<br>the larger<br>tributaries                                           | Woody debris habitat is almost<br>non-existent in the streambed for<br>most of its length. There are a<br>few exceptions where the trees<br>have not been cleared from the<br>stream bank, but for the most<br>part there is very little structure<br>for habitat. Some small<br>tributaries and headwaters have<br>stretches with partially<br>embedded gravel and very<br>occasional stony riffles. |
| Nutrients and<br>pathogens from<br>livestock.         | Livestock are allowed access to streams.                                                                                           | Throughout the<br>watershed, but<br>predominantly in<br>the southern third<br>of the watershed<br>south of HWY 241.                          | Livestock are allowed<br>unrestricted access to streams in<br>some places, and often the<br>stream is the sole water source<br>for the livestock. Animals tend<br>to loaf in the water during hot<br>weather and thus increase<br>nutrient loads when flows are<br>low and algal activity is high.                                                                                                    |
| High pesticide<br>levels relative<br>to other streams | Runoff and leaching from farm fields                                                                                               | Presumably<br>throughout the<br>watershed, although<br>the NAWQA study<br>only collected<br>samples near the<br>mouth of Kessinger<br>Ditch. | Atrazine concentrations reach 2-<br>3 ppb following rainfall during<br>the period April-August,<br>Butylate concentrations reach<br>0.2-1 ppb following rainfall<br>during the period April-August                                                                                                                                                                                                    |

## **Chapter 5**

## Prioritizing Pollutants and Sources

The data in Chapter 3 suggests that nutrients, pesticides, *E. coli*, and sediment are the major pollutants in the Kessinger Ditch watershed. Chapter 4 describes the sources of the pollutants and how those pollutants impact various aquatic and terrestrial species. We turn now to the question of how to prioritize the various pollutants and sources of pollutants.

With the exceptions of suspended sediment from the mine, very high nitrate levels at sample site eight for as-yet unknown reasons, relatively high orthophosphate levels at sample site ten, and generally lower *E. coli* levels at sites near the top of the watershed, pollutant loads seem to be fairly homogeneous throughout the watershed. Because of this homogeneity the pollution sources will be prioritized by source type instead of by individual sources since in most cases the individual sources are difficult to identify. Suspended sediment from the mine is the exception to this and thus it is treated separately because it is a known sediment source distinguishable from other sources of suspended sediment.

The various pollutants are listed below by source type and are assessed on five criteria: the size of the load, the ecological and social impacts of the pollutant, the ease with which the pollution source can be addressed effectively, the potential funds available to address a pollution source, and the probability of effectively addressing the problem.

Pollutant, Source: Sediment, Agriculture

**Size of Load:** large - 1400 TPY (est.) of suspended sediment and an unknown but necessarily much larger load of settled sediment.

Location: throughout the watershed

**Priority Areas:** highly erodable land (HEL) as designated by NRCS; see Figure 10 – HEL in the Kessinger Ditch Watershed

**Social and Ecological impacts:** serious ecological impacts, moderate social impacts

**Ease of Addressing:** BMPs are well established, technical assistance is available, and operator/landowner acceptance is variable but generally good.

**Potential Funds:** Adequate funding for BMPs is available through the NRCS and risk management programs exist for no till transition. Additional cost share funds are being sought through an IDEM 319 grant.

Probability of effectively addressing the problem: high

Pollutant, Source: Suspended Sediment, Industry
Size of Load: large - 1100 tons per year (estimate)
Location: Kessinger Ditch downstream from the coal mine
Priority Areas: Peabody Mine surface operations; see Figure 15 – NPDES
Permits in the Kessinger Ditch Watershed
Social and Ecological impacts: serious ecological impacts, moderate social impacts

**Ease of Addressing:** This could be relatively easy to address since it is essentially a point source and the mechanical and chemical processes involved in using gypsum to remove suspended sediment are relatively simple. There may be institutional barriers within the parties involved. High-purity gypsum is widely used as a soil amendment, is regarded as environmentally benign, and thus would not be regarded as potentially harmful. Bench scale experiments will need to be conducted to determine application rates.

**Potential Funds:** The cost of materials and transportation should be relatively low and easily absorbed by the mine and utility company. Material application costs are not known but should be low relative to overall mine operations. **Probability of effectively addressing the problem:** medium

Pollutant, Source: Nutrients, Agriculture

**Size of Load:** large - estimated at 2.17 million pounds per year of nitrate and 25,578 pounds per year of orthophosphate

**Location:** throughout the watershed on cropped land, especially on HEL where surface runoff volumes are high and riparian buffer strips are absent; see Figure 10 - HEL in the Kessinger Ditch Watershed

Priority Areas: throughout the watershed on cropped land

**Social and Ecological impacts:** serious ecological impacts, moderate social impacts

**Ease of Addressing:** BMPs are well established, technical assistance is available, but operator/landowner acceptance varies with management capability and with fertilizer and grain prices.

**Potential Funds:** Adequate funding for BMPs is available through the NRCS and risk management programs exist for reducing nitrogen fertilizer rates. Additional cost share funds are being sought through an IDEM 319 grant.

Probability of effectively addressing the problem: low

Pollutant, Source: Nutrients, Septic

**Size of Load:** Load size is unknown but is assumed to be small relative to the agricultural load.

Location: home sites throughout the watershed

Priority Areas: home sites throughout the watershed

**Social and Ecological impacts:** moderate ecological impacts, moderate social impacts

**Ease of Addressing:** Replacing, repairing, and maintaining septic systems is relatively straightforward, but few homeowners are willing to address the issue because of the costs involved.

**Potential Funds:** There are no funds available for repairing or replacing septic systems.

#### Probability of effectively addressing the problem: low

#### Pollutant, Source: E. coli, Agriculture

**Size of Load:** The *E. coli* load from all sources is estimated at 3.16E+14 CFU per year, but it is not possible at present to determine the agricultural component of the load.

**Location:** mainly in the lower third of the watershed where there are several pastures in which cattle have access to the streams

**Priority Areas**: locations where cattle have access to streams and where poultry litter is spread on fields, especially the Kessinger Ditch - Opossum/Steen Ditches watershed (HUC 05120202-090-060) south of HWY 241. See Figure 2 for location of watershed

**Social and Ecological impacts:** low ecological impacts, moderate social impacts **Ease of Addressing:** BMPs are well established, technical assistance is available, and operator/landowner acceptance is variable.

**Potential Funds:** Adequate funding for BMPs is available through the NRCS and additional cost share funds are being sought through an IDEM 319 grant.

Probability of effectively addressing the problem: medium

#### Pollutant, Source: E. coli, Septic

**Size of Load:** The *E. coli* load from all sources is estimated at 3.16E+14 CFU per year, but it is not possible at present to determine the residential septic component of the load.

Location: throughout the watershed

Priority Areas: home sites throughout the watershed

**Social and Ecological impacts:** low ecological impacts, moderate social impacts **Ease of Addressing:** Replacing, repairing, and maintaining septic systems is relatively straightforward, but few homeowners are willing to address the issue because of the costs involved.

Potential Funds: There are no funds available for fixing septic issues.

Probability of effectively addressing the problem: low

Pollutant, Source: Pesticides, Agriculture

**Size of Load:** Relatively high concentrations have been documented, but the size of the load is unknown.

Location: throughout the watershed

**Priority Areas:** throughout the watershed, especially HEL where surface runoff volumes are high and riparian buffer strips are absent; see Figure 10 – HEL in the Kessinger Ditch Watershed

Priority Areas: highly erodable land as designated by NRCS

**Social and Ecological impacts:** Serious ecological impacts are suspected but not documented, and the social impacts are moderate.

**Ease of Addressing:** BMPs are established, pesticide alternatives are available, technical assistance is available, but operator/landowner awareness and interest in the problem is low.

**Potential Funds:** Adequate funding for some BMPs is available through NRCS. **Probability of effectively addressing the problem:** low

Table 15 is a matrix of the various pollutants by source type and how they rated on each of the five assessment criteria. The five assessment criteria have been assigned numerical values from one to three with one being small or low and three being large or high. The values were assigned by the watershed coordinator on the following basis:

- Size of Load the greater the amount of a pollutant the higher the ranking;
- Ecological/Social Impact the degree to which pollutants cause ecological stress or damage, or reduce the social value (e.g. fishing and recreation) of the streams; the higher the ranking the higher the impact;
- Funds Available pollutants and sources which can be addressed through existing cost-share (e.g. NRCS) or grant programs (e.g. IDEM) rank higher;
- Ease of Addressing pollutants and sources which can be relatively easily addressed using existing best management practices and for which there is widespread public support rank higher;
- Probability of Success how likely is it that the pollutant or source of pollutants can be addressed in the next five years.

|                              | Size of | Eco /<br>Social | Funds     | Ease of    | Short Term<br>Probability |       |
|------------------------------|---------|-----------------|-----------|------------|---------------------------|-------|
| Pollutant type and source    | Load    | Impact          | Available | Addressing | of Success                | Total |
| Suspended sediment,          |         |                 |           |            |                           |       |
| agriculture                  | 3       | 3               | 3         | 3          | 3                         | 15    |
| Suspended sediment, industry | 3       | 3               | 3         | 2          | 2                         | 13    |
| Nutrients, agriculture       | 3       | 3               | 3         | 2          | 1                         | 12    |
| E. coli, agriculture         | 2       | 1               | 3         | 2          | 2                         | 10    |
| Pesticides                   | 3       | 2               | 1         | 1          | 1                         | 8     |
| Nutrients, septic            | 1       | 2               | 1         | 1          | 1                         | 6     |
| E. coli, septic              | 2       | 1               | 1         | 1          | 1                         | 6     |

### Table 18 – Priority Matrix of Pollution Types by Source

1 is small / low, 3 is large / high

# Chapter 6

## Goals and Load Reduction Estimates

Figure 19 contains the goals, objectives, and tasks that were agreed upon by participants in the planning process. The goals and objectives were distilled from the data in Chapter 3 on pollutants and the sources of pollutants, the findings in Chapter 4 on ecological stresses caused by the various pollutants, and the priorities as discussed in Chapter 5.

No till and riparian border load reduction estimates for sediment and nutrients were calculated using the EPA's Spreadsheet Tool for the Estimation of Pollutant Load (STEPL). Estimates for sediment reductions from the use of cover crops were calculated using the Revised Universal Soil Loss program. No load reduction estimates are given for nutrient BMPs, e.g. fertilizer application rate reductions, or for *E. coli* because there are no models for estimating such load reductions. All goals in table 16 are for the period 2007-2012.

### E. coli

The IDEM published the <u>Total Maximum Daily Load for *Escherichia coli (E. coli)* For the Kessinger Ditch Watershed, Knox County, in February of 2005. The document, referred to as a TMDL, sets a goal of reducing *E. coli* loads to a level that is in compliance with the State of Indiana's water quality standards (WQS).</u>

In order for the Kessinger Ditch watershed to achieve Indiana's *E. coli* WQS, the wasteload and load allocations for the Kessinger Ditch watershed in Indiana have been set to the *E. coli* WQS of 125 per one hundred milliliters [sic] as a geometric mean based on not less than five samples equally spaced over a thirty day from [sic]April 1<sup>st</sup> through October 31<sup>st</sup>. Achieving the wasteload and load allocations for the Kessinger Ditch watershed depends on:

- 1) CAFOs and CFOs not violating their permits; and
- 2) nonpoint sources of *E. coli* being controlled by implementing best management practices in the watershed.

Estimating the residential cost of WQS compliance would be a highly speculative exercise since the number of failed / failing septic systems is unknown and the cost of installation or repair varies widely with soil type and terrain.

#### **Mine Sediment**

To estimate the mine's contribution to the suspended sediment load in Kessinger Ditch, NTUs as measured in the SWCD's water quality survey were converted into total suspended solids (TSS) using the ratio of 1.44 TSS : 1 NTU, a ratio suggested by IDEM staff. The average TSS level upstream from the mine was then subtracted from the average TSS downstream from the mine to find the net TSS, the mine's contribution to suspended sediment loads. The IDEM's load calculation spreadsheet was used to convert the net TSS to tons per year.

39.5 ppm TSS downstream – 22.5 ppm TSS upstream = 17 ppm TSS from mine 17 ppm TSS = 1088 tons per year contribution

Removing the suspended sediment from the runoff from mine's surface operation would thus reduce the suspended sediment load in Kessinger Ditch by approximately 1088 tons per year.

#### No till

Doubling the percentage of corn acres no tilled from 19% (3300 acres) to 40% (7000 acres) and increasing the percentage of bean acres no tilled from 39% (5500 acres) to 60% (8400 acres) would reduce soil erosion by an estimated 3639 TPY, nitrate loads by an estimated 48,507 lbs per year, and phosphorous loads by an estimated 11,420 lbs per year.

It bears noting that the reduction in eroded soil of 3639 TPY includes soil that is transported off the field and into surface water but which quickly settles to the streambed and soil which remains suspended in the water column as suspended sediment. As noted in Chapter 5, the settled sediment is by far the greater fraction of the total sediment load and thus a distinction must be made between sediment loads and suspended sediment loads. The 3639 TPY sediment reduction estimate includes both settled sediment and suspended sediment. Determining a ratio of settled sediment to suspended sediment on a watershed scale is beyond the scope of this Plan and it must suffice to assume that suspended sediment will account for some fraction of the estimated 3639 TPY sediment load reduction. This holds true for the sediment reduction estimates for riparian borders and cover crops.

#### **Riparian Borders**

Installing riparian borders on 70 acres (20 miles X 30 feet wide) of stream bank would reduce soil erosion by an estimated 1009 TPY, would reduce nitrate loads by an estimated 18,330 lbs per year, and phosphorous loads by an estimated 4965 lbs per year.

#### **Cover Crops**

Increasing cover crop use by 3000 acres would reduce soil erosion by an 6900 TPY according to RUSLE 2 estimates.

| Figure 19 – Goals                                                                                     | and Action Register                                                       | 1                                                                                                                  | Γ                             | 1                                            | 1                                                                                                                                                                                                                                                                | 1                                             |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Goals                                                                                                 | Objectives                                                                | Tasks                                                                                                              | Responsible<br>Parties        | Technical and<br>Financial<br>Resources      | Load Reductions<br>and Indicators                                                                                                                                                                                                                                | Costs                                         |
| Improve water<br>quality by<br>reducing ag<br>related sediment,<br>nutrient, and<br>pesticide runoff. | Increase no till corn by<br>3500 acres and no till<br>beans by 3000 acres | Conduct annual no till<br>meetings and field<br>days.                                                              | WC, SWCD<br>marketing<br>tech | NRCS, SWCD,<br>Agflex, farmers,<br>319 grant | Reductions - 3639<br>TPY sediment,<br>48,507 PPY<br>nitrate, and<br>11,420 PPY of<br>orthophosphate<br>Indicators –<br>Environmental<br>(N, P, turbidity<br>measurements),<br>Social (tillage<br>transect data<br>indicating<br>changes in tillage<br>practices) | \$22 per acre<br>\$143,000 over<br>five years |
|                                                                                                       |                                                                           | Promote cost share<br>and risk management<br>programs through<br>newsletters, media,<br>and one-on-one<br>meetings | WC, SWCD<br>marketing<br>tech | SWCD                                         | Indicators –<br>Administrative<br>(number of<br>people receiving<br>information)                                                                                                                                                                                 | negligible                                    |
|                                                                                                       |                                                                           | Hold no till round<br>table meetings in<br>Monroe City,<br>Wheatland, and<br>Vincennes.                            | WC, SWCD<br>marketing<br>tech | SWCD                                         | Indicators –<br>Administrative<br>(meeting<br>participants)                                                                                                                                                                                                      | negligible                                    |

| Goals | Objectives                                                           | Tasks                                                                                                 | Responsible<br>Parties        | Technical and<br>Financial<br>Resources          | Load Reductions<br>and Indicators                                                                                                                                                    | Costs                                                       |
|-------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|       | Install 20 miles of<br>riparian borders.                             | Promote cost share<br>programs through<br>newsletters, meetings,<br>media, and one-on-one<br>meetings | WC, SWCD<br>marketing<br>tech | NRCS, FSA,<br>SWCD, QU,<br>farmers, 319<br>grant | 1009 TPY<br>sediment, 18,330<br>PPY of nitrate,<br>and 4965 PPY of<br>orthophosphate<br>Indicators –<br>Environmental<br>(N, P, turbidity<br>measurements)                           | 73 acres @<br>\$500 per acre<br>\$36,500 over<br>five years |
|       | Install drainage<br>management equipment<br>at 2 locations.          | Identify interested<br>landowners and secure<br>NRCS program funds<br>for installation.               | WC, SWCD<br>marketing<br>tech | NRCS, SWCD,<br>farmers                           |                                                                                                                                                                                      | \$2,000 over five<br>years                                  |
|       | Increase cover crop use<br>on highly erodable land<br>by 3000 acres. | Promote cost share<br>programs through<br>newsletters, meetings,<br>media, and one-on-one<br>meetings | WC, SWCD<br>marketing<br>tech | NRCS, SWCD,<br>farmers, 319<br>grant             | 6900 TPY<br>reduction in<br>sediment<br>Indicators –<br>Social<br>(acceptance of<br>practice as<br>expressed in<br>informal surveys)<br>Environmental<br>(turbidity<br>measurements) | \$20 per acre per<br>year<br>\$300,000 over<br>five years   |

| Goals | Objectives                                                                                       | Tasks                                                                                                              | Responsible<br>Parties        | Technical and<br>Financial<br>Resources | Load Reductions<br>and Indicators                                                                                                                 | Costs                                                                                         |
|-------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|       | Increase the use of<br>nutrient management<br>plans by 5000 acres.                               | Promote cost share<br>programs through<br>newsletters, meetings,<br>media, and one-on-one<br>meetings              | WC, SWCD<br>marketing<br>tech | NRCS, SWCD,<br>farmers                  | Indicators –<br>Administrative<br>(track program<br>participants)<br>Social<br>(acceptance of<br>practice as<br>expressed in<br>informal surveys) | <ul><li>\$5 per acre<br/>every three<br/>years</li><li>\$50,000 over<br/>five years</li></ul> |
|       | Promote the use of<br>WASCOBs and<br>subsurface drains to<br>control gully erosion.              | Promote cost share<br>programs through<br>newsletters, meetings,<br>media, and one-on-one<br>meetings              | WC, SWCD<br>marketing<br>tech | NRCS, SWCD                              | Indicators –<br>Administrative<br>(number of<br>people receiving<br>information)                                                                  | \$5,000 over five<br>years                                                                    |
|       | Educate producers on<br>and promote the use of<br>encapsulated nitrogen<br>products.             | Publish informational<br>articles in media and<br>newsletters and<br>discuss at SWCD<br>meetings and<br>functions. | WC, SWCD<br>marketing<br>tech | SWCD, fertilizer<br>dealers             | Indicators –<br>Administrative<br>(number of<br>people receiving<br>information)                                                                  | negligible                                                                                    |
|       |                                                                                                  | Conduct field plot<br>trials and publish<br>results.                                                               | WC, SWCD<br>marketing<br>tech | SWCD, fertilizer<br>dealers, farmers    |                                                                                                                                                   | \$5,000 over five<br>years                                                                    |
|       | Educate producers on<br>and promote the<br>practice of reduced<br>nitrogen application<br>rates. | Publish informational<br>articles in media and<br>newsletters and<br>discuss at SWCD<br>meetings and<br>functions. | WC, SWCD<br>marketing<br>tech | SWCD                                    | Indicators –<br>Administrative<br>(number of<br>people receiving<br>information)                                                                  | negligible                                                                                    |

| Goals | Objectives                                                    | Tasks                                                                                                                                           | Responsible<br>Parties        | Technical and<br>Financial<br>Resources | Load Reductions<br>and Indicators                                                          | Costs                      |
|-------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|
|       |                                                               | Conduct field plot<br>trials and publish<br>results.                                                                                            | WC, SWCD<br>marketing<br>tech | SWCD, farmers                           |                                                                                            | \$5,000 over five<br>years |
|       | Educate producers on<br>the use of pesticide<br>alternatives. | Publish informational<br>articles in media and<br>newsletters and<br>discuss at SWCD<br>meetings and<br>functions.                              | WC, SWCD<br>marketing<br>tech | SWCD                                    | Indicators –<br>Administrative<br>(number of<br>people receiving<br>information)           | negligible                 |
|       |                                                               | Conduct field plot<br>trials and publish<br>results.                                                                                            | WC, SWCD<br>marketing<br>tech | SWCD, SARE, farmers                     |                                                                                            | \$5,000 over five<br>years |
|       | Promote nutrient BMP<br>risk management<br>programs.          | Discuss at field days<br>and meetings, publish<br>informational articles<br>in media and<br>newsletters, and<br>conduct one-on-one<br>meetings. | WC, SWCD<br>marketing<br>tech | SWCD, Agflex, farmers                   | Indicators –<br>Administrative<br>(number of<br>people receiving<br>information)<br>Social | negligible                 |

| Goals                                                                                     | Objectives                                                                                               | Tasks                                                                                                      | Responsible<br>Parties            | Technical and<br>Financial<br>Resources                                    | Load Reductions<br>and Indicators                                                                                                            | Costs                                                         |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Improve water<br>quality by<br>reducing<br>suspended<br>sediment from<br>mine operations. | Develop and implement<br>a cost effective system<br>to remove suspended<br>sediment from mine<br>runoff. | Work with<br>representatives from<br>the mine and utility<br>companies and with<br>university researchers. | WC                                | SWCD, mine<br>operator, utility<br>companies,<br>university<br>researchers | 1088 tons per<br>year of suspended<br>sediment<br>Indicators –<br>Environmental<br>(turbidity<br>measurements)                               | unknown                                                       |
| Improve water<br>quality by<br>reducing <i>E.coli</i><br>loading.                         | Educate watershed<br>residents on proper<br>septic system<br>management.                                 | Develop or procure<br>educational materials.                                                               | WC, county<br>health<br>inspector | SWCD, county<br>health<br>department                                       | Indicators –<br>Social<br>(acceptance of<br>practices as<br>expressed in<br>informal surveys)                                                | \$1,000 over five<br>years                                    |
|                                                                                           |                                                                                                          | Disseminate<br>information through<br>mass mailings, media<br>outlets, and SWCD<br>events.                 |                                   |                                                                            | Indicators –<br>Administrative<br>(number of<br>residents<br>receiving<br>information)                                                       | \$3,000 over five<br>years                                    |
|                                                                                           | Promote livestock<br>exclusion and<br>alternative watering<br>systems.                                   | Promote cost share<br>programs through<br>newsletters, meetings,<br>media, and one-on-one<br>meetings.     | WC, SWCD<br>marketing<br>tech     | NRCS, SWCD,<br>farmers, 319<br>grant                                       | Indicators –<br>Administrative<br>(number of<br>people receiving<br>information)<br>Administrative<br>(number of<br>exclusions<br>installed) | \$25,500 over 5<br>years for<br>promotions and<br>exclusions. |

## **Chapter 7**

## Choosing Measures to Apply

Making significant improvements in water quality and reaching the goals outlined in Chapter 6 will require the implementation of a variety of Best Management Practices (BMPs) on a broad scale. Figure 20 lists the BMPs that could be used to achieve the water quality goals. It must be noted that some of the practices in Figure 20 do not generally fit the definition of a BMP because there are no formal standards for their implementation. For example, flame weeders eliminate the need for herbicides and thus eliminate the risk of herbicides being transporting to surface waters, but there are no published standards that address the pollution reducing effects of flame weeders and therefore flame weeding cannot be considered a true BMP.

| Measure      | Pollutant - Source                                                                                     | Standard  | Positive Impacts                                                                                                                                                                                                                                                                                                                                                                                                         | Negative<br>Impacts |
|--------------|--------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Filter Strip | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture<br>Pesticides - Agriculture | NRCS FOTG | Filter strips can help reduce stream<br>bank cutting, they reduce runoff<br>velocity and allow sediment to<br>settle, and by capturing sediment<br>they reduce nutrient and pesticide<br>loading. Filter strips on pasture<br>also capture manure and thus<br>reduce <i>E. coli</i> loading.                                                                                                                             | None are<br>known.  |
| No till      | Sediment - Agriculture<br>Nutrients - Agriculture<br>Pesticides - Agriculture                          | NRCS FOTG | No till reduces sediment, pesticide,<br>and nutrient transport by leaving<br>surface residue, improving<br>infiltration, and improving water<br>holding capacity. Nutrient leaching<br>and transport are also reduced due<br>to increases in soil carbon and<br>organic matter.                                                                                                                                          | None are<br>known.  |
| Cover Crop   | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture<br>Pesticides - Agriculture | NRCS FOTG | Cover crops reduce the velocity of<br>overland flow and improve water<br>infiltration, thereby reducing the<br>surface transport of nutrients,<br>sediment, and pesticides. Cover<br>crops also reduce the transport of<br>surface applied manure and its<br>nutrients and pathogens, and can<br>capture excess nutrients in the soil<br>to keep them from leaching into<br>surface water during the fall and<br>winter. | None are<br>known.  |

#### **Figure 20 – Measures to Apply**

| Grassed<br>Waterway                                | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture<br>Pesticides - Agriculture | NRCS FOTG | Grassed waterways prevent gully<br>erosion in areas of concentrated<br>overland flow and provide a limited<br>function as filters to remove<br>sediment, nutrients, pesticides, and<br>pathogens.                                                                                                                    | None are<br>known.                                                                                                  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Water and<br>Sediment<br>Control Basin<br>(WASCOB) | Sediment - Agriculture<br>Nutrients - Agriculture                                                      | NRCS FOTG | WASCOBs prevent gully erosion by<br>arresting overland flow and ponding<br>it for slow discharge through either<br>infiltration or underground outlets.<br>When used without subsurface<br>drains, WASCOBs prevent<br>sediment, nutrients, pesticides, and<br>pathogens from entering ditches<br>and streams.        | None are<br>known unless<br>used in<br>conjunction<br>with<br>underground<br>outlets (see<br>Underground<br>Outlet) |
| Watering<br>Facility                               | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture                             | NRCS FOTG | Livestock watering facilities allow<br>livestock access to water outside of<br>riparian areas, thereby eliminating<br>stream bank trampling and erosion,<br>nutrient and pathogen loading, and<br>habitat damage.                                                                                                    | None are<br>known.                                                                                                  |
| Constructed<br>Wetland                             | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture                             | NRCS FOTG | Constructed wetlands intercept and<br>slow surface flows, allow sediment<br>to settle, capture and sequester<br>nutrients, and reduce pathogen<br>loads. Wetlands also provide<br>valuable habitat for both aquatic<br>and terrestrial species.                                                                      | None are<br>known.                                                                                                  |
| Field Border                                       | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture<br>Pesticides - Agriculture | NRCS FOTG | Field borders can help reduce<br>stream bank cutting, they reduce<br>runoff velocity and allow sediment<br>to settle, and by capturing sediment<br>they reduce nutrient and pesticide<br>loading. Field borders on pasture<br>also capture manure and thus<br>reduce <i>E. coli</i> loading.                         | None are<br>known.                                                                                                  |
| Grade<br>Stabilization<br>Structure                | Sediment - Agriculture                                                                                 | NRCS FOTG | Grade stabilization structures come<br>in several forms but they are all<br>designed to fix or eliminate gully<br>formation and stream bank<br>degradation. They provide virtually<br>no filtering function, but they can<br>reduce sediment loading by<br>reducing or eliminating gully and<br>stream bank erosion. | None are<br>known.                                                                                                  |

| Nutrient<br>Management          | Nutrients - Agriculture                                                                                | NRCS FOTG | Nutrient management can reduce<br>nutrient loading by insuring that<br>commercial fertilizers are not<br>applied at rates higher than can be<br>utilized by crops. Excess nutrients,<br>especially the various forms of<br>nitrogen, are prone to leaching and<br>are readily transported through field<br>tiles and discharged into ditches<br>and streams. | None are<br>known.                                                                                                                                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Underground<br>Outlet           | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture                             | NRCS FOTG | Underground outlets reduce the<br>amount of overland surface flow<br>and can thus reduce soil erosion<br>and sediment, nutrient, pesticide,<br>and pathogen transport.                                                                                                                                                                                       | Underground<br>outlets deliver<br>surface runoff<br>directly to the<br>receiving ditch<br>or stream<br>without any<br>filtering<br>mechanism to<br>remove |
| Wastewater<br>Treatment Strip   | Nutrients - Agriculture<br>E. coli - Agriculture                                                       | NRCS FOTG | A wastewater treatment strip can<br>remove and sequester nutrients<br>from the runoff from livestock feed<br>yards and holding areas. They also<br>effectively reduce pathogen levels.                                                                                                                                                                       | pollutants.<br>None are<br>known.                                                                                                                         |
| Fence                           | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture                             | NRCS FOTG | Fence can be used to exclude<br>livestock from sensitive riparian<br>areas thereby reducing nutrient and<br>pathogen loads from manure and<br>sediment loads from trampling and<br>stream bank degradation.                                                                                                                                                  | None are<br>known.                                                                                                                                        |
| Riparian<br>Herbaceous<br>Cover | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture<br>Pesticides - Agriculture | NRCS FOTG | Similar to filter strips but generally include tree plantings to provide habitat and cover for wildlife.                                                                                                                                                                                                                                                     | None are<br>known.                                                                                                                                        |
| Use Exclusion                   | Sediment - Agriculture<br>Nutrients - Agriculture<br>E. coli - Agriculture                             | NRCS FOTG | Similar to Fence but specifically for sensitive areas such are riparian zones.                                                                                                                                                                                                                                                                               | None are<br>known.                                                                                                                                        |
| Waste<br>Utilization            | Nutrients - Agriculture<br>E. coli - Agriculture                                                       | NRCS FOTG | Nutrient management can reduce<br>nutrient loading by insuring that<br>manure or other wastes are not<br>applied at rates higher than can be<br>utilized by crops. Excess nutrients,<br>especially the various forms of<br>nitrogen, are prone to leaching and<br>are readily transported through field<br>tiles and discharged into ditches<br>and streams. | None are<br>known.                                                                                                                                        |

| gypsum<br>application for<br>sediment<br>flocculation and<br>removal        | Sediment - Industrial                                                         | no established<br>standards                           | A high percentage of suspended<br>sediment can be removed. It is<br>possible that the treated discharge<br>will be cleaner than the water in the<br>receiving stream and thus will<br>produce a net improvement in water<br>quality.                                                                                                                                                 | Settling ponds<br>will fill with silt<br>more quickly<br>and will have to<br>be dredged or<br>new ponds will<br>have to be<br>created. |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| accurate and<br>precise<br>application of<br>anhydrous<br>ammonia           | Nutrients - Agriculture                                                       | Purdue University<br>recommended<br>application rates | Anhydrous ammonia will be applied<br>evenly across the field and at the<br>desired rate. This will lower the<br>overall application rate and will<br>insure that no area of the field will<br>receive more nitrogen than the crop<br>will be able to take up. The net<br>result will be less nitrate leaching<br>into groundwater or discharging into<br>streams via drainage tiles. | None are<br>known.                                                                                                                     |
| use of any of<br>the various<br>forms of<br>encapsulated<br>nitrogen        | Nutrients - Agriculture                                                       | Purdue University<br>recommended<br>application rates | The use of encapsulated nitrogen<br>fertilizer products should reduce the<br>amount of nitrate that leaches into<br>or is discharged into surface waters.                                                                                                                                                                                                                            | None are<br>known.                                                                                                                     |
| septic system<br>maintenance<br>education                                   | Nutrients – Septic<br><i>E. coli</i> – Septic                                 | there are no<br>standards for this<br>practice        | Educating rural residents on proper<br>septic system maintenance will<br>presumably lessen nutrient and <i>E.</i><br><i>coli</i> loading over time.                                                                                                                                                                                                                                  | None are<br>known.                                                                                                                     |
| herbicide<br>alternatives, e.g.<br>flame weeders<br>and herbicidal<br>soaps | Pesticides - Agriculture                                                      | recommendation<br>s defined by the<br>manufacturers   | The use of herbicide alternatives<br>could reduce herbicide loads in<br>surface waters and thus lessen the<br>impact on aquatic and amphibious<br>organisms.                                                                                                                                                                                                                         | None are<br>known.                                                                                                                     |
| drainage water<br>management -<br>tile outlet valves                        | Sediment - Agriculture<br>Nutrients - Agriculture<br>Pesticides - Agriculture | NRCS FOTG                                             | Closing tile valves during dry<br>periods and during the winter can<br>reduce nutrient, sediment, and<br>pesticide transport from fields and<br>thus lessen the load of these<br>pollutants in streams and ditches.                                                                                                                                                                  | Improper<br>management<br>could lead to<br>damage of<br>water control<br>structures.                                                   |

## **Chapter 8**

## Implementing, Monitoring, Evaluating, and Adapting the Plan

#### **Implementing the Plan**

Successful implementation of the Plan will depend upon the ability of the SWCD to secure the funds needed to retain the services of a watershed coordinator to manage implementation phases and to secure the funds and partnerships needed to reach the goals outlined in the Plan. To that end the Knox County SWCD has applied for a Section 319 grant through IDEM to begin to implement the Plan. Assuming that the application is accepted, the implementation program will begin in October 2007 and run through September of 2010. The implementation tasks and timeline as outlined in the 319 grant application are as follows.

#### Task A – Cost Share Program

A cost share program will be designed and implemented to help farmers and landowners install water quality improvement practices and implement BMPs as outlined in Chapter 7. Knox County Soil and Water Conservation District (SWCD) staff will provide technical assistance to farmers and landowners in the form of BMP planning, surveying, engineering design, construction layout, and construction checkout. NRCS employees will provide technical assistance for livestock exclusion fencing and alternative watering sources.

#### Task B – Education

Educational meetings will be held to provide BMP information to farmers and landowners on how best to keep *E. coli*, nutrients, and sediment out of surface and ground water. An educational program will be developed with assistance from the Knox County Health Department to provide rural residents with information on how to properly maintain septic systems.

#### Task C – Outreach

The watershed coordinator and SWCD staff will meet with farmers and landowners one-on-one to sell them on water quality improvement practices and to help them develop whole-farm plans. Public meetings will be held twice a year to inform the public on the project and to get feedback and suggestions. The implementation program will be discussed at SWCD events and other events to which the watershed coordinator or SWCD staff may be invited. The watershed coordinator will work with Peabody and electric utilities to determine the possibility of implementing practices to reduce suspended sediment discharge from surface operations at the Air Quality #1 mine.

#### Task D – Water Quality Monitoring

A water quality monitoring program will be established to monitor *E. coli*, turbidity, and nitrate levels, and flow levels will be taken when possible in order to determine pollutant loads. The approved QAPP used to develop this Plan will be revised and resubmitted to IDEM for approval. Water samples will be collected four times per year for three years at fifteen sampling sites throughout the watershed.

The 319 grant application contains timeframes for the various activities outlined in the tasks list. Activities are listed by quarter for an initial three year implementation project. Future implementation activities will be planned after the first phase of implementation is complete and the Plan has been reviewed and revised as necessary.

| <b>Time Period</b> | Activities                                                                                                                                                                                          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First Quarter      | Begin developing cost share program. Begin meeting with farmers and landowners. Hold public meeting. Distribute press release. Revise and submit QAPP                                               |
| Second Quarter     | Implement cost share program. Continue meeting with farmers and<br>landowners. Submit septic maintenance article for publication in local<br>print media and send first septic maintenance mailing. |
| Third Quarter      | Continue meeting with farmers and landowners. Hold public meeting.<br>Distribute press release. Begin water quality monitoring                                                                      |
| Fourth Quarter     | Continue meeting with farmers and landowners. Hold BMP meeting. Display at county fair.                                                                                                             |
| Fifth Quarter      | Continue meeting with farmers and landowners. Hold public meeting.<br>Distribute press release.                                                                                                     |
| Sixth Quarter      | Continue meeting with farmers and landowners. Send second septic maintenance mailing                                                                                                                |
| Seventh Quarter    | Continue meeting with farmers and landowners. Hold public meeting.<br>Distribute press release. Continue water quality sampling.                                                                    |
| Eighth Quarter     | Continue meeting with farmers and landowners. Display at county fair.<br>Hold BMP meeting.                                                                                                          |
| Ninth Quarter      | Continue meeting with farmers and landowners. Hold public meeting.<br>Distribute press release.                                                                                                     |
| Tenth Quarter      | Continue meeting with farmers and landowners.                                                                                                                                                       |
| Eleventh Quarter   | Continue meeting with farmers and landowners. Continue water quality monitoring. Hold public meeting. Distribute press release.                                                                     |
| Twelfth Quarter    | Continue meeting with farmers and landowners. Display at county fair.<br>Hold BMP meeting.                                                                                                          |

#### **Monitoring Indicators**

Water quality monitoring as described above in Task D will be performed in order to determine the efficacy of BMPs in reducing *E. coli*, nitrate, and suspended sediment loads. A sampling program will be devised and described in a revised version of the Quality Assured Project Plan (QAPP) used for the water quality survey in this Plan. Suspended sediment will be measured by the watershed coordinator with a portable turbidity meter, total suspended solids (TSS) will be measured by the watershed coordinator with a hand-held TSS meter, nitrate will be measured with test strips by the watershed coordinator or with analytical instruments by the Vincennes waste water treatment plant, and *E. coli* tests will be performed by the lab manager at the Vincennes waste water treatment plant. STEPL and/or RUSLE will be used to estimate load reductions for individual BMPs and a spreadsheet record of all BMPs and load reduction estimates will be maintained.

The Knox County SWCD conducts a tillage transect every other year to determine the prevalence of the various tillage practices and to track the changes in prevalence over time. The tillage transect of the fields in the Kessinger Ditch watershed will provide the SWCD and watershed coordinator with hard data with which to determine the effectiveness of outreach designed to influence the land management practices of farmers and landowners.

The SWCD is considering the development of a water quality committee comprised of volunteers with Hoosier Riverwatch training. Such a committee would be tasked with monitoring Knox County's streams and ditches, including those in the Kessinger Ditch watershed, to determine baseline conditions and to track changes over time. Data generated by these volunteers would also be used to determine the long-term effectiveness of the implementation and outreach components of this Plan.

#### **Evaluating and Adapting the Plan**

The watershed coordinator and SWCD staff will keep record of the incidence of BMP installation/utilization and of cost share program participants in order to evaluate the success of the implementation plan. This ongoing evaluation will allow the watershed coordinator and SWCD staff to identify areas of the watershed where additional efforts are needed and to determine if the implementation plans need to be revised.

The watershed coordinator will give progress reports to the SWCD board and to the public at semi-annual meetings. The SWCD board will approve such changes to the Plan as may be required or deemed necessary. The SWCD board, with guidance from the public, will oversee the updating of the Plan at the end of the three year implementation phase and will pursue such funds as will be required for future implementation phases.

The SWCD will be responsible for distributing copies of the Plan, maintaining all Plan related data and documentation, securing funds to implement the Plan, and seeing the Plan through to completion.

#### Milestones

The following milestones will be used by the SWCD to determine whether the Plan is being implemented in a timely and efficacious manner. The dates assigned to the milestones are present best guesses although the milestones and their chronological order should hold even if the dates are changed.

| September 2007 | Phase I implementation project begins                           |
|----------------|-----------------------------------------------------------------|
| January 2008   | SWCD Water Quality Committee established                        |
| September 2009 | Apply for 319 grant for Phase II funds                          |
| July 2010      | Kessinger Ditch WMP revised to reflect progress made in Phase I |
| August 2010    | Phase I implementation project ends                             |
| September 2010 | Phase II implementation project begins                          |
| September 2012 | Phase II implementation project ends                            |

## References

Batman, Maxine, ed., Knox County History. Turner Publishing Company, Paducah, 1988

Camargo, JA, Alonso, A, and Salamanca A. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere. 2005 Mar;58(9):1255-67

Crawford, Charles G., Influence of Natural and Human Factors on Pesticide Concentrations in Surface Waters of the White River Basin, Indiana. U.S. Geological Survey Fact Sheet 119-96

Crawford, Charles G., Trends in acetochlor concentrations in surface waters of the White River Bain, Indiana, 1994-96. U.S. Geological Survey Fact Sheet 058-97

EPA R.E.D. Facts, Butylate, EPA-738-F-93-014, September 1993

EPA website. http://cfpub.epa.gov/npdes/

Frey, J.W., Baker, N.T., Lydy M.J., and Stone, W.W., 1996, Assessment of Water Quality at Selected Sites in the White River Basin, Indiana, 1993 and 1995 Using Biological Indices, U.S. Geological Survey Fact Sheet 209-06.

Fenelon, Joseph M., 1998, Water Quality in the White River Basin, Indiana, 1992-96. U.S. Geological Survey Circular 1150

Hayes, T, K Haston, M Tsui, A Hoang, C Haeffele and A Vonk. 2003. Atrazine-Induced Hermaphroditism at 0.1 PPB in American Leopard Frogs (*Rana pipiens*): Laboratory and Field Evidence. Environmental Health Perspectives 111: 111:568-575.

Indiana State Board of Agriculture, Twenty-sixth Annual Report. Sentinel Company, 1877.

Indiana Department of Environmental Management, <u>Total Maximum Daily Load for</u> <u>Escherichia coli (E. coli)</u> For the Kessinger Ditch Watershed, Knox County. February, 2005

Martin, J.D., Frey, J.W., and Crawford, C.G., 1994, Factors affecting nutrient concentrations in the White River Basin, Indiana, [abs.], in Sorenson, S.K., ed., 1994

Moore, M.T., J.H. Rodgers, Jr., C.M. Cooper, and S. Smith. 2000. Constructed wetlands for mitigation of atrazine-associated agricultural runoff. Environmental Pollution 110:393–399.

National Agricultural Statistics Service(NASS), U.S. Census of Agriculture. http://www.nass.usda.gov/Statistics\_by\_State/Indiana/Historical\_Data/Census/c-landfarm.txt

Rouse, Jeremy David, Bishop, Christine A., and Struger, John. Nitrogen Pollution: An Assessment of Its Threat to Amphibian Survival. *Environmental Health Perspectives* Volume 107, Number 10, October 1999.

Schulz, Ralf. Field Studies on Exposure, Effects, and Risk Mitigation of Aquatic Nonpoint-Source Insecticide Pollution. Journal of Environmental Quality 33:419-448 (2004).

## Appendix A Advisory Group Participants

Keith DeBord C.B. Vories Clem Bilskie Ray Chattin Mike Brocksmith Jim Utt **Terry Perkins** Harry Spires Sam Sheppard Aaron Sheppard Bill Robinson Kenny Ellis Ray McCormick Curt Coffman Tom Held Rex Decker Bill Kutter Sylvan Ice Tim Schutter

## Appendix B Initial Concerns

- 1. Acid mine drainage from the old Oliphant mine on Old Wheatland Road runs into Kessinger ditch. Runoff from the mined area runs across an adjacent field and has lowered the soil pH to the point that crops will not grow.
- 2. Soil erosion is a significant problem in the watershed. Conventional tillage is the predominant management practice and much of the land is classified as highly erodable.
- 3. There appears to be a significant amount of sediment entering Kessinger Ditch from Peabody's Air Quality Mine on Wheatland Road. The water in the ditch runs grey downstream from the mine after a big rain.
- 4. There are two brine contaminated sites on Black road.
- 5. Stream bank erosion is a problem in a few places in the upper part of the watershed.
- 6. Septic systems are draining into the ditches in the watershed. The scale of the problem is not known, but everyone knows of a few examples.
- 7. Septic systems in Wheatland are draining into the ditch that runs through town. The Town Board has been working with IDEM to come up with a solution, but nothing has been decided as of yet.
- 8. The members of the Kessinger Ditch Association would like to be able to keep the trees off the ditch bank to facilitate ditch maintenance.
- 9. Few, if any, of the cropped fields along the streams have buffer strips. In most places the crops are planted right up to the edge of the stream bank.
- 10. Although failed and non-existent septic systems are a problem, no one knows what can be done about them. The county does not inspect systems once they are installed and maintenance is not required.
- 11. Kessinger and Roberson ditches have to be dredged too often because of the high sediment loads.
- 12. The stream banks are not sloped correctly in some places and tend to slough off over time. This problem becomes worse when the banks are not vegetated.
- 13. There are several places in the watershed where livestock have access to streams and ditches or where runoff from livestock areas is draining into streams or ditches.

| Sample Site 1        | 6/27/05 | 8/1/05   | 9/6/05    | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06  | 5/16/06 | 6/21/06 | 6/28/06  | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06                |
|----------------------|---------|----------|-----------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|-----------------------|
| DO                   | 10      | 9        | 8         | 7       | 6       | 11      | 9       | 10      | 10      | 9        | 7       | 8       | 7       | 5       | 7                     |
| % O saturation       | 123     | 9<br>115 | 90        | 83      | 61      | 106     | 9<br>91 | 97      | 123     | 9<br>105 | 7<br>79 | 99      | 85      | 5<br>59 | 77                    |
| E. coli (MPN CFU/mL) | 218.7   | 139.6    | 90<br>7.5 | 88.4    | 913.9   | 291     | 361     | 248     | 214     | 687      | 1986    | 1986    | 217     | 1203    | >2419                 |
| pH                   | 9       | 8.5      | 7.5       | 6.5     | 6       | 7       | 6.5     | 7       | 8       | 7.5      | 7.5     | 7.5     | 7.5     | 7.5     | 6.5                   |
| BOD 5                | 3       | 6        | 4         | 5       | 2       | 3       | 2       | 4       | 4       | 3        | 2       | no data | 2       | 4       | 6 <x<7< td=""></x<7<> |
| Temperature (C)      | 25.0    | 27.0     | 20.0      | 23.0    | 15.0    | 13.0    | 15.0    | 13      | 25      | 22       | 20      | 25      | 24      | 23      | 19                    |
| Orthophosphate       | 0       | 0.1      | 0.1       | 0.2     | 0.1     | 0.1     | 0.1     | 0.1     | 0.2     | 0.2      | no data | 0.2     | 0.2     | 0.2     | 0.2                   |
| Nitrate ppm          | 10      | 0        | 0         | 0       | 13.2    | 33      | no data | 44      | 33      | 33       | 4.4     | 9       | 2.2     | 2.2     | 2.2                   |
| Turbidity (NTU)      | <15     | <15      | <15       | 16      | 92      | 19      | 16      | <15     | 16      | 16       | 16      | 30      | <15     | 20      | 78                    |
| Turbidity (cm)       | >60     | >60      | >60       | 54      | 4       | 38      | 55      | >60     | 47      | 47       | 51      | 24      | >60     | 31      | 8                     |
| Sample Site 2        | 6/27/05 | 8/1/05   | 9/6/05    | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06  | 5/16/06 | 6/21/06 | 6/28/06  | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06                |
|                      |         |          |           |         |         |         |         |         |         |          |         |         |         |         |                       |
| DO                   | 8       | 5        | 8         | 4       | 6       | 11      | 9       | 11      | 9       | 10       | 7       | 7       | 9       | 5       | 6                     |
| % O saturation       | 101     | 61       | 92        | 47      | 61      | 106     | 91      | 104     | 111     | 117      | 80      | 88      | 109     | 59      | 65                    |
| E. coli (MPN CFU/mL) | 272.3   | 29.2     | 7.4       | 2419.2  | 2419.2  | 162     | 260     | 172     | 1413    | 866      | 517     | 686     | 50      | 1733    | >2419                 |
| pH                   | 8.5     | 8.5      | 7.5       | 7       | 6       | 6.5     | 7       | 6.5     | 8       | 7        | 7.5     | 7.5     | 7.5     | 7.5     | 6.5                   |
| BOD 5                | 1       | 1        | 3         | >4      | 2       | 4       | 2       | 5       | 4       | 4        | 3       | no data | 2       | 2       | 5 <x<6< td=""></x<6<> |
| Temperature (C)      | 26      | 24       | 21        | 22      | 15      | 13      | 15      | 12      | 25      | 22       | 21      | 26      | 24      | 23      | 18                    |
| Orthophosphate       | 0       | 0.2      | 0.1       | 0.8     | 0.1     | 0.2     | 0.1     | 0.1     | 0.2     | 0.2      | no data | 0.2     | 0.1     | 0.2     | 0.2                   |
| Nitrate ppm          | 10      | 0        | 1.1       | 13.2    | 22      | 44      | 44      | 44      | 44      | 44       | 22      | 9       | 2.2     | 2.2     | 2.2                   |
| Turbidity (NTU)      | <15     | <15      | <15       | 16      | 92      | 20      | <15     | <15     | <15     | 16       | <15     | 17      | 18      | 79      | 80                    |
| Turbidity (cm)       | >60     | 55       | >60       | 52      | 4       | 33      | >60     | >60     | >60     | 51       | >60     | 44      | 42      | 8       | 7                     |
| Sample Site 3        | 6/27/05 | 8/1/08   | 9/6/05    | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06  | 5/16/06 | 6/21/06 | 6/28/06  | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06                |
|                      |         |          |           |         |         |         |         |         |         |          |         |         |         |         |                       |
| DO                   | 8       | 5        | 9         | 5       | 7       | 11      | 9       | 9       | 9       | 11       | 8       | 9       | 6       | 4       | 7                     |
| % O saturation       | 99      | 62       | 103       | 57      | 72      | 104     | 91      | 85      | 113     | 131      | 88      | 111     | 70      | 48      | 75                    |
| E. coli (MPN CFU/mL) | 378.4   | 172.3    | 28.5      | 1011    | 2419.2  | 866*    | 649     | 365     | 1203    | >2419    | >2419   | 770     | 48      | 461     | >2419                 |
| pН                   | 8.5     | 8.5      | 6.5       | 6.5     | 6       | 6.5     | 7       | 6.5     | 8       | 7.5      | 7       | 7.5     | 7.5     | 6.5     | 7.5                   |
| BOD 5                | 3       | 3        | 4         | >5      | 5       | 5       | 2       | 3       | 3       | 5        | 3       | no data | 1       | 3       | 6                     |
| Temperature (C)      | 25      | 25       | 21        | 21      | 16      | 12      | 15      | 12      | 26      | 23       | 19      | 25      | 22      | 23      | 18                    |
| Orthophosphate       | 0       | 0.1      | 0.1       | 0.2     | 0.1     | 0.2     | 0.1     | 0.1     | 0.2     | 0.2      | no data | 0.2     | 0.2     | 1       | 0.6                   |
| Nitrate ppm          | 7       | 0        | 0         | 0       | 1       | 22      | no data | 33      | 33      | 22       | 2.2     | 2.2     | 2.2     | 9       | 9                     |
| Turbidity (NTU)      | <15     | 16       | <15       | 35      | 79      | <15     | <15     | <15     | 19      | <15      | <15     | 16      | <15     | 19      | 19                    |
| Turbidity (cm)       | >60     | 51       | >60       | 22      | 8       | >60     | >60     | >60     | 37      | >60      | >60     | 52      | >60     | 37      | 37                    |

## Appendix C - SWCD Water Quality Data

| Sample Site 4        | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06     |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|------------|
|                      |         |        |        |         |         |         |        |         |         |         |         |         |         |         |            |
| DO                   | 4       | 8      | 4      | 6       | 6       | 9       | 7      | 9       | 6       | 7       | 6       | 4       | 7       | 3       | too turbid |
| % O saturation       | 50      | 99     | 45     | 69      | 62      | 87      | 72     | 85      | 75      | 82      | 67      | 48      | 82      | 36      |            |
| E. coli (MPN CFU/mL) | 378.4   | 40     | 154.1  | 148     | 2419.2  | 74      | 74     | 547     | 261     | 410     | 307     | 866     | no data | 325     | >2419      |
| рН                   | 7.5     | 8      | 7      | 6.5     | 5.5     | 7       | 6.5    | 6.5     | 7       | 6.5     | 7       | 7       | 7.5     | 6.5     | 6          |
| BOD 5                | 0       | 4      | 2      | 3       | 5       | 3       | 1      | 3       | 2       | 3       | 3       | no data | 2       | >3      | too turbid |
| Temperature (C)      | 26.0    | 25.0   | 20.0   | 21.0    | 16.0    | 13.0    | 16.0   | 12.0    | 26.0    | 22.0    | 20.0    | 24.0    | 22.0    | 23.0    | 16.0       |
| Orthophosphate       | 0       | 0.1    | 0.3    | 0.2     | 0.2     | 0.1     | 0.2    | 0.1     | 0.2     | 0.2     | no data | 0.2     | 0.2     | 0.3     | too turbid |
| Nitrate ppm          | 10      | 2.2    | 2.2    | 2.2     | 2.2     | 44      | 22     | 33      | 22      | 22      | 9       | 9       | 2.2     | 9       | 9          |
| Turbidity (NTU)      | 17      | <15    | 20     | 17      | 100     | 18      | 20     | 16      | 19      | 19      | 17      | 40      | 16      | 67      | 92         |
| Turbidity (cm)       | 45      | >60    | 33     | 43      | 3       | 42      | 33     | 52      | 37      | 34      | 42      | 19      | 50      | 11      | 4          |

| Sample Site 5        | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06  | 8/29/06 | 9/6/06   |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|----------|---------|----------|
|                      |         |        |        |         |         |         |        |         |         |         |         |         |          |         |          |
| DO                   | 7       | 5      | 7      | 6       | 7       | 11      | 9      | 9       | 10      | 10      | 9       | 10      | no water | 3       | no water |
| % O saturation       | 83      | 59     | 75     | 67      | 72      | 104     | 91     | 85      | 123     | 114     | 99      | 119     | no water | 35      | no water |
| E. coli (MPN CFU/mL) | 29.2    | 913.9  | 1011.2 | 501     | 2419.2  | 2419    | 272    | 547     | 1733    | 461     | >2419   | 1986    | no water | >2419   | no water |
| рН                   | 8.5     | 9      | 8.5    | 7.5     | 6.5     | 7.5     | 7      | 8       | 8.5     | 8       | 8       | 8       | no water | 8       | no water |
| BOD 5                | 4       | 0      | 2      | 2       | 2       | 4       | 2      | 3       | 4       | 4       | 3       | no data | no water | >3      | no water |
| Temperature (C)      | 23      | 23     | 18     | 20      | 16      | 12      | 15     | 12      | 25      | 21      | 19      | 23      | no water | 22      | no water |
| Orthophosphate       | 0.15    | 2      | 0.6    | 5       | 2       | 0.8     | 0.8    | 2       | 2       | 2       | no data | 3       | no water | 6       | no water |
| Nitrate ppm          | 10      | 0      | 2.2    | 22      | 22      | 17      | 22     | 17      | 44      | 44      | 44      | 15      | no water | 9       | no water |
| Turbidity (NTU)      | <15     | 20     | <15    | <15     | 35      | <15     | <15    | <15     | <15     | <15     | <15     | <15     | no water | 17      | no water |
| Turbidity (cm)       | >60     | 35     | >60    | >60     | 23      | >60     | >60    | >60     | >60     | >60     | >60     | >60     | no water | 44      | no water |

| Sample Site 6        | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06 |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|
|                      |         |        |        |         |         |         |        |         |         |         |         |         |         |         |        |
| DO                   | 5       | 5      | 6      | 3       | 6       | 9       | 7      | 9       | 7       | 7       | 7       | 6       | 7       | 4       | 6      |
| % O saturation       | 63      | 61     | 65     | 34      | 61      | 87      | 71     | 85      | 86      | 82      | 79      | 70      | 80      | 47      | 62     |
| E. coli (MPN CFU/mL) | 416     | 285.1  | 172.6  | 33      | 2419.2  | 249     | 138    | 410     | 649     | 980     | >2419   | 613     | 158     | 866     | >2419  |
| рН                   | 9       | 6.5    | 6.5    | 4       | 6.5     | 6.5     | 6.5    | 7       | 8       | 7       | 7.5     | 8       | 6.5     | 6       | 6      |
| BOD 5                | 1       | 0      | 1      | -9      | 6       | 2       | 0      | 3       | 3       | 2       | 3       | no data | 2       | 2       | 5      |
| Temperature (C)      | 26      | 24     | 18     | 20      | 15      | 13      | 15     | 12      | 25      | 22      | 20      | 22      | 21      | 22      | 16     |
| Orthophosphate       | 0.1     | 0      | 0.2    | 0.1     | 0.2     | 0.1     | 0.2    | 0.1     | 0.2     | 0.2     | no data | 0.2     | 0.3     | 0.2     | 0.6    |
| Nitrate ppm          | 10      | 13.2   | 2.2    | 2.2     | 13.2    | 33      | 33     | 22      | 22      | 22      | 15      | 9       | 9       | 2.2     | 9      |
| Turbidity (NTU)      | <15     | 20     | 15     | 20      | 86      | 17      | 19     | <15     | <15     | 47      | <15     | 15      | <15     | 67      | 78     |
| Turbidity (cm)       | >60     | 33     | 52     | 32      | 6       | 47      | 38     | >60     | >60     | 17      | >60     | 57      | >60     | 11      | 8      |

| Sample Site 7        | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06 |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|
|                      |         |        |        |         |         |         |        |         |         |         |         |         |         |         |        |
| DO                   | 7       | 4      | 6      | 5       | 7       | 11      | 9      | 9       | 9       | 9       | 6       | 7       | 7       | 3       | 6      |
| % O saturation       | 93      | 48     | 67     | 57      | 71      | 104     | 87     | 85      | 111     | 101     | 67      | 83      | 82      | 36      | 63     |
| E. coli (MPN CFU/mL) | 416     | 791.5  | 344.1  | 86      | 960.6   | 365     | 219    | 222     | 231     | 579     | 307     | >2419   | 66      | 921     | >2419  |
| рН                   | 8.5     | 8      | 7      | 6.5     | 6       | 6.5     | 7      | 6.5     | 8       | 7       | 7       | 7.5     | 7.5     | 7       | 6      |
| BOD 5                | 0       | 0      | 2      | 3       | 7       | 4       | 3      | 3       | 3       | 4       | 2       | no data | 4       | >3      | 5      |
| Temperature (C)      | 29      | 24     | 20     | 21      | 15      | 12      | 13     | 12      | 25      | 20      | 20      | 23      | 22      | 24      | 17     |
| Orthophosphate       | 0.1     | 0.1    | 0.1    | 0.3     | 0.3     | 0.1     | 0      | 0.1     | 0.2     | 0.2     | no test | 0.2     | 0.1     | 0.2     | 0.6    |
| Nitrate ppm          | 10      | 0      | 2.2    | 2.2     | 22      | 33      | 22     | 33      | 22      | 33      | 4.4     | 9       | 2.2     | 2.2     | 9      |
| Turbidity (NTU)      | 19      | <15    | 19     | 20      | 90      | 17      | 17     | <15     | <15     | <15     | <15     | 35      | 16      | no data | 80     |
| Turbidity (cm)       | 35      | >60    | 34     | 33      | 5       | 47      | 51     | >60     | >60     | >60     | >60     | 23      | 49      | no data | 7      |

| Sample Sit   | te 8      | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06 |
|--------------|-----------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|
|              |           |         |        |        |         |         |         |        |         |         |         |         |         |         |         |        |
| DO           |           | 6       | 8      | 8      | 7       | 7       | 11      | 9      | 9       | 10      | 10      | 9       | 9       | 11      | 7       | 9      |
| % O satura   | ation     | 73      | 92     | 86     | 77      | 72      | 106     | 89     | 85      | 123     | 117     | 97      | 105     | 126     | 82      | 93     |
| E. coli (MP  | N CFU/mL) | 148.3   | 185    | 90.8   | 1011    | 2419.2  | 488     | 387    | 1732    | 547     | 517     | 47      | 1203    | 307     | 1046    | 248    |
| рН           |           | 9       | 8      | 7.5    | 6.5     | 6       | 6.5     | 7      | 6.5     | 8       | 7       | 7       | 7.5     | 7.5     | 7       | 7.5    |
| BOD 5        |           | 2       | 3      | 2      | 2       | 6       | 4       | 2      | 3       | 3       | 4       | 3       | no data | 1       | 4       | 3      |
| Temperatu    | re (C)    | 24      | 21     | 18     | 19      | 16      | 13      | 14     | 12      | 25      | 22      | 18      | 22      | 21      | 22      | 16     |
| Orthophosp   | phate     | 0       | 0      | 0.2    | 0.2     | no data | 0.1     | 0.2    | 0.1     | 0.2     | 0.2     | no data | 0.2     | 0.2     | 0.2     | 0.1    |
| Nitrate ppm  | n         | 10      | 44     | 44     | 44      | 13.2    | 44      | 44     | 33      | 44      | 44      | 88      | 44      | 88      | 44      | 44     |
| Turbidity (N | NTU)      | <15     | <15    | <15    | <15     | 100     | 15      | 17     | 15      | <15     | <15     | <15     | 35      | <15     | 18      | <15    |
| Turbidity (c | cm)       | >60     | >60    | >60    | >60     | 3       | 60      | 49     | 58      | >60     | >60     | >60     | 23      | >60     | 47      | >60    |

| Sample Site 9        | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06  | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06                |
|----------------------|---------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------|
|                      |         |        |        |         |         |         |         |         |         |         |         |         |         |         |                       |
| DO                   |         | 6      | 5      | 4       | 7       | 11      | 9       | 9       | 9       | 11      | 9       | 10      | 9       | 4       | 7                     |
| % O saturation       | no      | 75     | 56     | 46      | 71      | 106     | 89      | 85      | 113     | 128     | 101     | 123     | 109     | 47      | 74                    |
| E. coli (MPN CFU/mL) | data    | 45.7   | 16     | 228     | 2419.2  | 273     | 228     | 727     | 649     | 2419    | 1553    | 727     | 107     | >2419   | >2419                 |
| рН                   | for     | 8.5    | 7.5    | 6.5     | 6       | 7       | 7       | 6.5     | 8       | 7.5     | 7.5     | 8       | 7.5     | 7.5     | 6.5                   |
| BOD 5                | this    | 1      | 1      | 3       | 4       | 4       | 2       | 3       | 3       | 5       | 4       | no data | 4       | 1       | 6 <x<7< th=""></x<7<> |
| Temperature (C)      |         | 26     | 20     | 21      | 15      | 13      | 14      | 12      | 26      | 22      | 20      | 25      | 24      | 22      | 17                    |
| Orthophosphate       | on      | 0      | 0.1    | 2       | 0.1     | 0.1     | 0.1     | 0.1     | 0.2     | 0.4     | no data | 0.2     | 0.3     | 0.6     | 0.3                   |
| Nitrate ppm          | this    | 0      | 0      | 13.2    | 8.8     | 8.8     | no data | 8.8     | 9       | 9       | 2.2     | 2.2     | 2.2     | 2.2     | 2.2                   |
| Turbidity (NTU)      | date    | 16     | 15     | 15      | 66      | 15      | 15      | 15      | 15      | 15      | 15      | 15      | 15      | 18      | 70                    |
| Turbidity (cm)       |         | 53     | >60    | >60     | 11      | 57      | >60     | >60     | >60     | >60     | >60     | >60     | >60     | 41      | 10                    |

| Sample Site 10       | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06  | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06                |
|----------------------|---------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------|
|                      |         |        |        |         |         |         |         |         |         |         |         |         |         |         |                       |
| DO                   | 3       | 2      | 3      | 3       | 7       | 8       | 7       | 7       | 5       | 4       | 3       | 3       | 3       | 2       | 4                     |
| % O saturation       | 36      | 23     | 32     | 33      | 72      | 72      | 68      | 66      | 62      | 45      | 32      | 35      | 34      | 23      | 40                    |
| E. coli (MPN CFU/mL) | 435.2   | 456.9  | 1011.2 | >2419.2 | >2419.2 | >2419.2 | >2419.2 | >2419.2 | 1046    | 1413    | 517     | >2419.2 | 67      | 1120    | >2419                 |
| рН                   | 8.5     | 8.5    | 7.5    | 7.5     | 6.5     | 6.5     | 7       | 6.5     | 9       | 7.5     | 7.5     | 7.5     | 7.5     | 8       | 7.5                   |
| BOD 5                | 2       | >2     | >3     | 1       | 7       | 6       | 6       | 4       | 2       | 3       | >3      | no data | >3      | >2      | 0 <x<1< td=""></x<1<> |
| Temperature (C)      | 23      | 22     | 17     | 19      | 16      | 10      | 13      | 12      | 25      | 20      | 18      | 22      | 21      | 22      | 14                    |
| Orthophosphate       | 0.2     | 4      | 2      | 4       | 0.8     | 0.4     | 0.4     | 0.3     | 0.6     | 2       | no data | 4       | 1       | 3       | 3                     |
| Nitrate ppm          | 0       | 2.2    | 2.2    | 2.2     | 33      | 22      | 13      | 22      | 9       | 2       | 0       | 9       | 2.2     | 0       | 2.2                   |
| Turbidity (NTU)      | <15     | <15    | 20     | <15     | 42      | 40      | 15      | <15     | <15     | 20      | <15     | no data | 16      | 35      | 70                    |
| Turbidity (cm)       | >60     | >60    | 31     | >60     | 18      | 20      | 58      | >60     | >60     | 29      | >60     |         | 47      | 22      | 10                    |

| Sample Site 11       | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06     |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|------------|
|                      |         |        |        |         |         |         |        |         |         |         |         |         |         |         |            |
| DO                   | 4       | 8      | 5      | 5       | 6       | 9       | 7      | 7       | 6       | 7       | 6       | 5       | 5       | 4       | too turbid |
| % O saturation       | 49      | 97     | 57     | 58      | 62      | 85      | 69     | 66      | 74      | 82      | 70      | 59      | 59      | 49      |            |
| E. coli (MPN CFU/mL) | 378.4   | 344.1  | 206.4  | 325.5   | 2419.2  | 64      | 101    | 344     | 461     | 517     | 365     | 1299    | 137     | >2419   | >2419      |
| рН                   | 8.5     | 8      | 6.5    | 6.5     | 6       | 6.5     | 7      | 6.5     | 8       | 7       | 7       | 7       | 7       | 7       | 6          |
| BOD 5                | 1       | 4      | 2      | 3       | 5       | 3       | 0      | 1       | 1       | 3       | 1       | no data | 2       | 2       | too turbid |
| Temperature (C)      | 25      | 24     | 21     | 22      | 16      | 12      | 14     | 12      | 25      | 22      | 22      | 23      | 23      | 25      | 17         |
| Orthophosphate       | 0.1     | 0.2    | 0.3    | 0.4     | no data | 0.2     | 0.2    | 0.1     | 0.3     | 0.2     | no data | 0.2     | 0.2     | *       | too turbid |
| Nitrate ppm          | 10      | 2.2    | 2.2    | 2.2     | 2.2     | 33      | 33     | 33      | 33      | 22      | 9       | 15      | 9       | 2.2     | 9          |
| Turbidity (NTU)      | 60      | 70     | 70     | 52      | 100     | 28      | 50     | 44      | 46      | 50      | 80      | 46      | 75      | 90      | 92         |
| Turbidity (cm)       | 13      | 10     | 11     | 14      | 3       | 26      | 14     | 18      | 17      | 14      | 8       | 17      | 9       | 5       | 4          |

| Sample Site 12       | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06 | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06     |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|------------|
|                      |         |        |        |         |         |         |        |         |         |         |        |         |         |         |            |
| DO                   | 5       | 5      | 5      | 5       | 6       | 8       | 7      | 9       | 6       | 7       | 7      | 6       | 7       | 5       | too turbid |
| % O saturation       | 62      | 59     | 54     | 56      | 63      | 74      | 72     | 85      | 74      | 80      | 79     | 70      | 82      | 61      |            |
| E. coli (MPN CFU/mL) | 416     | 456.9  | 436    | 689     | 2419.2  | 261     | 109    | 547     | 687     | 866     | 210    | 2419    | 37      | 192     | >2419      |
| рН                   | 8       | 8.5    | 6.5    | 7       | 6       | 6.5     | 6.5    | 6.5     | 7.5     | 7       | 7      | 7       | 7       | 6.5     | 6          |
| BOD 5                | 1       | 1      | 1      | 0       | 6       | 1       | 1      | 3       | -       | 3       | 3      | no data | 2       | 4       | too turbid |
| Temperature (C)      | 25      | 23     | 18     | 20      | 17      | 11      | 16     | 12      | 25      | 21      | 20     | 22      | 22      | 24      | 17         |
| Orthophosphate       | 0.1     | 0      | 0.1    | 0.3     | no data | 0.2     | 0.2    | 0.2     | 0.3     | 0.2     | 0.2    | 0.2     | 0.2     | 0.2     | too turbid |
| Nitrate ppm          | 10      | 13.2   | 13.2   | 17.6    | 2.2     | 33      | 22     | 33      | 15      | 15      | 22     | 22      | 22      | 9       | 9          |
| Turbidity (NTU)      | 40      | 90     | 43     | 60      | 100     | 35      | 66     | 44      | 50      | 45      | 19     | 70      | 28      | 80      | 100        |
| Turbidity (cm)       | 20      | 5      | 18     | 12      | 3       | 22      | 11     | 18      | 14      | 17      | 37     | 10      | 27      | 8       | 3          |

| Sample Site 13       | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06 | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06     |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|------------|
|                      |         |        |        |         |         |         |        |         |         |         |        |         |         |         |            |
| DO                   | 5       | 5      | 5      | 5       | 6       | 8       | 7      | 9       | 6       | 7       | 6      | 6       | 6       | 4       | too turbid |
| % O saturation       | 62      | 61     | 55     | 56      | 63      | 74      | 72     | 85      | 74      | 80      | 67     | 71      | 70      | 48      |            |
| E. coli (MPN CFU/mL) | 396.8   | 549    | 524.7  | 961     | 2419.2  | 166     | 345    | 613     | 488     | 727     | 135    | >2419   | 225     | 214     | >2419      |
| рН                   | 8       | 8.5    | 6.5    | 7       | 6       | 6.5     | 7      | 6.5     | 7.5     | 7       | 7      | 7       | 7.5     | 6.5     | 6          |
| BOD 5                | 0       | 1      | 1      | 2       | 5       | 2       | 0      | 3       | 0       | 2       | 2      | no data | 2       | 3       | too turbid |
| Temperature (C)      | 25      | 24     | 19     | 20      | 17      | 11      | 16     | 12      | 25      | 21      | 20     | 23      | 22      | 24      | 17         |
| Orthophosphate       | 0.1     | 0      | 0.1    | 0.4     | no data | 0.2     | 0.2    | 0.2     | 0.3     | 0.2     | 0.1    | 0.2     | 0.2     | 0.2     | too turbid |
| Nitrate ppm          | 10      | 13.2   | 13.2   | 13.2    | 2.2     | 33      | 33     | 33      | 15      | 15      | 15     | 22      | 22      | 9       | 9          |
| Turbidity (NTU)      | 25      | 90     | 52     | 70      | 100     | 35      | 66     | 46      | 50      | 50      | 35     | 60      | 66      | 80      | 100        |
| Turbidity (cm)       | 30      | 5      | 14     | 9       | 3       | 22      | 11     | 17      | 14      | 16      | 22     | 12      | 11      | 7       | 3          |

| Sample Site 14       | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06 | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06     |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|------------|
|                      |         |        |        |         |         |         |        |         |         |         |        |         |         |         |            |
| DO                   | 5       | 4      | 5      | 5       | 6       | 8       | 7      | 9       | 6       | 7       | 6      | 6       | 6       | 5       | too turbid |
| % O saturation       | 63      | 50     | 57     | 57      | 65      | 74      | 72     | 85      | 74      | 80      | 69     | 71      | 71      | 61      |            |
| E. coli (MPN CFU/mL) | 416     | 344.1  | 378.4  | 914     | 2419.2  | 325     | 387    | 517     | 488     | 727     | 126    | >2419   | 649     | 816     | >2419      |
| рН                   | 8       | 8.5    | 6.5    | 6.5     | 6       | 6       | 6.5    | 6.5     | 7.5     | 6.5     | 7      | 7       | 7.5     | 6.5     | 6.5        |
| BOD 5                | 1       | 0      | 0      | 2       | no data | 2       | 1      | 3       | 1       | 3       | 2      | no data | 1       | 4       | too turbid |
| Temperature (C)      | 26      | 26     | 21     | 21      | 18      | 11      | 16     | 12      | 25      | 21      | 21     | 23      | 23      | 24      | 17         |
| Orthophosphate       | 0.1     | 0      | 0.1    | 0.4     | no data | 0.2     | 0.2    | 0.2     | 0.3     | 0.3     | 0.1    | 0.2     | 0.2     | 0.2     | too turbid |
| Nitrate ppm          | 10      | 13.2   | 13.2   | 13.2    | 2.2     | 33      | 33     | 33      | 15      | 15      | 15     | 22      | 22      | 9       | 9          |
| Turbidity (NTU)      | 30      | 90     | 50     | 70      | 100     | 35      | 66     | 46      | 50      | 60      | 46     | 66      | 66      | 80      | >100       |
| Turbidity (cm)       | 25      | 5      | 15     | 10      | 3       | 22      | 11     | 17      | 14      | 13      | 17     | 11      | 11      | 7       | 2          |

| Sample Site 15       | 6/27/05 | 8/1/05 | 9/6/05 | 9/21/05 | 4/17/06 | 4/27/06 | 5/8/06 | 5/16/06 | 6/21/06 | 6/28/06 | 7/6/06  | 7/13/06 | 8/23/06 | 8/29/06 | 9/6/06 |
|----------------------|---------|--------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|
|                      |         |        |        |         |         |         |        |         |         |         |         |         |         |         |        |
| DO ppm               | 7       | 5      | 5      | 5       | 7       | 9       | 9      | 11      | 10      | 10      | 8       | 9       | 7       | 7       | 7      |
| % O saturation       | 88      | 63     | 55     | 57      | 72      | 85      | 91     | 104     | 126     | 117     | 92      | 113     | 82      | 83      | 74     |
| E. coli (MPN CFU/mL) | 396.8   | 65.7   | 19.7   | 90.7    | 791.5   | 133     | 162    | 387     | 272     | 1733    | 1413    | 1986    | 1120    | 2419    | >2419  |
| pН                   | 8.5     | 8.5    | 6.5    | 6.5     | 6       | 6.5     | 7      | 6.5     | 8       | 7.5     | 7.5     | 7.5     | 7.5     | 7       | 6.5    |
| BOD 5                | 1       | 4      | >5     | >5      | 3       | 2       | 2      | 5       | 3       | 4       | 3       | no data | 4       | 3       | 6      |
| Temperature (C)      | 26      | 26     | 19     | 21      | 16      | 12      | 15     | 12      | 26      | 22      | 21      | 26      | 22      | 23      | 17     |
| Orthophosphate       | 0       | 0      | 0.1    | 0.2     | 0.2     | 0.1     | 0      | 0.1     | 0.1     | 0.1     | no data | 0.2     | 0.2     | 0.2     | 0.3    |
| Nitrate ppm          | 10      | 0      | 0      | 0       | 17.6    | 44      | 33     | 33      | 22      | 33      | 9       | 9       | 2.2     | 2.2     | 9      |
| Turbidity (NTU)      | <15     | 18     | 18     | 30      | 92      | <15     | <15    | <15     | <15     | <15     | <15     | 15      | 18      | 19      | 78     |
| Turbidity (cm)       | >60     | 43     | 43     | 26      | 4       | >60     | >60    | >60     | >60     | >60     | >60     | 55      | 42      | 37      | 8      |

### Appendix D IDEM Sampling Data

The staff of the Indiana Department of Environmental Management sampled sixteen sites along Kessinger Ditch between July 24 and August 22, 2001 to evaluate *E. coli* levels. The following data are from the IDEM's publication Total Maximum Daily Load for *Escherichia coli* (*E. coli*) for the Kessinger Ditch Watershed, Knox County.

| Stream Name     | Sampling Site        | SAMPLE DATE     | E. coli<br>(CFU/100mL) | E. coli Geometric<br>Mean |
|-----------------|----------------------|-----------------|------------------------|---------------------------|
| Kessinger Ditch | Five Points Rd       | 7/24/2001 9:05  | 365                    | 182                       |
| 0               |                      | 8/1/2001 9:07   | 2419                   |                           |
|                 |                      | 8/8/2001 8:45   | 29                     |                           |
|                 |                      | 8/14/2001 8:05  | 326                    |                           |
|                 |                      | 8/22/2001 8:25  | 24                     |                           |
| Kessinger Ditch | Old Wheatland Rd     | 7/24/2001 9:50  | 201                    | 414                       |
| 0               |                      | 8/1/2001 9:30   | 980                    |                           |
|                 |                      | 8/8/2001 9:00   | 219                    |                           |
|                 |                      | 8/14/2001 8:25  | 1733                   |                           |
|                 |                      | 8/22/2001 8:45  | 162                    |                           |
| Kessinger Ditch | Jackson Rd           | 7/24/2001 10:20 | 2419                   | 1693                      |
| 0               |                      | 8/1/2001 9:55   | 1553                   |                           |
|                 |                      | 8/8/2001 9:15   | 2419                   |                           |
|                 |                      | 8/14/2001 8:40  | 1986                   |                           |
|                 |                      | 8/22/2001 9:00  | 770                    |                           |
| Kessinger Ditch | Robinson Elevator Rd | 7/24/2001 10:50 | 308                    | 974                       |
| 5               |                      | 8/1/2001 10:15  | 2419                   |                           |
|                 |                      | 8/8/2001 9:30   | 201                    |                           |
|                 |                      | 8/14/2001 8:55  | 2419                   |                           |
|                 |                      | 8/22/2001 9:10  | 2419                   |                           |
| Kessinger Ditch | Wheatland Rd         | 7/24/2001 11:30 | 921                    | 910                       |
| 5               |                      | 8/1/2001 10:48  | 1300                   |                           |
|                 |                      | 8/8/2001 10:05  | 866                    |                           |
|                 |                      | 8/14/2001 9:30  | 249                    |                           |
|                 |                      | 8/22/2001 9:45  | 2419                   |                           |
| Kessinger Ditch | SR 241               | 7/24/2001 9:00  | 1120                   | 833                       |
| 5               |                      | 8/1/2001 8:55   | 770                    |                           |
|                 |                      | 8/8/2001 8:36   | 548                    |                           |
|                 |                      | 8/14/2001 8:10  | 866                    |                           |
|                 |                      | 8/22/2001 8:20  | 980                    |                           |
| Kessinger Ditch | Lucky Point          | 7/24/2001 9:35  | 365                    | 359                       |
| 5               | ,                    | 8/1/2001 9:12   | 579                    |                           |
|                 |                      | 8/8/2001 9:12   | 291                    |                           |
|                 |                      | 8/14/2001 8:45  | 199                    |                           |
|                 |                      | 8/22/2001 8:50  | 488                    |                           |
| Kessinger Ditch | Walnut Grove Rd      | 7/24/2001 9:50  | 649                    | 1251                      |
| U U             |                      | 8/1/2001 9:27   | 1203                   |                           |
|                 |                      | 8/8/2001 9:33   | 1046                   |                           |
|                 |                      | 8/14/2001 9:00  | 1553                   |                           |
|                 |                      | 8/22/2001 9:10  | 2419                   |                           |

|                   |                      |                 | E. coli    | E. coli   |
|-------------------|----------------------|-----------------|------------|-----------|
|                   |                      |                 | (CFU/100mL | Geometric |
| Stream Name       | Sampling Site        | SAMPLE DATE     | )          | Mean      |
| Kessinger Ditch   | Coonce Road          | 7/24/2001 10:00 | 387        | 528       |
|                   |                      | 8/1/2001 9:35   | 1203       |           |
|                   |                      | 8/8/2001 9:42   | 291        |           |
|                   |                      | 8/14/2001 9:10  | 214        |           |
|                   |                      | 8/22/2001 9:20  | 1414       |           |
| Kessinger Ditch   | Mouth                | 7/24/2001 10:10 | 345        | 472       |
|                   |                      | 8/1/2001 9:47   | 921        |           |
|                   |                      | 8/8/2001 9:53   | 238        |           |
|                   |                      | 8/14/2001 9:20  | 238        |           |
|                   |                      | 8/22/2001 9:30  | 1300       |           |
| Opossum Branch    | US 50 & 150          | 7/24/2001 11:10 | 2419       | 1677      |
|                   |                      | 8/1/2001 10:35  | 387        |           |
|                   |                      | 8/8/2001 9:50   | 2419       |           |
|                   |                      | 8/14/2001 9:15  | 2419       |           |
|                   |                      | 8/22/2001 9:30  | 2419       |           |
| Reel Creek        | Coal Mine Road       | 7/24/2001 9:20  | 1203       | 598       |
|                   |                      | 8/1/2001 8:55   | 579        |           |
|                   |                      | 8/8/2001 8:56   | 687        |           |
|                   |                      | 8/14/2001 8:30  | 328        |           |
|                   |                      | 8/22/2001 8:35  | 488        |           |
| Roberson Ditch    | US 50 & 150          | 7/24/2001 11:00 | 45         | 151       |
|                   |                      | 8/1/2001 10:25  | 1300       |           |
|                   |                      | 8/8/2001 9:45   | 55         |           |
|                   |                      | 8/14/2001 9:05  | 411        |           |
|                   |                      | 8/22/2001 9:20  | 61         |           |
| Steen Ditch       | Wheatland Rd         | 7/24/2001 11:20 | 2419       | 1019      |
|                   |                      | 8/1/2001 10:43  | 921        |           |
|                   |                      | 8/8/2001 10:00  | 1046       |           |
|                   |                      | 8/14/2001 9:25  | 687        |           |
|                   |                      | 8/22/2001 9:35  | 687        |           |
| Unnamed Tributary | Old Wheatland Rd     | 7/24/2001 10:05 | < 1        | <1        |
|                   |                      | 8/1/2001 9:37   | < 1        | '         |
|                   |                      | 8/8/2001 9:05   | < 1        |           |
|                   |                      | 8/14/2001 8:30  | < 1        |           |
|                   |                      | 8/22/2001 8:40  | < 1        |           |
| Unnamed Tributary | Robinson Elevator Rd | 7/24/2001 10:30 | 517        | 993       |
|                   |                      | 8/1/2001 10:05  | 2419       | 000       |
|                   |                      | 8/8/2001 9:35   | 980        |           |
|                   |                      | 8/14/2001 8:50  | 326        |           |
|                   |                      | 8/22/2001 9:05  | 2419       |           |
|                   |                      | 012212001 9.03  | 2419       |           |

### Appendix E Knox County Tillage Transect Data and USLE Soil Loss Estimates

| Percentage of Fields with Indicated Tillage System for 2005 Crop |           |          |         |                |  |  |
|------------------------------------------------------------------|-----------|----------|---------|----------------|--|--|
|                                                                  | Number    | %        | % Mulch | % Conventional |  |  |
| <b>Present Crop</b>                                              | of Fields | No-Till* | Till**  | Tillage***     |  |  |
| Corn                                                             | 316       | 16       | 23      | 60             |  |  |
| Soybeans                                                         | 208       | 53       | 27      | 20             |  |  |
| Small Grains                                                     | 34        | 97       | 0       | 3              |  |  |
| Forage                                                           | 26        | 0        | 0       | 0              |  |  |
| Idle                                                             | 6         | 0        | 0       | 0              |  |  |
| Other                                                            | 13        | 8        | 0       | 92             |  |  |
| Unknown                                                          | 0         | 0        | 0       | 0              |  |  |

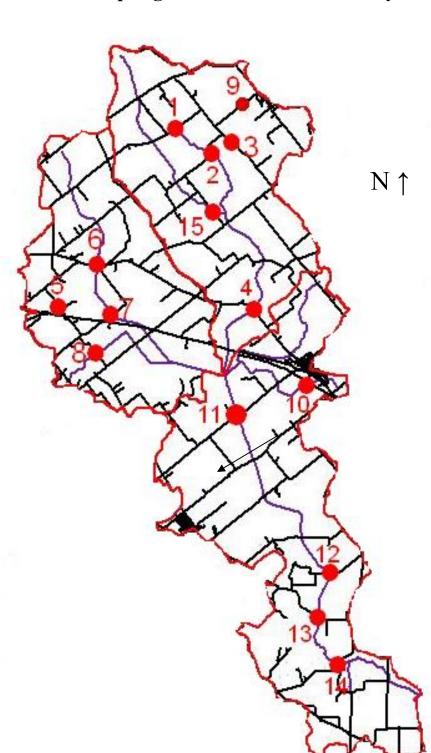
Source: Knox County Tillage Transect

\*No till – any direct seeding system, including strip preparation, with minimal soil disturbance.

**\*\*Mulch till** – any system leaving greater than 30% crop residue cover after planting, excluding no till.

**\*\*\*Conventional** – any tillage system leaving less than 30% crop residue cover after planting.

|         |         |         |      |        |         |         | v    |        |  |
|---------|---------|---------|------|--------|---------|---------|------|--------|--|
|         |         | Cor     |      | 1      | Beans   |         |      |        |  |
|         |         | Total   | % No | %      |         | Total   | % No | %      |  |
| Year    | No Till | Acres   | Till | Tilled | No Till | Acres   | Till | Tilled |  |
| 1996    | 23,823  | 123,241 | 19%  | 81%    | 21,075  | 85,673  | 25%  | 75%    |  |
| 1997    | 12,921  | 107,376 | 12%  | 88%    | 28,960  | 87,327  | 33%  | 67%    |  |
| 1998    | 13,411  | 100,132 | 13%  | 87%    | 36,209  | 89,851  | 40%  | 60%    |  |
| 2000    | 34,421  | 120,695 | 29%  | 71%    | 24,586  | 94,321  | 26%  | 74%    |  |
| 2002    | 26,400  | 108,581 | 24%  | 76%    | 48,116  | 112,839 | 43%  | 57%    |  |
| 2003    | 19,620  | 115,588 | 17%  | 83%    | 46,065  | 107,484 | 43%  | 57%    |  |
| 2004    | 30,251  | 126,888 | 24%  | 76%    | 29,411  | 85,712  | 34%  | 66%    |  |
| 2005    | 21,428  | 132,770 | 16%  | 84%    | 46,218  | 87,393  | 53%  | 47%    |  |
| Average |         |         | 19%  | 81%    |         |         | 39%  | 61%    |  |


Historic No Till vs. Total Acres for Corn and Soybeans in Knox County

Source: Knox County Tillage Transect

| 199661,50124,622-534,008620,13124,77413,743-270,601309,117929199731,34664,493-358,865454,70349,02664,766-88,164201,956656199841,65643,904-452,880538,44073,76146,449-134,160254,371792200099,86756,423152,845194,342503,47742,80267,86856,77047,508214,948718                                                                                                                                                                                             |      | Year          |           |              |         |         |          |         |              |         |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|-----------|--------------|---------|---------|----------|---------|--------------|---------|-----------|
| 199661,50124,622-534,008620,13124,77413,743-270,601309,117929199731,34664,493-358,865454,70349,02664,766-88,164201,956656199841,65643,904-452,880538,44073,76146,449-134,160254,371792200099,86756,423152,845194,342503,47742,80267,86856,77047,508214,948718                                                                                                                                                                                             |      | Corn          |           |              |         |         | Soybeans |         |              |         |           |
| 1997       31,346       64,493       -       358,865       454,703       49,026       64,766       -       88,164       201,956       656         1998       41,656       43,904       -       452,880       538,440       73,761       46,449       -       134,160       254,371       792         2000       99,867       56,423       152,845       194,342       503,477       42,802       67,868       56,770       47,508       214,948       718 | Year | No-till Mulch | h Reduced | Conventional | Total   | No-till | Mulch    | Reduced | Conventional | Total   | Soil Loss |
| 1998       41,656       43,904       -       452,880       538,440       73,761       46,449       -       134,160       254,371       792         2000       99,867       56,423       152,845       194,342       503,477       42,802       67,868       56,770       47,508       214,948       718                                                                                                                                                   | 1996 | 61,501 24,622 | 2 -       | 534,008      | 620,131 | 24,774  | 13,743   | -       | 270,601      | 309,117 | 929,248   |
| <b>2000</b> 99,867 56,423 152,845 194,342 503,477 42,802 67,868 56,770 47,508 214,948 <b>718</b>                                                                                                                                                                                                                                                                                                                                                          | 1997 | 31,346 64,493 | 3 -       | 358,865      | 454,703 | 49,026  | 64,766   | -       | 88,164       | 201,956 | 656,659   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1998 | 41,656 43,904 | 4 -       | 452,880      | 538,440 | 73,761  | 46,449   | -       | 134,160      | 254,371 | 792,811   |
| <b>2002</b> 81,830 27,269 15,111 459,836 584,045 60,936 41,466 6,745 139,726 248,872 832                                                                                                                                                                                                                                                                                                                                                                  | 2000 | 99,867 56,423 | 3 152,845 | 194,342      | 503,477 | 42,802  | 67,868   | 56,770  | 47,508       | 214,948 | 718,425   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2002 | 81,830 27,269 | 9 15,111  | 459,836      | 584,045 | 60,936  | 41,466   | 6,745   | 139,726      | 248,872 | 832,917   |
| <b>2003</b> 59,635 6,052 696 485,946 552,329 67,436 54,514 24,539 129,842 276,331 <b>828</b>                                                                                                                                                                                                                                                                                                                                                              | 2003 | 59,635 6,052  | 2 696     | 485,946      | 552,329 | 67,436  | 54,514   | 24,539  | 129,842      | 276,331 | 828,660   |
| <b>2004</b> 76,606 35,083 - 477,993 589,682 48,593 47,825 - 143,298 239,716 <b>829</b>                                                                                                                                                                                                                                                                                                                                                                    | 2004 | 76,606 35,083 | 3 -       | 477,993      | 589,682 | 48,593  | 47,825   | -       | 143,298      | 239,716 | 829,398   |
| <b>2005</b> 71,542 56,683 - 485,183 613,407 73,736 53,473 - 93,506 220,715 834                                                                                                                                                                                                                                                                                                                                                                            | 2005 | 71,542 56,683 | 3 -       |              | )       |         |          | -       | 93,506       | 220,715 | 834,122   |

USLE Soil Loss Estimates (in tons) for Knox County by Crop, Tillage System, and Vear

Source: Indiana T by 2000 Watershed Soil Loss Transects



Appendix F Water Sampling Sites in the SWCD Study

Site Location Descriptions

| Site # | Location Description                  | Latitude    | Longitude   |
|--------|---------------------------------------|-------------|-------------|
| 1      | Flat Creek at Vash Road               | 38.57352929 | 87.29628311 |
| 2      | Flat Creek at Royal Oak Church Road   | 38.58771097 | 87.30408012 |
| 3      | Unnamed tributary at Long Road        | 38.60126995 | 87.29918282 |
| 4      | Roberson at HWY 550                   | 38.65845968 | 87.30911312 |
| 5      | Unnamed tributary at Jackson Road     | 38.68160756 | 87.32953688 |
| 6      | Kessinger Ditch at Old Wheatland Road | 38.64919416 | 87.33563497 |
| 7      | Kessinger Ditch at Junkin Road        | 38.66812527 | 87.39099392 |
| 8      | Unnamed tributary at Oliver Road      | 38.68235037 | 87.40542646 |
| 9      | Unnamed tributary at Neal Road        | 38.68000134 | 87.38486247 |
| 10     | Steen Ditch at HWY 50                 | 38.69496429 | 87.39071857 |
| 11     | Kessinger Ditch at Wheatland Road     | 38.71138863 | 87.34561119 |
| 12     | Kessinger Ditch at Burke Road         | 38.72904335 | 87.34608234 |
| 13     | Kessinger Ditch at Black Road         | 38.73277749 | 87.33803923 |
| 14     | Kessinger Ditch at Petersburg Road    | 38.74436195 | 87.33407149 |
| 15     | Unnamed tributary at Route Road       | 38.73689636 | 87.35992581 |

N  $\uparrow$ 

Appendix G Water Sampling Sites in the IDEM Study

## Appendix H Soils in the Kessinger Ditch Watershed

| <b>C</b> ell | Description                                                                                   | A a            | % of                   | UPI | HEL              | Chormed | Cropped        |
|--------------|-----------------------------------------------------------------------------------------------|----------------|------------------------|-----|------------------|---------|----------------|
| Soil         | Description                                                                                   | Acres<br>399.1 | total<br>1.08%         | HEL | Acres            | Cropped | HEL            |
| AIA<br>AIB2  | Alford silt loam, 0 to 2 percent slopes<br>Alford silt loam, 2 to 6 percent slopes, eroded    | 4012           | 10.81%                 | Y   | 4012.4           | Y       | 4,012          |
| AIC2         | Alford silt loam, 6to 12 percent slopes, eroded                                               | 4012<br>1974   | 5.32%                  | Ý   | 4012.4<br>1973.8 | Y       | 4,012<br>1,974 |
| AIC2<br>AID3 | Alford silt loam, 12 to 18 percent slopes, severely eroded                                    | 1582           | 5.32 <i>%</i><br>4.26% | Y   | 1582.3           | Y       | 1,974          |
| AID3<br>AnB  | Alvin fine sandy loam, 2 to 6 percent slopes                                                  | 72.9           | 4.20%<br>0.20%         | T   | 1002.0           | T       | 1,362          |
| And          | Alvin fine sandy loam, 2 to 6 percent slopes<br>Alvin fine sandy loam, 6 to 12 percent slopes | 11.6           | 0.20%                  | Y   | 11.6             | Y       | 12             |
| AnD          | Alvin fine sandy loam, 12 to 18 percent slopes                                                | 1.2            | 0.03%                  | Ý   | 1.2              | Y       | 12             |
| Ay           | Ayrshire fine sandy loam                                                                      | 5              | 0.00%                  | 1   | 1.2              | I       | 1              |
| Bd           | Birds silt loam                                                                               | 1560           | 4.20%                  |     |                  |         |                |
| CIF          | Chetwynd Ioam, 25 to 50 percent slopes                                                        | 1347           | 3.63%                  | Y   | 1347             | Ν       |                |
| Du           | Dumps, mine                                                                                   | 174.6          | 0.47%                  | •   | 1047             |         |                |
| EkA          | Elkinsville silt loam, 0 to 2 percent slopes                                                  | 27.3           | 0.07%                  |     |                  |         |                |
| FaB          | Fairpoint shaly silt loam, 0 to 8 percent slopes                                              | 483.4          | 1.30%                  | Y   | 483.4            | Y       | 483            |
| FbG          | Fairpoint very shaly silt loam, 35 to 90 percent slopes                                       | 516.7          | 1.39%                  | Ŷ   | 516.7            | Ň       | 100            |
| Ha           | Haymond silt loam, frequently flooded                                                         | 33.8           | 0.09%                  | •   | 010.1            |         |                |
| HeA          | Henshaw silt loam, 0 to 2 percent slopes                                                      | 169.8          | 0.46%                  |     |                  |         |                |
| HkF          | Hickory loam, 25 to 50 percent slopes                                                         | 668.8          | 1.80%                  | Y   | 668.8            | Ν       |                |
| HoA          | Hosmer silt loam, 0 to 2 percent slopes                                                       | 665.2          | 1.79%                  |     |                  |         |                |
| HoB2         | Hosmer silt loam, 2 to 6 percent slopes, eroded                                               | 3381           | 9.11%                  | Y   | 3380.7           | Y       | 3,381          |
| HoC3         | Hosmer silt loam, 6 to 12 percent slopes, severely eroded                                     | 1699           | 4.58%                  | Y   | 1698.6           | Y       | 1,699          |
| HoD3         | Hosmer silt loam, 12 to 18 percent slopes, severely eroded                                    | 582.2          | 1.57%                  | Y   | 582.2            | Y       | 582            |
| IoA          | lona silt loam, 0 to 2 percent slopes                                                         | 693            | 1.87%                  |     |                  |         |                |
| IvA          | Iva silt loam, 0 to 2 percent slopes                                                          | 497.1          | 1.34%                  |     |                  |         |                |
| Kn           | Kings silty clay                                                                              | 66.3           | 0.18%                  |     |                  |         |                |
| Ly           | Lyles fine sandy loam                                                                         | 55.1           | 0.15%                  |     |                  |         |                |
| MbB2         | Markland silt loam, 2 to 6 percent slopes, eroded                                             | 184.1          | 0.50%                  | Y   | 184.1            | Y       | 184            |
| McA          | McGary silt loam, 0 to 2 percent slopes                                                       | 241.7          | 0.65%                  |     |                  |         |                |
| No           | Nolin silty clay loam, rarely flooded                                                         | 16.9           | 0.05%                  |     |                  |         |                |
| Pb           | Patton silt loam                                                                              | 4204           | 11.33%                 |     |                  |         |                |
| Po           | Petrolia silty clay loam, frequently flooded                                                  | 7.9            | 0.02%                  |     |                  |         |                |
| Ra           | Ragsdale silt loam                                                                            | 999            | 2.69%                  |     |                  |         |                |
| ReA          | Reesville silt loam, 0 to 2 percent slopes                                                    | 2229           | 6.01%                  |     |                  |         |                |
| Sc           | Slema clay loam                                                                               | 0              | 0.00%                  |     |                  |         |                |
| SyB2         | Sylvan silt loam, 2 to 6 percent slopes, eroded                                               | 3857           | 10.39%                 | Y   | 3856.9           | Y       | 3,857          |
| SyC3         | Sylvan silt loam, 6 to 12 percent slopes, severely eroded                                     | 311.8          | 0.84%                  | Y   | 311.8            | Y       | 312            |
| SyD3         | Sylvan silt loam, 12 to 18 percent slopes, severely eroded                                    | 216.3          | 0.58%                  | Y   | 216.3            | Y       | 216            |
| SyF          | Sylvan silt loam, 25 to 40 percent slopes                                                     | 106.5          | 0.29%                  | Y   | 106.5            | Ν       |                |
| UdB          | Udorthents, gently sloping                                                                    | 24.5           | 0.07%                  |     |                  |         |                |
| Vn           | Vincennes loam                                                                                | 59.2           | 0.16%                  |     |                  |         |                |
| W            | Water                                                                                         | 76.8           | 0.21%                  |     |                  |         |                |
| Wa           | Wakeland silt loam, frequently flooded                                                        | 2207           | 5.95%                  |     |                  |         |                |
| Wc           | Wallkill silt loam, clayey substratum                                                         | 308.6          | 0.83%                  |     |                  |         |                |
| Zp           | Zipp silty clay                                                                               | 1377           | 3.71%                  | =   |                  | =       |                |
|              |                                                                                               | 37,104         | 100%                   |     | 20,934           |         | 18,295         |

# Appendix I Endangered, Threatened, and Rare Species in Knox County

| Species Name                     | Common Name                 |       | Status      |
|----------------------------------|-----------------------------|-------|-------------|
| Mollusk: Bivalvia (Mussels)      |                             |       |             |
| Arcidens confragosus             | Rock Pocketbook             |       | G4 S2       |
| Cyprogenia stegaria              | Eastern Fanshell Pearlymuss | el    | LE SE G1 S1 |
| Epioblasma flexuosa              | Leafshell                   |       | SX GX SX    |
| Epioblasma propinqua             | Tennessee Riffleshell       |       | SX GX SX    |
| Epioblasma torulosa rangiana     | Northern Riffleshell        | LE SE | G2T2 S1     |
| Epioblasma torulosa torulosa     | Tubercled Blossom           | LE SE | G2TX SH     |
| Epioblasma triquetra             | Snuffbox                    |       | SE G3 S1    |
| Fusconaia subrotunda             | Longsolid                   |       | SE G3 S1    |
| Hemistena lata                   | Cracking Pearlymussel       |       | LE SX G1 SX |
| Lampsilis ovata                  | Pocketbook                  |       | G5 S2       |
| Lampsilis teres                  | Yellow Sandshell            |       | G5 S2       |
| Obovaria retusa                  | Ring Pink                   |       | LE SX G1 SX |
| Obovaria subrotunda              | Round Hickorynut            |       | SSC G4 S2   |
| Plethobasus cicatricosus         | White Wartyback             |       | LE SE G1 S1 |
| Plethobasus cyphyus              | Sheepnose                   |       | C SE G3 S1  |
| Pleurobema clava                 | Clubshell                   |       | LE SE G2 S1 |
| Pleurobema cordatum              | Ohio Pigtoe                 |       | SSC G3 S2   |
| Pleurobema plenum                | Rough Pigtoe                |       | LE SE G1 S1 |
| Pleurobema pyramidatum           | Pyramid Pigtoe              |       | SE G2 S1    |
| Potamilus capax                  | Fat Pocketbook              |       | LE SE G1 S1 |
| Ptychobranchus fasciolaris       | Kidneyshell                 |       | SSC G4G5 S2 |
| Quadrula cylindrica cylindrical  | Rabbitsfoot                 |       | SE G3T3 S1  |
| Insect: Coleoptera (Beetles)     |                             |       |             |
| Nicrophorus americanus           | American Burying Beetle     | LE SX | G2G3 SH     |
| Insect: Ephemeroptera (Mayflies) |                             |       |             |
| Homoeoneuria ammophila           | A Sand-filtering Mayfly     |       | SE G4 S1    |
| Siphloplecton interlineatum      | A Sand Minnow Mayfly        |       | SE G5 S1    |
| Fish                             |                             |       |             |
| Ammocrypta clara                 | Western Sand Darter         |       | SSC G3 S3   |
| Ammocrypta pellucida             | Eastern Sand Darter         |       | G3 S2       |
| Crystallaria asprella            | Crystal Darter              |       | G3 SX       |
| Cycleptus elongatus              | Blue Sucker                 |       | G3G4 S2     |
| Etheostoma histrio               | Harlequin Darter            |       | G5 S1       |
| Etheostoma squamiceps            | Spottail Darter             |       | G4G5 S1     |
| Percina evides                   | Gilt Darter                 |       | SE G4 S1    |
| Percina uranidea                 | Stargazing Darter           |       | SX G3 SX    |
|                                  |                             |       |             |

### Amphibian

Isoetes melanopoda

Cryptobranchus alleganiensis alleganiensis Hellbender

Rontila

| Reptile                              |                              |                       |
|--------------------------------------|------------------------------|-----------------------|
| Farancia abacura reinwardtii         | Western Mud Snake            | SX G5T5 SX            |
| Kinosternon subrubrum                | Eastern Mud Turtle           | SE G5 S2              |
| Liochlorophis vernalis               | Smooth Green Snake           | SE G5 S2              |
| Nerodia erythrogaster neglecta       | Copperbelly Water Snake      | PS:LT SE              |
| Pseudemys concinna hieroglyphica     | Hieroglyphic River Cooter    | SE G5T4 S1            |
| 5 8 51                               | 6 71                         | -                     |
| Bird                                 |                              |                       |
| Aimophila aestivalis                 | Bachman's Sparrow            | G3 SXB                |
| Asio flammeus                        | Short-eared Owl              | SE G5 S2              |
| Haliaeetus leucocephalus             |                              | DL SE G5 S2           |
| Lanius ludovicianus                  | Loggerhead Shrike            | SE G4 S3B             |
| Tyto alba                            | Barn Owl                     | SE G4 S5D<br>SE G5 S2 |
| 1 yto alba                           | Danii Owi                    | 5E GJ 52              |
| Mammal                               |                              |                       |
| Lynx rufus                           | Bobcat No Status             | G5 S1                 |
| Myotis sodalis                       | Indiana Bat or Social Myotis | -                     |
| Sylvilagus aquaticus                 | Swamp Rabbit                 | SE G5 S1              |
| Taxidea taxus                        | American Badger              | G5 S2                 |
|                                      | American Dauger              | 05.52                 |
| Vascular Plant                       |                              |                       |
| Androsace occidentalis               | Western Rockjasmine          | ST G5 S2              |
| Azolla caroliniana                   | Carolina Mosquito-fern       | ST G5 S2              |
| Bacopa rotundifolia Roundleaf        | Water-hyssop                 | ST G5 S1              |
| Callirhoe triangulata                | Clustered Poppy-mallow       | SX G3 SX              |
| Carex gigantea                       | Large Sedge ST               | G4 S1                 |
| Carex gravida                        | Heavy Sedge                  | SE G5 S1              |
| Carya pallida                        | Sand Hickory                 | SE G5 S2              |
| Carya texana                         | Black Hickory                | SE G4 S1              |
| Catalpa speciosa                     | Northern Catalpa             | SR G4? S2             |
| Chelone obliqua var. speciosa        | Rose Turtlehead              | WL G4T3 S3            |
| Chrysopsis villosa                   | Hairy Golden-aster           | ST G5 S2              |
| Clematis pitcheri                    | Pitcher Leather-flower       | SR G4G5 S2            |
| Conyza canadensis var. pusilla       | Fleabane                     | SX G5T5 SX            |
| Cyperus pseudovegetus                | Green Flatsedge              | SR G5 S2              |
| Echinodorus cordifolius              | Creeping Bur-head            | SE G5 S1              |
| Euphorbia obtusata                   | Bluntleaf Spurge             | SE G5 S1              |
| Gentiana puberulenta                 | Downy Gentian                | ST G4G5 S2            |
| Gleditsia aquatica                   | Water-locust                 | SE G5 S1              |
| Hibiscus moscheutos ssp. lasiocarpos | Hairy-fruited Hibiscus       | SE G5T4 S1            |
| Hypericum adpressum                  | Creeping St. John's-wort     | SE G3 S1              |
| Iresine rhizomatosa                  | Eastern Bloodleaf            | SR G5 S2              |
| T ( 1 1                              |                              |                       |

Blackfoot Quillwort

ST G5 S1

SE 3G4T3T4 S1

| Monarda bradburiana                     | Eastern Bee-balm       | SE G5 S1    |
|-----------------------------------------|------------------------|-------------|
| Orobanche ludoviciana                   | Louisiana Broomrape    | SE G5 S2    |
| Passiflora incarnata                    | Purple Passion-flower  | SR G5 S2    |
| Penstemon tubaeflorus                   | Tube Penstemon         | SX G5 SX    |
| Phacelia ranunculacea                   | Blue Scorpion-weed     | SE G4 S1    |
| Plantago cordata                        | Heart-leaved Plantain  | SE G4 S1    |
| Prenanthes aspera                       | Rough Rattlesnake-root | SR G4? S2   |
| Psoralea tenuiflora                     | Few-flowered Scurf-pea | SX G5 SX    |
| Pteridium aquilinum var. pseudocaudatum | Bracken Fern           | SX G5T5 SX  |
| Rubus alumnus                           | A Bramble SX           | G5 SX       |
| Rudbeckia fulgida var. fulgida          | Orange Coneflower      | WL G5T4? S2 |
| Silene regia                            | Royal Catchfly         | ST G3 S2    |
| Strophostyles leiosperma                | Slick-seed Wild-bean   | ST G5 S2    |
| Taxodium distichum                      | Bald Cypress           | ST G5 S2    |
| Trichostema dichotomum                  | Forked Bluecurl        | SR G5 S2    |
| Vitis palmata                           | Catbird Grape          | SR G4 S2    |
| -                                       | -                      |             |

#### **High Quality Natural Community**

| Barrens - sand                | Sand Barrens                | SG G3 S2   |
|-------------------------------|-----------------------------|------------|
| Forest - floodplain wet-mesic | Wet-mesic Floodplain Forest | SG G3? S3  |
| Forest - upland mesic         | Mesic Upland Forest         | SG G3? S3  |
| Lake - pond                   | Pond                        | SG GNR SNR |
| Wetland - swamp forest        | Forested Swamp              | SG G2? S2  |

#### **Status Key**

| Status Key |                                                                                                                                                                                                                                                                                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fed:       | LE = Endangered; LT = Threatened; C = candidate; PDL = proposed for                                                                                                                                                                                                                                                                                                      |
| delisting  |                                                                                                                                                                                                                                                                                                                                                                          |
| State:     | SE = state endangered; ST = state threatened; SR = state rare; SSC = state<br>species of special concern; SX = state extirpated; SG = state significant;<br>WL = watch list                                                                                                                                                                                              |
| GRANK:     | Global Heritage Rank: $G1 =$ critically imperiled globally; $G2 =$ imperiled globally; $G3 =$ rare or uncommon globally; $G4 =$ widespread and abundant globally but with long term concerns; $G5 =$ widespread and abundant globally; $G? =$ unranked; $GX =$ extinct; $Q =$ uncertain rank; $T =$ taxonomic subunit rank                                               |
| SRANK:     | State Heritage Rank: $S1 =$ critically imperiled in state; $S2 =$ imperiled in state; $S3 =$ rare or uncommon in state; $G4 =$ widespread and abundant in state but with long term concern; $SG =$ state significant; $SH =$ historical in state; $SX =$ state extirpated; $B =$ breeding status; $S? =$ unranked; $SNR =$ unranked; $SNA =$ nonbreeding status unranked |

Indiana Natural Heritage Data Center Division of Nature Preserves Indiana Department of Natural Resources This data is not the result of comprehensive county surveys.