

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb

Brian C. Rockensuess

Commissioner

December 15, 2021

VIA ELECTRONIC MAIL

Mr. Fred F. Buckingham, Chairman Ben Davis Conservancy District 703 South Tibbs Avenue Indianapolis, Indiana 46241

Dear Mr. Buckingham:

Re: 327 IAC 3 Construction Permit Application Ben Davis Conservancy District Wastewater Treatment Plant and Regional Lift Station Permit Approval No. 24183 Indianapolis, Indiana Marion County

The application, plans and specifications, and supporting documents for the above-referenced project have been reviewed and processed in accordance with rules adopted under 327 IAC 3. Enclosed is the Construction Permit (Approval No. 24183), which applies to the construction of the above-referenced proposed water pollution treatment/control facility to be located approximately 825 feet south and 275 feet west of the intersection of South Tibbs Avenue and Delmar Avenue in the City of Indianapolis.

Please review the enclosed permit carefully and become familiar with its terms and conditions. In addition, it is imperative that the applicant, consulting architect/engineer (A/E), inspector, and contractor are aware of these terms and conditions.

It should be noted that any person affected or aggrieved by the agency's decision in authorizing the construction of the above-referenced facility may, within fifteen (15) days from date of mailing, appeal by filing a request with the Office of Environmental Adjudication for an adjudicatory hearing in accordance with IC 4-21.5-3-7 and IC 13-15-6. The procedure for appeal is outlined in more detail in Part III of the attached construction permit.

Plans and specifications were prepared by Triad Associates, Inc., certified by Mr. Jonathan P. Moen, P.E., and submitted for review on December 6, 2021.

Any technical/engineering questions concerning this permit may be addressed to the undersigned at 317/234-8226.

Sincerely,

Kevin D. Czerniakowski, P.E.

Section Chief

Facility Construction and Engineering Support Section

Office of Water Quality

Project No SRF-0668
Enclosures
cc: Marion County Health Department
Triad Associates, Inc.

Page 1 of 6 Permit Approval No. 24183

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT **AUTHORIZATION FOR CONSTRUCTION OF** WATER POLLUTION TREATMENT/CONTROL FACILITY **UNDER 327 IAC 3**

DECISION OF APPROVAL

The Ben Davis Conservancy District, in accordance with the provisions of IC 13-15 and 327 IAC Article 3 is hereby issued a permit to construct a water pollution treatment/control facility located approximately 825 feet south and 275 feet west of the intersection of South Tibbs Avenue and Delmar Avenue in the City of Indianapolis. The permittee is required to comply with requirements set forth in Parts I, II and III hereof. The permit is effective pursuant to IC 4-21.5-3-4(d). If a petition for review and a petition for stay of effectiveness are filed pursuant to IC 13-15-6, an Environmental Law Judge may be appointed for an adjudicatory hearing. The force and effect of any contested permit provision may be stayed at that time.

NOTICE OF EXPIRATION DATE

Authorization to initiate construction of this pollution treatment/control facility shall expire at midnight one year from the date of issuance of this construction permit. In order to receive authorization to initiate construction beyond this date, the permittee shall submit such information and forms as required by the Indiana Department of Environmental Management. It is requested that this information be submitted sixty (60) days prior to the expiration date to initiate construction. This permit shall be valid for a period of five (5) years from the date below for full construction completion.

Issued on December 15, 2021, for the Indiana Department of Environmental Management.

Kevin D. Czerniakowski, P.E.

Kevi D. Ezermislevali

Section Chief

Facility Construction and Engineering Support Section

Office of Water Quality

Page 2 of 6 Permit Approval No. 24183

WATER POLLUTION TREATMENT/CONTROL FACILITY DESCRIPTION

The Ben Davis Conservancy District is a special taxing district created for the sole purpose of collecting and transporting sanitary sewage. Wastewater is currently transported for treatment to the Belmont Wastewater Treatment Plant (WWTP), which is owned and operated by the CWA Authority (CWA) for Citizens Energy Group. Indianapolis is a combined sewer community and must implement a Long Term Control Plan under a consent decree with the USEPA and IDEM. This requires significant infrastructure investment which is often passed on to the customers as higher rates. However, Ben Davis Conservancy District is comprised of 100% separated sewers and does not contribute to the underlying and costly problems of CWA's system.

In 2015, the Indiana Utility Regulatory Commission ordered CWA to renegotiate contracts that were in place for treatment services with its satellite customers (which includes Ben Davis Conservancy District). Satellite customers were found to be paying below the full cost of sewage processing. The settlement agreement arranged to phase-in to the full satellite tariff treatment rate over a succeeding ten-year period (to avoid rate shock). However, the agreement also contained a statement that CWA would not object if the District wanted to pursue constructing its own treatment plant in the future.

The District Board commissioned a study to evaluate the feasibility of building and operating a dedicated treatment facility. The preliminary engineering report indicated that a new plant would be less costly than continuing to send wastewater to CWA for treatment. A new plant would also ensure District users were not subject to funding rising non-district sewer separation project costs. The Ben Davis Conservancy District is proposing the construction of a new wastewater treatment facility and discontinuing conveying flows to CWA. The proposed WWTP average and peak hourly flow capacities will be 4.0 MGD and 12.0 MGD, respectively.

The collection system proposed project will include but is not limited to the following: new regional lift station with four (4) pumps, mechanical fine screen with manual trash rack bypass, and a new 250 kW natural gas generator.

The wastewater treatment plant proposed project will include but is not limited to the following: four (4) aeration basins, two (2) secondary clarifiers, chemical phosphorus removal facilities, ultraviolet light (UV) disinfection, diffused air post-aeration, and new effluent piping and associated outfall structure. The WWTP will also have an influent electromagnetic flow meter and effluent ultrasonic flow meter. Solids will be treated in two (2) aerobic digesters, dewatered in a screw press, and disposed of by landfill via a licensed third party hauler.

Page 3 of 6 Permit Approval No. 24183

CONDITIONS AND LIMITATIONS TO THE AUTHORIZATION FOR CONSTRUCTION OF WATER POLLUTION TREATMENT/CONTROL FACILITY

During the period beginning on the effective date of this permit and extending until the expiration date, the permittee is authorized to construct the above described water pollution treatment/control facility. Such construction shall conform to all provisions of State Rule 327 IAC 3 and the following specific provisions:

PART I

SPECIFIC CONDITIONS AND LIMITATIONS TO THE CONSTRUCTION PERMIT

Unless specific authorization is otherwise provided under the permit, the permittee shall comply with the following conditions:

- 1. Additional treatment facilities shall be installed if the proposed facilities prove to be inadequate or cannot meet applicable federal or state standards.
- 2. Any local permits required for this project, along with zoning or easement acquisition, shall be obtained before construction is initiated.
- 3. If pollution or nuisance conditions are created, immediate corrective action will be taken by the permittee.
- 4. Ben Davis Conservancy District shall notify the Department of Environmental Management of the date of start-up and completion of the proposed project.
- 5. If construction is located within a designated floodway, a permit may also be required from the Department of Natural Resources prior to start of construction. It is the permittee's responsibility to coordinate with that agency and obtain any required approvals if applicable. Questions may be directed to the Technical Services Section, Division of Water at 317/232-4160.
- 6. If this project includes a change in design flow, addition of new treatment unit(s), or modification/removal of existing treatment unit(s), an NPDES Permit modification will likely be required. This would include any CSO treatment addition/modification. Questions may be directed to the NPDES Permit Section, Office of Water Quality at 317/233-0469
- 7. Plans for the outfall structure shall be submitted to the Department of Natural Resources for consideration of approval prior to the start of construction.

Failure to meet guidelines as set forth in the above conditions could be subject to enforcement proceedings as provided by 327 IAC 3-5-3.

Page 4 of 6 Permit Approval No. 24183

PART II

GENERAL CONDITIONS

- 1. No significant or material changes in the scope of the plans or construction of this project shall be made unless the following provisions are met:
 - a. Request for permit modification is made 60 days in advance of the proposed significant or material changes in the scope of the plans or construction:
 - b. Submit a detailed statement of such proposed changes;
 - c. Submit revised plans and specifications including a revised design summary; and
 - d. Obtain a revised construction permit from this agency.
- 2. This permit may be modified, suspended, or revoked for cause including, but not limited to the following:
 - a. Violation of any term or conditions of this permit:
 - b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts.
- 3. Nothing herein shall be construed as guaranteeing that the proposed water pollution treatment/control facility shall meet standards, limitations or requirements of this or any other agency of state or federal government, as this agency has no direct control over the actual construction and/or operation of the proposed project.

Page 5 of 6 Permit Approval No. 24183

PART III

NOTICE OF RIGHT TO ADMINISTRATIVE REVIEW

Anyone wishing to challenge this construction permit must do so by filing a Petition for Administrative Review with the Office of Environmental Adjudication (OEA), and serving a copy of the petition upon IDEM. The requirements for filing a Petition for Administrative Review are found in IC 4-21.5-3-7, IC 13-15-6-1 and 315 IAC 1-3-2. A summary of the requirements of these laws is provided below.

A Petition for Administrative Review must be filed with the Office of Environmental Adjudication (OEA) within fifteen (15) days of the issuance of this notice (eighteen (18) days if notice was received by U.S. Mail), and a copy must be served upon IDEM. Addresses are:

Director
Office of Environmental Adjudication
Indiana Government Center North
Room 103
100 North Senate Avenue
Indianapolis, Indiana 46204

Commissioner
Indiana Department of Environmental
Management
Indiana Government Center North
Room 1301
100 North Senate Avenue
Indianapolis, Indiana 46204

The petition must contain the following information:

- 1. The name, address and telephone number of each petitioner.
- 2. A description of each petitioner's interest in the permit.
- 3. A statement of facts demonstrating that each petitioner is:
 - a. a person to whom the order is directed;
 - b. aggrieved or adversely affected by the permit; or
 - c. entitled to administrative review under any law.
- 4. The reasons for the request for administrative review.
- 5. The particular legal issues proposed for review.
- 6. The alleged environmental concerns or technical deficiencies of the permit.
- 7. The permit terms and conditions that the petitioner believes would be appropriate and would comply with the law.
- 8. The identity of any persons represented by the petitioner.
- 9. The identity of the person against whom administrative review is sought.
- 10. A copy of the permit that is the basis of the petition.
- 11. A statement identifying petitioner's attorney or other representative, if any.

Page 6 of 6 Permit Approval No. 24183

Failure to meet the requirements of the law with respect to a Petition for Administrative Review may result in a waiver of the Petitioner's right to seek administrative review of the permit. Examples are:

- 1. Failure to file a Petition by the applicable deadline;
- 2. Failure to serve a copy of the Petition upon IDEM when it is filed; or
- 3. Failure to include the information required by law.

If Petitioner seeks to have a permit stayed during the administrative review, he or she may need to file a Petition for a Stay of Effectiveness. The specific requirements for such a Petition can be found in 315 IAC 1-3-2 and 315 IAC 1-3-2.1.

Pursuant to IC 4-21.5-3-17, OEA will provide all parties with notice of any prehearing conferences, preliminary hearings, hearings, stays, or orders disposing of the review of this action. Those who are entitled to notice under IC 4-21.5-3-5(b) and would like to obtain notices of any pre-hearing conferences, preliminary hearings, hearings, stays, or orders disposing of the review of this action without intervening in the proceeding must submit a written request to OEA at the address above.

More information on the review process is available at the website for the Office of Environmental Adjudication at http://www.in.gov/oea.

Wastewater Treatment Facility Design Summary

I. GENERAL

- 1. Applicant: Ben Davis Conservancy District
- 2. Facility Name: Ben Davis Conservancy District Wastewater Treatment Plant
- 3. Project Type: New facility
- 4. Project Title: Ben Davis Conservancy District Wastewater Treatment Plant and Regional Lift Station
- 5. Project Location: 900 S Tibbs Ave, Indianapolis, IN 46241
- 6. Construction Permit Number: 24183
- 7. Design Engineer: Mr. Jonathan P. Moen, P.E.
- 8. Engineering Company: Triad Associates, Inc.
- 9. NPDES Permit Number: Pending
 - A. Preliminary Effluent Limitations: October 28, 2020
 - B. Anti-degradation Assessment: June 28, 2021

10. Project Scope

A. Description of project needs: The Ben Davis Conservancy District is a special taxing district created for the sole purpose of collecting and transporting sanitary sewage. Wastewater is currently transported for treatment to the Belmont Wastewater Treatment Plant (WWTP), which is owned and operated by the CWA Authority (CWA) for Citizens Energy Group. Indianapolis is a combined sewer community and must implement a Long Term Control Plan under a consent decree with the USEPA and IDEM. This requires significant infrastructure investment which is often passed on to the customers as higher rates. However, Ben Davis Conservancy District is comprised of 100% separated sewers and does not contribute to the underlying and costly problems of CWA's system.

In 2015, the Indiana Utility Regulatory Commission ordered CWA to renegotiate contracts that were in place for treatment services with its satellite customers (which includes Ben Davis Conservancy District). Satellite customers were found to be paying below the full cost of sewage processing. The settlement agreement arranged to phase-in to the full satellite tariff treatment rate over a succeeding ten-year period (to avoid rate shock). However, the agreement also contained a statement that CWA would not object if the District wanted to pursue constructing its own treatment plant in the future.

The District Board commissioned a study to evaluate the feasibility of building and operating a dedicated treatment facility. The preliminary engineering report indicated that a new plant would be less costly than continuing to send wastewater to CWA for treatment. A new plant would also ensure District users were not subject to funding rising non-district sewer separation project costs. The

Ben Davis Conservancy District is proposing the construction of a new wastewater treatment facility and discontinuing conveying flows to CWA.

B. The collection system proposed project will include but is not limited to the following: new regional lift station with four (4) pumps, mechanical fine screen with manual trash rack bypass, and a new 250 kW natural gas generator.

The wastewater treatment plant proposed project will include but is not limited to the following: four (4) aeration basins, two (2) secondary clarifiers, chemical phosphorus removal facilities, ultraviolet light (UV) disinfection, diffused air postaeration, and new effluent piping and associated outfall structure. The WWTP will also have an influent electromagnetic flow meter and effluent ultrasonic flow meter. Solids will be treated in two (2) aerobic digesters, dewatered in a screw press, and disposed of by landfill via a licensed third party hauler. Is project part of an Agreed Order?: No

- C. Is project part of an Agreed Order?: No
- D. How facility will maintain treatment during construction: Will continue transporting to the Southport Advanced Wastewater Treatment Plant until the plant is ready
- 11. Source of Funding: Local Funds
- 12. Estimated Total Project Cost: \$13,500,000

II. DESIGN DATA

1. Design Average Flow: 4.0 MGD

A. Domestic: 2.0 MGD

B. Industrial/Commercial: 0.5 MGD

C. Infiltration/Inflow: 1.5 MGD

- 2. Design Peak Hourly Flow: 12 MGD (all 4 raw sewage pumps pumping)
- 3. Design Waste Strength

A. CBOD: 170 mg/L

B. TSS: 200 mg/L

C. NH₃-N: 25 mg/L

D. P: 5 mg/L

Note: Sampling was conducted by the District from January 2018 to May 2020 and measured CBOD, TSS, and NH3-N four times a month. Since phosphorus was not required to be sampled at that time, a 7-day sampling was ordered for all parameters. This 7-day period also closely matched historical sampling data.

- 4. Design Population Equivalent: 33,360 (based on 0.17 lb CBOD/PE influent loading)
- 5. NPDES Permit Limitation on Effluent Quality

 Based on Preliminary Effluent Limitations letter dated October 28, 2020
 - A. CBOD₅: 10 mg/L (monthly average)
 - B. TSS: 12 mg/L (monthly average)
 - C. NH₃-N: 1.1 mg/L summer and 1.6 mg/L winter (monthly average)

- D. P: 1.0 mg/L (monthly average)
- E. pH: 6.0 s.u. (daily min) and 9.0 s.u. (daily max)
- F. DO: 6.0 mg/L (daily min)
- G. Total Residual Chlorine: None, Ultraviolet (UV) light disinfection
- H. E. coli: 125 count/100 mL (monthly average), 235 count/100 mL (daily max)
- 6. Sampling Method (Grab or Automatic Sampler) and Location
 - A. Influent: Automatic sampler, regional lift station
 - B. Effluent: Automatic sampler, post-aeration channel
- 7. Receiving Stream
 - A. Name: Neeld Ditch
 - B. Stream Uses: Full body contact recreational use and shall be capable of supporting a well-balanced warm water aquatic community
 - C. 7-day, 1-in-10 year low flow: 0.0 CFS

III. PLANT DETAILS

- 1. Laboratory type (e.g., on site, third-party testing): On-site
- 2. Plant site fence provided: Yes
- 3. Handrail/grating provided where necessary: Yes
- 4. Flood hazard elevation at 100-year flood: 695.50 ft
- 5. Provisions for mechanical/electrical component protection at 100-year flood: Above 100-year flood elevation; FEMA Effective Zone X
- 6. Type and rating (kW) of standby power equipment: 1,000 kW natural gas generator
- 7. Provisions for removing heavy equipment: Yes, hoists and cranes
- 8. Septage/leachate receiving facilities: None

IV. TREATMENT UNITS

Activated Sludge (Proposed)

- 1. Conventional or extended aeration: Extended Aeration
- 2. Number and dimensions of unit: Four (4) tanks each 45 ft W x 140 ft L x 16.5 ft D
- 3. Side water depth and freeboard of unit: 15 ft SWD and 1.5 ft FB
- 4. Hydraulic detention time: 17 hours
- 5. Organic loading at design average flow: 15 lb CBOD/1000 ft³
- 6. Design MLSS concentration: 3,000 mg/L
- 7. Design solids retention time: 17 days
- 8. Design F/M ratio: 0.1 lb CBOD/day/lb MLVSS
- 9. Type and efficiency of diffusers: Fine bubble diffusers and 2%/ft SOTE
- 10. Dedicated or shared plant blowers: Dedicated
- 11. Type and rated capacity of blowers: Three (3) @ 4,000 cfm, each
- 12. Constant or variable speed blowers: Variable

- 13. Oxygen requirement
 - A. CBOD removal: 8,507 lb O₂/day
 - B. NH₃-N removal: 3,836 lb O₂/day
- 14. Total air demand: 12,000 SCFM
- 15. Firm blower capacity: 12,000 SCFM (with one blower on standby)
- 16. Type of ventilation in blower room: Shed but in sound enclosure
- 17. Number and capacity of return sludge pumps: Two (2) and 2,100 gpm, each
- 18. Method of return sludge rate control: Mag meter, SCADA, and VFD
- 19. Return sludge rate as % of design average flow: 100 to 150%
- 20. Provisions for return rate metering
 - A. Type and size: 12-inch electromagnetic
 - B. Location: Discharge line from the RAS pumps (inside pump building)
- 21. Return sludge discharge location: Influent of aeration tank
- 22. Method of unit isolation: Motor operated gates
- 23. Method of flow split control: Motor operated gates

Secondary Clarification (Proposed)

- 1. Type of clarifier: Circular with center feed and rim collection
- 2. Number and dimensions of unit: Two (2) @ 100 ft diameter
- 3. Side water depth and freeboard of unit: 15.4 ft SWD and 1.5 ft FB
- 4. Surface overflow rate
 - A. at design average flow: 255 gpd/ft²
 - B. at design peak hourly flow: 764 gpd/ft²
- Hydraulic detention time
 - A. at design average flow: 10.9 hours
 - B. at design peak hourly flow: 3.6 hours
- 6. Weir loading rate at design peak hourly flow: 10,000 gpd/lin-ft
- 7. Location of overflow weir: Dual weir trough on perimeter
- 8. Method of scum collection: Full radius scum beach
- 9. Method of scum disposal: Grinder pump station before pumped to digester
- 10. Type of sludge removal mechanism: Suction
- 11. Method of unit isolation: Yes, gates in secondary clarifier splitter box
- 12. Method of flow split control: Yes, gates in secondary clarifier splitter box

Chemical Phosphorus Removal (Proposed)

- 1. Chemical properties
 - A. Chemical name: Sodium Aluminate (Al₂Na₂O₄)
 - B. Weight concentration in solution: 43%
 - C. Specific gravity: 1.52
- 2. Chemical storage container
 - A. Type: Polyethylene tank
 - B. Volume: 7,000 gallons
 - C. Expected storage supply: 30+ days

- 3. Secondary containment
 - A. Type: Double Walled Tank
 - B. Dimensions or volume: N/A
- 4. Number and capacity of chemical feed pumps: Two (2) @ 21 GPH, each
- 5. Design chemical feed rate: 7 GPH
- 6. Location(s) of chemical injection: Secondary clarifier splitter box
- 7. Provisions for adequate mixing at injection point: Turbulent flow
- 8. Chemical building
 - A. Method of ventilation control: Powered ventilator
 - B. Method of temperature control: Heater with thermostat
 - C. Safety shower/eyewash equipment: Provided

Ultraviolet Disinfection (Proposed)

- 1. Open channel or closed-vessel: Open channel
- 2. Vertical, horizontal, or diagonal lamp orientation: Vertical
- 3. Lamp type: Low pressure, high output
- 4. Number of banks: One (1)
- 5. Number of modules per bank: Six (6)
- 6. Number of lamps per module: 40
- 7. Dosage: 30,000 µWs/cm² minimum
- 8. Transmittance: 65% minimum
- 9. Provisions for intensity monitoring: Yes, sensor
- 10. Type of level control provisions: Serpentine weir
- 11. Type of bypass provisions: Pipe and valved bypass
- 12. Type of safety equipment: Gloves, protective eye wear, face shield
- 13. Automatic or manual cleaning equipment: Automatic

Diffused Air Post-Aeration (Proposed)

- Number and dimensions of unit: One (1) and 10 ft W x 32.5 ft L
- 2. Side water depth and freeboard of unit: 10.85 ft SWD and 2.65 ft FB
- 3. Type and efficiency of diffuser: Fine bubble diffusers and 2% SOTE
- 4. Dedicated or shared plant blowers: Dedicated
- 5. Type and rated capacity of blowers: Two (2) rotary lobe @ 120 cfm

Effluent Flow Meter (Proposed)

- 1. Type and size (in): Ultrasonic flowmeter
- 2. Location description: Mounted over the post-aeration tank (upstream of weir)
- 3. Indicating, recording and totalizing: Yes

Aerobic Digester (Proposed)

- 1. Number and dimensions of unit: Two (2) and 45 ft W x 140 ft L
- 2. Side water depth and freeboard of unit: 1 ft SWD and 1.5 ft FB
- 3. Volume: 1,400,000 gallons
- 4. Total design sludge loading: 5,671 lbs/day
- 5. Volatile solids percentage: 75%

- 6. Design solids retention time: 60 days
- 7. Type and efficiency of diffusers: Coarse bubble diffusers and 0.75% SOTE
- 8. Dedicated or shared plant blowers: Dedicated
- 9. Type and rated capacity of blowers: Two (2) rotary lobe @ 2,835 cfm, each
- 10. Decanting method: Telescoping valve
- 11. Discharge location of supernatant: Plant lift station

Mechanical Dewatering (Proposed)

- 1. Type of dewatering unit: Dewatering screw press
- 2. Number and dimensions of unit: One (1) unit 13' L x 6' W x 6' H
- 3. Hydraulic capacity: 44,100 gal/week (52 gpm)
- 4. Solids capacity: 1,000 lb/hr
- 5. Type of chemicals added: Polymer
- 6. Expected solids content of dewatered sludge: 18%
- 7. Discharge location of drainage: Plant lift station

Final Sludge Disposal (Proposed)

- 1. Ultimate disposal method of sludge: Landfill
- 2. Expected solids content of sludge (by the principal method of disposal): 18%
- 3. Location of disposal site: Southern Marion County
- 4. Ownership of the disposal site: Licensed third party hauler
- 5. Availability of sludge transport equipment: None, licensed third party hauler

V. SEWER COLLECTION SYSTEM

Regional Lift Station (Proposed)

- 1. Location description: Near 703 S Tibbs Ave, Indianapolis, IN 46241
- 2. Type of pump: Submersible
- 3. Number of pumps: Four (4)
- 4. Constant or variable speed: Variable
- 5. Design operating capacity and TDH: 8,333 gpm (12 MGD) and 86 ft TDH
- 6. Operating volume of the wet well: 5,800 gallons
- 7. Detention time in the wet well: 8.5 minutes
- 8. Shutoff valve and check valve in the discharge line: Yes
- 9. Shutoff valve on suction line: N/A
- 10. Type of ventilation: Forced air
- 11. Type of standby power: 250 kW natural gas generator
- 12. Type of alarm: Audio & Visual with SCADA
- 13. Type of bypass or overflow provisions: None

Screening at Regional Lift Station (Proposed)

- 1. Type of screening: Mechanical fine screen
- 2. Location description: Upstream of regional lift station pumps
- 3. Bypass bar screen provision: Yes, trash basket
- 4. Number and rated capacity: One (1) @ 16 MGD

- 5. Clear opening sizes, bar or perforations: 1/4-inch
- 6. Slope of unit: 70°
- 7. Method of unit cleaning: Self-cleaning
- 8. Method of screening disposal: Compactor and dumpster
- 9. Method of unit isolation: Yes, stop gate
- 10. Method of flow split control: None, single train

Flow Meter at Regional Lift Station (Proposed)

- 1. Type and size: 16-inch electromagnetic
- 2. Location description: On the discharge line of regional pump station
- 3. Indicating, recording, and totalizing: Yes

Sewer (Proposed)

- 1. Gravity or vacuum sewer: Gravity
- 2. Type of pipe material: PVC influent sewer / PVC outfall sewer
- 3. ASTM/AWWA standard and SDR/DR: ASTM D2241 and SDR-21
- 4. Diameter and length of sewer: 36" dia. @ 267 ft long / 36" dia. @ 443 ft long
- 5. Number of manholes: One (1) on influent / One (1) on effluent

Force Main (Proposed)

- 1. Type of pipe material: PVC
- 2. ASTM/AWWA standard: ASTM D2241 and SDR-21
- 3. SDR/DR and pressure class: SDR-21, 200 psi minimum
- 4. Diameter and length of sewer: 16" dia. @ 18 ft long and 24" dia. @ 1,394 ft long

PROJECT NO. SRF-0668X

INTRA-OFFICE MEMO

		-	N A	١.
-	\sim $^{\circ}$	١,	M	•
			IVI	٠.

327 IAC Construction Permit Coordinator

TO: KDC

Engineering Plan Review Section

Office of Water Quality

SUBJECT: Project: Ben Davis Conservancy District WWTP

Location: Indianapolis, Marion County # Units: New Wastewater Treatment Plant

Design Flow: 4.0 MGD Received On: 12/6/2021

Wastewater Treatment By: Ben Davis Conservancy District WWTP

Maintenance Provided By: Ben Davis Conservancy District

WWTP Design Summary	Should be completely filled out, And match the Preliminary Limits
\$ Check	Not required for State or Federal projects
Signed Application	Signed by applicant for SRF projects
Plans and Specifications	Each page must be signed or sealed by an Indiana P.E.
Potentially Affected Person List	Names and addresses on signed and dated form, mailing list and mailing labels (Code 65-42FC)
Preliminary Limits from NPDES	New one needed if more than 1 year old - it may need to include information regarding BADCT and Phosphorus Limits
Anti-degradation Assessment	Verification from NPDES Section that a preliminary approval is complete
SRF Group	Emailed Application November 29, 2021

APPLICATION FOR WASTEWATER TREATMENT PLANT CONSTRUCTION PERMIT PER 327 IAC 3

State Form 53160 (R8 / 6-20)

Indiana Department of Environmental Management
Office of Water Quality
Facility Construction and Engineering Support Section,
Mail Code 65-42FC
100 North Senate Avenue, Room N1255
Indianapolis, IN 46204-2251

APPLICANT	APPLICANT'S ENGINEER
Name ⊠ Mr. or □ Ms.	
Fred F. Buckingham	Name Mr. or Ms. JONATHAN MOEN P.E.
Name of Organization	Name of Company
Ben Davis Conservancy District	Triad Associates, Inc.
Address (number and street, city, state, and ZIP)	
703 S. Tibbs Avenue	Address (number and street, city, state, and ZIP) 5835 Lawton Loop East Drive
Indianapolis, IN 46241	Indianapolis, IN 46216
	Malanapolis, 114 402 10
Telephone Number	Telephone Number
(317) 241-2941	(317) 377-5230
E-Mail Address	E-Mail Address
angela@bdconservancy.com (Board Secretary)	kschuch@triadassoc.net
NAME AND LOCATION OF PROPOSED FACILITY	PROJECT DESCRIPTION
Name	Describe the scope and/or purpose of this project
Ben Davis Conservancy District	The project scope is construction of a 4 MGD
Location or Project Boundaries	wastewater treatment plant to serve the Ben Davis
West of Tibbs Ave., north of I-70 and South of CSX	Conservancy District. The plant is being constructed
RR.	to allow the District to provide treatment services at a
	reasonable cost to their constituents. The current
City or Town	treatment rate will result in an increase of 700%
Indianapolis	through 2025 at which time another rate increase will
County	be implemented. The planned increases exceed the costs to build and operate a District owned plant.
Marion	oboto to build and operate a District owned plant.
FACILITY TYPE	PROJECT TYPE
Municipal wastewater treatment facility	New facility New facility
☐ Semipublic wastewater treatment facility	Expansion or modification of existing facility
	☐ LTCP improvements
SOURCE O	
☐ IFA's Wastewater State Revolving Fund Loan Prog	ram 🔲 Local Funds
OCRA's Community Development Block Grant	☐ Private Funds
USDA's Rural Development Loan and Grant Assist	ance
CERTIFICATION	
I swear or affirm, under penalty of perjury as specified	by IC 35-44.1-2-1 and other penalties specified by IC
13-30-10 and 10 13-15-7-1(3), that the statements and	representations in this application are true, accurate,
and complete.	RECEIVED
Printed Name of Person Signing	
Fred F. Buckingham	DEC 06 2021
Title	
Chairman	IDEM/OWO
Signature of Applicant	Date Signed (month / day / year)
Ja Caffela	1/122121

(Please refer to IC 13-30-10 for penalties of submission of false information.)

Checket 33 B34 Triad Associates, FNC & 50.00 1216/2001

APPLICATION FOR WASTEWATER TREATMENT PLANT CONSTRUCTION PERMIT PER 327 IAC 3

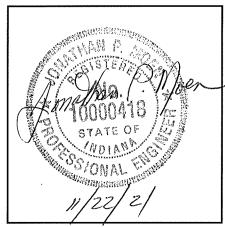
State Form 53160 (R8 / 6-20)

SRF-0668X

Indiana Department of Environmental Management
Office of Water Quality

Facility Construction and Engineering Support Section, Mail Code 65-42FC

100 North Senate Avenue, Room N1255 Indianapolis, IN 46204-2251


APPLICANT	APPLICANT'S ENGINEER	
Name ⊠ Mr. or ☐ Ms.	Name ⊠ Mr. or □ Ms.	
Fred F. Buckingham		
Name of Organization	Name of Company	
Ben Davis Conservancy District	Triad Associates, Inc.	
Address (number and street, city, state, and ZIP)	Address (number and street, city, state, and ZIP)	
703 S. Tibbs Avenue	5835 Lawton Loop East Drive	
Indianapolis, IN 46241	Indianapolis, IN 46216	
Telephone Number	Telephone Number	
(317) 241-2941	(317) 377-5230	
E-Mail Address	E-Mail Address	
angela@bdconservancy.com (Board Secretary)	kschuch@triadassoc.net	
NAME AND LOCATION OF PROPOSED FACILITY	PROJECT DESCRIPTION	
Name	Describe the scope and/or purpose of this project	
Ben Davis Conservancy District	The project scope is construction of a 4 MGD wastewater treatment plant to serve the Ben Davis	
Location or Project Boundaries	Conservancy District. The plant is being constructed	
West of Tibbs Ave., north of I-70 and South of CSX RR.	to allow the District to provide treatment services at a	
Tu.	reasonable cost to their constituents. The current	
City or Town	treatment rate will result in an increase of 700%	
Indianapolis	through 2025 at which time another rate increase will be implemented. The planned increases exceed the	
County	costs to build and operate a District owned plant.	
Marion	oods to baile and operate a Biothet owned plant.	
FACILITY TYPE	PROJECT TYPE	
☑ Municipal wastewater treatment facility	New facility New facility	
Semipublic wastewater treatment facility	Expansion or modification of existing facility	
	☐ LTCP improvements	
SOURCE O	F FUNDING	
☐ IFA's Wastewater State Revolving Fund Loan Prog	ram 🔀 Local Funds	
OCRA's Community Development Block Grant	☐ Private Funds	
USDA's Rural Development Loan and Grant Assist	ance Other:	
CERTIFICATION	AND SIGNATURE	
I swear or affirm, under penalty of perjury as specified		
13-30-10 and IC 13-15-7-1(3), that the statements and	representations in this application are true, accurate,	
and complete.	RECEIVED	
Printed Name of Person Signing	DEC 06 2021	
Fred F. Buckingham	DEC 00 2021	
Title Chairman	IDENA/OVA/O	
	DEM/OVQ Date Signed (month / day / year)	
Signature of Applicant	l 122121	
Cal Strain	11122121	

(Please refer to IC 13-30-10 for penalties of submission of false information.)

WASTEWATER TREATMENT PLANT CONSTRUCTION PERMIT FEES			
I. The applicants listed below must remit with each application a fee of fifty dollars (\$50).			
These	e applications must be signed by an official of the entity. (C <i>heck all that ap</i>		
	County, Municipality, or Township which is defined as a unit under IC 36-1-2-23	3	
	A Nonprofit Organization		
\boxtimes	A Conservancy District		
	A School Corporation that operates a sewage treatment facility		
	A Regional Water or Sewage District		
	her applications (including semi-public) will pay the following revised fees	per	
	ct type:		
New Wa	stewater Treatment Plant (not including industrial)		
	A. Up to 500,000 gallons per day	\$1,250.00	
	B. Greater than 500,000 per day	\$2,500.00	
Wastewater Treatment Plant Expansion			
	A. Up to fifty percent (50%) design capacity:		
	1. Greater than 500,000 per day	\$1,250.00	
	2. Up to 500,000 per day	\$625.00	
	B. Greater than fifty percent (50%) design capacity		
	1. Greater than 500,000 gallons per day	\$2,500.00	
	2. Up to 500,000 gallons per day	\$1,250.00	
Wastewater Treatment Plant Modification \$625.00			
Only one (1) of the fees will apply. Checks for the applicable fee shall be made payable to the			
	Department of Environmental Management. Fees shall not be refundable	once staff	
review and processing of the Permit Application has commenced.			

		WASTEWATER TREATMENT PLANT DESIGN SUMMARY
I. Ge	neral	
1.	Applica	ant: Ben Davis Conservancy District
2.	Facility	Name: Ben Davis WWT Facility
3.	Project	t Title: New Wastewater Treatment Facility
4.	Project	t Location: 900 South Tibbs, Indianapolis, IN
5.	Design	n Engineer: Jonathan Moen, P.E.
6.		eering Company: Triad Associates, Inc.
7.	NPDE:	S Permit Number: TO BE APPLIED FOR
	Α.	Effective date (month / day / year): / /
		Expiration date (month / day / year): / /
8.	<u>-</u>	t Scope
	A.	Description of existing treatment facilities:
		Wastewater from the District is currently transported over 8 miles for treatment at the
		Southport AWT facility which is operated by Citizens Water Authority (CWA).
	R	Description of project needs:
	۵.	The District is pursuing construction of their own WWTP to reduce costs to its users. CWA
		implemented significant rate increases to be phased in through 2025, at which time another
		rate increase will go into effect.Per a court approved Settlement Agreement, CWA will offer no
		objections to the District constructing their own plant and disconnecting from CWA's system.
	C.	Description of proposed facilities:
		The facilities include a raw sewage pump station with screening and flow metering, conventional aeration tanks, flow splitters, 2 clarifiers, digesters, ultraviolet disinfection,
		diffused air post aeration with flow metering and an outfall sewer to Neeld Ditch.
		Is project part of an Agreed Order?: ☐ Yes ☒ No
		How facility will maintain treatment during construction:
	L .	N/A
9.	Source	e of Funding: Local funding
10	. Estima	ted Total Project Cost: 15.5 million
Contif	ination !	Seed Circustum and Date

Certification Seal, Signature, and Date
Printed Name of Engineer Jonathan Moen, P.E.
Signature Jonathan P. Moer
Date Signed (month / day / year)
November / 22 / 2021

	FEIG	MI)	ata	
	in the second		an a	22

1. Design Average Flow (MGD): 4.0

A. Domestic: 2.0

	B.	Industrial/Commercial: .5
	C.	Infiltration/Inflow: 1.5
2.	Design	n Peak Hourly Flow (MGD): 12.0
3.	Maxim	um Flow Capacity (MGD): 16.0
	Α.	Combination of treatment plant + EQ volume:
		Other explanation:
4.		n Waste Strength
		CBOD: 170 mg/L
		TSS: 200 mg/L
		NH ₃ -N: 25 mg/L
		P: 5 mg/L
		Other:
5.	Design	Population Equivalent (PE): 33,360 (based on 0.17 lb CBOD/PE influent loading)
6.		S Permit Limitation on Effluent Quality
		CBOD₅: summer and winter is 10 mg/L
		TSS: summer and winter is 12 mg/L
		NH ₃ -N: summer is 1.1 mg/L and winter is 1.6 mg/L mg/L
		P: summer and winter 1.0 mg/L
		pH: 6-9 s.u.
	F.	DO: 6.0 mg/L
	G.	Total Residual Chlorine: .1 mg/L
		<i>E.coli</i> : 125
	I.	Other:
7.	Sampl	ing Method (Grab or Automatic Sampler) and Location
	Α.	Influent: Sampler
	B.	Effluent: Sampler
8.	Receiv	ring Stream
	A.	Name: Neeld Ditch
	B.	Stream Uses: Full body contact recreational use and shall be capable of supporting a well-balanced warm water aquatic community
		and designated as salmonid water and shall be capable of supporting a salmonid fishery
		and designated as an impaired water
		and classified as an outstanding state resource water (OSRW)
		and classified as an outstanding national resource water (ONRW)
	C.	7-day, 1-in-10 year low flow: 0.0 CFS (0.0 MGD)
III. PL	ANT DE	ETAILS
1.		atory type (e.g., on site, third-party testing): on-site
2.		ite fence provided: fence provided
3.		ail/grating provided where necessary: Yes
4.		hazard elevation (ft) at 100 year flood: 695.50
5.		ons for mechanical/electrical component protection at 100 year flood: site is above 100 year fld
6.		and rating (kW) of standby power equipment: natural gas 1000 KW unit
7.		ons for removing heavy equipment: Yes, hoists and cranes are part of the installation
8.		ge/leachate receiving facilities
		Type of preliminary treatment: N/A
	B.	Storage and controlled feed provisions:

Revised Nov 2021

	C. Location of discharge to treatment process	:
IV. Tre	eatment Units	
Plant \$	Site Lift Station	☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Location description:	
2.	Type of pump:	
3.	Number of pumps:	
4.	Constant or variable speed:	
5.	Design operating capacity (gpm) and TDH (ft):	
6.	Operating volume of the wet well (gal):	
7.	Detention time in the wet well (min):	
8.	Shutoff valve and check valve in the discharge line	9:
9.	Shutoff valve on suction line:	
10.	Type of ventilation:	
11.	Type of standby power:	
12.	Type of alarm:	
13.	Type of bypass or overflow provisions:	
14.	Additional Information:	
Flow I	Equalization	☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of structure:	
2.	Number and dimensions (ft) of unit:	
3.	Side water depth and freeboard (ft) of unit:	
4.	Volume (gal):	
5.	Type and size (HP) of mixing equipment:	
6.	Type of aeration provisions (if applicable):	
7.	Description of flow return methods and controls:	
8.	Type of sludge removal provisions:	
9.	Type and thickness of lagoon liner (if applicable):	
10.	Additional information:	
Influe	nt Flow Meter	☐ Proposed ☐ Existing ☐ Modification ☐ N/A
1.	Type and size (in): 16" Mag Meter	
2.	Location description: In a vault just past the valve v	/ault
3.	Indicating, recording and totalizing: YES	
4.	Additional information: to be connected to the SCA	DA control system
	il, and Grease Separation	☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type:	
2.	Location description:	
3.	Additional information:	
Principles of the second	emoval	☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of grit removal system:	
2.	Location description:	
3.	Number and dimensions (ft) of unit:	
1	Side water depth and freehoard (ft) of unit:	

5.	Rated capacity (gpd):
6.	Type of bypass provisions:
7.	Type of aeration provisions (if applicable):
8.	Method of unit isolation:
9.	Method of flow split control:
10.	. Additional information:
Comn	ninutor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of comminutor:
2.	Location description:
3.	Rated capacity (gpd):
4.	Bypass bar screen provision:
5.	Additional information:
Scree	ning
1.	Type of screening: Duperon Mechanical Screen, self cleaning
2.	Location description: Inside the main lift station
3.	Bypass bar screen provision: YES
4.	Number and rated capacity (gpd): 1 rated for 16 MGD
5.	Clear opening sizes, bar or perforations (in): 1/4" bar spacing
6.	Slope of unit (°): 7°
7.	Method of unit cleaning: integral rake
8.	Method of screening disposal: unit includes compactor and discharge to dumpster
9.	Method of unit isolation: YES
10.	Method of flow split control: N/A
11.	Additional information:
Prima	ry Clarification ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of clarifier:
2.	Number and dimensions (ft) of unit:
3.	Side water depth and freeboard (ft) of unit:
4.	Surface overflow rate (gpd/ft²)
	A. At design average flow:
	B. At design peak hourly flow:
5.	Hydraulic detention time (hrs)
	A. At design average flow:
	B. At design peak hourly flow:
6.	Weir loading rate at design peak hourly flow (gpd/lin⋅ft):
7.	Location of overflow weir:
8.	Method of scum collection:
9.	Method of scum disposal:
	Type of sludge removal mechanism:
	Method of unit isolation:
	Method of flow split control:
13.	Additional information:

Revised Sept 2021

	c Component of gical Nutrient Removal or Selector Tank	☐ Proposed ☐ Existing ☐ Modification ☒ N/A	
1.	Number and dimensions (ft) of anoxic unit/zone:		
2.	Side water depth and freeboard (ft) of anoxic unit/zo	ne:	
3.	Hydraulic detention time (hrs):		
4.	Number and capacity of mixed liquor recycle pumps	g (gpm):	
5.	Method of mixed liquor recycle rate control:		
6.	Mixed liquor recycle rate as % of design average flo	W:	
7.	Provisions for mixed liquor recycle rate metering		
	A. Type and size:		
	B. Location:		
8.	Mixed liquor recycle discharge location:		
9.	Method of unit isolation:		
10.	Method of flow split control:		
11.	Additional information:		
	8		
Anaer	obic Component of	□ Proposed □ Evisting □ Modification ☑ N/A	
Biolog	jical Nutrient Removal or Selector Tank	☐ Proposed ☐ Existing ☐ Modification ☒ N/A	
1.	Number and dimensions (ft) of anaerobic unit/zone:		
2.	Side water depth and freeboard (ft) of anaerobic uni	t/zone:	
3.	Hydraulic detention time (hrs):		
4.	CBOD/TP Ratio:		
5.	Readily Biodegradable BOD/TP Ratio:		
6.			
7.	Method of unit isolation:		
8.	Method of flow split control:		
9.	<u> </u>		
Activa	ted Sludge	□ Proposed □ Existing □ Modification □ N/A	
1.	Conventional or extended aeration: Extended Aerati	on	
2.	2. Number and dimensions (ft) of unit: 4 tanks each 45'w x 140'L x 16.5' D		
3.			
4.			
5.	Organic loading at design average flow (lb CBOD/10	000 ft ³): 15.0	
6.	Design MLSS concentration (mg/L): 2500 - 3500		
7.	Design solids retention time (days): 25 - 30		
8.	B. Design F/M ratio (lb CBOD/day/lb MLVSS): 0.13		
9.	. Type and efficiency of diffusers (% per ft submergence): fine bubble diffuser 30% transfer efficiency		
10.	10. Dedicated or shared plant blowers: dedicated		
11.	11. Type and rated capacity of blowers (cfm): three @ 4000 scfm each (See Attached)		
12.	12. Constant or variable speed blowers: variable speed		
13.	13. Oxygen requirement (lb O ₂ /day)		
	A. CBOD removal: 8507		
	B. NH ₃ -N removal: 3836		
14.	4. Total air demand (cfm): 12,070 SCFM @ 200% demand		
15.	5. Firm blower capacity (cfm): 12,070 SCFM TOTAL		

16.	Type of ventilation in blower room: in a covered shed, blowers are in a sound enclosure
17.	Number and capacity of return sludge pumps (gpm): Two pumps each 2,100 GPM
18.	Method of return sludge rate control: thru the mag meter, scada, and variable speed control
19.	Return sludge rate as % of design average flow: 100 to 150%
20.	Provisions for return rate metering
	A. Type and size: 12" mag meter
	B. Location: on the discharge line from the RAS pumps in the pump building
21.	Return sludge discharge location: to the head box on the aeration tank
22.	Method of unit isolation: motor operated gates
23.	Method of flow split control: motor operated gates
24.	Additional information:
Oxida	tion Ditch ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:
2.	Side water depth and freeboard (ft) of unit:
3.	Hydraulic detention time (hrs):
4.	Organic loading (design average flow, lb CBOD/1000 ft ³):
5.	Design MLSS concentration (mg/L):
6.	Design solids retention time (days):
7.	Design F/M ratio (lb CBOD/day/lb MLVSS):
8.	Aeration equipment
	A. Type and number:
	B. Efficiency (lb O ₂ /HP-hr):
9.	Oxygen requirement (lb O ₂ /day)
	A. CBOD removal:
	B. NH ₃ -N removal:
10.	Oxygen provided (lb O ₂ /day):
11.	Flow velocity in ditch (ft/sec):
12.	Number and capacity of return sludge pumps (gpm):
13.	Method of return sludge rate control:
14.	Return sludge rate as % of design average flow:
15.	Provisions for return rate metering
	A. Type and size:
	B. Location:
16.	Return sludge discharge location:
17.	Method of unit isolation:
18.	Method of flow split control:
19.	Additional information:
Trickli	ng Filter ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:
2.	Freeboard (ft) of unit:
3.	Type of media:
4.	Media specific surface area (ft²/ft³):
5.	Hydraulic loading (gpm/ft²):
6	Organic loading (design average flow, lb CBOD/1000 ft ³):

7.	Type of recirculation system:
8.	Type of ventilation system:
9.	Additional information:
Rotati	ng Biological Contactor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:
2.	Freeboard (ft) of unit:
3.	Type of media:
4.	Hydraulic detention time (min):
5.	Hydraulic loading (gpm/ft²):
6.	Organic loading (design average flow, lb CBOD/1000 ft²):
7.	Method of shaft drive:
8.	Supplemental air:
9.	Method of unit isolation:
10.	Method of flow split control:
11.	Additional information:
Seque	ntial Batch Reactor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of SBR process:
2.	Number and dimensions (ft) of unit:
3.	Side water depth and freeboard (ft) and volume (gal) of unit
	A. At low water level:
	B. At avg water level:
	C. At high water level:
4.	Cycle Time (min)
	A. Fill:
	B. React:
	C. Settle:
	D. Decant and idle:
5.	Hydraulic detention time (hrs)
	A. At low water level:
	B. At avg water level:
	C. At high water level:
6	Organic loading (lb CBOD/1000 ft ³)
	A. At low water level:
	B. At avg water level:
	C. At high water level:
7.	Peak decant rate (gpm):
8.	Design MLSS concentration (mg/L):
9.	Design solids retention time (days):
	Design F/M ratio (lb CBOD/day/lb MLVSS):
	Type and efficiency of diffusers (% per ft submergence):
12.	Provisions for retrievable diffusers (when applicable):
	Number and rating of mixers (HP):
14.	Oxygen requirement (lb O ₂ /day)
	A CBOD removal:

	B.	NH ₃ -N removal:
15.	Total a	air demand (cfm):
16.	Dedica	ated or shared plant blowers:
17.	Type a	and rated capacity of blowers (cfm):
		ant or variable speed blowers:
19.	Firm b	lower capacity (cfm):
20.	Туре	of ventilation in blower room:
		d of sludge transfer between tanks:
22.	Numbe	er and capacity of waste sludge pumps (gpm):
23.	Post-e	qualization or disinfection at peak decanter rate:
24.	Metho	d of unit isolation:
25.	Metho	d of flow split control:
26.	Additio	onal information:
Rotati	ng Alga	al Reactor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Proces	ss Description:
2.	Numbe	er and dimensions (ft) of tanks:
3.	Wheel	and media characteristics
	Α.	Wheel diameter (ft):
	В.	Wheel surface area (ft²/wheel):
	C.	Internal wheel volume (ft³):
	D.	Percent fill of wheel (%):
	E.	Media specific surface area (ft²/ft³):
	F.	Internal media surface area (ft²/wheel):
4.	First st	tage BOD removal
	Α.	Number of wheels:
	B.	Total effective surface area (ft²):
	C.	CBOD loading (lbs CBOD/1,000 ft²):
5.	Secon	d stage NH₃-N removal
	Α.	Number of wheels:
	B.	Total effective surface area (ft²):
	C.	NH ₃ -N loading (lbs NH ₃ -N/1,000 ft ²):
6.	Hydrai	ulic detention time (hrs):
7.	Hydrai	ulic loading (gpd/ft²):
8.	Type a	and efficiency of diffusers (SOTE %):
9.	Opera	tional blowers
	Α.	Air required to move wheel (cfm):
	B.	Number of blowers:
	C.	Type and rated capacity (cfm):
	D.	Constant or variable speed:
	E.	Firm blower capacity (cfm):
10.	Scouri	ng blower
	A.	Air required to scour (cfm):
	B.	Type and rated capacity (cfm):
	C.	Constant or variable speed:
11.	Proces	ss building

	Α.	Method of ventilation:
	B.	Method of temperature control:
12.	Metho	d of unit isolation:
13.	Metho	d of flow split control:
14.	Additio	onal information:
-		
Facult	ative L	agoon ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Contin	uous or controlled discharge:
2.	Treatn	nent cells
	Α.	Number:
	B.	Dimensions (ft):
		Maximum water depth (ft):
	D.	Freeboard at maximum water depth (ft):
	E.	Volume (gal):
	F.	Hydraulic detention time (days):
	G.	Organic loading (lbs CBOD/acre/day):
3.		je cell (controlled discharge only)
		Dimensions (ft):
	B.	Maximum water depth (ft):
	C.	Freeboard at maximum water depth (ft):
	D.	Volume (gal):
	E.	Hydraulic storage time (days):
4.	Influer	nt pipe location:
5.	·····	nt pipe location:
6.		ratio of embankment (H:V) and top width (ft):
7.	Type a	and thickness of lagoon liner:
8.	Metho	d of effluent flow control:
9.	Metho	d of stream flow measurement:
10.	Туре	of facilities for multi-level lagoon discharge:
		of mixing equipment (if applicable):
		onal information:
Aerate	ed Lago	oon ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Treatn	nent cell
	Α.	Number:
	В.	Dimensions (ft):
	C.	Maximum water depth (ft):
	D.	Freeboard at maximum water depth (ft):
	E.	Volume (gal):
	F.	Hydraulic detention time (day):
	G.	Organic loading (lbs CBOD/day):
	Н.	Complete or partial mix:
	1.	Uncovered or covered/insulated:
2.	Settlin	g cell or settling zone within aeration cell
		Dimensions (ft):
		Maximum water depth (ft):

	C. Freeboard at maximum water depth (ft):
	D. Volume (gal):
	E. Hydraulic detention time (day):
	F. Uncovered or covered/insulated:
3.	Aeration equipment
	A. Type and number:
	B. Rated capacity:
4.	Oxygen demand:
5.	Influent pipe location:
6.	Effluent pipe location:
7.	Slope ratio of embankment (H:V) and top width (ft):
8.	Type and thickness of lagoon liner:
9.	Type of facilities for multi-level lagoon discharge:
10	. Additional information:
Seco	ndary Clarification
1.	Type of clarifier: circular center feed, rim collection
2.	Number and dimensions (ft) of unit: two 100' diameter clarifiers
3.	Side water depth and freeboard (ft) of unit: SWD 15.4' and FB 1.5'
4.	Surface overflow rate (gpd/ft²)
	A. at design average flow: 255 gpd/sf
	B. at design peak hourly flow: 764 gpd/sf
5.	Hydraulic detention time (hrs)
	A. at design average flow: 10.9
	B. at design peak hourly flow: 3.6
6.	Weir loading rate at design peak hourly flow (gpd/lin·ft): 10,000
7.	Location of overflow weir: dual weir trough on the perimeter.
8.	Method of scum collection: full radius scum beach
9.	Method of scum disposal: scum flows to grinder pump station and pumped to digester
10	. Type of sludge removal mechanism: pump suction from RAS/WAS pumps
	. Method of unit isolation: yes
12	. Method of flow split control: yes
13	. Additional information:
Subm	nerged Biological Rock Bed Reactor □ Proposed □ Existing □ Modification ☒ N/A
1.	Process description and seasonal operational procedure:
2.	Design unit influent quality (at highest monthly loading from lagoon)
	A. CBOD (mg/L):
	B. NH₃-N (mg/L):
	C. TSS (mg/L):
3.	Number and dimensions (ft) of units:
4.	Side water depth (ft):
5.	Media type, depth (ft), and size distribution (in):
6.	Media porosity (%):
7.	Insulation layer material and thickness (in):
8	Liner type and thickness (mil):

9.	Effective wastewater (media pore) volume in reactor (ft³):
10.	Hydraulic detention time (hrs):
11.	CBOD flux rate (lbs CBOD/100 ft² media cross-section):
12.	NH ₃ -N loading rate (lbs NH ₃ -N/1,000 ft ³ media):
13.	Type and efficiency of diffusers (SOTE %):
14.	Oxygen requirement (lb O ₂ /day)
	A. CBOD removal:
	B. NH ₃ -N removal:
15.	Total air demand (cfm):
16.	Type and rated capacity of blowers (cfm):
17.	Constant or variable speed blowers:
18.	Firm blower capacity (cfm):
19.	Type of ventilation in blower room:
20.	Method of unit isolation:
21.	Method of flow split control:
22.	Additional information:
Fixed	Media Polishing Reactor □ Proposed □ Existing □ Modification ☑ N/A
1.	Process description and seasonal operational procedure:
2.	Design unit influent quality (at highest monthly loading from upstream treatment unit)
	A. CBOD (mg/L):
	B. NH ₃ -N (mg/L):
	C. TSS (mg/L):
3.	Number and dimensions (ft) of tanks:
4.	Side water depth (ft):
5.	Insulation layer material and thickness (in):
6.	Media specific surface area for BOD (ft²/ft³):
7.	BOD loading rate (lbs CBOD/100 ft² media):
8.	Number of BOD media modules:
	Media specific surface area for NH ₃ -N (ft²/ft³):
	NH ₃ -N loading rate (lbs NH ₃ -N/100 ft ² media):
	Number of NH ₃ -N media modules:
	Type and efficiency of diffusers (SOTE %):
13.	Oxygen requirement (lb O ₂ /day)
	A. CBOD removal:
	B. NH₃-N removal:
	Total air demand (cfm):
	Type and rated capacity of blowers (cfm):
	Constant or variable speed blowers:
	Firm blower capacity (cfm):
	Type of ventilation in blower room:
	Method of unit isolation:
	Method of flow split control:
21.	Additional information:

Rapid	Sand Filtration ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:
2.	Freeboard (ft) of unit:
3.	Filtration rate (gpm/ft ²)
	A. at design average flow:
	B. at design peak hourly flow:
4.	Type, depth (inch), and size distribution (mm) of filter media:
5.	Backwash
	A. Type of backwash mechanism:
	B. Number and rated capacity of pumps (gpm):
	C. Constant or variable speed:
	D. Source of backwash water:
	E. Discharge location of backwash water:
6.	Air scour (cfm):
7.	Capability to chlorinate ahead of the filter:
8.	Method and provisions for solids removal:
9.	Method of unit isolation:
10.	Method of flow split control:
11.	Additional information:
Rotati	ng Disc Filter ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Process Description:
2.	Number and dimensions (ft) of cells:
3.	Outside-in or inside-out flow:
4.	Number of discs:
5.	Effective submerged filter area (ft²) per disc:
6.	Total submerged filter area (ft²):
7.	Type and filter media pore size (μm):
8.	Filtration rate (gpm/ft²)
	A. at design average flow:
	B. at design peak hourly flow:
9.	Solids loading rate (lbs TSS/ft²)
	A. at design average flow:
	B. at design peak hourly flow:
10.	Backwash
	A. Type of backwash mechanism:
	B. Number and rated capacity of pumps (gpm):
	C. Constant or variable speed:
	D. Source of backwash water:
	E. Discharge location of backwash water:
	Air scour (cfm):
	Method and provisions for cell bottom solids removal:
	Method of unit isolation:
14.	Method of flow split control:
15	Additional information:

Chem				
	Chemical Phosphorus Removal			
1.	Chemical properties			
	A. Chemical name: Aluminate			
	B. Weight concentration in solution (%):1.37#/gal of 43% solution			
	C. Specific gravity: 1.52			
2.	Chemical storage container			
	A. Type: Double walled plastic horizontal tank			
	B. Volume (gal): 7,000			
	C. Expected storage supply (days): 30+			
3.	Secondary containment			
	A. Type: storage tank is double walled			
	B. Dimensions (ft) or volume (gal):			
4.	Number and capacity of chemical feed pumps (gpm): dual feed pump .02 to .35 gpm			
5.	Design chemical feed rate: 7 gph			
6.	Location(s) of chemical injection: to be fed into the splitter box ahead of the clarifiers			
7.	Provisions for adequate mixing at injection point: turbulence in the splitter box will mix			
8.	Chemical building			
	A. Method of ventilation control: power ventilator to provide 12 ACPH			
	B. Method of temperature control: Heater will be on a thermostat			
	C. Safety shower/eyewash equipment: has been provided			
9.	Additional information:			
Two-E	ay Polishing Pond Proposed Existing Modification N/A			
1.	Number and dimensions (ft) of ponds:			
2.	Hydraulic detention time (days):			
3.	Type and thickness of pond liner:			
1				
4.	Type of scum control:			
4. 5.	Type of scum control: Additional information:			
5.				
5.	Additional information: The Disinfection Proposed Existing Modification N/A Chemical properties			
5.	Additional information: Description Descri			
5.	Additional information: The Disinfection Proposed Existing Modification N/A Chemical properties			
5.	Additional information: The Disinfection Proposed Existing Modification N/A Chemical properties A. Gas, Liquid, or Tablet:			
5.	Additional information: The Disinfection Proposed Existing Modification N/A Chemical properties A. Gas, Liquid, or Tablet: B. Compound name:			
5.	Additional information: The Disinfection Proposed Existing Modification N/A Chemical properties A. Gas, Liquid, or Tablet: B. Compound name: C. Weight concentration in solution (%):			
5. Chlor 1.	Additional information: The Disinfection Proposed Existing Modification N/A Chemical properties A. Gas, Liquid, or Tablet: B. Compound name: C. Weight concentration in solution (%): D. Specific gravity:			
5. Chlor 1.	Additional information: Proposed Existing Modification N/A			
5. Chlor 1.	Additional information: The Disinfection Chemical properties A. Gas, Liquid, or Tablet: B. Compound name: C. Weight concentration in solution (%): D. Specific gravity: Contact Tank A. Dimensions (ft):			
5. Chlor 1.	Additional information: The Disinfection Chemical properties A. Gas, Liquid, or Tablet: B. Compound name: C. Weight concentration in solution (%): D. Specific gravity: Contact Tank A. Dimensions (ft): B. Freeboard (ff):			
5. Chlor 1.	Additional information: Proposed Existing Modification N/A			
5. Chlor 1.	Additional information: Proposed Existing Modification N/A			
5. Chlor 1.	Additional information: Proposed Existing Modification N/A			
5. Chlor 1. 2.	Additional information: Proposed Existing Modification N/A			

Revised Sept 2021

		C.	Design rate capacity (gpm):
		D.	Dosage (mg/L):
	4.	Source	e of the disinfectant feed water:
	5.	Break	vater tank for the feed water:
	6.	Chemi	cal storage container
		Α.	Type:
		B.	Volume (gal):
		C.	Expected storage supply (days):
	7.	Secon	dary containment (if applicable)
		Α.	Type:
		B.	Dimensions (ft) or volume (gal):
	8.	Chemi	cal building
		Α.	Method of ventilation control:
		B.	Method of temperature control:
		C.	Safety shower/eyewash equipment:
	9.	Other	safety equipment
		Α.	Type:
		B.	Location:
	10.	Additio	onal information:
De	echl	orinatio	on ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
	1.	Chemi	cal properties
		A.	Gas, Liquid, or Tablet:
		B.	Compound name:
		C.	Weight concentration in solution (%):
		D.	Specific gravity:
	2.	Metho	d of chemical feed
		A.	Type:
		В.	Location:
		C.	Design rate capacity (gpm):
		D.	Dosage (mg/L):
	3.	Chemi	cal storage container
		Α.	Type:
		В.	Volume (gal):
		C.	Expected storage supply (days):
	4.	Secon	dary containment (if applicable)
		Α.	Type:
		B.	Dimensions (ft) or volume (gal):
	5.	Chemi	cal building
		A.	Method of ventilation control:
			Method of temperature control:
		C.	Safety shower/eyewash equipment:
	6.	Other	safety equipment
		A.	Type:
		В.	Location:
	7	Additio	onal information:

2000 200 200 200 200	Ultraviolet Disinfection				
1.	Open channel or closed-vessel: Open channel				
2.	Vertical, horizontal, or diagonal lamp orientation: vertical				
3.	Lamp type: Low pressure High Output lamp				
4.	Number of banks: 1				
5.	Number of modules per bank: 6				
6.	Number of lamps per module: 40				
7.	Dosage (µWs/cm2): min 30mJ/cm2				
8.	Transmittance (%):253 nm 65%				
9.	Provisions for intensity monitoring: yes				
10.	Type of level control provisions: serpentine weir				
11.	Type of bypass provisions: pipe and valved bypass is provided				
12.	Type of safety equipment: gloves and protective eve wear with face shield				
13.	Automatic or manual cleaning equipment: automatic				
14.	Additional information: the system will also be flow paced				
Casca	ide Post-Aeration ☐ Proposed ☐ Existing ☐ Modification ☒ N/A				
1.	Number of steps:				
2.	Dimensions of steps (ft):				
3.	Total fall (ft):				
4.	Additional information:				
Diffus	ed Air Post-Aeration Proposed Existing Modification N/A				
1.	Number and dimensions (ft) of unit: One tank10'w x 32.5' L				
2.	Side water depth and freeboard (ft) of unit: SWD 10.85' and 2.65' FB				
3.	Type and efficiency of diffusers (SOTE %):fine bubble diffusers				
4.	Dedicated or shared plant blowers: dedicated blower				
5.	Type and rated capacity of blowers (cfm): Rotary Lobe Blower, 120cfm@5psi				
6.	Additional information: Blower in sound enclosure				
Efflue	nt Flow Meter				
1.	Type and size (in): Ultrasonic meter				
2.	Location description: mounted over the post aeration tank upstream of the weir				
3.	Indicating, recording and totalizing: yes it is provided				
4.	Additional information:				
Sludg	e Thickening ☐ Proposed ☐ Existing ☐ Modification ☒ N/A				
1.	Type of sludge thickeners:				
2.	Number and dimensions (ft) of unit:				
3.	Hydraulic capacity (gpm):				
4.	Solids capacity (lb/hr):				
5.	Type of chemicals added:				
6.	Expected solids content of sludge (%):				
7.					
1.	Additional information:				

Anaerobic Digester ☐ Proposed ☐ Existing ☐ Modification ☐ N/A		
1.	Number and dimensions (ft) of unit:	
2.	Side water depth and freeboard (ft) of unit:	
3.	Volume (gal):	
4.	Total design sludge loading (lbs/day):	
5.	Volatile solids percentage (%):	
6.	Design solids retention time (days):	
7.	Type and size (HP) of mixing equipment:	
8.	Internal or external heating:	
9.	Decanting method:	
10.	Discharge location of supernatant:	
11.	Additional information:	
Aerob	ic Digester Proposed Existing Modification N/A	
1.	Number and dimensions (ft) of unit: two tanks, 45' w x 140'L	
2.	Side water depth and freeboard (ft) of unit: SWD 15' and 1.5' FB	
3.	Volume (gal): total 1,413,720 gallons	
4.	Total design sludge loading (lbs/day): 5671	
5.	Volatile solids percentage (%):75	
6.	Design solids retention time (days): 50	
7.	Type and efficiency of diffusers (SOTE %):27%	
8.	Dedicated or shared plant blowers: Dedicated	
9.	Type and rated capacity of blowers (cfm): rotory lobe blowers 2 each capacity of 2,835 cfm each	
10.	Decanting method: motor operated telescoping valve in digester	
	Discharge location of supernatant: plant pump station	
12.	Additional information: variable speed control on blower motor	
7.7		
Aerate	ed Sludge Holding Tank Proposed Dexisting Modification N/A	
1.	Number and dimensions (ft) of unit:	
2.	Side water depth and freeboard (ft) of unit:	
3.	Volume (gal):	
4.	Total design sludge loading (lbs/day):	
5.	Sludge storage retention time (days):	
6.	Type and efficiency of diffusers (SOTE %):	
7.	Dedicated or shared plant blowers:	
8.	Type and rated capacity of blowers (cfm):	
9.	Decanting method:	
	Discharge location of supernatant:	
• 11.	Additional information:	
	e Drying Bed Proposed Existing Modification N/A	
1.	Number and dimensions (ft) of unit:	
2.	Method of unit isolation:	
3.	Concrete ramp and runway provisions:	
4.	Discharge location of drainage:	

Revised Nov 2021

5.	Additional information:		
Mechanical Dewatering			
1.	Type of dewatering unit: screw press		
2.	Number and dimensions (ft) of unit: one unit (13' L x 6' W x 6' H)		
3.	Hydraulic capacity (gpm): 44,100 gallons per week (52 GPM)		
4.	Solids capacity (lb/hr): 1,000 lb/hr		
5.	Type of chemicals added: Polymer		
6.	Expected solids content of dewatered sludge (%):18%		
7.	Discharge location of drainage: precipate drains to floor drains that go to plant lift station		
8.	Additional information:		
Sludg	e Dewatering Bag System		
1.	Number and volume (yd³) of unit:		
2.	Type of chemicals added:		
3.	Expected solids content of dewatered sludge (%):		
4.	Drainage containment provisions:		
5.	Discharge location of drainage:		
6.	Additional information:		
Final	Sludge Disposal		
1.	Ultimate disposal method of sludge: Landfill		
2.	Expected solids content of sludge (by the principal method of disposal): 18%		
3.	Location of disposal site: Southern Marion County		
4.	Ownership of the disposal site: Private		
5.	Availability of sludge transport equipment: by Contract hauler		
6.	Additional information:		
V. SE	WER COLLECTION SYSTEM		
Lift St			
1.	Location: 703 South Tibbs Avenue		
2.	Type of pump (example: submersible, dry pit): Submersible		
3.	Number of pumps: 4		
4.	Constant or variable speed: variable speed		
5.	Design pump rate (gpm) and TDH (ft): 8,333 gpm @ 68 TDH		
6.	Operating volume of the wet well (gal): 5800 gallons		
7.	Average detention time in the wet well (min): 8.5 minutes		
8.	Type of standby power/pump provisions: natural gas 250 KW gen set		
9.	Type of alarm: audio visual with scada connection to Plant control panel		
10.	Additional information:		
Low Pressure Sewer Grinder Pump Station ☐ Proposed ☐ Existing ☐ Modification ☒ N/A			
1.	Number of stations:		
2.	Number of residential connections per simplex station (two maximum):		
3.	Design pump rate (gpm) at maximum TDH (ft):		
4.	Type of alarm:		
5.	Privately or utility owned and maintained:		

Revised 9-16-21

6.	Additional information:
Vacuu	um Pump Station ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Location:
2.	Total volume of vacuum tank (gal):
3.	Operating volume of the vacuum tank (gal):
4.	Number and size (HP) of vacuum pumps:
5.	Number and type of sewage pumps:
6.	Constant or variable speed:
7.	Design pump rate (gpm) and TDH (ft):
8.	Type of standby power/pump provisions:
9.	Type of alarm:
10.	Additional information:
Sewe	r ⊠ Proposed ☐ Existing ☐ Modification ☐ N/A
1.	Gravity or vacuum sewer: Gravity
2.	Type of pipe material: PVC influent sewer, PVC outfall sewer (Effluent)
3.	ASTM/AWWA Standard and SDR/DR: ASTM D1784 SDR-21
4.	Diameter and length of sewer (indicate length for each size): 36" - 267 LF / 36" 443 LF (Effluent)
5.	Number of manholes: 1 on the influent to main lift station / 1 on the outfall
6.	Number of vacuum valve pits (if applicable): N/A
7.	Additional information:
Force	Main and Low Pressure Sewer ⊠ Proposed ☐ Existing ☐ Modification ☐ N/A
1.	Type of pipe material: PVC
2.	ASTM/AWWA Standard: ASTM D1784
3.	SDR/DR and pressure class (psi): SDR 21 200 psi
4.	Diameter and length of sewer (indicate length for each size): 18' @ 16"; 1,394' @ 24"
5.	Additional information:

IDENTIFICATION OF POTENTIALLY AFFECTED PERSONS

Please list any and all persons whom you have reason to believe have a substantial or proprietary interest in this matter, or could otherwise be considered to be potentially affected under law. Failure to notify a person who is later determined to be potentially affected could result in voiding IDEM's decision on procedural grounds. To ensure conformance with Administrative Orders and Procedures Act (AOPA) and to avoid reversal of a decision, please list all such parties. The letter on the opposite side of this form will further explain the requirements under the AOPA. Attach additional names and addresses on a separate sheet of paper, as needed.

Name SEE ATTACH	IED	Name		
Address (num	ber and street)	Address (nur	nber and street)	
City		City		
State	ZIP Code	State	ZIP Code	
Name		Name		
Address (num	ber and street)	Address (nur	nber and street)	
City		City		
State	ZIP Code	State	ZIP Code	
Name		Name		
Address (num	ber and street)	Address (num	nber and street)	
City		City		
State	ZIP Code	State	ZIP Code	
L				

CERTIFICATION

I certify that to the best of my knowledge I have listed all potentially affected parties, as defined by IC 4-21.5-3-5.

Proposed Facility Name Ben Davis WWTP	City IndiaNapolis
Printed Name of Person Signing Ton athan P. Moen, P.E.	County
Signature Jonathan Moen	Date Signed (month / day / year) // ィタス ィ ヌ (

65-42FC MAYOR HOGSETT CITY-COUNTY BLDG., SUITE T-241 200 E. WASHINGTON ST. INDIANAPOLIS, IN 46204

65-42FC R & D RENTALS, LLC 817 S. TIBBS AVE. INDIANAPOLIS, IN 46241

65-42FC PARK 65 TRANSPORTATION, LLC 4045 PARK 65 DRIVE INDIANAPOLIS, IN 46254

65-42FC SMITH, MICHELLE 3499 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC DAVIS, JACKLYN H. 238 S. 4TH AVE. BEECH GROVE, IN 46107

65-42FC ROSNER, JASON E. 3463 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC COUNTS, MARGARET & KEVIN W. 3445 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC BURROWS, BRIAN D. & KATHLEEN M. 8206 ROCKVILLE RD., #198 INDIANAPOLIS, IN 46214

65-42FC WLN HOLDINGS, LLC 3420 CANNONBALL TRL YORKVILLE, IL 60560 65-42FC
JARED EVANS
CITY-COUNTY BLDG., SUITE T-241
200 E. WASHINGTON ST.
INDIANAPOLIS, IN 46204

65-42FC HOWARD MANAGEMENT CO., LLC 2916 KENTUCKY AVE. INDIANAPOLIS, IN 46221

65-42FC GRADY BROTHERS REALTY, LLC 915 S. SOMERSET AVE. INDIANAPOLIS, IN 46241

65-42FC CASTORENO, CORNELIA M. 3493 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC RYBOLT, SHAWN M. 3475 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC JENKINS, BECCA J. 3457 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC VEALE, KEITH W. JR., & LEAH G. 7656 MONTERAY CIRCLE AVON, IN 46123

65-42FC ARNOLD, CONNIE A. 3421 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC WALLACE, TRACY A. 3403 DELMAR AVE. INDIANAPOLIS, IN 46241 65-42FC KRISTIN JONES CITY-COUNTY BLDG., SUITE T-241 200 E. WASHINGTON ST. INDIANAPOLIS, IN 46204

65-42FC TIBBS REALTY, LLC 10151 HAGUE RD. INDIANAPOLIS, IN 46256

65-42FC PEREZ, CARLOS DOMINGO BATEN 7447 E. 10TH ST. INDIANAPOLIS, IN 46219

65-42FC GIBSON, KENTON JOSEPH 3487 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42F SILENCE, RONALD D. & PATRICIA A. 3469 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC POTTS, VICTORIA SUE 3451 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC SCHNER, EDWIN A. 3433 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC SOWERS, ROBERT C. SR. 3415 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC BEN DAVIS CONSERVANCY DISTRICT 703 S. TIBBS AVE. INDIANAPOLIS, IN 46241

LETTER OF TRANSMITTAL

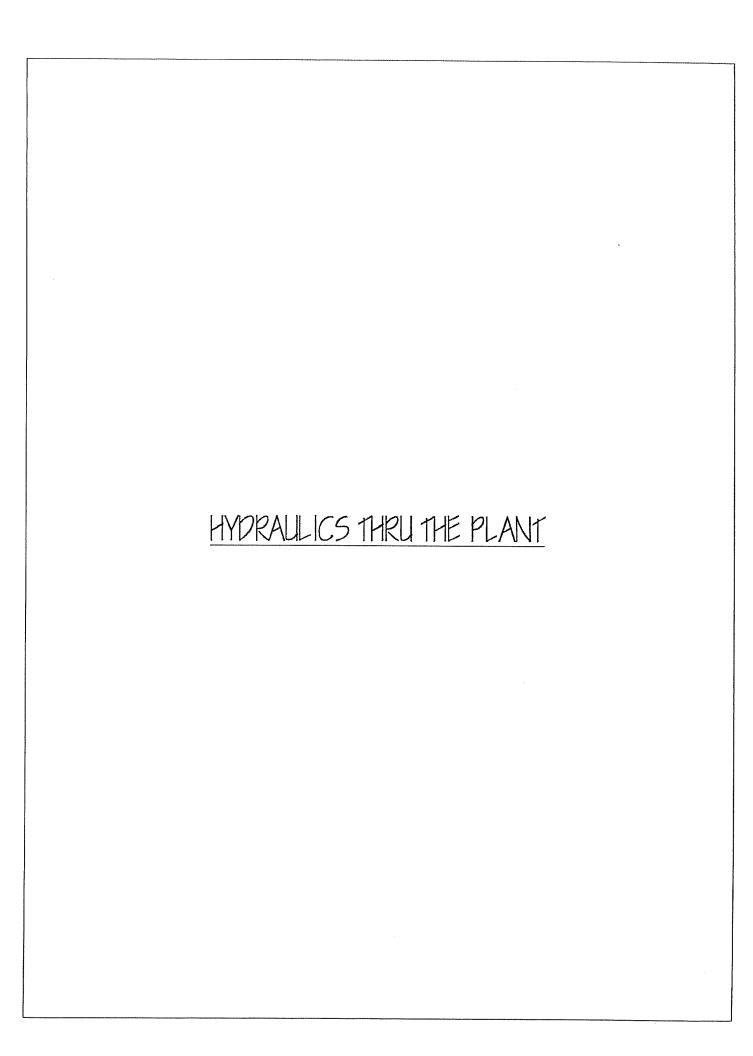
Date: December 2, 2021

Job No.: 202018A

TRIAD ASSOCIATES, INC.

5835 Lawton Loop East Drive Indianapolis, Indiana 46216-1064 (317) 377-5230

	Fax (317)	577-524	1	Attention: M	1C 05-42FC	Ŷ
				Reference: Be	n Davis Co	nservancy District
To:. IDEM –	OWQ			WV	WTP Design	n RESUBMITTAL
Facility 6 MC 65-4		n & Engi	neering Support	RI	ECEIV	ED
100 N. S	enate Aven	ue, Roon	n N1255		DEC 06 20	121
Indianap	olis, IN 462	204-2251	Į.		DEC 00 E	1
.WE ARE SE	ENDING YO Shop draw Copy of le	vings _		Under separ X Plans X Other: See I	Samj	ples <u>x</u> Specifications
COPIES	DATE	NO.			SCRIPTION	
1	Dec 2021	IDEM SET	RESUBMITTAL:	WWTP Constr	uction Pern	nit Application per 327 IAC 3:
			• Labels – po	tentially affect	ed persons	
			Engineering	g Calcs		
			 Supporting 	Documentation	n	
			• Specs			
			• Plans			
			• Check no. 3	3834 for \$50 ap	oplication fe	ee
THESE ARE X For appro For your As reques X For revie FOR BID	oval use sted w and comm	_	as checked below: Approved as subm Approved as noted Returned for correct Other:	Sub		copies for approvalcopies for distributioncorrected prints URNED AFTER LOAN TO US
REMARKS:	RE-SUBM	/ITTAL	of Original applicat	ion of July 202	1 with revis	sions. Please Note:
						r right hand corner.
			ges are dated in the			5
						tal. Yellow are newly revised.
	Engineerir	ig Calcul	ations: Yellow pages	are newly revise	<mark>ed.</mark>	
	Supporting	g Docume	<mark>entation: Previous re</mark>	evisions dated up	per right	7
COPY TO:	file			SIGNED:	Due ?	Jurgale


If enclosures are not as noted, kindly notify us at once.

ENGINEERING CALCULATIONS

IDEM-WATER QUALITY

DEC 0 6 0021

RECEIVED

Aeration 4 tanks Top of Wall (TOW)	Elevations 718.50
Influent trough max water elevation 4 tanks	716.82
max water elevation 2 tanks	716.20
Set downward opening gates 5.5' wide at	716.20
Set bottom of notch opening in wall at 0.5 ft less	715.70
Set liquid level in aeration at the same level when max with 2 tanks	715.70
Set effluent weir height based on max with 2 tanks	715.43
Liquid level based on max flow with 4 tanks	715.59
Max flow in effluent trough shall be at or below the the notch at end of aeration	714.72
Bottom of effluent trough at drop box	712.33
Allow a 6" drop at drop box	711.83
Splitter Box TOW	715.50
36" pipe to splitter box requires 0.49 ft at max flow rate	713.70
The head over the 1 weir in series at peak flow is 1.54 ft	
Therefor set bottom of 6' weir at	712.16
Set bottom of wall opening at	711.66
Normal operation in parallel at max flow both gates open the elevation in the entrance box	713.12
Normal operation in parallel at max flow to clarifiers	711.67
Series operation peak flow to #1 clarifier and #2 closed	711.85
Clarifier #1 TOW	713.00
30" pipe feed to clarifier worst case is series peak flow with a loss of 0.40 ft	
Water elevation in clarifier will be	711.45
Set bottom of v notches at	711.32
Bottom of effluent trough at outlet then is	709.60
Normal operation at max flow parallel flows the level in the clarifier #1 should be	711.43

Clarifier #2 TOW	710.00
30" pipe feed to clarifier worst case is series and peak flow with a loss of	1.36 ft
Water elevation in clarifier will be	708.20
Set bottom of v notches at	708.07
Bottom of effluent trough at outlet then is	706.35
Normal operation at max flow in parallel mode the level in clarifier #2 should be	708.18
Junction box #1 liquid elevation during series mode and peak flow	708.94
Junction box #2 liquid elevation during series mode and peak flow	706.01
HEAD BOX IN FRONT OF UV TOW	710.00
UV CHANNEL TOW	708.00
Head loss thru uv 0.15 ft	
Finger weir elevation	705.85
POST AERATION TOW	708.00
Max flow over a cipolletti 4' weir the height i 1.503 ft	C
Set the max elevation .5' below the top of finger weirs or	705.35
Set the bottom of the weir at	703.85
Set the bottom of the notch at	703.60
	VO 303
36" pipe @ 0.143" per 100 it carries 16 mgd invert at plant set at	40.000

Aeration influent

Downward opening weir gates

5 or more ft Width =

Rectangular, Sharp Crested Weir fully contracted

 $Q = 3.33*(L-.2H)*H^{\wedge}(3/2)$

width of approach in FT depth of Вп Ы CFS H ď ᄪ

INFLUENT OPENING EL. 967.00 F BOTTOM OF INFLUENT TROUGH EL. 966.50

967.50

N.W.L

TO.W. EL. 970.00

-DOUBLE REMOVABLE SAFETY CHAIN TO BE INSTALLED FOR MIXER OPERATION AND REMOVAL

JMINUM HANDRAIL-w/ 4" KICKPLATE

FT of weir <u>|</u> B - L > 4 H max P > 2 H max

H/L < .33

Limits

715.70 716.20

L DOWNWARD OPENING WEIR GATE

Bottom of Influent Opening Notch: Set top of weir plate at

0.00

aeration influent channel and head over 5' weir gate and

Bottom of Influent Channel = 712.5

Top of Wall Elevation = 718.50

all aeration tanks being used. Q H = ft 0.22 2778

= M

716.42 716.70 716.82

> 0.5 0.62

11111 8333

aeration influent channel and head over 5' weir gate and half of the aeration tanks being used. 716.20 716.20 716.20 ML = H=ft

Aeration influent

	0.14	yes	7.00 2.76 ves	yes	6.909 cfs
Calculations	H/L =		B-L = 4H = B-L > 4 H?	P > 2 H	Flow Rate, Q =
	⊭	⊭	#	¥	itracted.
	3.75	12	C)	0.69	flow is fully cor
Inputs	Height of wier crest above channel invert, P =	Width of channel, B =	Length of weir, L =	Measured head over the weir, H =	If all answers are yes, flow is fully contracted.

ェ	0.22	0.5	0.62	0.69
1/4 CFS	1.547	4.642	6.189	6.963
CFS	6.190	18.567	24.757	27.852
GPM	2778	8333	11111	12500

		_	_				_	_	_		_	_	_		_			_	_	_									_		_
CFS	11.635	11.680	11.724	11.767	11.807	11.846	11.883	11.918	11.952	11.984	12.014	12.042	12.068	12.092	12.115	12.136	12.154	12.171	12.186	12.199	12.210	12.219	12.226	12.231	12.234	12.235	12.234	12.231	12.226	12.219	12.209
I	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.39	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50	1.51	1.52	1.53	1.54	1.55
CFS	7.132	7.243	7.352	7.462	7.570	7.678	7.785	7.891	7.997	8.101	8.205	8.308	8.410	8.511	8.612	8.711	8.809	8.907	9.003	9.098	9.192	9.286	9.378	9.469	9.559	9.647	9.735	9.821	906.6	9.990	10.073
Ŧ	0.71	0.72	0.73	0.74	0.75	92.0	0.77	0.78	0.79	08.0	0.81	0.82	0.83	0.84	0.85	98.0	0.87	0.88	0.89	06.0	0.91	0.92	0.93	0.94	0.95	96.0	16.0	0.98	0.99	1.00	1.01
CFS	3.193	3.307	3.423	3.538	3.654	3.771	3.887	4.004	4.121	4.239	4.356	4.474	4.592	4.709	5.180	5.297	5.414	5.532	5.648	5.765	5.881	2.997	6.113	6.228	6.342	6.457	6.571	6.684	6.797	6.909	7.021
ı I	0.37	0.38	68.0	0.40	14.0	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50	0.54	99.0	95.0	0.57	0.58	69.0	09'0	0.61	0.62	0.63	0.64	99'0	99.0	29.0	89'0	69'0	02'0

П
Set effluent weir at elevation
ent
₽
ef
Set
≐ı
_

715.43

GPM	CFS	1/4 CFS	1/2 CFS
2778	6.190	715.49	715.43
8333	18.567	715.56	715.43
11111	24.757	715.59	715.43

Inputs			Calculations	
Height of wier crest above channel invert, P =	14	⊭	H/L =	0.005
Width of channel, B =	36	⊭	H/L ≤ 0.33 ?	yes
Length of weir, L =	31	#	B-L = 4H = B-I > 4 H ?	5.00 0.64
Measured head over the weir, H =	0.16	#	P > 2 H	yes
If all answers are yes, flow is fully contracted.	ow is fully conti	racted.	Flow Rate, Q =	6.539 cfs

715.18

Bottom of notch =

715.43

	:	(-:-/W(J I
	I	ď	lop or weir =
Ĭ	01.0	3.243	
	0.11	3.739	Rottom
ı	0.12	4.258	
	0.13	4.798	
ı	0.14	5.359	
Ĭ	0.15	5.939	-
l	0.16	6.539	
	0.17	7.156	
l	0.18	7.792	
cfs	0.19	8.445	
ı	0.20	9.114	
	0.21	9.800	
	0.22	10.501	
	0.23	11.218	
	0.24	11.949	
	0.25	12.696	
	0.26	13.456	
	0.27	14.230	
	0.28	15.018	
	0.29	15.820	

0.06

1.547 4.642 6.189

6.190 18.567 24.757

11111

ェ

1/4 CFS

CFS

GPM

2778

Ben Davis Conservancy District WWTF **Aeration Tank Effluent Channnels Headloss Calculations**

	_					
	뚶		-	0.086	0.086	0.086
	Mannings	S (ft/ft)		150.00 0.0005765	150.00 0.0005765	150.00 0.0005766
	Total	Length	(ft)	150.00	150.00	150.00
	Equiv.	Fitting	Length	0.00	0.00	0.00
	Length			150.00	150.00	150.00
ation	Vel.	fps	8	2.5090	2.6345	2.9131
Manning's Equation	Rh			0.8706	0.9367	1.0889
Man	Perimeter	ff.		7.0833	7.5238	8.7805
	Area	sq ft.		6.1667	7.0477	9.5610
42	Act.	Nidth (in.) Depth (in.)		18.500	21.143	28.683
	Act.	Width (in.)	*	48.000	48.000	48.000
	Flow	cfs		15.472	18.567	27.852
	Flow	gpm		6944	8333	12500

0.0864 feet of fall from upstream to downstream. Slope of channel is to be .0576% or .0576 ft per 100 feet Over all channel length is 150' or

Add grout to bottom of channel 1" at east end and slope up to 2" at the west end 712.33 Elevation of bottom of channel at the drop into the box =

Top of Grout at west end = Top of Grout at east end =

712.41

Liquid level in Channel

Depth (in.) in Channel ELEV Act. 12500 gpm 8333 6944

28.683 714.7

ration box to splitter box ahead of clarifiers

ATION FOR PRESSURE LOSS IN PIPES

Hf = (100/C)^1.852,(Q)^1.85 . 2083 V= 1.318*CH*R*.63*S*.54 (D)^4,8655

zontal + 20 ft vertical + 2 90deg elbows

428 LF

PEAK MAX

ADF

hness constant

Ē

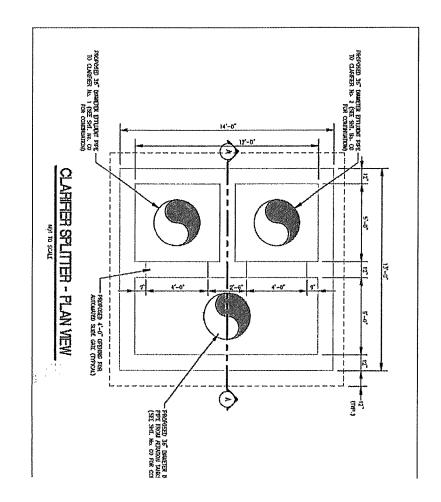
c diameter (inches)

SS(

t of water per 100 feet of pipe (ft H20 per of water per 100 feet of pipe (psi per 100 ft 2.70 1.16 2.32 5.39 0.01 0.00 0.02 0.04 0.12 0.29 0.03 0.07 0.05 0.21 0.49 0.12

4.54 0.96 2.87

3.83


Ţ

sure Pipe has a ID of 34.43

Calculations

5 H/P <.33 H/P <.33 0.02 yes

96.25

Weir Elev Wall Open

715.50 712.16 711.66

T.O.W

GPM

1 weir

6944 8333

1.54 <u>..</u>

713.34 713.70

flow is fully contracted.

GPM

2 weirs

Elevation

1389 4167 5556

0.38

712.54 712.95 713.12

0 # H/B <.33

yes

0.00

Flow Rate, Q =

0.12

#

13.323 cfs 5,980 GPM

MOTHER THROWS

18, COUNTY THROWS

19, COUNTY THROWS N 12, ILLS 2000 N 12, ILLS 200 DOS - NATUL THE AC BUT TO THE TO CO PHOPISED W. DI FEE. E COMPACIED OF STORE -M BEGLOUIS ME MANAGEMENT OF THE PROPERTY OF THE MENT O ENCENSED OF REPRESENTS COMMENT. MIND SAZ Cuta Futa FROM ALTADION DANK NO NORM OF TO C.

TO AT NETWORK

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NOR

TO AT NEW ORLY

AND NORM OF TO C.

TO AT NEW ORLY

AND NORM OF 1 and 100 (120) (120) (120) COMPACIED SUBGRAN S' PY WITHSHE MALE HE TO HEAR B 12" C EOIH FACES, BOTH (TOPICAL OF ALL W TO CLANDER SE PRO PRI

Feed from Splitter Box to Clarifiers

MODE 1: Both clarifiers in operation in parallel

Clarifier #1 the closest to the splitter box

30" pipe

TOTAL	Two 90 deg	Vertical	CC length
247 FEET	150 EQ Length	တ	91 ft

ADF

PEAK

MAX

3472

4166.5

6250

<u></u>	
ര	
റ	
₹	
w	
Ω.	
Ü	
괊	
ជ	

I = length of pipe (ft)

c = Hazen-Williams roughness constant

q = volume flow (gal/min)

dh = inside or hydraulic diameter (inches)

28.77 28.77	3472 4166.5	140 140	24/ 24/
28.77	6250	140	247

Calculated Pressure Loss

f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe)

f = friction head loss in psi of water per 100 feet of pipe (psi per 100 ft pipe)

0.10	0.05	0.03
0.24	0.11	0.08
0.04	0.02	0.01
0.10	0.05	0.03

Head loss (ft H20) Head loss (psi)

Calculated Flow Velocity

v = flow velocity (ft/s)

1.71 2.06 3.09

30" PVC SDR 21 Pressure Pipe has a ID of 28.77 36" PVC SDR 21 Pressure Pipe has a ID of 34.43

MODE 2: Both clarifiers in operation in series

30" PVC SDR 21 Pressure Pipe has a ID of 28.77

I = length of pipe (ft)

c = Hazen-Williams roughness constant

q = volume flow (gal/min)

dh = inside or hydraulic diameter (inches)

		·····	·	,	
28.77	6944	140	247	6944	ADF
28.77	8333	140	247	8333	PEAK
28.77	12500	140	247	12500	MAX

Calculated Pressure Loss f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe)

f = friction head loss in psi of water per 100 feet of pipe (psi per 100

0.15	0.07	0.05
0.34	0.16	0.12

Head loss (ft H20)

Head loss (psi)

0.29 0.12 0.40 0.37 0.85

3.43

6.17

Calculated Flow Velocity

v = flow velocity (ft/s)

Clarifier #2 Splitter Box to Clarifier #2 MODE 1: Both clarifiers in operation in parallel

Calculated Flow Velocity v = flow velocity (ft/s)	Head loss (ft H20) Head loss (psi)	Calculated Pressure Loss f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe) f = friction head loss in psi of water per 100 feet of pipe (psi per 100 ft pipe)	Specified Data = length of pipe (ft) c = Hazen-Williams roughness constant q = volume flow (gal/min) dh = inside or hydraulic diameter (inches)	30" pipe 30" PVC SDR 21 Pressure Pipe has a ID of 28.77 Ve Tw
 1	·	<u></u>		CC length Vertical Two 90 deg 1 Tee TOTAL
1.71	0.09	0.03	3472 267 140 3472 28.77	91 ft 6 150 EQ I 20 267 FEE
2.06	0.12 0.05	0.05	4166.5 267 140 4166.5 28.77	EQ Length
3.09	0.25 0.11	0.10	6250 267 140 6250 28.77	

	_	_
1	=	7
1		3
ł	(_
	ř	=
ı	•	•
ı	ľ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
l	_	
ı		
ı		
ı		Ţ
ı	Č)
ŀ	ř	٠
ı	=	3
l	c	5
ı	÷	-
ı	Ω	J
l	Ξ	1
ı	=	÷
ı	7	ς.
ı	2	'
ı	11	ì
l	•	•
ı	=	3
ı	***	,
ı	C	5
ŀ	7	÷
l	×	:
ı	2	4
l	n	ť
ı	-	:
L	=	ê,
ı	C)
l	Ξ	ĭ
ı		*)
ı	=	3
ı.	_	
ľ	Ç	ì
	Ω)
ı	=	ř
ı	Ų	,
ı	=	=
ı	ā	ď

MODE 2: Both clarifiers in operation in series

7						ADF
	0.75	0.06	0.003	3.09	1389	H
	1.17	0.10	0.008	9.28	4166.5	PEAK
	1.31	0.11	0.010	12.38	5555.5	MAX

Q gpm Q cfs Q per V H ft H inches ELEV

708.20	708.19
1.55	1.44
0.13	0.12
0.015	0.013
18.57	15.47
8333	6944
PEAK	ADF

These are liquid level in #2 Clarifier only

Top of Weir at splitter Leave 6" drop Head drop Set bottom of v notch Set bottom of trough Allow for fall Bottom of outbox
--

	,					
703.85	706.35	706.74	708.07	708.20	711.66	712.16
	0.39 ft of fall around clarifier to outlet	706.74 16" lower than bottom of v	708.07 bottom of v notch	708.20 elevation of water in clarifier at Peak in Series mode		

MODE 1: Both clarifiers in operation in parallel

MODE 2: Both clarifiers in operation in

Head loss (ft H20) Head loss (psi)	Calculated Pressure Loss f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe) f = friction head loss in psi of water per 100 feet of pipe (psi per 100 ft pipe)	Specified Data I = length of pipe (ft) c = Hazen-Williams roughness constant q = volume flow (gal/min) dh = inside or hydraulic diameter (inches)	30" pipe with 2 90 and a 22.5 horiz vert fittings
0.07 0.03	0.03	ADF 3472 207 140 3472 28.77	207 26 6 175
0.09	0.05	PEAK 4166.5 207 140 4166.5 28.77	207 equivalent pipe length 26 6 175
0.20	0.10	MAX 6250 207 140 6250 28.77	_
0.34	0.16	PEAK 8333 207 140 8333 28.77	series
0.71	0.34	MAX 12500 207 140 12500 28.77	

Calculated Flow Velocity v = flow velocity (ft/s)

2.06

3.09

6.17

MODE 2: Both clarifiers in operation in series

				fittings 2 -90s, 2 -45s, 1 tee	30" pipe flow back to clarifier #2 from UV structure
tee	45s	90's	vert	horiz	Total
20	80	150	α	169	427 equivalent pipe length

ਹ
Ø
n
2000
→
-
Ф
Ω,
\Box
ď.
Dat
ď.
at

l = length of pipe (ft)

c = Hazen-Williams roughness constant

q = volume flow (gal/min)

dh = inside or hydraulic diameter (inches)

			vert	
28.77	6944	140		6944
			vert	
 28.77	8333	140		8333
			vert	
28.77	12500	140		12500

PEAK

MAX

Calculated Pressure Loss

f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe)

f = friction head loss in psi of water per 100 feet of pipe (psi per 100 ft pipe)

	_
0.05	0.12
0.07	0.16
0.15	0.34

Head loss (ft H20)

Head loss (psi)

0.50 0.69 1.47 0.21 0.30 0.63

3.43

6.17

Calculated Flow Velocity

v = flow velocity (ft/s)

Clarifiers are the same size and each are 100' diameter with a double weir trough The v-notch weir is 1 foot from the outside wall so it has a 98' diameter

The notches are 90 degrees 6" on center and 2.5" deep.

The circumfrence is The inside weir is a 46.5 radius

 $2 \times PI \times r$

307.88 ft 292.17 600

1199 584 615

Equation for a 90 degree v notch

Number of notches

The inside weir is

 $H = (Q/2.49) ^{(1/2.48)}$ $Q = 2.49H^{2.48}$

MODE 1: Both clarifiers in operation in parallel

	MODE 2:	
	Both (ı
	MODE 2: Both clarifiers in operation	
•	operation	

in series

ELEV	H inches	≖	Q per V	Q cfs	Q gpm	
711.38	0.75	0.06	0.002581	3.09	1389	ADF
711.42	1.17	0.10	0.002581 0.007743 0.010324	9.28	4166.5	PEAK
711.43	1.31	0.11	0.010324	12.38	5555.5	MAX

711.44	1.44	0.12	0.012904 0.015486	15.47	6944	ADF
711.45	1.55	0.13	0.015486	18.57	8333	PEAK
711.44 711.45 These are liquid level in #1 Clarifier only						
"						

Bottom of outbox	Allow for fall	Set bottom of trough	Set bottom of v notch	Head drop	Leave 6" drop	Top of Weir at splitter 712.16	
707.10	709.60 0.39 ft of fall around clarifier to outlet	Set bottom of trough 709.99 16" lower than bottom of v	Set bottom of v notch 711.32 bottom of v notch	711.85 elevation of water in clarifier at Peak in Series mode	711.66	712.16	

PROJECT NO. SRF-0668

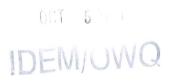
327 IAC Construction Permit Coordinator

TO: AJO

INTRA-OFFICE MEMO

FROM:

	Engineering Plan Review Section Office of Water Quality	permit 24183
SUBJECT:	Project: Ben Davis Conservancy Location: Indianapolis, Marion Co # Units: New WWTP Design Flow: 4.0 MGD Received On: 7/12/2021 Wastewater Treatment By: Ben I	,
	Maintenance Provided By: Ben	Davis Conservancy District
	gn Summary	Should be completely filled out, And match the Preliminary Limits
\$ Check	<u>\</u>	Not required for State or Federal projects
Signed Application		Signed by applicant for SRF projects
Plans and Specifications		Each page must be signed or sealed by an Indiana P.E.
Potentially Affected Person List		Names and addresses on signed and dated form, mailing list and mailing labels (Code 65-42FC)
Preliminary l	Limits from NPDESV	New one needed if more than 1 year old - it may need to include information regarding BADCT and Phosphorus Limits
Anti-degrada	ation Assessment	Verification from NPDES Section that a preliminary approval is complete
Early Warnir	ng Sewer Ban	Kim Rohr
State Revolv	ving Fund	SRF Group
Regional Sewer Districts		Angela Bottom


APPLICATION FOR WASTEWATER TREATMENT PLANT CONSTRUCTION PERMIT PER 327 IAC 3

Stale Form 53160 (R8 / 6-20)

Indiana Department of Environmental Management Office of Water Quality Facility Construction and Engineering Support Section, Mail Code 65-42FC 100 North Senate Avenue, Room N1255 Indianapolis, IN 46204-2251

APPLICANT	APPLICANT'S ENGINEER
Name Mr. or Ms.	Name 🛛 Mr. or 🔲 Ms.
Fred F. Buckingham	Kent Schuch
Name of Organization	Name of Company
Ben Davis Conservancy District	Triad Associates, Inc.
Address (number and street, city, state, and ZIP)	Address (number and street, city, state, and ZIP)
703 S. Tibbs Avenue	5835 Lawton Loop East Drive
Indianapolis, IN 46241	Indianapolis, IN 46216
Telephone Number	Telephone Number
(317) 241-2941	(317) 377-5230
E-Mail Address	E-Mail Address
angela@bdconservancy.com (Board Secretary)	kschuch@triadassoc.net
NAME AND LOCATION OF PROPOSED FACILITY	PROJECT DESCRIPTION
Name	Describe the scope and/or purpose of this project
Ben Davis Conservancy District	The project scope is construction of a 4 MGD
Location or Project Boundaries	wastewater treatment plant to serve the Ben Davis
West of Tibbs Ave., north of I-70 and South of CSX	Conservancy District. The plant is being constructed
RR.	to allow the District to provide treatment services at a
	reasonable cost to their constituents. The current treatment rate will result in an increase of 700%
City or Town	through 2025 at which time another rate increase will
Indianapolis	be implemented. The planned increases exceed the
County	costs to build and operate a District owned plant.
Marion	
FACILITY TYPE	PROJECT TYPE
Municipal wastewater treatment facility	New facility
Semipublic wastewater treatment facility	Expansion or modification of existing facility
	☐ LTCP improvements
	F FUNDING
☐ IFA's Wastewater State Revolving Fund Loan Prog	ram 🛛 Local Funds
OCRA's Community Development Block Grant	Private Funds
USDA's Rural Development Loan and Grant Assis	
CERTIFICATION	
I swear or affirm, under penalty of perjury as specified	by IC 35-44.1-2-1 and other penalties specified by IC
13-30-10 and IC 13-15-7-1(3), that the statements and	d representations in this application are true, accurate,
and complete.	•
Printed Name of Person Signing	
Fred F. Buckingham	uckengeron
Title	-
Chairman	
Signature of Applicant	Date Signed (month / day / year)
Var Sylva	1/21/2021

(Please refer to IC 13-30-10 for penalties of submission of false information.)

	WASTEWATER TREATMENT PLANT CONSTRUCTION PERMIT FEES	
I. The a	pplicants listed below must remit with each application a fee of fifty dollars	s (\$50).
Thes	e applications must be signed by an official of the entity. (C <i>heck all that ap</i>	ply.)
	County, Municipality, or Township which is defined as a unit under IC 36-1-2-2	3
	A Nonprofit Organization	
\boxtimes	A Conservancy District	
	A School Corporation that operates a sewage treatment facility	
	A Regional Water or Sewage District	
II. All of	her applications (including semi-public) will pay the following revised fees	рег
	ct type:	
New Wa	stewater Treatment Plant (not including industrial)	38.1
	A. Up to 500,000 gallons per day	\$1,250.00
	B. Greater than 500,000 per day	\$2,500.00
Wastew	ater Treatment Plant Expansion	
	A. Up to fifty percent (50%) design capacity:	
	1. Greater than 500,000 per day	\$1,250.00
	2. Up to 500,000 per day	\$625.00
	B. Greater than fifty percent (50%) design capacity	
	1. Greater than 500,000 gallons per day	\$2,500.00
	2. Up to 500,000 gallons per day	\$1,250.00
Wastewater Treatment Plant Modification \$625.00		
Only on	e (1) of the fees will apply. Checks for the applicable fee shall be made pay	able to the
Indiana	Department of Environmental Management. Fees shall not be refundable	once staff
review a	nd processing of the Permit Application has commenced.	

WASTEWATER TREATMENT PLANT DESIGN S	UMMARY
I. General	
Applicant: Ben Davis Conservancy District	
Facility Name: Ben Davis WWT Facility	
Project Title: New Wastewater Treatment Facility	
4. Project Location: 900 South Tibbs, Indianapolis, IN	
5. Design Engineer: Kent F. Schuch, P.E.	
6. Engineering Company: Triad Associates, Inc.	
7. NPDES Permit Number: TO BE APPLIED FOR	
A. Effective date (month / day / year): / /	
B. Expiration date (month / day / year): / /	
8. Project Scope	
A. Description of existing treatment facilities:	
Wastewater from the District is currently transported over 8 Southport AWT facility which is operated by Citizens Water	miles for treatment at the Authority (CWA).
B. Description of project needs: The District is pursuing construction of their own WWTP to a implemented significant rate increases to be phased in through rate increase will go into effect. Per a court approved Settlem objections to the District constructing their own plant and dis	ugh 2025, at which time another nent Agreement, CWA will offer no
C. Description of proposed facilities: The facilities include a new raw sewage pump station with second conventional aeration tanks, a flow splitter, 2 new clarifiers, a new diffused air post aeration tank with flow metering and	screening and flow metering, new a new ultraviolet disinfection tank.
D. Is project part of an Agreed Order?: ☐ Yes ☒ No	
E. How facility will maintain treatment during construction: N/A	
Source of Funding: Local funding	
10. Estimated Total Project Cost: 13.5 million	
10. Estimated Total Project Cost. 15.5 [fillilo]	
Certification Seal, Signature, and Date	
Printed Name of Engineer	20,201031025555
Kent F. Schuch, P.E.	A STEPHEN AND A
Signature Kent Schuch	STATE OF STA
Date Signed (month / day / year) February / 01 / 2021	ONAL ENGINEERING

II. Design	Data	and the state of t
1. Des	sign Average Flow (MGD): 4.0	
	A. Domestic: 2.0	

	B. Industrial/Commercial: .5
	C. Infiltration/Inflow: 1.5
2.	Design Peak Hourly Flow (MGD): 12.0
3.	Maximum Flow Capacity (MGD): 16.0
	A. Combination of treatment plant + EQ volume:
	B. Other explanation:
4.	Design Waste Strength
	A. CBOD: 170 mg/L
	B. TSS: 200 mg/L
	C. NH₃-N: 25 mg/L
	D. P: 5 mg/L
	E. Other:
5.	Design Population Equivalent (PE): 33,360 (based on 0.17 lb CBOD/PE influent loading)
6.	NPDES Permit Limitation on Effluent Quality
	A. CBOD ₅ : summer and winter is 10 mg/L
	B. TSS: summer and winter is 12 mg/L
	C. NH₃-N: summer is 1.1 mg/L and winter is 1.6 mg/L mg/L
***************************************	D. P: summer and winter 1.0 mg/L
	E. pH: 6-9 s.u.
***************************************	F. DO: 6.0 mg/L
	G. Total Residual Chlorine: .1 mg/L
	H. <i>E.coli</i> : 125
	I. Other:
7.	Sampling Method (Grab or Automatic Sampler) and Location
	A. Influent: Sampler
	B. Effluent: Sampler
8.	Receiving Stream
	A. Name: Neeld Ditch
	B. Stream Uses: Full body contact recreational use and shall be capable of supporting a well-
	balanced warm water aquatic community
	☐ and designated as salmonid water and shall be capable of supporting a salmonid fishery ☐ and designated as an impaired water
	and classified as an outstanding state resource water (OSRW)
	and classified as an outstanding national resource water (ONRW)
	C. 7-day, 1-in-10 year low flow: 0.0 CFS (0.0 MGD)
III. PL	ANT DETAILS
1.	Laboratory type (e.g., on site, third-party testing): on-site
2.	Plant site fence provided: fence provided
3.	Handrail/grating provided where necessary: Yes
4.	Flood hazard elevation (ft) at 100 year flood: 695.50
5.	Provisions for mechanical/electrical component protection at 100 year flood: site is above 100 year fld
6.	Type and rating (kW) of standby power equipment: natural gas 600 KW unit
7.	Provisions for removing heavy equipment: Yes, hoists and cranes are part of the installation
8.	Septage/leachate receiving facilities
	A. Type of preliminary treatment: N/A
	B. Storage and controlled feed provisions:

	C. Location of discharge to treatment process:
IV. Tre	atment Units
Plant S	Site Lift Station ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Location description:
2.	Type of pump:
3.	Number of pumps:
4.	Constant or variable speed:
5.	Design operating capacity (gpm) and TDH (ft):
6.	Operating volume of the wet well (gal):
7.	Detention time in the wet well (min):
8.	Shutoff valve and check valve in the discharge line:
9.	Shutoff valve on suction line:
10.	Type of ventilation:
11.	Type of standby power:
12.	Type of alarm:
13.	Type of bypass or overflow provisions:
14.	Additional Information:
Flow E	qualization ☐ Proposed ☐ Existing ☐ Modification ☐ N/A
1.	Type of structure:
2.	Number and dimensions (ft) of unit:
3.	Side water depth and freeboard (ft) of unit:
4.	Volume (gal):
5.	Type and size (HP) of mixing equipment:
6.	Type of aeration provisions (if applicable):
7.	Description of flow return methods and controls:
8.	Type of sludge removal provisions:
9.	Type and thickness of lagoon liner (if applicable):
10.	Additional information:
Influer	nt Flow Meter
1.	Type and size (in): 16" Mag Meter
2.	Location description: In a vault just past the valve vault
3.	Indicating, recording and totalizing: YES
4.	Additional information: to be connected to the SCADA control system
Fat, O	II, and Grease Separation Proposed Existing Modification N/A
1.	Type:
2.	Location description:
3.	Additional information:
. We they think the second	
13003 (4400000000000000000000000000000000	emoval ☐ Proposed ☐ Existing ☐ Modification ☐ N/A
1.	Type of grit removal system:
2.	Location description:
3.	Number and dimensions (ft) of unit:
4.	Side water depth and freeboard (ft) of unit:

Revised 9-16-21

5.	Rated capacity (gpd):
6.	Type of bypass provisions:
7.	Type of aeration provisions (if applicable):
8.	Method of unit isolation:
9.	Method of flow split control:
10.	Additional information:
Comm	inutor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of comminutor:
2.	Location description:
3.	Rated capacity (gpd):
4.	Bypass bar screen provision:
5,	Additional information:
Screen	ning Proposed Existing Modification N/A
1.	Type of screening: Duperon Mechanical Screen, self cleaning
2.	Location description: Inside the main lift station
3.	Bypass bar screen provision: YES
4.	Number and rated capacity (gpd): 1 rated for 16 MGD
5.	Clear opening sizes, bar or perforations (in): 1/4" bar spacing
6.	Slope of unit (°): 7°
7.	Method of unit cleaning: integral rake
8.	Method of screening disposal: unit includes compactor and discharge to dumpster
9.	Method of unit isolation: YES
10.	Method of flow split control: N/A
	Additional information:
Primai	y Clarification ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of clarifier:
2.	Number and dimensions (ft) of unit:
3.	Side water depth and freeboard (ft) of unit:
4.	Surface overflow rate (gpd/ft²)
	A. At design average flow:
	B. At design peak hourly flow:
5.	Hydraulic detention time (hrs)
	A. At design average flow:
	B. At design peak hourly flow:
6.	Weir loading rate at design peak hourly flow (gpd/lin·ft):
7.	Location of overflow weir:
8.	Method of scum collection:
9.	Method of scum disposal:
***************************************	Type of sludge removal mechanism:
	Method of unit isolation:
	Method of flow split control:
	Additional information:
	, identification and the second secon

Revised Sept 2021

	c Component of Proposed Existing Modification N/A
***************************************	groun reality and of Ocicetor Park
1.	Number and dimensions (ft) of anoxic unit/zone:
2.	Side water depth and freeboard (ft) of anoxic unit/zone:
3.	Hydraulic detention time (hrs):
4.	Number and capacity of mixed liquor recycle pumps (gpm):
5.	Method of mixed liquor recycle rate control:
6.	Mixed liquor recycle rate as % of design average flow:
7.	Provisions for mixed liquor recycle rate metering
	A. Type and size:
	B. Location:
8.	Mixed liquor recycle discharge location:
9.	Method of unit isolation:
10.	Method of flow split control:
1 1.	Additional information:
	obic Component of Proposed Existing Modification N/A
	real fractions (Control of October)
1.	Number and dimensions (ft) of anaerobic unit/zone:
2.	Side water depth and freeboard (ft) of anaerobic unit/zone:
3.	Hydraulic detention time (hrs):
4.	CBOD/TP Ratio:
5.	Readily Biodegradable BOD/TP Ratio:
6.	Type and size (HP) of mixing equipment:
7.	Method of unit isolation:
8.	Method of flow split control:
9.	Additional information:
Activa	ted Sludge
1.	Conventional or extended aeration: Conventional
2.	Number and dimensions (ft) of unit: 4 tanks each 36'w x 70'L x 17' D
3.	Side water depth and freeboard (ft) of unit: SWD 14.2' with 2.8' freeboard
4.	Hydraulic detention time (hrs): 6.4
5.	Organic loading at design average flow (lb CBOD/1000 ft³): 30.3
6.	Design MLSS concentration (mg/L): 2500
7.	Design solids retention time (days): 20
8.	Design F/M ratio (lb CBOD/day/lb MLVSS): .26
9.	Type and efficiency of diffusers (% per ft submergence): fine bubble diffuser 30% transfer efficiency
10.	Dedicated or shared plant blowers: dedicated
11.	Type and rated capacity of blowers (cfm): three 2120 cfm each
12.	Constant or variable speed blowers: variable speed
13.	Oxygen requirement (lb O ₂ /day)
	A. CBOD removal: 6805
	B. NH ₃ -N removal: 3836
14.	Total air demand (cfm): 4240 SCFM @ 200% demand
	Firm blower capacity (cfm): 2120 SCFM

p	
16.	Type of ventilation in blower room: in a covered shed, blowers are in a sound enclosure
	Number and capacity of return sludge pumps (gpm): Two pumps each 2,100 GPM
	Method of return sludge rate control: thru the mag meter, scada, and variable speed control
	Return sludge rate as % of design average flow: 100 to 150%
20.	Provisions for return rate metering
	A. Type and size: 12" mag meter
	B. Location: on the discharge line from the RAS pumps in the pump building
21.	Return sludge discharge location: to the head box on the aeration tank
22.	Method of unit isolation: motor operated gates
23.	Method of flow split control: motor operated gates
24.	Additional information:
Oxida	tion Ditch ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:
2.	Side water depth and freeboard (ft) of unit:
3.	Hydraulic detention time (hrs):
4.	Organic loading (design average flow, lb CBOD/1000 ft ³):
5.	Design MLSS concentration (mg/L):
6.	Design solids retention time (days):
7.	Design F/M ratio (lb CBOD/day/lb MLVSS):
8.	Aeration equipment
	A. Type and number:
	B. Efficiency (lb O ₂ /HP-hr):
9.	
	A. CBOD removal:
	B. NH₃-N removal:
10	Oxygen provided (lb O ₂ /day):
	Flow velocity in ditch (ft/sec):
	Number and capacity of return sludge pumps (gpm):
	Method of return sludge rate control:
	Return sludge rate as % of design average flow:
	Provisions for return rate metering
10.	A. Type and size:
	B. Location:
16	Return sludge discharge location:
	Method of unit isolation:
	Method of thin isolation. Method of flow split control:
ļ	Additional information:
19.	Additional information.
Trialdi	ng Filter ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	ng Filter ☐ Proposed ☐ Existing ☐ Modification ☒ N/A Number and dimensions (ft) of unit:
2.	
	Freeboard (ft) of unit:
3.	Type of media:
4.	Media specific surface area (ft²/ft³):
5.	Hydraulic loading (gpm/ft²):
6.	Organic loading (design average flow, lb CBOD/1000 ft ³):

7.	Type of recirculation system:
8.	Type of ventilation system:
9.	Additional information:
Rotati	ing Biological Contactor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:
2.	Freeboard (ft) of unit:
3.	Type of media:
4.	Hydraulic detention time (min):
5.	Hydraulic loading (gpm/ft²):
6.	Organic loading (design average flow, lb CBOD/1000 ft²):
7.	Method of shaft drive:
8.	Supplemental air:
9.	Method of unit isolation:
10.	Method of flow split control:
11.	Additional information:
Seque	ential Batch Reactor Proposed Existing Modification N/A
1.	Type of SBR process:
2.	Number and dimensions (ft) of unit:
3.	Side water depth and freeboard (ft) and volume (gal) of unit
	A. At low water level:
	B. At avg water level:
	C. At high water level:
4.	Cycle Time (min)
	A. Fill:
	B. React:
	C. Settle:
	D. Decant and idle:
5.	Hydraulic detention time (hrs)
	A. At low water level:
	B. At avg water level:
	C. At high water level:
6.	Organic loading (lb CBOD/1000 ft ³)
	A. At low water level:
	B. At avg water level:
	C. At high water level:
7.	Peak decant rate (gpm):
8.	Design MLSS concentration (mg/L):
9.	Design solids retention time (days):
***************************************	Design F/M ratio (lb CBOD/day/lb MLVSS):
***********	Type and efficiency of diffusers (% per ft submergence):
	Provisions for retrievable diffusers (when applicable):
***************************************	Number and rating of mixers (HP):
14.	Oxygen requirement (lb O ₂ /day)
	A. CBOD removal:

·····			
		B.	NH₃-N removal:
	15.	Total a	air demand (cfm):
	16.	Dedica	ated or shared plant blowers:
	17.	Type a	and rated capacity of blowers (cfm):
	18.	Consta	ant or variable speed blowers:
	19.	Firm b	lower capacity (cfm):
	20.	Туре	of ventilation in blower room:
	21.	Metho	d of sludge transfer between tanks:
	22.	Numbe	er and capacity of waste sludge pumps (gpm):
	23.	Post-e	qualization or disinfection at peak decanter rate:
			d of unit isolation:
	25.	Metho	d of flow split control:
	26.	Additio	onal information:

Ro	tati	ng Alga	al Reactor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
	1.	·	ss Description:
	2.	Numbe	er and dimensions (ft) of tanks:
	3.	Wheel	and media characteristics
		Α.	Wheel diameter (ft):
***************************************		B.	Wheel surface area (ft²/wheel):
		***************************************	Internal wheel volume (ft ³):
			Percent fill of wheel (%):
			Media specific surface area (ft²/ft³):
			Internal media surface area (ft²/wheel):
	4.		tage BOD removal
			Number of wheels:
		В.	Total effective surface area (ft²):
			CBOD loading (lbs CBOD/1,000 ft²):
	5.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	d stage NH ₃ -N removal
	-		Number of wheels:
******			Total effective surface area (ft²):
			NH_3 -N loading (lbs NH_3 -N/1,000 ft ²):
	6.		ulic detention time (hrs):
	7.		ulic loading (gpd/ft²):
	8.		and efficiency of diffusers (SOTE %):
	9.		tional blowers
			Air required to move wheel (cfm):
			Number of blowers:
			Type and rated capacity (cfm):
			Constant or variable speed:
			Firm blower capacity (cfm):
	10.		ng blower
			Air required to scour (cfm):
			Type and rated capacity (cfm):
			Constant or variable speed:
	11		es building
			re remained

	Α.	Method of ventilation:
	B.	Method of temperature control:
12.	Metho	d of unit isolation:
13.	Metho	d of flow split control:
14.	Additio	nal information:
Facult	tative L	agoon ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Contin	uous or controlled discharge:
2.	Treatn	nent cells
	Α.	Number:
	B.	Dimensions (ft):
	C.	Maximum water depth (ft):
	D.	Freeboard at maximum water depth (ft):
	E.	Volume (gal):
	F.	Hydraulic detention time (days):
	G.	Organic loading (lbs CBOD/acre/day):
3.	Storag	e cell (controlled discharge only)
	A.	Dimensions (ft):
	В.	Maximum water depth (ft):
		Freeboard at maximum water depth (ft):
		Volume (gal):
	E.	Hydraulic storage time (days):
4.	Influer	t pipe location:
5.		nt pipe location:
6.	Slope	ratio of embankment (H:V) and top width (ft):
7.		ind thickness of lagoon liner:
8.	Metho	d of effluent flow control:
9.	Metho	d of stream flow measurement:
		f facilities for multi-level lagoon discharge:
11.	Туре с	f mixing equipment (if applicable):
12.	Additio	nal information:
Aerate	ed Lago	
1.		nent cell
		Number:
		Dimensions (ft):
		Maximum water depth (ft):
		Freeboard at maximum water depth (ft):
		Volume (gal):
		Hydraulic detention time (day):
		Organic loading (lbs CBOD/day):
	H.	Complete or partial mix:
	<u> </u>	Uncovered or covered/insulated:
2.		g cell or settling zone within aeration cell
		Dimensions (ft):
	B.	Maximum water depth (ft):

C. Freeboard at maximum water depth (ft):
D. Volume (gal):
E. Hydraulic detention time (day):
F. Uncovered or covered/insulated:
3. Aeration equipment
A. Type and number:
B. Rated capacity:
4. Oxygen demand:
5. Influent pipe location:
6. Effluent pipe location:
7. Slope ratio of embankment (H:V) and top width (ft):
8. Type and thickness of lagoon liner:
9. Type of facilities for multi-level lagoon discharge:
10. Additional information:
Secondary Clarification Proposed Existing Modification N/A
1. Type of clarifier: circular center feed, rim collection
Number and dimensions (ft) of unit: two 100' diameter clarifiers
3. Side water depth and freeboard (ft) of unit: SWD 15.4' and FB 1.5'
4. Surface overflow rate (gpd/ft²)
A. at design average flow: 255 gpd/sf
B. at design peak hourly flow: 764 gpd/sf
5. Hydraulic detention time (hrs)
A. at design average flow: 10.9
B. at design peak hourly flow: 3.6
6. Weir loading rate at design peak hourly flow (gpd/lin·ft): 10,000
7. Location of overflow weir: dual weir trough on the perimeter.
Nethod of scum collection; full radius scum beach
Method of scum disposal: scum flows to grinder pump station and pumped to digester Type of sludge removal mechanism: pump suction from RAS/WAS pumps
11. Method of unit isolation: yes
12. Method of flow split control: yes 13. Additional information:
13. Additional information.
Submerged Biological Rock Bed Reactor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
A. CBOD (mg/L):
B. NH ₃ -N (mg/L):
C. TSS (mg/L):
Number and dimensions (ft) of units: Side water death (ft):
4. Side water depth (ft):
5. Media type, depth (ft), and size distribution (in):
6. Media porosity (%):
7. Insulation layer material and thickness (in):
8. Liner type and thickness (mil):

9.	Effective wastewater (media pore) volume in reactor (ft³):
	Hydraulic detention time (hrs):
11.	CBOD flux rate (lbs CBOD/100 ft² media cross-section):
12.	NH ₃ -N loading rate (lbs NH ₃ -N/1,000 ft ³ media):
13.	Type and efficiency of diffusers (SOTE %):
14.	Oxygen requirement (lb O ₂ /day)
	A. CBOD removal:
	B. NH₃-N removal:
15.	Total air demand (cfm):
16.	Type and rated capacity of blowers (cfm):
17.	Constant or variable speed blowers:
18.	Firm blower capacity (cfm):
19.	Type of ventilation in blower room:
	Method of unit isolation:
21.	Method of flow split control:
22.	Additional information:
Eivad	Media Polishing Reactor ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1xeu	Process description and seasonal operational procedure:
2.	Design unit influent quality (at highest monthly loading from upstream treatment unit)
£	A. CBOD (mg/L):
	B. NH ₃ -N (mg/L):
	C. TSS (mg/L):
3.	Number and dimensions (ft) of tanks:
4.	Side water depth (ft):
5.	Insulation layer material and thickness (in):
6.	Media specific surface area for BOD (ft²/ft³):
7.	BOD loading rate (lbs CBOD/100 ft² media):
8.	Number of BOD media modules:
9.	Media specific surface area for NH ₃ -N (ft²/ft³):
	NH ₃ -N loading rate (lbs NH ₃ -N/100 ft ² media):
	Number of NH ₃ -N media modules:
	Type and efficiency of diffusers (SOTE %):
	Oxygen requirement (lb O ₂ /day)
	A. CBOD removal:
	B. NH₃-N removal:
14.	Total air demand (cfm):
15.	Type and rated capacity of blowers (cfm):
16.	Constant or variable speed blowers:
	Firm blower capacity (cfm):
	Type of ventilation in blower room:
19.	Method of unit isolation:
20.	Method of flow split control:
21.	Additional information:

Rapid	Sand Filtration ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:
2.	Freeboard (ft) of unit:
3.	Filtration rate (gpm/ft²)
	A. at design average flow:
	B. at design peak hourly flow:
4.	Type, depth (inch), and size distribution (mm) of filter media:
5.	Backwash
	A. Type of backwash mechanism:
	B. Number and rated capacity of pumps (gpm):
	C. Constant or variable speed:
	D. Source of backwash water:
	E. Discharge location of backwash water:
6.	Air scour (cfm):
7.	Capability to chlorinate ahead of the filter:
8.	Method and provisions for solids removal:
9.	Method of unit isolation:
	Method of flow split control:
11.	Additional information:
or card contraction	ing Disc Filter ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Process Description:
2.	Number and dimensions (ft) of cells:
3.	Outside-in or inside-out flow:
4.	Number of discs:
5.	Effective submerged filter area (ft²) per disc:
6.	Total submerged filter area (ft²):
7.	Type and filter media pore size (μm):
8.	Filtration rate (gpm/ft²)
	A. at design average flow:
9.	B. at design peak hourly flow: Solids loading rate (lbs TSS/ft²)
স.	
	A. at design average flow: B. at design peak hourly flow:
10	Backwash
10.	A. Type of backwash mechanism:
	B. Number and rated capacity of pumps (gpm):
	C. Constant or variable speed:
	D. Source of backwash water:
	E. Discharge location of backwash water:
11	Air scour (cfm):
	Method and provisions for cell bottom solids removal:
	Method of unit isolation:
	Method of flow split control: Additional information:
10.	Additional information:

Cham	
	cal Phosphorus Removal
1.	Chemical properties
***************************************	A. Chemical name: Aluminate
	B. Weight concentration in solution (%):1.37#/gal of 43% solution
	C. Specific gravity: 1.52
2.	Chemical storage container
	A. Type: Double walled plastic horizontal tank
	B. Volume (gal): 7,000
	C. Expected storage supply (days): 30+
3.	Secondary containment
********	A. Type: storage tank is double walled
	B. Dimensions (ft) or volume (gal):
4.	Number and capacity of chemical feed pumps (gpm): dual feed pump .02 to .35 gpm
5.	Design chemical feed rate: 7 gph
6.	_ocation(s) of chemical injection: to be fed into the splitter box ahead of the clarifiers
7.	Provisions for adequate mixing at injection point: turbulence in the splitter box will mix
8.	Chemical building
***************************************	A. Method of ventilation control: power ventilator to provide 12 ACPH
	B. Method of temperature control: Heater will be on a thermostat
	C. Safety shower/eyewash equipment: has been provided
9.	Additional information:
Two-[y Polishing Pond ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of ponds:
2.	Hydraulic detention time (days):
3.	Гуре and thickness of pond liner:
4.	Type of scum control:
5.	Additional information:
•	
Chlor	e Disinfection ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Chemical properties
	A. Gas, Liquid, or Tablet:
	B. Compound name:
	C. Weight concentration in solution (%):
	D. Specific gravity:
2.	Contact Tank
	A. Dimensions (ft):
	B. Freeboard (ft):
	C. Volume (gal):
***************************************	D. Contact time at design peak hourly flow (min):
	E. Type of scum control:
	F. Type of bypass provisions:
3.	Method of chemical feed
	A. Type:
***************************************	B. Location:

Revised Sept 2021

		C.	Design rate capacity (gpm):
		D.	Dosage (mg/L):
	1.	Source	e of the disinfectant feed water:
5	<u>.</u>	Breakv	vater tank for the feed water:
e	3.	Chemi	cal storage container
		***************************************	Type:
			Volume (gal):
			Expected storage supply (days):
7	7.		dary containment (if applicable)
			Туре:
			Dimensions (ft) or volume (gal):
8	3.		cal building
			Method of ventilation control:
			Method of temperature control:
			Safety shower/eyewash equipment:
ç	 ∂.		safety equipment
			Type:
			Location:
1	10		onal information:
· · · · ·			
Dec	hle	orinatio	pn ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
BTTSC AGVISSIONS	1.	rate are tre proprietable	cal properties
		~	Gas, Liquid, or Tablet:
***************************************			Compound name:
		***************************************	Weight concentration in solution (%):
			Specific gravity:
2	2.	***************************************	d of chemical feed
	****	Α.	Type:
			Location:
		C.	Design rate capacity (gpm):
			Dosage (mg/L):
3	3.		cal storage container
			Type:
·····			Volume (gal):
			Expected storage supply (days):
2	1 .	***************************************	dary containment (if applicable)
-			Type:
			Dimensions (ft) or volume (gal):
E	5.		cal building
		Α.	Method of ventilation control:
····		В.	Method of temperature control:
			Safety shower/eyewash equipment:
6	3.		safety equipment
			Type:
			Location:
7	7.	Additio	nal information:

200	
Central (400 CE - 200 CE	iolet Disinfection
1.	Open channel or closed-vessel: Open channel
2.	Vertical, horizontal, or diagonal lamp orientation: vertical
3.	Lamp type: Low pressure High Output lamp
4.	Number of banks: 1
5.	Number of modules per bank: 6
6.	Number of lamps per module: 40
7.	Dosage (µWs/cm2): min 30mJ/cm2
8.	Transmittance (%):253 nm 65%
9.	Provisions for intensity monitoring: yes
10.	Type of level control provisions: serpentine weir
11.	Type of bypass provisions: pipe and valved bypass is provided
12.	Type of safety equipment: gloves and protective eve wear with face shield
13.	Automatic or manual cleaning equipment: automatic
14.	Additional information: the system will also be flow paced
Casca	de Post-Aeration ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number of steps:
2.	Dimensions of steps (ft):
3.	Total fall (ft):
4.	Additional information:
Diffus	ed Air Post-Aeration Proposed Existing Modification N/A
1.	Number and dimensions (ft) of unit: One tank10'w x 32.5' L
2.	Side water depth and freeboard (ft) of unit: SWD 10.85' and 2.65' FB
3.	Type and efficiency of diffusers (SOTE %):fine bubble diffusers
4.	Dedicated or shared plant blowers: dedicated blower
5.	Type and rated capacity of blowers (cfm): Rotary Lobe Blower, 120cfm@5psi
6.	Additional information: Blower in sound enclosure
Efflue	nt Flow Meter
1.	Type and size (in): Ultrasonic meter
2.	Location description: mounted over the post aeration tank upstream of the weir
3.	Indicating, recording and totalizing: yes it is provided
4.	Additional information:
Sludg	e Thickening ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Type of sludge thickeners:
2.	Number and dimensions (ft) of unit:
3.	Hydraulic capacity (gpm):
4.	Solids capacity (lb/hr):
5.	Type of chemicals added:
6.	Expected solids content of sludge (%):
7.	Additional information:

Anaeı	obic Digester	☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:	
2.	Side water depth and freeboard (ft) of unit:	
3.	Volume (gal):	
4.	Total design sludge loading (lbs/day):	
5.	Volatile solids percentage (%):	
6.	Design solids retention time (days):	
7.	Type and size (HP) of mixing equipment:	
8.	Internal or external heating:	
9.	Decanting method:	
10	Discharge location of supernatant:	
	Additional information:	
Aerob	ic Digester	☑ Proposed ☐ Existing ☐ Modification ☐ N/A
1.	Number and dimensions (ft) of unit: two tanks, 36' w	
2.	Side water depth and freeboard (ft) of unit: SWD 15	
3.	Volume (gal): total 751,291 gallons	
4.	Total design sludge loading (lbs/day): 2600	
5.	Volatile solids percentage (%):75	
6.	Design solids retention time (days): 50	
7.	Type and efficiency of diffusers (SOTE %):27%	
8.	Dedicated or shared plant blowers: shared with aera	ation
9.	Type and rated capacity of blowers (cfm): rotory lob	e blowers 2 each capacity of 1,500 cfm each
10.	Decanting method: motor operated telescoping valv	
11.	Discharge location of supernatant: plant pump static	n
12.	Additional information: variable speed control on blo	wer motor
Aerate	ed Sludge Holding Tank	☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:	
2.	Side water depth and freeboard (ft) of unit:	
3.	Volume (gal):	
4.	Total design sludge loading (lbs/day):	
5.	Sludge storage retention time (days):	
6.	Type and efficiency of diffusers (SOTE %):	
7.	Dedicated or shared plant blowers:	
8.	Type and rated capacity of blowers (cfm):	
9.	Decanting method:	
	Discharge location of supernatant:	
11.	Additional information:	
	e Drying Bed	☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and dimensions (ft) of unit:	
2.	Method of unit isolation:	
3.	Concrete ramp and runway provisions:	
4.	Discharge location of drainage:	

Revised Sept 2021

5.	Additional information:
	anical Dewatering
1.	Type of dewatering unit: screw press
2.	Number and dimensions (ft) of unit: one unit (13' L x 6' W x 6' H)
3.	Hydraulic capacity (gpm): 44,100 gallons per week (52 GPM)
4.	Solids capacity (lb/hr): 1,000 lb/hr
5.	Type of chemicals added: Polymer
6.	Expected solids content of dewatered sludge (%):18%
7.	Discharge location of drainage: precipate drains to floor drains that go to plant lift station
8.	Additional information:
Sludg	e Dewatering Bag System ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Number and volume (yd³) of unit:
2.	Type of chemicals added:
3.	Expected solids content of dewatered sludge (%):
4.	Drainage containment provisions:
5.	Discharge location of drainage:
6.	Additional information:
Final	Sludge Disposal
1.	Ultimate disposal method of sludge: Landfill
2.	Expected solids content of sludge (by the principal method of disposal): 18%
3.	Location of disposal site: Southern Marion County
4.	Ownership of the disposal site: Private
5.	Availability of sludge transport equipment: by Contract hauler
6.	Additional information:
V, SE	WER COLLECTION SYSTEM
Lift St	ation Proposed Existing Modification N/A
1.	Location: 703 South Tibbs Avenue
2.	Type of pump (example: submersible, dry pit): Submersible
3.	Number of pumps: 4
4.	Constant or variable speed: variable speed
5.	Design pump rate (gpm) and TDH (ft): 8,333 gpm @ 68 TDH
6.	Operating volume of the wet well (gal): 5800 gallons
7.	Average detention time in the wet well (min): 8.5 minutes
8.	Type of standby power/pump provisions: natural gas 250 KW gen set
9.	Type of alarm: audio visual with scada connection to Plant control panel
10.	Additional information:
Low P	ressure Sewer Grinder Pump Station Proposed Existing Modification N/A
1.	Number of stations:
2.	Number of residential connections per simplex station (two maximum):
3.	Design pump rate (gpm) at maximum TDH (ft):
4.	Type of alarm:
5.	Privately or utility owned and maintained:

REVISED 9-16-21

6.	Additional information:
Vacuu	ım Pump Station ☐ Proposed ☐ Existing ☐ Modification ☒ N/A
1.	Location:
2.	Total volume of vacuum tank (gal):
3.	Operating volume of the vacuum tank (gal):
4.	Number and size (HP) of vacuum pumps:
5.	Number and type of sewage pumps:
6.	Constant or variable speed:
7.	Design pump rate (gpm) and TDH (ft):
8.	Type of standby power/pump provisions:
9.	Type of alarm:
10.	Additional information:
Sewei	Proposed ☐ Existing ☐ Modification ☐ N/A
1.	Gravity or vacuum sewer: Gravity
2.	Type of pipe material: PVC influent sewer, PVC outfall sewer (Effluent)
3.	ASTM/AWWA Standard and SDR/DR: ASTM D1784 SDR-21
4.	Diameter and length of sewer (indicate length for each size): 36" - 267 LF / 36" 443 LF (Effluent)
5.	Number of manholes: 1 on the influent to main lift station / 1 on the outfall
6.	Number of vacuum valve pits (if applicable): N/A
7.	Additional information:
The American State of the State	
100000000000000000000000000000000000000	Main and Low Pressure Sewer
1.	Type of pipe material: PVC
2.	ASTM/AWWA Standard: ASTM D1784
3.	SDR/DR and pressure class (psi): SDR 21 200 psi
4.	Diameter and length of sewer (indicate length for each size): 18' @ 16"; 1,394' @ 24"
5.	Additional information:

IDENTIFICATION OF POTENTIALLY AFFECTED PERSONS

Please list any and all persons whom you have reason to believe have a substantial or proprietary interest in this matter, or could otherwise be considered to be potentially affected under law. Failure to notify a person who is later determined to be potentially affected could result in voiding IDEM's decision on procedural grounds. To ensure conformance with Administrative Orders and Procedures Act (AOPA) and to avoid reversal of a decision, please list all such parties. The letter on the opposite side of this form will further explain the requirements under the AOPA. Attach additional names and addresses on a separate sheet of paper, as needed.

Name SEE ATTACHED		Name		
Address (number an	nd street)	Address (num	ber and street)	
City		City		
State	ZIP Code	State	ZIP Code	
Name		Name		
Address (number ar	nd street)	Address (num	ber and street)	
City	N	City	The state of the s	
State	ZIP Code	State	ZIP Code	
Name		Name		
Address (number ar	nd street)	Address (num	ber and street)	
City		City		
State	ZIP Code	State	ZIP Code	
			· · · · · · · · · · · · · · · · · · ·	

CERTIFICATION

I certify that to the best of my knowledge I have listed all potentially affected parties, as defined by IC 4-21.5-3-5.

Proposed Facility Name Ben Davis C.D. WWT Facility	City INDIANAPOLIS
Printed Name of Person Signing Kent F. Schuch	County MARION
Signature Keut J. Schuch	Date Signed (month / day / year) / 127 12021

65-42FC MAYOR HOGSETT CITY-COUNTY BLDG., SUITE T-241 200 E. WASHINGTON ST. INDIANAPOLIS, IN 46204

65-42FC R & D RENTALS, LLC 817 S. TIBBS AVE. INDIANAPOLIS, IN 46241

65-42FC PARK 65 TRANSPORTATION, LLC 4045 PARK 65 DRIVE INDIANAPOLIS, IN 46254

65-42FC SMITH, MICHELLE 3499 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC DAVIS, JACKLYN H. 238 S. 4TH AVE. BEECH GROVE, IN 46107

65-42FC ROSNER, JASON E. 3463 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC COUNTS, MARGARET & KEVIN W. 3445 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC BURROWS, BRIAN D. & KATHLEEN M. 8206 ROCKVILLE RD., #198 INDIANAPOLIS, IN 46214

65-42FC WLN HOLDINGS, LLC 3420 CANNONBALL TRL YORKVILLE, IL 60560 65-42FC
JARED EVANS
CITY-COUNTY BLDG., SUITE T-241
200 E. WASHINGTON ST.
INDIANAPOLIS, IN 46204

65-42FC HOWARD MANAGEMENT CO., LLC 2916 KENTUCKY AVE. INDIANAPOLIS, IN 46221

65-42FC GRADY BROTHERS REALTY, LLC 915 S. SOMERSET AVE. INDIANAPOLIS, IN 46241

65-42FC CASTORENO, CORNELIA M. 3493 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC RYBOLT, SHAWN M. 3475 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC JENKINS, BECCA J. 3457 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC VEALE, KEITH W. JR., & LEAH G. 7656 MONTERAY CIRCLE AVON, IN 46123

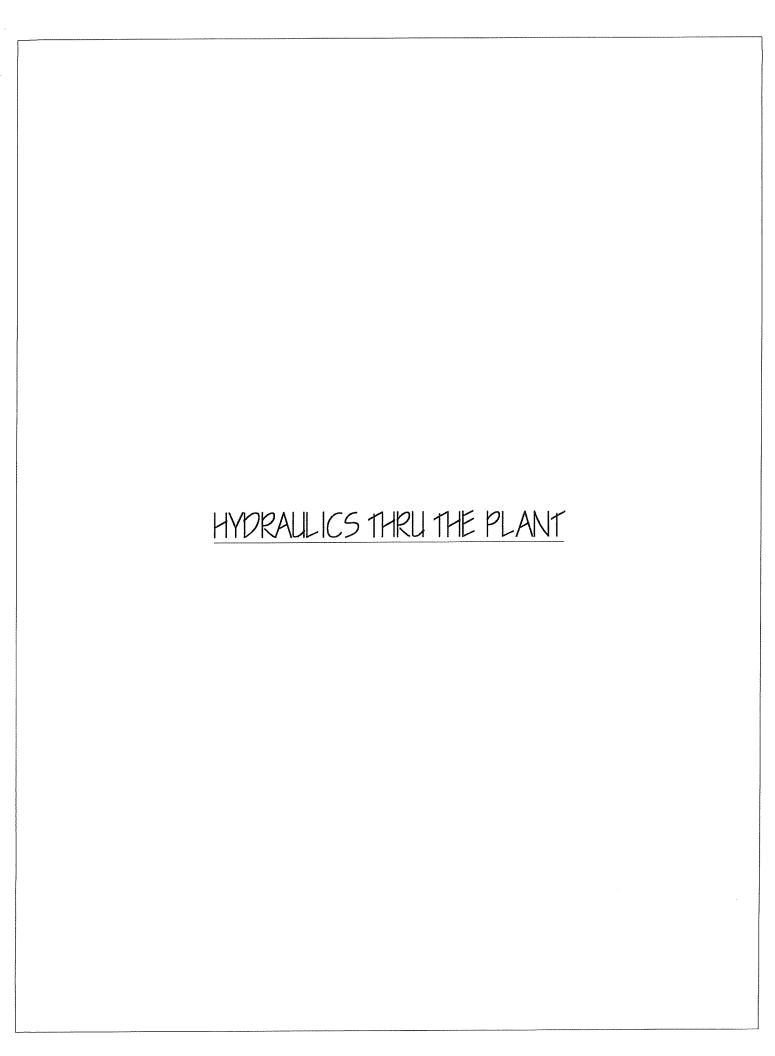
65-42FC ARNOLD, CONNIE A. 3421 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC WALLACE, TRACY A. 3403 DELMAR AVE. INDIANAPOLIS, IN 46241 65-42FC KRISTIN JONES CITY-COUNTY BLDG., SUITE T-241 200 E. WASHINGTON ST. INDIANAPOLIS, IN 46204

65-42FC TIBBS REALTY, LLC 10151 HAGUE RD. INDIANAPOLIS, IN 46256

65-42FC PEREZ, CARLOS DOMINGO BATEN 7447 E. 10TH ST. INDIANAPOLIS, IN 46219

65-42FC GIBSON, KENTON JOSEPH 3487 DELMAR AVE. INDIANAPOLIS, IN 46241


65-42F SILENCE, RONALD D. & PATRICIA A. 3469 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC POTTS, VICTORIA SUE 3451 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC SCHNER, EDWIN A. 3433 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC SOWERS, ROBERT C. SR. 3415 DELMAR AVE. INDIANAPOLIS, IN 46241

65-42FC BEN DAVIS CONSERVANCY DISTRICT 703 S. TIBBS AVE. INDIANAPOLIS, IN 46241

page 1

BEN DAVIS CD WWT PLANT

Aeration 4 tanks Top of Wall (TOW)	Elevations 718.50
Influent trough max water elevation 4 tanks	716.82
max water elevation 2 tanks	716.20
Set downward opening gates 5.5' wide at	716.20
Set bottom of notch opening in wall at 0.5 ft less	715.70
Set liquid level in aeration at the same level when max with 2 tanks	715.70
Set effluent weir height based on max with 2 tanks	715.43
Liquid level based on max flow with 4 tanks	715.59
Max flow in effluent trough shall be at or below the the notch at end of aeration	714.72
Bottom of effluent trough at drop box	712.33
Allow a 6" drop at drop box	711.83

Splitter Box TOW	715.50
36" pipe to splitter box requires 0.49 ft at max flow rate	713.70
The head over the 1 weir in series at peak flow is	
Therefor set bottom of 6' weir at	712.16
Set bottom of wall opening at	711.66
Normal operation in parallel at max flow both gates open the elevation in the entrance box	713.12
Normal operation in parallel at max flow to clarifiers	711.67
Series operation peak flow to #1 clarifier and #2 closed	711.85

Claritier #1 DW	28.66
30" pipe feed to clarifier worst case is series peak flow with a loss of	
Water elevation in clarifier will be	711.45
Set bottom of v notches at	711.32
Bottom of effluent trough at outlet then is	709.60
Normal operation at max flow parallel flows the level in the clarifier #1 should be	711.43
t outlet then	

HYDRAULIC PROFILE DATA

BEN DAVIS CD WWT PLANT

Clarifier #2 TOW	710.00
30" pipe feed to clarifier worst case is series and peak flow with a loss of	
Water elevation in clarifier will be	708.20
Set bottom of v notches at	708.07
Bottom of effluent trough at outlet then is	706.35
Normal operation at max flow in parallel mode the level in clarifier #2 should be	708.18
Junction box #1 liquid elevation during series mode and peak flow	708.94
Junction box #2 liquid elevation during series mode and peak flow	706.01
HEAD BOX IN FRONT OF UV TOW	710.00
UV CHANNEL TOW	708.00
Head loss thru uv 0.15 ft	
Finger weir elevation	705.85
POST AERATION TOW	708.00
Max flow over a cipolletti 4' weir the height i 1.503 ft	Mercentin
Set the max elevation .5' below the top of finger weirs or	705.35
Set the bottom of the weir at	703.85
Set the bottom of the notch at	703.60

OUTFALL SEWER

36" pipe @ 0.143' per 100 ft carries 16 mgd invert at plant set at	696.04
11	ft carries 16 mgd i

Headloss Calculations Ben Davis Conservancy District WWTF Aeration Tank Inlet Channnels Manning's Equation

	H			0.000	0.003	0.006	at MAX with 150% return at Peak with 150% return at ADF with 150% return
	Mannings	S (ft/ft)		7.761E-06	6.984E-05	1.242E-04	0.006
	Total	Length	(ft)	45.00	45.00	45.00	adloss =
	Equiv.	Fitting	Length	0.00	0.00	0.00	Channel Headloss
	Length			45.00	45.00	45.00	
auon	Vel.	fps		0.3868	1.1605	1.5473	
Mailling s Equation	Rh	-		1.3333	1.3333	1.3333	
MAIN	Perimeter	ft.		12.0000	12.0000	12.0000	
	Area	sq ft.		16.0000	16.0000	16.0000	
	Act.	Vidth (in.) Depth (in.)		48.000	48.000	48.000	
	Act.	Width (in.)		48.000	48.000	48.000	
	Flow	cfs		.1894	3.5673	1.7571	

uning's n = 0.013 for concrete channel

Ik flow = Peak + 150% ADF for RAS= 12 +6 = 18 mgd = 12500 gpm

ing Chamber is centered on aeration tanks.

 $^{-}$ = 4 mgd = 2,778 GPM

= + RAS = 10 mgd = 6,944 GPM

< Hourly Q = 16 mgd = 11,111 GPM

ık flow = 12 mgd = 8333 gpm

5 or more ft ath =

stangular, Sharp Crested Weir fully contracted

: 3.33*(L-.2H)*H^(3/2)

CFS

Ш Ш Ц

width of approach in FT depth of

T.O.W. EL. 970.00

-DOUBLE REMOVABLE SAFETY CHAIN TO BE INSTALLED FOR MIXER OPERATION AND REMOVAL

JMINUM HANDRAIL-W/ 4" KICKPLATE

INFLUENT OPENING EL. 967,00 BOTTOM OF INFLUENT TROUGH EL. 966.50

967.50

N.W.L

FT of weir

H/L < .33

iits

B - L > 4 H max P > 2 H max

715.70 716.20 Bottom of Influent Opening Notch

L-DOWNWARD OPENING WEIR GATE

Set top of weir plate at

ient Channel = 712.5

evation = 718.50

H H H 0.00 0.00 nt channel and head over 5' weir gate 716.70 716.42 = 7M

n tanks being used

H H H

0.5 0.62

0.22

aeration influent channel and head over 5' weir gate and half of the aeration tanks being used.

716.20 716.20 716.20

0.00

716.82

ent

Calculations

0.14	Ves		7.00	2.76	yes		yes	6.909 cfs
H/L =	H/L < 0.33?		₽ . "	4H =	B-L > 4 H ?		P > 2 H	Flow Rate, Q =
ā	Ľ	#		₩			#	
	3.75	12		5			0.69	
st above	1	и ш		11		wer		

are yes, flow is fully contracted.

Ś	1/4 CFS	工		
3.190	1.547	0.22	-	
8.567	4.642	9.0		
4.757	6.189			
:7.852	6.963	69:0		

0.37	5	-	5	-	
	3.193	0.71	7.132	1.25	11.635
0.38	3.307	0.72	7.243	1.26	11.680
0.39	3.423	0.73	7.352	1.27	11.724
0.40	3.538	0.74	7.462	1.28	11.767
0.41	3.654	0.75	7.570	1.29	11.807
0.42	3.771	0.76	7.678	1.30	11.846
0.43	3.887	0.77	7.785	1.31	11.883
0.44	4.004	0.78	7.891	1.32	11.918
0.45	4.121	0.79	7.997	1.33	11.952
0.46	4.239	08.0	8.101	1.34	11.984
0.47	4.356	0.81	8.205	1.35	12.014
0.48	4.474	0.82	8.308	1.36	12.042
0.49	4.592	0.83	8.410	1.37	12.068
0.50	4.709	0.84	8.511	1.38	12.092
0.54	5.180	0.85	8.612	1.39	12.115
0.55	5.297	0.86	8.711	1.40	12.136
0.56	5.414	0.87	8.809	1.41	12.154
	5.532	0.88	8.907	1.42	12.171
	5.648	0.89	9.003	1.43	12.186
	5.765	06.0	9.098	1.44	12.199
0.60	5.881	0.91	9.192	1.45	12.210
	5.997	0.92	9.286	1.46	12.219
0.62	6.113	0.93	9.378	1.47	12.226
0.63	6.228	0.94	9.469	1.48	12.231
0.64	6.342	0.95	9.559	1.49	
.65	6.457	96.0	9.647	1.50	12.235
99.0	6.571	0.97	9.735	1.51	12.234
0.67	6.684	0.98	9.821	1.52	12.231
0.68		0.99	9.906	1.53	12.226
69	6.909	1.00	9.990	1.54	12.219
0.70	7.021	1.01	10.073	1.55	12.209

11
elevation
weir at
ffluent
et ei
U)

715.43

1/2 CFS	715.43	715.43	715.43
1/4 CFS	715.49	715.56	715.59
CFS	6.190	18.567	24.757
GPM	2778	8333	11111

715.18

715.43

Calculations

0.005

yes

	İ			
H/L =	H/L < 0.33?	B-L =	4H = B-L > 4 H ?	P > 2 H
	#	#	#	#
Ģ	41	36	31	0.16
sst above	II C	Ш М	ŧi	yver

5.00

yes

¹low Rate, Q =	
L	are yes, flow is fully contracted.

工	90.0	0.13	0.16
1/4 CFS	1.547	4.642	6.189
က	6.190	8.567	4.757

715		notch		/	/	/															
 lop of Weir =		Rottom of notch																			
ơ	3.243	3.739	4.258	4.798	5.359	5.939	6.539	7.156	7.792	8.445	9.114	9.800	10.501	11.218	11.949	12.696	13.456	14.230	15.018	15.820	
r	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	

cfs

6.539

yes

Ben Davis Conservancy District WWTF Aeration Tank Effluent Channnels **Headloss Calculations** Manning's Equation

					,						
_low	Act.	Act.	Area	Perimeter	Rh	Vel.	Length	Equiv.	Total	Mannings	土
cfs	Width (in.)	Width (in.) Depth (in.)	sq ft.	ft.		fps)	Fitting	Length	S (ft/ft)	
								Length	(ft)		
5.472	48.000	18.500	6.1667	7.0833	0.8706	2.5090	150.00	0.00	150.00	150.00 0.0005765 0.086	0.086
3.567	48.000	21.143	7.0477	7.5238	0.9367		150.00	0.00	150.00	150.00 0.0005765	0.086
7.852	48.000	28.683	9.5610	8.7805	1.0889	2.9131	150.00	0.00	150.00	150.00 0.0005766 0.086	0.086

1el is to be .0576% or .0576 ft per 100 feet el length is 150' or

0.0864 feet of fall from upstream to downstream.

ottom of channel at the drop into the box = 712.33

ottom of channel 1" at east end and slope up to 2" at the west end 712.41

t west end = t east end =

Channel

Act. ELEV
Depth (in.) in Channel

714.72	28.683
714.09	21.143
713.87	18.500

ration box to splitter box ahead of clarifiers

ATION FOR PRESSURE LOSS IN PIPES

zontal + 20 ft vertical + 2 90deg elbows

V = 1.318*CH*RA-63+SA-54 $Hf = (100/C)^{A^{1.852}}(Q)^{A^{1.85}}$

(D)^4.8655

* .2083 428 LF

c diameter (inches)

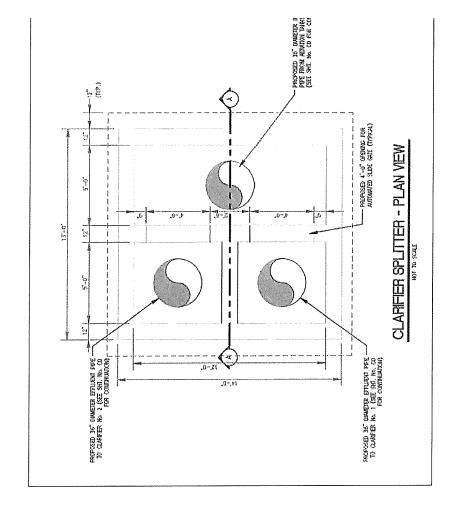
SS

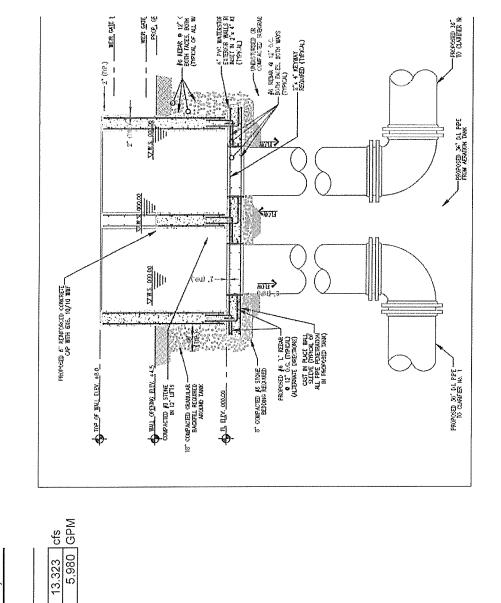
hness constant

Ē

0.01 2.70 of water per 100 feet of pipe (psi per 100 ft t of water per 100 feet of pipe (ft H20 per

0.05 0.49 0.12 0.21 0.03 0.12 0.29 0.07 0.00 0.04 0.02 1.16 5.39 2.32


3.83 2.87 0.96 4.54


sure Pipe has a ID of 34.43

Ē

Calculations

0.02 yes H/P <.33 H/P <.33 Ħ 96.25 Ŋ

flow is fully contracted.

Elevation		712.54	712.95	713.12
eirs	I	0.38	0.79	0.96
2 weirs	MdS	1389	4167	9229

Flow Rate, Q =

#

0.12

0.00

H/B <.33

0

yes

		713.34	713.70	
weir	I	1.18	1.54	
~	GPM	6944	8333	

T.O.W 715.50 Weir Elev 712.16 Wall Open 711.66

at max flow rate

Feed from Splitter Box to Clarifiers

MODE 1: Both clarifiers in operation in parallel

Clarifier #1 the closest to the splitter box

30" pipe

 CC length
 91 ft

 Vertical
 6

 Two 90 deg
 150 EQ Length

 TOTAL
 247 FEET

Specified Data

l = length of pipe (ft)

c = Hazen-Williams roughness constant

140

140

3472

247

4166.5

28.77

28.77

6250 247

4166.5

3472

MAX

PEAK

ADF

q = volume flow (gal/min)

dh = inside or hydraulic diameter (inches)

Calculated Pressure Loss

 $f=friction\ head\ loss\ in\ feet\ of\ water\ per\ 100\ feet\ of\ pipe\ (ft\ H20\ per\ 100\ ft\ pipe)$

f = friction head loss in psi of water per 100 feet of pipe (psi per 100 ff pine)

Head loss (ft H20)

Head loss (psi)

Calculated Flow Velocity

v = flow velocity (ft/s)

30" PVC SDR 21 Pressure Pipe has a ID of 28.77 36" PVC SDR 21 Pressure Pipe has a ID of 34.43

0.03 0.05 0.10	0.01 0.02 0.04

0.00	0.11	0.24
0.03	0.05	0 10

MODE 2: Both clarifiers in operation in series

30" PVC SDR 21 Pressure Pipe has a ID of 28.77

Specified Data

| = length of pipe (ft)

c = Hazen-Williams roughness constant

q = volume flow (gal/min)

dh = inside or hydraulic diameter (inches)

Calculated Pressure Loss

f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe)

f = friction head loss in psi of water per 100 feet of pipe (psi per 100

0.16 0.34	0.07 0.15
0.12	0.05

140

8333

6944

140

247

12500

8333

6944

247

MAX

PEAK

ADF

28.77

28.77

28.77

0.85	0.37
0.40	0.17
0.29	0.12

3.43 4.11 6.7

(ft H20)	(isd)
loss	loss
Head	Head

Calculated Flow Velocity

v = flow velocity (ft/s)

Clarifier #2 Splitter Box to Clarifier #2

MODE 1: Both clarifiers in operation in parallel

			MAX	6250	267	140	6250	28.77
	150 EQ Length 20	EET	PEAK	4166.5	267	140	4166.5	28.77
91 ft 6	150 E 20	267 FEET	ADF	3472	267	140	3472	28.77
CC length Vertical	Two 90 deg 1 Tee	TOTAL				(2. jin)		
30" pipe 30" PVC SDR 21 Pressure Pipe has a ID of 28.77				Specified Data	= length of pipe (ft)	c = Hazen-Williams roughness constant	q = volume flow (gal/min)	dh = inside or hydraulic diameter (inches)

0.03	0.05	0.10
0.01	0.02	0.04

f = friction head loss in psi of water per 100 feet of pipe (psi per 100

f = friction head loss in feet of water per 100 feet of pipe (ft H20 per

Calculated Pressure Loss

100 ft pipe)

ft pipe)

0.25	0.11
0.12	0.05
0.09	0.04

Head loss (ft H20) Head loss (psi)

v = flow velocity (ft/s)

Calculated Flow Velocity

Q gpm Q cfs	Q per V	Η H	H inches	FI FV
~ ~	0	# T	H inc	

- 1	ш	00	0	4	-	∞
MAX	5555.5	12.38	0.010	0.1	1.31	708.1
PEAK	4166.5	9.28	0.008	0.10	1.17	708.17
ADF	1389	3.09	0.003	90.0	0.75	708.13

PEAK	8333	18.57	0.015	0.13	1.55	708.20	
ADF	6944	15.47	0.013	0.12	1.44	708.19	-

These are liquid level in #2 Clarifier only

Top of Weir at splitter
eave 6" drop
Head drop
Set bottom of v notch
Set bottom of trough
Allow for fall
3offom of outbox

708.20	708.20 elevation of water in clarifier at Peak in Series mode
 708.07	708.07 bottom of v notch
706.74	706.74 16" lower than bottom of v
706.35	0.39 ft of fall around clarifier to outlet
703.85	

Clarifier #2 to UV splitter box

MODE 2: Both clarifiers in operation in	series	207 equivalent pipe length	26	9	175
MODE 1: Both clarifiers in operation in parallel		30" pipe with 2 90 and a 22.5	horiz	vert	fittings

PEAK	4166.5	207	140	4166.5	28.77
ADF	3472	207	140	3472	28.77
	Specified Data	l = length of pipe (ft)	c = Hazen-Williams roughness constant	g = volume flow (gal/min)	dh = inside or hydraulic diameter (inches)

12500

MAX

PEAK

MAX

207

8333 207 140

12500

8333 28.77

207 140 6250 28.77

28.77

Calculated Pressure Loss			
f = friction head loss in feet of water per 100 feet of pipe (ft H20 per		48	
100 ft pipe)	0.03	0.05	0.1
f = friction head loss in psi of water per 100 feet of pipe (psi per 100			
ft pipe)	0.01	0.02	0.0

0		0	O	0	
0.10		0.04	0.20	0.08	
90.0		0.02	60.0	0.04	
0.03		0.01	20.0	0.03	
100 ft pipe)	f = friction head loss in psi of water per 100 feet of pipe (psi per 100	п ріре)	Head loss (ft H20)	Head loss (psi)	Calculated Flow Velocity

0.15

.07

0.34

16

v = flow velocity

MODE 2: Both clarifiers in operation in series

30" pipe flow back to clarifier #2 from UV structure	Total	427	427 equivalent pipe length	
fittings 2 -90s, 2 -45s, 1 tee	horiz	169		
	vert	8		
	s,06	150		
	45s	80		
	tee	20		
	L	Ĺ		
	ADF	PEAK	MAX	
Specified Data	6944	8333	12500	
l = length of pipe (ft)	vert	vert	vert	
c = Hazen-Williams roughness constant	140	140	140	
q = volume flow (gal/min)	6944	8333	12500	
dh = inside or hydraulic diameter (inches)	28.77	28.77	28.77	

Calculated Pressure Loss

f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe)

0.34

0.16

0.12

f = friction head loss in psi of water per 100 feet of pipe (psi per 100 ft pipe)

Head loss (ft H20) Head loss (psi)

Calculated Flow Velocity

v = flow velocity (ft/s)

0.15	1.47	0.63	
0.07	69.0	0:30	
0.05	0.50	0.21	

3.43 4.11 6.17

Clarifiers are the same size and each are 100' diameter with a double weir trough The v-notch weir is 1 foot from the outside wall so it has a 98' diameter

The notches are 90 degrees 6" on center and 2.5" deep.

The inside weir is a 46.5 radius

The circumfrence is 2 x Pl x r 307.88 ft

The inside weir is 292.17

Number of notches 600

615 584 1199

Equation for a 90 degree v notch

$$Q = 2.49H^{2.48}$$

 $H = (Q/2.49) \wedge (1/2.48)$

MODE 1: Both clarifiers in operation in parallel

 ADF
 PEAK

 6944
 8333

 15.47
 18.57

 0.012904
 0.015486

 0.12
 0.13

 1.44
 1.55

711.45 These are liquid level in #1 Clarifier only

711.44

5555.5 0.11 0.010324 711.43 1.31 MAX 0.002581 0.007743 4166.5 9.28 0.10 1.17 711.42 PEAK 1389 0.75 3.09 90.0 711.38 ADF H inches Q per V Q gpm Q cfs ELEV Η

711.85 elevation of water in clarifier at Peak in Series mode 0.39 ft of fall around clarifier to outlet 709.99 16" lower than bottom of v 711.32 bottom of v notch 709.60 711.66 707.10 Set bottom of v notch Set bottom of trough Bottom of outbox Leave 6" drop Allow for fall Head drop

712.16

Top of Weir at splitter

Clarifier # 1 effluent pipe to splitter ahead of UV 407 ft of equiv. pipe 30" pipe

MODE 2: Both clarifiers in operation in series	ADF PEAK MAX	6944 8333 12500		140 140	6944 8333 12	28 8 22
	MAX	6250	407	140	6250	28 77
	PEAK	4166.5	407	140	4166.5	28 77
arallel	ADF	3472	407	140	3472	28 77
MODE 1: Both clarifiers in operation in parallel Hazen Williams		Specified Data	l = length of pipe (ft)	c = Hazen-Williams roughness constant	q = volume flow (gal/min)	dh = inside or hydraulic diameter (inches)

200	77	0.34	
12300	28.77	0	,
0000	28.77	0.16	1
14400	28.8	0.12	i.

Calculated Pressure Loss

6 0.34	7 0.15
0.16	0.07
0.12	0.05
0.10	0.04

09.0	0.28	0.20
1.40	0.66	0.47

0.12	0.05	0.47 0.6	0.20 0.2	3.43 4.1
0.10	0.04	0.39	0.17	3.09
0.05	0.02	0.18	80.0	2.06
0.03	0.01	0.13	90.0	1.71
f = friction head loss in feet of water per 100 feet of pipe (ft H20 per 100 ft pipe)	f = friction head loss in psi of water per 100 feet of pipe (psi per 100 ft pipe)	Head loss (ft H20)	Head loss (psi)	Calculated Flow Velocity v = flow velocity (ft/s)

3.43 4.11	3.43	3.43
3.43	60	3.09
		دن

142 10 150 80 25 407 ft of equiv pipe

2 @ 75 ea 2 @ 40 ea 22.5 1 @25

45's 80_s

Pipe length Horiz

Vert

use manufacturer's headloss at .15 ft thru the unit

Post aeration

Cipolletti weir Max

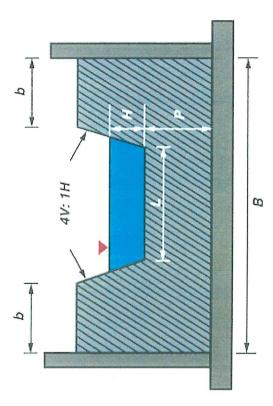
$$Q = 3.367 L H^{3/2}$$

H> .2 ft P/H >2 b/H >2

$$H = 1.503$$

Q

ADF


|| |_____

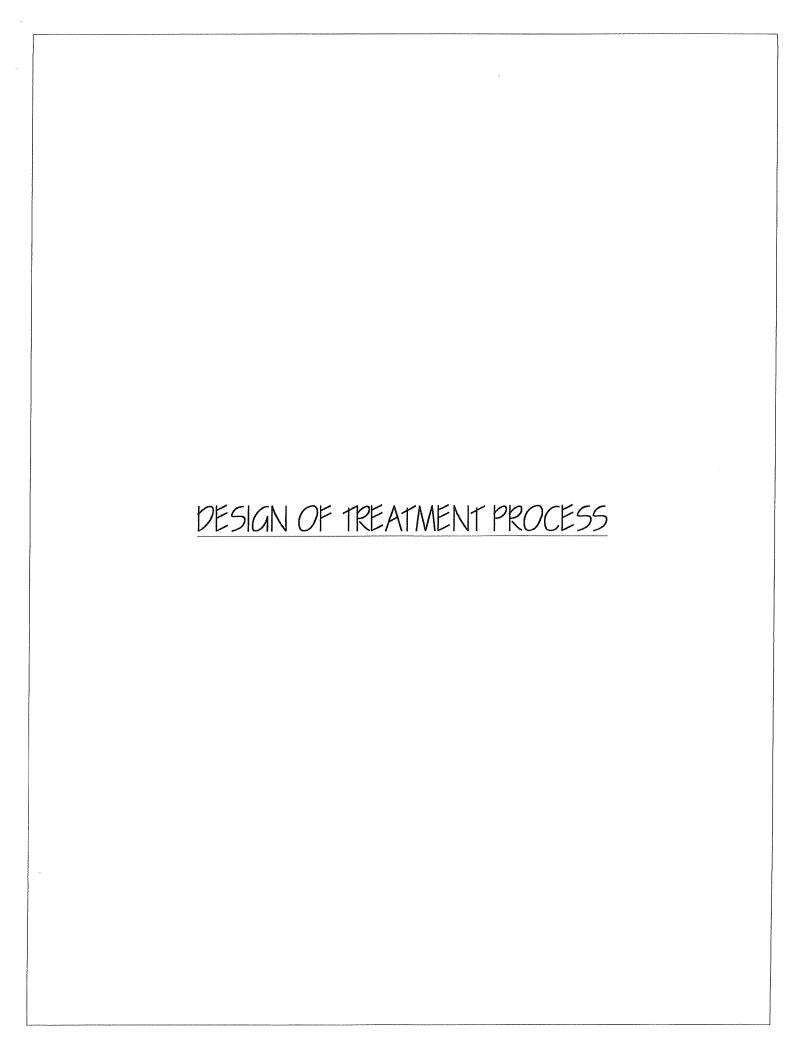
12 MGD 18.58 CFS 1.24 ft

Peak

Top of Top of Allow Set be Bottor

of Wall	708.00
of Weir from UV	705.85
n .5' drop at Max	705.35
bottom of weir so max elev	705.35
om of weir	703.85

ATTACHMENT 1


WWTP Construction Plans Ben Davis Conservancy District

HISTORICAL LOADINGS

BEN DAVIS CONSERVANCY 2019-2020 FLOWS/LOADINGS

		Flow	Rain	BOD	TSS	Ammonia	Phos	LBS BOD
			IXAIII		100	Ammoma	11103	LD3 BOD
Sat	3/30/2019	7.508		85	109	6.4		5,316
Sun	4/28/2019	7.714		25	26	3.6		1,608
Mon	6/17/2019	9.257		8	15	1.4		633
Mon	7/29/2019	2.319		166	274	20.2		3,211
Thu	8/15/2019	1.656		127	157	32.7		1,754
Fri	9/20/2019	1.479		142	388	29.2		1,752
Wed	10/2/2019	1.446		130	174	28.7		1,568
Tue	10/15/2019	1.331		197	412	30.6	***************************************	2,187
Tue	11/5/2019	1.677		109	169	21.4		1,524
Tue	12/3/2019	2.725	_	94	175	10.6	***************************************	2,127
Thu	1/9/2020	2.779		89	162	12.4	***************************************	2,067
Tue	2/11/2020	9.055	·	15	21	1.8		1,110
Tue	3/3/2020	6.300		74	109	5.9	***************************************	3,872
Tue	4/7/2020	3.002		170	270	11.1	***************************************	4,256
Tue	5/5/2020	2.454		74	95	12.4		1,523
Tue	6/2/2020	3.022		76	116	8.1		1,918
Wed	7/8/2020	3.384		78	198	7.8		2,199
Tue	8/4/2020	2.489		84	202	19.0		1,735
Wed	9/9/2020	1.587		122	328	26.8		1,615
	AVERAGE	3.747		98	179	15.3		2,209
						ai.		
(4 .0		Flow	Rain	BOD	TSS	Ammonia	Phos	
Tue	15-Sep	1.521	0	168	175	24.6	4.66	2,131
Wed	16-Sep	1.454	0	184	257	23.2	5.35	2,231
Thur	17-Sep	1.432	0	155	223	25.0	. 5.22	1,851
Fri	18-Sep	1.448	0	135	171	26.8	5.18	1,630
Sat	19-Sep	1.438	0	159	148	26.2	4.42	1,907
Sun	20-Sep	1.437	0	135	227	27.4	5.50	1,618
Mon	21-Sep	1.453	.0	133	215	24.0	5.85	1,612
	AVERAGE	1.455	_	153	202	25.3	5.17	1,854

PER ATTACHMENT February 2021 HISTORICAL FLOWS & WASTELOADS Ben Davis Conservancy District					
INFLUENT	Average Daily	Monthly	CBOD-	TSS	NH3-N
A STATE OF THE STA	Flows (MGD)	Flow	(mg/l)	(mg/l)	(mg/l)
2016					
January	3.57	110.80	151.2	140.0	14.1
February	2.84	79.50	34.8	141.8	11.0
March	3.98	123.30	61.5	245.8	6.7
April May	4.22 4.77	126.60 148.00	22.8 28.9	473.8	7.8
June	3.06	91.70	45.0	135.5 138.8	11.9 12.9
July	3.18	98.50	118.8	254.5	15.0
August	3.79	117.60	52.7	136.3	11.0
September	3.49	104.80	42.7	100.1	11.0
October	2.37	73.40	109.0	246.0	18.0
November	1.68	50.30	45.2	166.9	27.8
Dec2016	1.95	60.30	144.6	175.0	12.1
January	3.85	440.22	06.0	207.5	44.0
February	2.15	119.32 60.24	96.8 144.0	205.3	11.8
March	3.12	96.68	113.2	211.8 160.0	17.0 7.6
April	2.94	88.23	22.2	85.0	9.6
May	5.17	160.30	24.7	49.1	6.9
June	2.72	81.60	67.5	155.8	8.2
July	3.75	116.20	35.6	93.9	12.7
August	1.62	50.20	104.7	218.0	21.8
September	1.10	33.00	109.8	162.3	28.9
October	1.36	42.20	97.2	143.3	22.7
November	2.11	63.40	78.7	148.5	24.7
December 2019	2.37	73.40	92.0	177.0	25.5
January	4.21	130.47	0.0	0.0	0.0
February	5.05	141.53	0.0	0.0	0.0
March	3.30	102.38	84.9	109.0	6.4
April	5.15	154.56	25.0	26.0	3.6
May	3.77	116.87	25.0	26.0	3.6
June	3.67	109.99	8.2	26.0	3.6
July	2.56	79.29	166.0	274.0	20.2
August September	1.72 1.43	53.27 42.92	127.0	157.0	32.7
October	1.53	47.38	142.0 130.0	388.0 174.0	29.7
November	1.41	42.41	109.0	169.0	28.7 21.4
December 2020	2.69	83.44	93.6	175.0	10.6
January	4.71	146.05	89.2	162.0	12.4
February	3.04	88.21	14.7	21.2	1.8
March	3.96	122.64	73.7	109.0	5.9
April	2.25	67.54	170.0	270.0	11.1
May	2.91	90.08	74.4	95.0	12.4
June	2.07	61.95	76.1	116.0	8.1
July	2.08	64.44	77.9	198.0	7.8
August	2.29	71.06	83.6	202.0	19.0
September	1.48	44.37	184.0	257.0	23.2
October	1.47	45.48	106.0	299.0	34.2
November	2.34	72.52	115.0	154.0	17.7
December	1.76	54.46	198.0	157.0	11.5
Daily Avg	2.87	87.56	83.7	161.0	14.2
Limit	4.00		250.0	300.0	20.0

TRIAD ASS	SOCIATES, INC.		DESIGN CALCULATION	12	
PROJECT NAME:	Ben Davis CD	PROJECT ID:	202018A	DATE:	20-Jan
DESCRIPTION:	Clarifiers			Page	_ of
PREPARED BY:	Kent Schuch				

CLARIFIER DESIGN

Flow rate ADF =

4 mgd

PEAK =

12

MAX =

16

Criteria to meet

SWD > 12'

SOR < 1,000 gpd/sf

SLR < 40 #/day/sf

WLR < 30,000 gpd/LF of weir

Choose circular center feed perimeter collection

=

Radius

50 ft

Area =

7,854 sf

Total area

15,708 sf

SWD = Volume, ea tank 15.4 ft

Volume, total

120,951 cf 241,903 cf

1,809,432 gallons

Detention time =

0.45 days @ ADF

10.9 hours

0.15 days @ PEAK

3.6 hours

Surface Overflow Rate (SOR)		
at ADF	255	gpd/sf
at PEAK	764	

Solids Loading Rate (SLR)

based on peak flow plus ras flow and MLSS design under aeration

Q peak

12 mgd

Q ras

6 mgd

MLSS low

2500 ppm

MLSS high

4200 ppm

TRIAD ASS	SOCIATES, INC.		design calcul	.ATIONS
PROJECT NAME:	Ben Davis CD	PROJECT ID:	202018A	DATE: 20-Jan
DESCRIPTION:	Clarifiers			Page of
PREPARED BY:	Kent Schuch			

Solids, # Low

375,300 lbs

Solids, # High

630,504 lbs

SLR, low	23.9 lbs/sf
SLR, high	40.1 lbs/sf

Weir Loading Rate (WLR)

Clarifier radius

50 ft

Effluent weir radius 1

49 ft

Effluent weir radius 2

46.5 ft

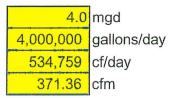
Perimeter r1

308 If per tank

Perimeter r2

292 If

TOTAL


1,200 LF of weir

WLR		
ADF	3,333	gpd/LF
PEAK	9,999	
PEAK RS	14,999	

TRIAD ASSO	OCIATES, INC.		DESIGN CALCULATIONS		
PROJECT NAME:	Ben Davis CD	PROJECT ID:	202018A	DATE:	25-Jan
DESCRIPTION:	Post Aeration			Page _ I	_ of _ I
PREPARED BY:	Kent Schuch				

POST AERATION

ADF

Detention time

10 minutes

Volume

3,714 cf

Proposed tank dimensions

W =

10 L=

36 D=

10.5

Proposed volume

3,780 cf

Proposed air demand is 30 cfm/1,000 cf

Proposed air supplied 113 cfm

Single blower rated 120 cfm at 4.5 psi

Kaeser BB69C

7.5 HP

ATTACHMENT 6

WWTP Construction Plans Ben Davis Conservancy District

REVISED AERATION DESIGN CALCULATIONS

TRIAD ASSOCIATES, INC.				DESIGN CALCULATIONS						
PROJEC	T NAME:	Ben Dav	is CD	PR	OJECT ID:	202018A			DATE:	9/1/2021
					α					
DESCRI	PTION:	Aeration Tank Sizing							Page of	
PREPAR	ED BY:	Kent Schuc	:h							
12 12 12 12 12 12 12 12 12 12 12 12 12 1								C-JUNE 1		
Flow rates	ADF	4	MGD							
	Peak	12								
	Max	16	1							
DOD	2	170								
BOD TSS		1/0	ppm							
Ammonia		25	ppm							
P		5								
Convention	nal activate	d sludge de	esign would re	quir	e a loading no	t to exceed	40#bod/1000	cf of tanl	k volume	
ADF loadi	ng is	4 x 130 x				pounds				
Aeration v	olume	5671.2	/40 =		141,780	cf or	1,060,514	gallons	total capacity	
IC 41	4				25.445		245 120			
if there ar	e 4 tanks th	ien			35,445	ct ea	265,129	gallons ea	t.	
Dimension	18									
Dimension	SWD =	14.2			2 496	sf area				
	W/L ratio				2,170	Width	36	ft		
		B				Length	69.34			
						_				
Final adjus	tments for			r.						
		WD =	14.2	π		Width	36		Length	70
					8					
Detention	time @ A[)F								
2 300.10.01.										
	V/Q	=	6.42	hrs						
Organic Lo	oading	=	39.6	lbs/	1000cf					
	\/ - 1 ·		142.124	<u> </u>						
	Volume in	aeration	143,136 1,070,657							
			1,070,637	Gai	lons					
	ADF Load	of BOD	5,671	lbs.						
			3,5							
AIR REQU	JIREMENTS	5								
	#	multiplier	# O2							
CBOD	5671	1.2								
NH4	834	4.6	3,836							
		TOTAL	10,642							
		TOTAL	10,642							
SCFM=	oxygen rec	uired/cwf	∟ efficiency*1440)*de	ensity of air*#	02/#air				
200 per A 200 (0)	, 6				, 11					
#02/# air		0.235								
std density		0.075								
cwt eff		30%	%				,			
AOR/SOR		0.5								
scfm	=	2,795	scim		I				(

PROJEC [*]	Γ ΝΔΜΕ-	Ben Davis	s CD	PR C	OJECT ID:	202018A			DATE:	9/1/202
TROJEC	I INALIE.	Dell Davis	, CD	II ICC	JECT ID.	20201074			DATE.	711120
DESCRIF	TION:	Aeration Ta	ınk Sizing					-	Page of	
PREPARI	ED BY:	Kent Schucl	n							
CFM air 1ax air 20	00%	2,795 5,591	scfm scfm							
urnish 3 l	olowers 21	20 cfm each			1					
· M										
:M ratio	Food is the	e influent C	BOD in poun	ds	5.671	lbs of CBO	D			
	Volume of					gallons in ac				
	MLSS				2500				3500	
	MLVSS				1875	assumes 75	% volatile		2625	
	Mass in ae	ration			16,742	lbs of MLVS	S		23,439	
			F/M ratio =		0.34				0.24	
olids rete	ntion time									
	Mass of so	lids in aerat	ion			lbs of MLSS			31,252.49	
	Mass of so	lids in efflue	ent		334	lbs of solids	in effluent @	10 ppm	334	
	Mass of so	lids in waste	Э	Hi	1,800	lbs of solids	in WAS stre	am	2,700	
				Lo	1,200				1,800	
			SRT =			days				days
.21					15				15	days
	Volume wa	asted at 1.0	% solids	Hi	21,583				32,374	gallons
				Lo	14,388	gallons			21,583	

TRIA	IAD ASSOCIATES, INC.						DESIGN CALCULATIONS					
PROJEC	T NAME:	Ben Dav	vis CD	PROJECT II	D:	202018A			DATE:	9/1/2021		
DESCRI	PTION:	Aereobic	Digesters			W.			Page <u>I</u> o	f <u> </u>		
PREPAR	ED BY:	Kent Schu	ıch									
AEROB	C DIGES	TER										
ADF=	4.0	mgd	4,000,000	gpd								
CBOD=		ppm	4,000,000	дра								
Total lbs		lbs/day										
Propose	d tanks ar		W	L	D		Volume,ea		Total			
	2 tanks ea	ach	36	90	15.5		50,220			cf		
							375,646	gallons	751,291	cf		
AIR REC	QUIREME	NT										
	30 cfm/1,	000 cf of	tank volume	e results in		3,013	cfm total ai	r				
				O blowers	o a a b	1 507	cfm					
				2 blowers	each	1,507	Cim					
Solids L	pading											
-												
			design the s									
			cal sludge fo			650	lbs					
	when ru		2500		for the ML	_SS						
	the SRT		hat the % vo	days	s is =	75%						
	it was as	ouineu li	TIAL LITE 70 VC	Jane Solia	3 13 -	1570						
	So the de	sign solic	ds loading to	the diges	ter is	2,450	lbs/day	3,350				
	at 1.0%	solids is	then			29,376	gpd	40,168				
	Total solid	ds that ar	e inert is 25	% of the s	olids or	613	lbs/day	838				

	Assume 4	10% redu	ction of VSS	S or		1,103	lbs/day	1,508		
	Total lbs	of solids	remaining				lbs/day	2,345		
								V.		
	Decanted	to a 2%	sludge is			10,282	gpd	14,059	gpd	
				1.50%			gpd	18,745		
æ	Two stage	e digestic	n							
	First stage	е								
	WAS slu	idge intro	duced, aera	ated, decar	nted to 2%	solids, the	n transferre	d to the 2	nd stage	
	Detention	on time in	Stage 1			13	days			
							-			
	Detention	on time ir	Stage 2			37	days			
MOP F	D-9 1985 V	VPCF			primary slud	ge				
		V=	$\frac{Q^*}{X^*(K_d^*P_v)}$	X_{i}						
		V -	$X^*(K_d^*P_v)$	+1/SRT)					SRT	
							days	10	15	20
		V= volur	ne of digest	er in cf			Volume, cf	83,933	103,682	11750
			ent SS in m			10,000	gallons	627,818	775,540	878,94
			ent average		n cf/day	29,376				
			ster SS in m			20000				
			ction rate co	-		0.1				
		Pv = vol	atile fraction	of digeste	r SS as %	75%				
		SRT =	solids reter							
					<u> </u>					
1	AVERAGE	DAILY W	AS FLOW, M	1GD			0.08	Assum wa	aste is 2% A	DF
							20.00			
2	AVERAGE	TSS in W	/AS, mg/l				10,000			
3	AVERAGE	TSS. lb/d	lay plus 650 l	bs for phos			7,322			
		,,	, , , , , , , , , , , , , , , , , , , ,				,,,,,			
6	Assume 75	5% Volatile	e Solids =VS	S, Ib/day			5,492			
	A 0 0 1 100 = 40)0/ \/OO		omariad III /	dov		0.407			
/	Assume 40	70 VSS 0	estruction = r	emoved, ib/	udy		2,197			
8	Total Solid	s out of Di	igester, lb/day	y (line 3 - lir	ne 7)		5,125			
9	Assume 2	0% Solids	out of Diges	ter = Solids	gal/day		19,889			
9	, todarrie Z.	5 70 Oolius	Jac of Digos	.or conds,	ganday		10,000			

10	Detention time required in digester, days	30	
11	Volume required in digester, gallons	596,657	
12	Per 10 States Standards, add 25% extra capacity for supernatant	149,164	
13	Total Digester volume required, gallons	745,821	
14	Total Digester volume required, CF	99,709	
15	Aeration required for mixing at 30 CFM/1,000 CF	2,991	
	Check VSS loading to digester	0.06	lbs VSS/cf of digester
	expected loading range 0.1 to 0.3		
	Metcalf & Eddy 3rd edition page 837		
16	Actual volume of digester	100,440	cf
		751,291	gallons

ATTACHMENT 3

WWTP Construction Plans Ben Davis Conservancy District

PHOSPHORUS CALCULATIONS

Chemical Phosphorus Removal Calculations Ben Davis Conservancy District WWTP

Existing Loading Data (September 15th to September 21st)

Flow (Q)

1.455 MGD

PO4: PO4: 5.169 mg/L 62.71 lbs/day

Assumptions/Input:

* Ave influent is 5.169 mg/L PO4 @ 1.455 MGD = 62.71 lbs/day Phosphorus	

* Ave influent is 5.169 mg/L PO4 @ 1.455 MGD = 62.71 lbs/day Phosphorus		Alum	Aluminate	PAICI low	PAICI high
	lbs Al3+/gal solu	0.421	1.37	0.991	1.048
* Effluent limit is 1.0 mg/L, no mass limitation.	SG	1.335	1.535	1.35	1.39
* Use 0.5 mg/L in effluent for calculation purposes.	Density, lb/gal	11.14151	12.81065	11.2667	11.60052
* 0.421 lbs Al3+/gal in a 48% solution of aluminum sulfate	Cost Estimates				
* 1.37 lbs Al3+/gal in a 43% solution of sodium aluminate	\$/lb solution	0.115	0.27	0.2	0.2
* 0.991 lbs Al3+/gal in a light Hyperlon 1997 solution (1.048 lbs/gal in a heavy solution)					

1

Ben Davis PO4 Removal Calcs 8-2021

^{*??? 5.4} lbs alum per gallon solution delivered

^{*???} Density 48% strength chemical solution = 11.1 lbs/gal

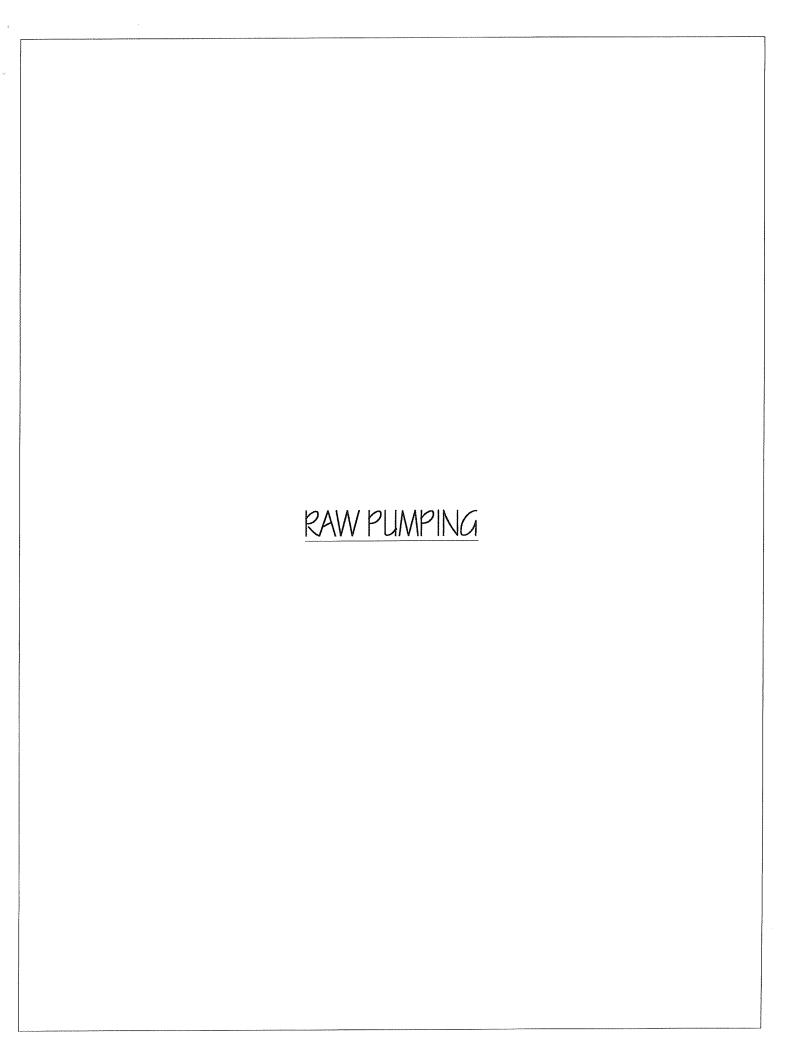
Parameter	Unit	Value
ADF	MGD	4.00
PDF	MGD	12.00
P Influent (Xi)	mg/L	5.169
P Influent (Xi)	lb/day	173
P Effluent (Xe)	mg/L	1.00
P Effluent (Xe)	lb/day	33.38
Storage	davs	30

Stoichiometry:

	Atomic #	Atomic Weig	
P	15	30.974	$Al^{3+} + (PO_4)^{3-} \rightarrow AlPO_4$
Al	13	26.982	
S	16	32.06	$Al^{3+} + 3OH^- \rightarrow Al(OH)_3$
0	8	16	
Н	1	1.008	$Al_2(SO_4)_3 \cdot 14H_2O + 2PO_4^{3-} \rightarrow 2AIPO_4(\downarrow) + 3SO_4^{2-} + 14H_2O$
Al2(SO4)3 - 14H2C)	594.368 L	
Dry Alum		342.144	
NaAlO2		81.971	

EPA (625/1-76-001a, pg 3-3) Method:

P Reduction		Al:P	Alum:P	Aluminate:P	PAICI Low	PAICI High
Required	Mole Ratio	Weight Ratio				
75%	1.38:1	1.2:1	13:1	3.65:1		
80%	1.55:1	1.35:1	14.9:1	4.10:1		
85%	1.72:1	1.5:1	16:1	4.55:1		
90%	2:1	1.74:1	19.2:1	5.29:1		
95%	2.3:1	2.0:1	22:1	6.09:1		


Parameter	Unit	Value
Reduction	lb/day	139
Reduction	%	80.7%

Gal Solution/day = (lbs P/day removed x Al3+:P weight ratio)/(lbs Al3+/gal Solution)

		Removal,					
% Removal	Mass Ratio	lbs/day		Alum	Aluminate	PAICI Low	PAICI High
			Feed Rate, gal/day	368.84	113.34	156.69	148.1
75%	1.2	129	Feed Rate, gph	15.37	4.72	6.53	6.1
			Storage Req'd, gal	11065	3400	4701	444
			Cost Estimate, \$/day	473	392	353	34
			Feed Rate, gal/day	443	136	188	1
80%	1.35	138	Feed Rate, gph	18	6	8	
			Storage Req'd, gal	13278	4080	5641	533
			Cost Estimate, \$/day	567	470	424	4:
1 Y 1			Feed Rate, gal/day	522.52	160.57	221.98	209.9
85%	1.5	147	Feed Rate, gph	21.77	6.69	9.25	8.7
			Storage Req'd, gal	15676	4817	6659	629
			Cost Estimate, \$/day	669	555	500	4:
			Feed Rate, gal/day	641.78	197.22	272.64	257.
90%	1.74	155	Feed Rate, gph	26.74	8.22	11.36	10.
			Storage Req'd, gal	19253	5917	8179	77.
			Cost Estimate, \$/day	822	682	614	5!
			Feed Rate, gal/day	778.66	239.28	330.79	312.8
95%	2.0	164	Feed Rate, gph	32.44	9.97	13.78	13.0
			Storage Req'd, gal	23360	7178	9924	938
			Cost Estimate, \$/day	998	828	745	72

^{*}based on Design Average Flow

Ben Davis PO4 Removal Calcs 8-2021 3

RAW PUMPING STATION

PROJECT:

TAI #:

Ben Davis

LOCATION:

Headworks

202018A

DESIGNED BY KFS

DATE:

12/17/2020 CHECKED BY: kfs

DESCRIPTION:

PUMP TDH CALCULATIONS

DATE:

12/17/2020

0.0038

GENERAL LIFT STATION INFORMATION:

Controlling Elevations

Forcemain Discharge = 717.45 ft Forcemain High Point = 717.45 ft Pump ON = 677.00 ft Pump OFF = 673,83 ft

Flow Rate & Pump Rate

Peak Inflow Rate = 1,390 gpm Pumping Rate = 2780 gpm Pumping Rate = 6.19 cfs Pumping Rate = 4,003,200 gpd

FRICTION LOSSES: Nominal Pipe Diameter, Pipe Type =	LS Discharge Piping 10" DI Class 350	LS Discharge Piping 16" DI Class 250	Forcemain 24" HDPE DR17
Pipe Inside Diameter (inches) =	10.58	16.8	22.6
C value =	120	120	140
Average velocity in pipe (ft/s) =	10.15	4.02	2.22
Total length of FM =	19	20	1610
C value = Average velocity in pipe (ft/s) =	120 10.15	120 4.02	140 2.22

 $V = 1.318 C R^{0.63} S^{0.54}$, therefore, S (ft/ft) = $S = h_1 / L$

0.0361

0.0007

Friction

1.77 0.08 1.08 therefore, h(friction)(ft) = 0.69

MINOR LOSSES (PIPE FITTINGS):

Reference: Chicago Pumps, Hydraulics & Useful Information Total No. Total **Fittings Description** No. Total No. 0.50 0.00 0 0.00 0.50 Entrance Loss 1.00 0.00 0 0.00 1 0 1.00 **Outlet Loss** 3 0.90 0.30 90 degree bend 0.30 2 0.60 45 degree bend 0 0.00 0 0.00 6 1.38 0.23 2 0.30 0 0.00 0 0.00 0.15 22.5 degree bend 0 0.00 11.25 degree bend 0.09 0 0.00 0 0.00 Plug Valve 0.77 0 0.00 0.77 0.77 0 0.00 0 0.00 2.50 Check Valve 2.50 3 0 0.00 1.80 Tee (through) 0.60 0 0.00 0 0.00 0 0.00 0 0.00 1.8 Tee (side flow) 0 0 0.00 0.00 0.00 0 Wye (thru) 1.00 0 0.00 0 0.00 Reducer/Expander 0.19 0.19

Head Loss from fittings = $h_m = KV^2 / (2g)$

therefore, h(fittings)(ft) =

7.29

4.56

0.53

Pressure (psi):

2.10

0.33

ft

4.35

Minimum Maximum STATIC LOSSES: Elevation of highest point (discharge)(ft)= 717.45 673.83 Low water level in LS (Pump OFF)(ft) = Static head losses = high point - LS level

therefore, h(static)(ft)= 43.62 717.45 677.00

40.45

Total Static Head (Max) 43.62

53.5

TOTAL DYNAMIC HEAD (TDH) = h(friction) + h(fittings) + h(static) =

Total K Values:

23

FLOW DATE	LS	DISCHARGE PIPI	NG		FORCEMAIN PIPIN	√G	TDH
FLOW RATE	VELOCITY	FRICTION LOSS	MINOR LOSS	VELOCITY	FRICTION LOSS	MINOR LOSS	
(gpm)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft)
1500	5.47	0.22	2.12	1.20	0.35	0.10	46.4
1750	6.39	0.29	2.89	1.40	0.46	0.13	47.4
2780	10.15	0.69	7.82	2.22	1.08	0.33	53.5
3700	13.50	1.16	12.91	2.96	1.84	0.59	60.1
4000	14.60	1.34	15.09	3.20	2.12	0.69	62.9
5000	18.25	2.03	23.58	4.00	3.21	1.08	73.5

NET POSITIVE SUCTION HEAD AVAILABLE

Absolute Pressure on surface (ha-ft) Vapor Pressure of liqued (hvpa-ft)

Static Height above impeller (hst-ft) Suction line losses (hfs-ft)

33.96 @ sea level

@ 68°F 0.78 (pump off - impeller)

0.00

(submersible)

NPSHA = ha - hvpa + hst - hfs

33.2 ft

NPSHR must be 5' less than NPSHA (safety factor)

RAW PUMPING @ PEAK

gpm

gpm

PROJECT:

Ben Davis

DESIGNED BY KFS

LOCATION:

Headworks

DATE: 12/17/2020

202018A TAI #:

CHECKED BY kfs

DESCRIPTION: PUMP TDH CALCULATIONS

DATE: 12/17/2020

GENERAL LIFT STATION INFORMATION:

Controlling Elevations Flow Rate & Pump Rate

Peak Inflow Rate = 4,167 Forcemain Discharge = 717.45 Pumping Rate = 8333 Forcemain High Point = 717.45 ft Pump ON = 677.00 ft Pumping Rate = 18.57

cfs Pumping Rate = Pump OFF = 673.83 11,999,520 gpd ft

FRICTION LOSSES: Nominal Pipe Diameter, Pipe Type = Pipe Inside Diameter (inches) =	LS Discharge Piping 10" DI Class 350 10.58	LS Discharge Piping 16" DI Class 250 16.8	Forcemain 24" HDPE DR17 22.6
C value =	120	120	140
Average velocity in pipe (ft/s) = Q/3	10.14	12.06	6.67
Total length of FM =	19	20	1610

 $V = 1.318 \text{ C R}^{0.63} \text{ S}^{0.54}$, therefore, S (ft/ft) = Friction 0.0360 0.0290 0.0051

 $S = h_f / L$

9.53 therefore, h(friction)(ft) = 0.68 0.58 8.27

MINOR LOSSES (PIPE FITTINGS):

Reference: Chicago Pumps, Hydraulics & Useful Information Total No. Total No. Total No. **Fittings Description** K-value 0.00 0.50 0 0.00 0 **Entrance Loss** 0.50 0.00 1.00 0.00 0 **Outlet Loss** 1.00 0 1 0.30 2 0.60 0.30 3 0.90 90 degree bend 45 degree bend 0.23 0 0.00 0 0.00 6 1.38 0 0.00 0 0.00 2 0.30 22.5 degree bend 0.15 0 0 0 0.00 0.00 0.00 11.25 degree bend 0.09 0 0.77 0.00 Plug Valve 0.77 0.77 1 0 Check Valve 2.50 0 0.00 0.00 2.50 0.00 3 1.80 0 0.00 Tee (through) 0.60 0 0 0.00 0 0.00 0 0.00 Tee (side flow) 1.8 0 0 0.00 0.00 0.00 1.00 Wye (thru) 0 0 0.00 Reducer/Expander 0.19 0.19 0 0.00

Total K Values: 4.56 2.10 4.35 Head Loss from fittings = $h_m = KV^2 / (2g)$ **Total Minor** Losses

7.28 4.74 3.00 15.02 therefore, h(fittings)(ft) =

STATIC LOSSES: Maximum Minimum Elevation of highest point (discharge)(ft)= 717.45 717.45

Total Static Low water level in LS (Pump OFF)(ft) = 673.83 677.00

Head (Max) Static head losses = high point - LS level 43.62 therefore, h(static)(ft)= 43.62 40.45

TOTAL DYNAMIC HEAD (TDH) = h(friction) + h(fittings) + h(static) = 68.2 ft

Pressure (psi):

	LS DIS	SCHARGE PIPIN	G 10"	LS	DISCHARGE PIPIN	IG 16"	FOR	CEMAIN PIPI	NG	TDH
FLOW RATE		FRICTION						FRICTION		
	VELOCITY	LOSS	MINOR LOSS	VELOCITY	FRICTION LOSS	MINOR LOSS	VELOCITY	LOSS	MINOR LOSS	
(gpm)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft)
1500	1.82	0.03	0.24	2.17	0.02	0.15	1.20	0.35	0.10	44.5
3000	3.65	0.10	0.94	4.34	0.09	0.61	2.40	1.25	0.39	47.0
6000	7.30	0.37	3.77	8.68	0.32	2.46	4.80	4.50	1.56	56.6
8333	10,14	0.68	7.28	12.06	0.58	4.74	6.67	8.27	3,00	68.2
10000	12.17	0.96	10.48	14.47	0.81	6.83	8.00	11.59	4.32	78.6
12000	14,60	1.34	15.09	17.37	1.14	9.84	9.60	16.25	6.22	93.5

NET POSITIVE SUCTION HEAD AVAILABLE

33.96 @ sea level Absolute Pressure on surface (ha-ft) @ 68°F Vapor Pressure of liqued (hvpa-ft) 0.78 (pump off - impeller) Static Height above impeller (hst-ft) Suction line losses (hfs-ft) 0.00 (submersible)

33.2 ft NPSHR must be 5' less than NPSHA (safety factor) NPSHA = ha - hvpa + hst - hfs

30

RAW PUMPING @ MAX

PROJECT: LOCATION:

TAI #:

Ben Davis

Headworks

202018A DESCRIPTION: PUMP TDH CALCULATIONS

DESIGNED BY KFS

DATE:

12/17/2020

CHECKED BY kfs

DATE:

12/17/2020

GENERAL LIFT STATION INFORMATION:

Controlling Elevations

Forcemain Discharge = 717.45 ft Forcemain High Point = 717.45 ft

> Pump ON = 677.00 Pump OFF = 673.83

Flow Rate & Pump Rate

Peak Inflow Rate = 5,556 gpm Pumping Rate = 11111 gpm Pumping Rate = 24.76 cfs

Pumping Rate = 15,999,840

LS Discharge

FRICTION LOSSES:	Piping	Piping	Forcemain
Nominal Pipe Diameter, Pipe Type =	10" DI Class 350	16" DI Class 250	24" HDPE DR17
Pipe Inside Diameter (inches) =	10.58	16.8	22.6
C value =	120	120	140
Average velocity in pipe (ft/s) = Q/4	10.14	16.08	8.89
Total length of FM =	19	20	1610

 $V = 1.318 \text{ C R}^{0.63} \text{ S}^{0.54}$, therefore, S (ft/ft) = $S = h_f / L$

therefore, h(friction)(ft) =

0.68

0.0360

LS Discharge

ft

ft

0.0494 0.99

0.0088

14.09

Friction 15.76

MINOR LOSSES (PIPE FITTINGS):

Reference: Chicago Pumps, Hydraulics	& Useful Information						
Fittings Description	K-value	No.	Total	No.	Total	No.	Total
Entrance Loss	0.50	1	0.50	0	0.00	0	0.00
Outlet Loss	1.00	0	0.00	0	0.00	1	1.00
90 degree bend	0.30	2	0.60	1	0.30	3	0.90
45 degree bend	0.23	0	0.00	0	0.00	6	1.38
22.5 degree bend	0.15	0	0.00	0	0.00	2	0.30
11.25 degree bend	0.09	0	0.00	0	0.00	0	0.00
Plug Valve	0.77	1	0.77	0	0.00	1	0.77
Check Valve	2.50	1	2.50	0	0.00	0	0.00
Tee (through)	0.60	0	0.00	3	1.80	0	0.00
Tee (side flow)	1.8	0	0.00	0	0.00	0	0.00
Wye (thru)	1.00	0	0.00	0	0.00	0	0.00
Reducer/Expander	0.19	1	0.19	0	0.00	0	0.00
Statement of the medical includes a control of the property of the Control of the		Total K Values:	4.56		2.10		4.35

Head Loss from fittings = $h_m = KV^2 / (2g)$

therefore, h(fittings)(ft) =

7.28

8.43

5.33

Total Minor Losses 21.05

STATIC LOSSES:

Elevation of highest point (discharge)(ft)=

Low water level in LS (Pump OFF)(ft) = Static head losses = high point - LS level therefore, h(static)(ft)= Maximum 717.45 673.83

Minimum 717 45 677.00

40.45

Total Static Head (Max) 43.62

43.62 TOTAL DYNAMIC HEAD (TDH) = h(friction) + h(fittings) + h(static) =

80.4

ft

Pressure (psi):

35

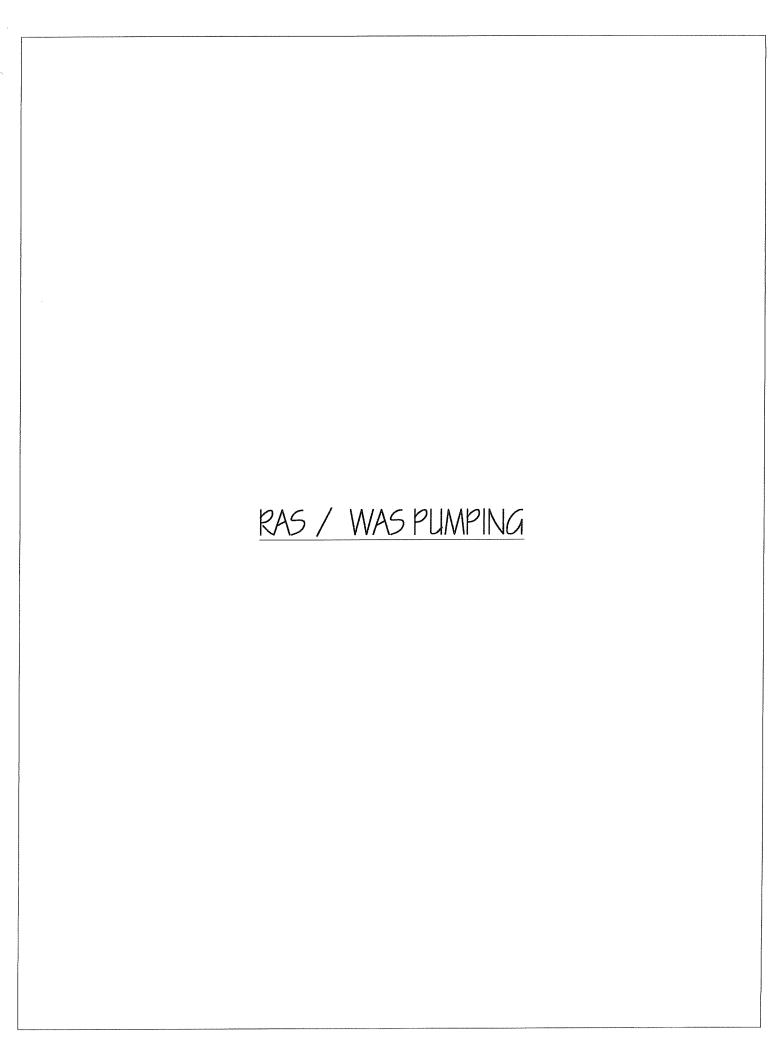
	LS DIS	CHARGE PIPIN	G 10"	LS	DISCHARGE PIPIN	IG 16"	FOR	CEMAIN PIPII	NG	TDH
FLOW RATE		FRICTION						FRICTION		
	VELOCITY	LOSS	MINOR LOSS	VELOCITY	FRICTION LOSS	MINOR LOSS	VELOCITY	LOSS	MINOR LOSS	
(gpm)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft)
2000	1.82	0.03	0.24	2.89	0.04	0.27	1.60	0.59	0.17	45.0
4000	3.65	0.10	0.94	5.79	0.15	1.09	3.20	2.12	0.69	48.7
6000	5.47	0.22	2.12	8.68	0.32	2.46	4.80	4.50	1.56	54.8
8000	7.30	0.37	3.77	11.58	0.54	4.37	6.40	7.67	2.77	63.1
11111	10.14	0.68	7.28	16.08	0.99	8.43	8.89	14.09	5.33	80.4
13000	11.86	0.92	9.96	18.82	1.32	11.55	10.40	18.84	7.30	93.5

NET POSITIVE SUCTION HEAD AVAILABLE

Absolute Pressure on surface (ha-ft)

Vapor Pressure of liqued (hvpa-ft) Static Height above impeller (hst-ft) Suction line losses (hfs-ft)

33.96 @ sea level 0.78 @ 68°F


0.00

(pump off - impeller) (submersible)

NPSHA = ha - hvpa + hst - hfs

33.2 ft

NPSHR must be 5' less than NPSHA (safety factor)

Pump Head Loss Calculations c = 120

0 1 0											
Pump Use: RAS/WAS pumping	mping	Pump	Pump Model Specified:	cified:				Ded	Date: Jan 4 2021	2021	
Elevations:			-					, <u>q</u>	Project #: 201610A	01610A	
Clarifier #1 711.45 Clarifier #2 708.20	NWL at Discharge CL of pump		717.45						Calc by: JPO Reviewed by: KFS	O y: KFS	
ADF 4.00 MGD 2778 GPM	Flow range: 50% 1389 #### 2778 #### 4167	C factor C factor	C factor C factor on new pipe	ojbe	120	L					
			Target Flow Rates:	Rates:							
Suction is split into 2 parts	(0	# Pumps	1	-	-	_	_	-	2		2
Part 1 from clarifier to header	ader	GPM	009	700	006	1050	1400	1800	2100	3200	4200
Part 2 from header to pump	dwi	CFS	1.34	1.56	2.01	2.34	3.12	4.01	4.68	7.13	9.36
	6"area 0.2	6" vel 12" Vel	154	1 80	232	2.70	3.60	7 63	7	000	00
Part 1 Clarifier 2 to R	75			2	i	i	9	S.	0.5	0.43	0.01
e 12	DI Area: 0.87	50% Q Ve	0.77	06.0	1.16	1.35	1.80	2.32	2.70	4.12	5.40
Length /1 ft Inside Dia 1.05 ft	8.45" class 51	Velocity H	0.01	0.01	0.02	0.03	0.05	0.08	0.11	0.26	0.45
Fittings		S	0.0002	0.0003	0.0005	0.0007	0.0012	0.0019	0.0025 0.0055		0.0092
σI	K Total										
1	0.50 0.5	c#1 Hf=SxL	0.0177	0.024	0.038	0.05	0.085	0.135	0.18	0.393	0.6504
Tee thru 0	1	cl #2	0.03167	0.042	0.067	0.089	0.152	0.242	0.322	0.703	1.163
90 2	0	Minor	0.0124	0.017	0.028	0.038	0.068	0.112	0.152	0.353	0.6075
side	0.25	TOTAL	0.0301	0.04	0.065	0.088	0.153	0.247	0.332	0.746	1.2579
increaser 0 45 0	0.19 0	(Minor + Hf)	0.044	0.059	0.095	0.127	0.220	0.354	0.474	1.056	1.771
	1.3										
		cl #2	0.04	90.0	60.0	0.13	0.22	0.35	0.47	1.06	1.77
	TOT	TOTAL PART 1	0.03	0.04	0.07	0.09	0.15	0.25	0.33	0.75	1.26

4200	9.36		10.81		1.87		0.0331		0.6448		6.0207		6.6656	
	7.13		8.23		1.05				0.39		3.495		3.885	
2100	4.68		5.40		0.45		0.0092		0.179		1.505		1.684	
1800	4.01		4.63		0.33		0.0069		0.134		1.106		1.24	
1400	3.12		3.60		0.20		0.0043		0.084		0.669		0.753	
1050	2.34		2.70		0.11		0.0025		0.049		0.376		0.426	
900	2.01		2.32		0.08		0.0019		0.037		0.276		0.314	
700	1.56		1.80		0.05		0.0012		0.023		0.167		0.191	
009	1.34		1.54		0.04		0.0009		0.01755		0.12287		0.14042	
GPM	CFS		12" velocii		V head		S		$Hf = S \times L$		Minor		TOTAL	(Minor + Hf)
ea: 0.87		Ω			Total	0	0.3	0.4	0.9	1.6	0.2	0	3.3	
DI Are		12.5 in I			∽I	0.50	0.26	0.39	0.23	0.78	0.19	0.21		
Pipe size 12 inch	Length 20 ft	Inside Dia 1.05 ft		Fittings	ØI	Entrance 0	Tee thru		PV 4	Tee side 2	Increaser 1	45 0		
	GPM 600 700 900 1050 1400	GPM 600 700 900 1050 1400 1800 2100 3200 4/2 CFS 1.34 1.56 2.01 2.34 3.12 4.01 4.68 7.13	4 600 700 900 1050 1400 1800 2100 3200 42 1.34 1.56 2.01 2.34 3.12 4.01 4.68 7.13	GPM 600 700 900 1050 1400 1800 2100 3200 4/2 CFS 1.34 1.56 2.01 2.34 3.12 4.01 4.68 7.13 12" velocii 1.54 1.80 2.32 2.70 3.60 4.63 5.40 8.23 1	GPM 600 700 900 1050 1400 1800 2100 3200 42 CFS 1.34 1.56 2.01 2.34 3.12 4.01 4.68 7.13 12" velocii 1.54 1.80 2.32 2.70 3.60 4.63 5.40 8.23 1	GPM 600 700 900 1050 1400 1800 2100 3200 4/2 CFS 1.34 1.56 2.01 2.34 3.12 4.01 4.68 7.13 12" velocii 1.54 1.80 2.32 2.70 3.60 4.63 5.40 8.23 1 V head 0.04 0.05 0.08 0.11 0.20 0.33 0.45 1.05	GPM 600 700 900 1050 1400 1800 2100 3200 42 CFS 1.34 1.56 2.01 2.34 3.12 4.01 4.68 7.13 12" velocif 1.54 1.80 2.32 2.70 3.60 4.63 5.40 8.23 1 V head 0.04 0.05 0.08 0.11 0.20 0.33 0.45 1.05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 inch DI Area: 0.87 GPM 600 700 900 1050 1400 1800 2100 3200 42 20 42 1.34 1.56 2.01 2.34 3.12 4.01 4.68 7.13 4.05 1.05	12 Inch D Area: 0.87 GPM 600 700 900 1050 1400 1800 2100 3200 4; 2.0 2; 2.0	12 Inch DI Area: 0.87 GPM 600 700 900 1050 1400 1800 2100 3200 4. 2.0	12 Inch DI	12 Inch DI	12 Inch D Area: 0.87 GPM 600 700 900 1050 1400 1800 2100 3200 220 ft 220 ft 220 ft 2234 3.12 4.01 4.68 7.13 7.13 2.34 3.12 4.01 4.68 7.13 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 4.68 7.13 2.34 3.12 4.01 2.34 3.12 4.01 2.34 3.12

TOTAL PART 2	0.1404	0.19	0.31	0.43	0.75	1.24	1.68	60 60 60	6.666
TOTAL PIPE/FITTINGS LOSSES GRAND TOTAL	0.17	0.23	0.38	0.51	0.91	1.49	2.02	4.63	7.92
	0.18	0.25	0.41	0.55	0.97	1.59	2.16	4 94	8 44

Hs = Static Head Hf = friction head Hv=vapor pressure= .78@68deg Ha = atmospheric pressure = 33 @ 705' above sea level Net Positive Suction Head Available = NPSHa = Ha - Hv - Hf \pm Hs

Hs = 6.0 ft clarifier #1 and 2,7' clarifier #2

37.31 36.73 36.20	33.95 33.33 32.76
37.71	34.37 3
37.84	34.51
37.99	34.67
38.05	34.74
NPSHa =	NPSHa =
at Clarifier #1	At clarifier #2

Pump Head Loss Calculations c = 120

DISCHARGE HEAD 2 parts, header and RAS Pipe	S Pipe										
		# Pumps	~	~	_	~	_	2	2		2
Pipe size 12 inch DI Area: 0.87	vrea: 0.87	GPM	009	200	006	1050	1400	1800	2100	3200	4200
Length 29 ft		CFS	1.34	1.56	2.01	2.34	3.12	4.01	4.68	7.13	9.36
Inside Dia 1.05 ft 12.64"											
		12" velocit	1.53	1.79	2.30	2.68	3.58	4.60	5.37	8.18	10.74
Fittings											
al 지	Total	V head	0.04	0.02	0.08	0.11	0.20	0.33	0.45	1.04	1.79
Tee side $\frac{1}{2}$ 0.84	0.8										
Tee thru 2 0.28	0.6	S	0.0009	0.0012	0.0019	0.0025	0.0043	0.0068	0.0090 0.0197		0.0326
	0										
PV 4 0.25	_	$Hf = S \times L$	0.02526	0.034	0.054	0.071	0.121	0.193	0.257	0.561	0.928
$\frac{1}{2.50}$	2.5										
90 1 0.42	0.4	Minor	0.20135	0.274	0.453	0.617	1.096	1.812	2.467	5.727	9.8664
Increaser 1 0.19	0.2										
		TOTAL	0.22661	0.308	0.507	0.688	1.218	2.005	2.724	6.288	10.794
	5.5	(Minor + Hf)									
Discharge header losses	S		0.23	0.31	0.51	0.69	1.22	2.01	2.72	6.29	10.79

RAS Pipe to Aeration									
sdund #	~	_	~	~	~	2	7		2
Pipe size 12 inch DI Area: 0.87 GPM	009	200	006	1050	1400	1800	2100	3200	4200
Length 118 ft CFS	1.34	1.56	2.01	2.34	3.12	4.01	4.68	7.13	9.36
Inside Dia_1.1_ft 12.6									
12" velocii	1.54	1.80	2.32	2.70	3.60	4.63	5.40	8.23	10.81
ØI	0.04	0.05	0.08	0.11	0.20	0.33	0.45	1.05	1.81
Tee side 0 0.78 0									
.hru 0 0.26	0.0009	0.0012	0.0019	0.0025	0.0043	0.0069	0.0092 0.0200		0.0331
2									
0.39 0.	0.106	0.141	0.225	0.299	0.510	0.812	1.081	2.358	3.902
PV 0 0.23 0									
0.30 0.30	0.056	0.077	0.127	0.172	0.306	0.506	0.689	1.600	2.756
Increaser 0 0.19 0									
TOTAL	0.162	0.218	0.352	0.472	0.816	1.319	1.770	3.958	6.659
1.5 (Minor + Hf)									
RAS pipe to aeration	0.162	0.22	0.352	0.472	0.816	1.319	1.770	3.958	6.659
Discharge Hf =	0.39	0.53	0.86	1.16	2.03	3.32	4.49	10.25	17.45
Static Head at NWL = 6.00 ft Clarifier #1 9.25 Clarifier #2									
Clarifier #1 Suction Hf =	0.17	0.23	0.38	0.51	0.91	1.49	2.02	4.63	7.92
Clarifier #2	0.18	0.25	0.41	0.55	0.97	1.59	2.16	4.94	8.44
TDH = Discharge Hf + Suction Hf + Static H	_	_	_	_	<u></u>	2	2		2
	009	700	900	1050	1400	1800	2100	3200	4200
Clarifier #1 TDH =	6.56	6.76	7.24	7.67	8.94	10.81	12.51	20.88	31.38
Clarifier #2 TDH =	9.82	10.03	10.52	10.96	12.26	14.17	15.90	24.44	35.14

ATTACHMENT 5

WWTP Construction Plans Ben Davis Conservancy District

UV MANUFACTURER'S TECHNICAL DATA SHEETS

Aquaray® 3X Vertical Lamp **UV Disinfection Equipment**

Budget Proposal Ben Davis Conservancy District WWTP Indiana

October 27, 2020

Contact information:

Prepared By:

SUEZ TREATMENT SOLUTIONS, INC

George Vrachimis Applications Engineer Tel: 201-676-2227

Email: george.vrachimis@suez.com

Local Sales Representative:

FACO WaterWorks LLC

Ken Sobbe Tel: 317-694-1896

Email: Ken@facollc.com

October 27, 2020

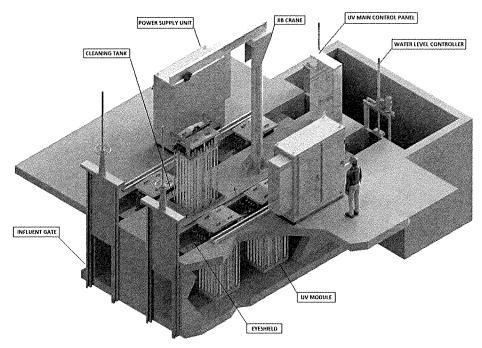
To: Kent Schuch, P.E. Triad Associates, Inc.

Re: Aquaray® 3X Ultraviolet Disinfection Equipment Ben Davis Conservancy District WWTP

SUEZ Treatment Solutions is pleased to submit our preliminary budget proposal for the Aquaray® 3X High Output Vertical Lamp ultraviolet disinfection system for the above referenced project. The proposed design is based on our latest Aquaray® 3X System which features vertically mounted high output amalgam lamps with variable output for greater power conservation. Some of the proposed Aquaray® 3X Vertical Lamp UV System's features include:

- Third-Party validated per 2012 NWRI guidelines
- Easy maintenance without the need to remove equipment from channel for lamp and ballast replacement.
- Automatic dose control is achieved by turning on/off lamps in combination with dimming in relation to a flow signal, ensuring that the plant is operated economically while still providing the required performance.

For a max disinfection flow of 16 MGD and a minimum UVT of 65%, SUEZ proposes to furnish two (2) UV disinfection channels. The proposed UV system will have UV modules mounted one (1) across by two (2) UV banks in series per channel. The UV system will deliver a minimum UV dose of 33,300 µWS/cm² (33.3 mJ/cm²) at the peak flow with all UV modules in service.


If you have any questions or require any additional information, please don't hesitate to contact our local representative or the undersigned.

Sincerely,

For SUEZ Treatment Solutions Inc. George Vrachimis Applications Engineer

- The UV lamps are mounted vertically and perpendicular to the flow, where all electrical connections
 are made out of the water. All the lamps are easily accessed through the lid of the top enclosure.
 This makes routine service such as lamp changes, performed without having to remove the lamp
 modules from the channel.
- Electronics, such as ballasts and communication cards, are all located in a remote enclosure away from the UV channel
- The UV lamps are mounted in a uniform staggered array. This ensures a semi-tortuous path for the effluent that avoids discharge of undisinfected wastewater.
- Flow pacing is achieved by a combination of dimming each row of lamps from 100% to 62% output and turning lamp rows on and off in relation to a plant flow signal. Each UV module has six (6) rows of lamps.
- Each UV module has a dedicated electric motor that powers a mechanical wiper. No failure of one wiping system component will result in the loss of wiping capability for the entire UV system.
- All UV modules are completely removable from the UV channel, allowing for regularly scheduled channel cleaning to remove algae or debris.

II. <u>DESIGN BRIEF:</u>

Parameter	Value	Unit
Max Disinfection Flow	16	MGD
Peak Flow	12	MGD
Average Daily Flow	4.0	MGD
Design UV Transmittance	65%	% UVT
TSS, 30 day geometric mean	<30	mg/L
TSS, Single sample maximum	<45	mg/L
E. Coli, 1-day maximum of daily samples	<235	CFU/100 mL
Minimum UV dose	33,300	μWS/cm²

III. PROPOSED AQUARAY® 3X UV SYSTEM DESIGN:

Description	Value
System Designation	Aquaray® 3X
Number of Channels	2
Number of Modules Across (Modules per Bank)	1
Number of Modules in Series (Number of Banks)	2
Aquaray® Modules/Channel	2
Total Number of Modules	4
Number of Lamps/Module	36
Total Number of Lamps	144
Headloss across UV modules at 16 MGD, in.	1.71 inches
Power Consumption per Lamp, W	400 watts
Power Consumption at 16 MGD, kW Through 2 Channels	53.5 kW
Power Consumption at 12 MGD, kW Through 2 Channels	42.8 kW
Power Consumption at 4 MGD, kW Through 1 Channel	18.2 kW
Max Operating Power, kW	58.4 kW

Proposed Channel Dimensions	Value
Channel Length, ft.	19'
Channel Width, in.	29.5"
Nominal Water Depth, in.	61" - 69"
Minimum Channel Depth, in.	77"

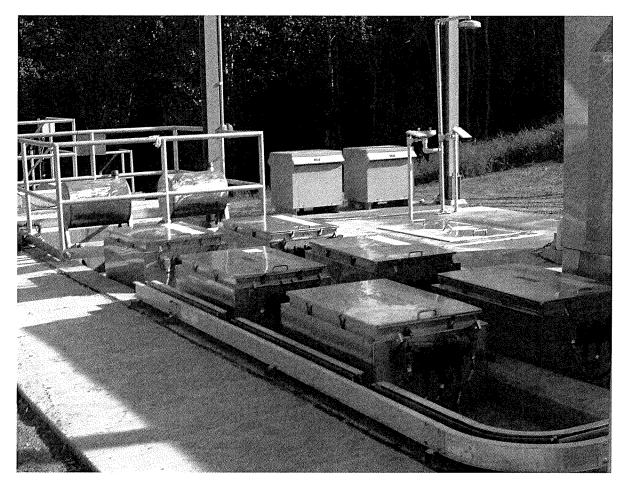
IV. SCOPE OF SUPPLY:

UV System Component	Value
Number of Aquaray® 3X Modules	4
Number of UV Lamps (Excluding Spares)	144
Number of UV Intensity Sensors (One per bank)	4
Number of Power Supply Units (PSUs)	2
Number of UV Main Control Panels (UMCPs)	1
Number of Power Cables	12
Number of Data Cables	8
Number of Cable Trays	2
Number of Stepdown Transformers	2
Number of Mounting Rails/Eye Shields	6
Level Control Weirs	1 set
Number of Conductivity Level Switches	2
Number of Cleaning Tanks	1
Spare Parts	Included
Field Service	Five (5) days in one (1) trip
Freight to job site	Included

V. SPARE PARTS REPLACMENT COST

PART/SERVICE	COST
UV Lamps (16,000 hour warranty)	\$175 / lamp
Sleeves (10 year warranty)	\$75 / sleeve
Ballasts (5 year warranty)	\$400 / ballast
Wipers (2,000 wipes)	\$8 / wiper
Additional 8-hours field service on site	\$ 1,390 per day + expenses (hotel, rental car, flight, etc)

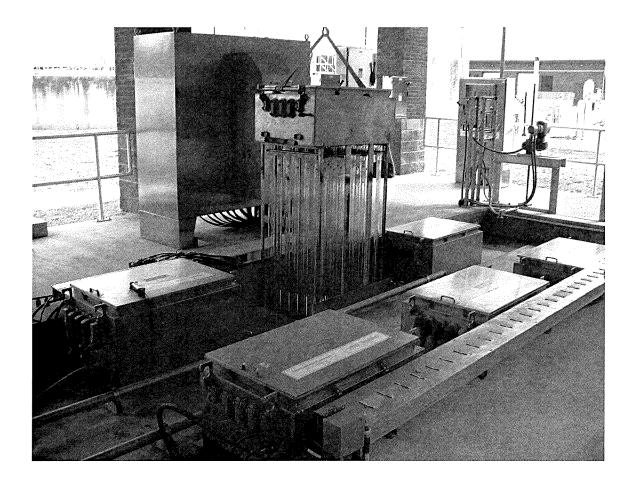
VI. <u>ITEMS PROVIDED BY OTHERS</u>


Note that the following items are to be provided by others (unless indicated otherwise above):

- UV channel construction/modification
- Channel grating
- Influent/Isolation gates
- Piping and valves
- Remote computer system
- Installation
- Embedded conduits
- Sample collection and laboratory analysis during performance testing
- Online UVT analyzer
- ½ Ton Jib or Overhead Crane

VII. PRICING, TERMS AND CONDITIONS

Budget Price	To be provided by local SUEZ Representative		
Taxes	Not included		
Payment Terms	 10% Net Cash, Payable in thirty (30) days from date of submittal of initial drawings for approval; 85% Net Cash, Payable in progress payments thirty (30) days from dates of respective shipments of the Products; 5% Net Cash, Payable in thirty (30) days from Product installation and acceptance or Ninety (90) 		
Submittals	6-8 weeks		
Equipment Delivery	18-20 weeks after submittal approval		
Freight	FOB jobsite		
Warranty	1 year after start-up or 18 months after delivery, whichever occurs first		


Plant Location: Harnett County, NC

Peak Flow: 20 MGD

Number of Channels: 2

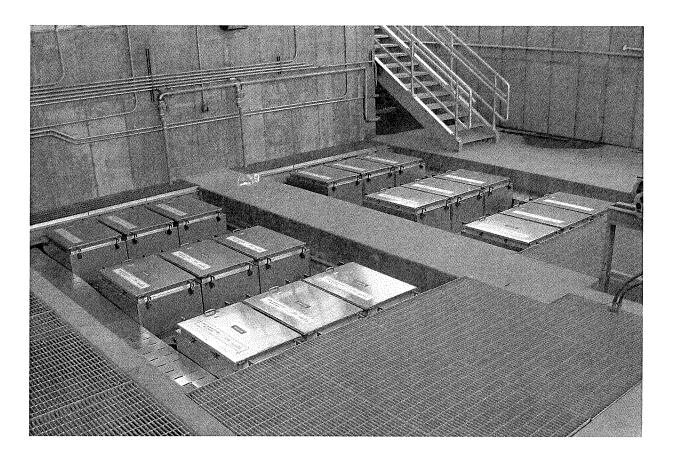
Number of Modules: 3 per channel (6 total)

Plant Location: Madison, AL

Peak Flow: 34 MGD

Number of Channels: 1

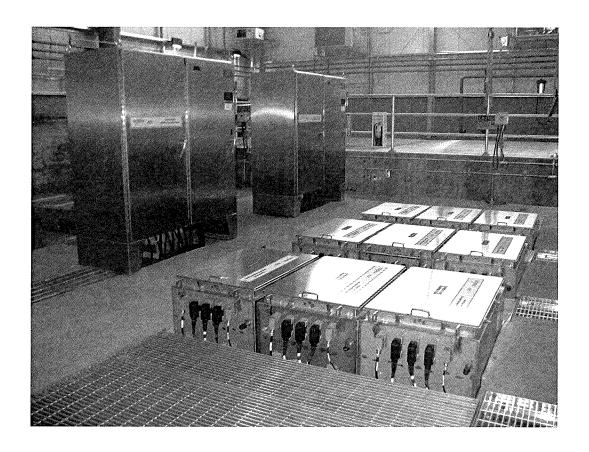
Number of Modules: 3 per channel (6 total)


Plant Location: Stratford, CT

Peak Flow: 39 MGD

Number of Channels: 1

Number of Modules: 9 per channel (9 total)


Plant Location: Jefferson City, MO

Peak Flow: 66.6 MGD

Number of Channels: 2

Number of Modules: 9 per channel (18 total)

Plant Location: Colorado Springs, CO

Peak Flow: 135 MGD

Number of Channels: 3

Number of Modules: 9 per channel (27 total)

LETTER OF TRANSMITTAL

Job No.: 202018A

TRIAD ASSOCIATES, INC.

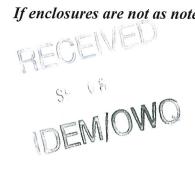
5835 Lawton Loop East Drive

Indianapolis, Indiana 46216-1064 (317) 377-5230 Fax (317) 377-5241

Fax (317) 377-52	41	Attention: MC 65-42FC		
		Reference: Ben Davis Conservancy District		
To:. IDEM – OWQ		WWTP Design		
Facility Construction & Eng	gineering Support			
MC 65-42FC	0 11			
100 N. Senate Avenue, Roo	m N1255			
Indianapolis, IN 46204-225				
maranapons, n v 1020 v 220	•			
WE ARE SENDING YOU	Attached	Under separate cover via the following items:		
Shop drawings	 -	x Plans Samples x Specifications		
Copy of letter		x Other: See Description Below		
copy of letter	Change order .	- Villet. See Description Below		
COPIES DATE NO.		DESCRIPTION		
1 07/06/2021 IDEM	WWTP Constructi	ion Permit Application per 327 IAC 3 including:		
SET		otentially affected persons		
	• Engineerin	•		
	Specs			
	• Plans			
	• Check no.	33243 for \$50 application fee.		
	RECEIVED			
	JU. 12 2001			
	IDEM/OV&			
THESE ARE TRANSMITTED		:		
\underline{X} For approval	_Approved as subm			
For your use	_Approved as noted			
As requested	_Returned for corre	ctionsReturncorrected prints		
For review and comment	_Other:			
FOR BIDS DUE:		PRINTS RETURNED AFTER LOAN TO US		
REMARKS:				

Date: July 6, 2021

If enclosures are not as noted, kindly notify us at once.


LETTER OF TRANSMITTAL

TRIAD ASSOCIATES, INC.

5835 Lawton Loop East Drive Indianapolis, Indiana 46216-1064 (317) 377-5230 Fax (317) 377-5241

	(317) 3	77-5230		Date: Septen	nber 3, 2021	Job No.: 202018A
Fax (317) 377-5241		Attention: N	Attention: Ms. Alissa O'Donnell, Project Engineer			
						servancy District
Γo:. IDEM – OWQ		W	WTP Design a	nd Construction Permit App		
Facility	y Constructio	n & Eng	ineering Support		esponse to Def	
,		Pr	Project SRF-0668			
	Senate Aven					
Indiana	apolis, IN 46	204-225	1			
WE ARE S	SENDING YO	-	Attached		arate cover via	the following items:
,	Shop drav	-	Prints	<u>x</u> Plans	Sample	
	Copy of le	etter	Change order	x Other: See	Description B	elow
COPIES	DATE	NO.			ESCRIPTION	
1	Sept 2021		Revised WWTP			
2	Sept 2021		Response 1 to De			
3	Sept 2021			ets; G2,G3,C1,	C3-C5,C8,C9,	P1-P4,P7,P14,P17,A1-A2,
			E200			
		ITTED a	as checked below:			
\underline{X} For app			Approved as subr		submit _	copies for approval
For you			Approved as note		bmit _	copies for distribution
X As requ			Returned for corr	ections Re	turn _	corrected prints
	ew and comn	nent	Other:			
_ FOR BI	FOR BIDS DUE: PRINTS RETURNED AFTER LOAN TO US					
REMARKS	EMARKS: Attached is the response to the Deficiency Notice for the Construction Permit Application for					
	The Ben Davis Conservancy District along with applicable revisions. Please let us know if					
	Additional information is needed. Thank-you.					
CONVERGE AND A STATE OF THE STA						
COPY TO:	TO: Angela Wirth, BDCD SIGNED:					

If enclosures are not as noted, kindly notify us at once.

TECHNICAL REVIEW

- 1. Please revise the design summary sheet as it appears to contain incorrect or incomplete information. Please send a revised design summary and ensure that it is signed, dated, and stamped. Otherwise provide justification for the following:
- A. Design Data, Design Peak Hourly Flow and Maximum Flow Capacity. Please explain what the average design peak flow of 4.0 MGD and the maximum plant flow capacity of 16.0 MGD reflects (e.g., maximum influent pumping rate) and explain the difference.

√ Response:

The design average flow (ADF) rate for the plant is 4.0 MGD
The design peak hourly flow rate is 12.0 MGD
The maximum flow capacity is 16.0 MGD
The plant is being designed for an average daily flow of 4.0 MGD

The peak hourly flow rate is the daily diurnal peak flow that it can handle.

The maximum flow is the hydraulic capacity that can be handled without overflows and is also the flow rate with all 4 raw sewage pumps pumping.

B. Design Data, Design Waste Strength. The proposed design summary states the design waste strengths for CBOD, TSS, NH3-N, and P are 170, 200, 25 and 5 mg/L, respectively: Since this will be a new wastewater treatment facility, please provide data to support the proposed design waste strengths. One justification could be a summarization of at least three (3) recent years' worth of monthly reports of operation (MRO) data if sampling was conducted on the flows that are currently being conveyed to Belmont WWTP.

Response:

Backup documentation confirming the design strengths are enclosed with this-submittal as **Attachment 1.** In the past, the District sampled 4 times monthly for CBOD, TSS, NH3-N. Three years worth of this data is provided. Since phosphorus was not required to be sampled, as part of the preliminary design, a 7 day sampling was ordered for all parameters including phosphorus in order to confirm past averages and to determine an approximate value for design.

• Calculations in the "design of treatment process" use an influent NH₃-N concentration of 30 mg/L. Please ensure the influent design strengths are the same across the application packet and supporting calculations.

/ Response:

The influent design strengths have been checked and changes were made where needed to assure that all values are consistent. A revised Design Summary is provided.

C. Design Data, Sampling Method and Location. Please specify the locations of where the automatic samplers will be placed within the treatment train. This information will be used to clarify any concerns with future MRO data.

√ Response:

The samplers will be located in the Main Lift Station and at the Post Aeration channel. This has been added to the Preliminary Design Summary.

- 2. The proposed headworks structure for the wastewater treatment plant is well within 500 feet of multiple nearby residential dwellings near the intersection of South Tibbs Avenue and Delmar Avenue.
- 327 IAC 3-2-6 (a) states the setback distances requirements for new wastewater treatment sites. It states that "no less than five hundred (500) feet shall separate a water pollution treatment/control facility from a dwelling ... as measured from the outside edge of the equipment involved with the treatment/control of water pollution to the outside edge of the dwelling." There are several factors that went into how this distance was chosen including property value, noise, smell, aesthetics, safety, and security reasons. Please revise the location of the headworks structure that meets this requirement.
- 327 IAC 3-2-6 (b) states the separation distances may be modified if "the affected dwelling owners agree to a shortened separation distance and record such agreement as easements and deed restrictions with the county recorder's office for the affected property." Please provide copies of these waiver records for the affected properties if this avenue has been pursued.

√ Response:

The north site contains the main lift station which was mis-labeled as a headworks. All references have been changed to denote it as the Main Lift Station site. The lift station will be equipped with a mechanically cleaned influent screen. The site previously contained a lift station.

(Main lift station = Regional lift station)

3. Ten State Standards 61.22 states that two (2) fine screens shall be provided with each unit capably of independent operation and the capacity shall "treat design peak instantaneous flow with one unit out of service." With a proposed design average flow of 4.0 MGD, this plant would be designated as "Major" NPDES facility. Please explain why only one mechanical fine screen was proposed for this new facility and how the plant will continue operate with the trash basket if the mechanical screen needs to be taken out of service for a longer period.

Response:

The lift station will be equipped with a mechanically cleaned influent bar screen, not a fine screen. All references to a fine screen have been removed.

4-inch spacing is a fine screen...
Doesn't explain why not using two screens...

4. There does not appear to be any specifications on the mechanical screen bypass screen. Specification 11362 (Influent Screen) section 2.01 only states that there should be a "coarse screen bypass" provided. Please provide the trash basket specifications that are proposed on the construction drawings.

Response:

The specifications for the trash basket have been added to the Influent Section 11362 and the revision is included with this submittal as **Attachment 2**.

5. It appears the selector tank calculations were not included in the provided supporting calculations titled "design of treatment process." Please provide design basis calculations regarding this treatment unit.

√ Response:

There is no selector tank in the plant design. The design includes first stage aeration to provide greater flexibility for the operator. The design summary has been revised accordingly. (was removed)

6. The design summary states that the oxygen requirement for CBOD and NH₃-N removal is 4,770 lb O₂/day and 3,836 lb O₂/day, respectively. While my calculations agree with the NH₃-N oxygen requirement, the CBOD value listed is lower than my calculations which shows it should be ~6,238 O₂/day using 1.1 lb O₂/day for every lb CBOD removed. Please clarify the discrepancies.

√ Response:

The calculations were reviewed and it was found that there was a date entry error. The design summary has been corrected. (listed 6,865 which is 1.2 lb 02/day per 16 CBOD)

- 7. It appears the chemical phosphorus removal calculations were not included in the provided supporting calculations titled "design of treatment process." Please provide design basis calculations regarding this treatment unit.
- A. Demonstrate how a chemical dose was established and that it will be adequate to bring the effluent phosphorus concentration to under 1.0 mg/L. Stoichiometric calculations will be needed to support the design basis.

Response:

Please see the attached spreadsheet which is included with this submittal as **Attachment 3**. The chemical dose was based on stoichiometry. The phosphorus removal level was increased to 85% to ensure an effluent value below 1.0 mg/L. The pump design flow is now 6.69 GPH or 160.57 GPD.

Alum requires 279 gal/day [499. 1.34]
Sodium Aluminate 35 gal/day [439. 1.52]
PACI 131 gal/day [30% 1.35]

B. Demonstrate how the chemical feed pump rate was established, that the proposed 6 GPH chemical feed pump rate will be adequate.

Response:

Please see attached spreadsheet, **Attachment 3**. The chemical feed rate is based on the design flow rate and its accompanying mass flow rate for phosphorus. The specification section 11290 for Phosphorus Removal Facilities has been updated to specify a larger pump. This is provided as **Attachment 4**.

C. Demonstrate that the proposed 7,000 gallon storage tank will have at 10+ days of chemical storage. Also demonstrate the chemical's shelf life and ensure the expected storage supply will not degrade in concentration.

Response:

At the 160.57 GPD flow rate, the 10 day storage requirement is 1,610 gallons. The 7,000 gallon storage tank will hold 43.6 days worth of sodium aluminate. From suppliers, the 43% solution sodium aluminate has a minimum month-long shelf life but can be stored longer. The 7,000 gallon tank is sized to be larger than needed for sodium aluminate; a month's supply of sodium aluminate would be about 5,000 gallons which is about the amount that would be brought in by tanker truck. The larger tank allows for using other chemicals that require more volume for a 10 day supply (alum) as may be dictated by economic/supply chain considerations. It also allows for slightly less than a month's supply at the 95% removal level.

D. Provide calculations to demonstrate how much additional secondary chemical sludge is expected to be produced. The aerobic digester calculations provided do not appear to mention or demonstrate the chemical sludge. Please note that approximately 15 to 20% additional chemical sludge (by weight) is generated due to phosphorous removal by chemical precipitation.

√ Response:

It is estimated that there will be 2.1 to 7.5 mg of chemical sludge produced for every 1 mg of phosphorus removed. Therefore, additional sludge produced ranges from 300 to 1,300 pounds based on the design flow rate and loading along with removal to the 1.0 mg/L limit and total removal.

8. Construction drawing sheet P14 shows a bar screen that will be fabricated and placed over the clarifier effluent. Please explain what purpose this bar screen serves as the purpose of any screening in this location is unclear to IDEM.

√ Response:

The screening shown on **Sheet P14** is safety grating to prevent persons or debris from falling into the drop box. It also serves as an access for maintenance purposes. The plan sheet has been revised to more clearly indicate this.

9. Construction drawing sheet P17 shows an outgoing pipe labeled "30-inch effluent to clarifier No. 2" ahead of the proposed disinfection bypass piping. However, both 30-inch influent from clarifier No. 1 and No. 2 are going into this structure. Please explain what purpose the 30-inch effluent to clarifier No. 2 serves.

Response:

The additional 30" pipe is intended to allow the clarifiers to be operated in series or in parallel. **Sheet P17** has been revised to more clearly show this.

10. Please provide the ultraviolet (UV) disinfection manufacturer's technical data sheet for the proposed UV disinfection system so that it can be verified that the system is being sized appropriately for the peak hydraulic flow.

Response:

The UV manufacturer's technical data sheet is attached as Attachment 5.

11. The design only proposes 1 blower with the capacity of 120 cfm for the post-aeration tank. Please explain how the plant continue to operate and meet the minimum D.O. effluent limitations if the blower needs to be taken out of service for a longer period since it is dedicated and not shared with other units.

Response:

An additional blower will be purchased and stored as a spare in case the installed unit needs to be taken out of service.

12. The aerobic digester calculations provided states the total air demand as 3,013 cfm. However, the design only proposes 2 blowers each with the capacity of 1,500 cfm. Please explain why the blowers only meet half of the required air and/or why a third blower is not provided. How will the plant continue to operate if one of the blowers needs to be taken out of service for a longer period since they are dedicated and not shared with other units?

√ Response:

The blowers will be shared with the aeration. The Design Summary was incorrect but has been corrected. In addition, please note that the digester calculations were modified to accommodate the additional sludge created from chemical phosphorus removal. The revised calculations are included in this submittal as **Attachment 6**.

13. There does not appear to be generator specifications. The electrical specification division states "to be provided by engineer." However, there were no electrical specifications as part of the original submittal. Please provide the generator specifications so their capacities can be verified. Otherwise, please include the capacity and specific information on the electrical construction drawings and ensure that they are signed, stamped, and dated by a professional engineer.

Response:

Enclosed as Attachment 7 are the generator specifications, Section 16211.

LETTER OF TRANSMITTAL

Date: September 16, 2021 Job No.: 202018A

TRIAD ASSOCIATES, INC.

5835 Lawton Loop East Drive Indianapolis, Indiana 46216-1064 (317) 377-5230

	Fax (317)	377-52	41	Attention: Ms. Alissa O'Donnell, Project Engineer
				Reference: Ben Davis Conservancy District
To:. IDEM -	- OWQ			WWTP Design and Construction Permit App
Facility	Construction	n & Eng	ineering Support	Response 2 to Deficiency Notice
•				Project SRF-0668
100 N.	Senate Aven	ue, Rooi	m N1255	
	polis, IN 46			
WE ARE S	SENDING YO	OU	Attached	Under separate cover via the following items:
	Shop drav	vings	— Prints	\overline{x} Plans Samples \overline{x} Specifications
-	Copy of le		Change order	x Other: See Description Below
• -			_ ~	
COPIES	DATE	NO.		DESCRIPTION
1	Sept 2021		Revised WWTP C	Construction Permit Application
2	Sept 2021			5-21 Comments with Attachments
3	Sept 2021		Revised Plan Shee	
	o openion			
THESE AR	RETRANSM	ITTED	as checked below:	
X For app			Approved as subm	nitted Resubmit copies for approval
For you		_	Approved as noted	
\overline{X} As requ	8	_	Returned for corre	
		ment —	Other:	
For review and commentOther: FOR BIDS DUE:			_	PRINTS RETURNED AFTER LOAN TO US
	Do DoL.			
REMARKS				nments regarding the Construction Permit Application for
•	The Ben I	Davis Co	onservancy District a	along with applicable revisions. Please let us know if
	Additiona	l inform	ation is needed. Tha	ınk-you.
COPY TO:	Angela W	irth, BD	CD	SIGNED: All Humal

If enclosures are not as noted, kindly notify us at once.

Response states that that District sampled 4 times monthly for CBOD, NH3-N, and TSS.
However, TSS was not included in the submitted data from January 2018 to May 2020.
Was this information not included by accident or was never recorded and listed by accident?

Response:

TSS should have been included but it was not included in the previous submittal by accident. Attached is the 2019 and 2020 data that was used for design (Attachment 1) along with several years of historical data (Attachment 2). Sampling data is not available for 2018.

2. Sheet C1 does not show an existing lift station anywhere. Your response states "the site previously contained a lift station." Also, google maps street view (photos taken May 2019) does not show any structures or concrete in the proposed location. Please revise the drawings to show the existing lift station location or explain what is meant by the above statement.

Response:

The existing site previously contained a lift station which has long been removed (probably late 1970s) and covered up because it was no longer necessary. The lift station was located on the site but not in the exact location of the lift station being proposed for this project. The purpose of the statement was only to note that the site was used for a lift station in the past.

3. Based on the above information, it would appear this lift station is new. Filling out the plant lift station information under wastewater treatment plant unit implies this is part of a headworks structure and would need to meet the 500 ft separation distance requirement. However, I believe you meant to state this proposed lift station is a regional lift station (not a plant lift station) and the IV sewer collection system portion should be filled out instead.

Response:

Yes, the proposed lift station is a regional lift station. The Design Summary has been revised and the lift station information is now shown in Section IV.

4. Sheet C4 still labels the main lift station as headworks. Please check all documents and ensure that all references to "headworks" has been changed to "regional lift station" if the above comment is correct in my assumption. Please send any revisions.

Response:

Sheet C4 has been corrected and the rest of the set has been checked. Revised sheet C4 is included with this submittal.

5. The sewer section of the design summary lists the gravity sewer as 36 feet diameter and made of ductile iron pipe. Sheet C4 does show a proposed 36 inch diameter gravity sewer but it also references ASTM F679 which is for polyvinyl chloride piping. Please clarify the differences and change any drawings, design summary sections, or specifications as needed.

Response:

The design summary and Sheet C4 have been revised to show a 36 inch diameter SDR 21 PVC pipe. The ASTM designation has been changed to D1784 to reflect the higher rated pipe.

6. For reference, the force main section of the design summary states the ASTM/AWWA standard is ASTM D3350. However, that ASTM is for the resin classification specification not the pipe material itself. This is a common occurrence we have been seeing lately and just wanted to inform you that it should be ASTM D3035 that is specified instead.

Response:

The ASTM designation has been changed to ASTM 3035 as noted.

7. The response states that the lift station will not be equipped with a fine screen. However, the proposed screen on the design summary is listed as having ¼-inch spacing, which is a fine screen. The issue wasn't that it was a fine screen, but why was only one being provided (which was not answered). However, if this is a regional lift station, there would not be a requirement for two screens as there is a bypass (trash screen) to prevent water from backing up into the system.

Response:

Thank-you for the clarification on your previous comment. This is a regional lift station and the design summary has been changed to indicate this. The lift station information was moved to Section IV.

8. The chemical phosphorus removal section in the design summary is only filled out for sodium aluminate. However, the provided calculations appear to show that Alum and PACI (Hyper+Ion® 1997) are also being considered. Please verify that only sodium aluminate is being considered as part of the final design. Otherwise, my calculations show that the proposed pumps would not be adequate for the amount of alum needed per hour.

Response:

The calculations included Alum and PACI for internal comparison purposes only. Only sodium aluminate is being considered in the final design.

 Response states that that District sampled 4 times monthly for CBOD, NH3-N, and TSS. However, TSS was not included in the submitted data from January 2018 to May 2020. Was this information not included by accident or was never recorded and listed by accident?

Response:

TSS should have been included but it was not included in the previous submittal by accident. Attached is the 2019 and 2020 data that was used for design (Attachment 1) along with several years of historical data (Attachment 2). Sampling data is not available for 2018.

2. Sheet C1 does not show an existing lift station anywhere. Your response states "the site previously contained a lift station." Also, google maps street view (photos taken May 2019) does not show any structures or concrete in the proposed location. Please revise, the drawings to show the existing lift station location or explain what is meant by the above statement.

Response:

The existing site previously contained a lift station which has long been removed (probably late 1970s) and covered up because it was no longer necessary. The lift station was located on the site but not in the exact location of the lift station being proposed for this project. The purpose of the statement was only to note that the site was used for a lift station in the past.

3. Based on the above information, it would appear this lift station is new. Filling out the plant lift station information under wastewater treatment plant unit implies this is part of a headworks structure and would need to meet the 500 ft separation distance requirement. However, I believe you meant to state this proposed lift station is a regional lift station (not a plant lift station) and the IV sewer collection system portion should be filled out instead.

Response:

Yes, the proposed lift station is a regional lift station. The Design Summary has been revised and the lift station information is now shown in Section IV.

4. Sheet C4 still labels the main lift station as headworks. Please check all documents and ensure that all references to "headworks" has been changed to "regional lift station" if the above comment is correct in my assumption. Please send any revisions.

Response:

Sheet C4 has been corrected and the rest of the set has been checked. Revised sheet C4 is included with this submittal.

5. The sewer section of the design summary lists the gravity sewer as 36 feet diameter and made of ductile iron pipe. Sheet C4 does show a proposed 36 inch diameter gravity sewer but it also references ASTM F679 which is for polyvinyl chloride piping. Please clarify the differences and change any drawings, design summary sections, or specifications as needed.

Response:

The design summary and Sheet C4 have been revised to show a 36 inch diameter SDR 21 PVC pipe. The ASTM designation has been changed to D1784 to reflect the higher rated pipe.

6. For reference, the force main section of the design summary states the ASTM/AWWA standard is ASTM D3350. However, that ASTM is for the resin classification specification not the pipe material itself. This is a common occurrence we have been seeing lately and just wanted to inform you that it should be ASTM D3035 that is specified instead.

Response:

The ASTM designation has been changed to ASTM 3035 as noted.

7. The response states that the lift station will not be equipped with a fine screen. However, the proposed screen on the design summary is listed as having ¼-inch spacing, which is a fine screen. The issue wasn't that it was a fine screen, but why was only one being provided (which was not answered). However, if this is a regional lift station, there would not be a requirement for two screens as there is a bypass (trash screen) to prevent water from backing up into the system.

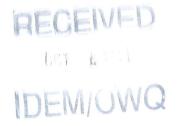
Response:

Thank-you for the clarification on your previous comment. This is a regional lift station and the design summary has been changed to indicate this. The lift station information was moved to Section IV.

8. The chemical phosphorus removal section in the design summary is only filled out for sodium aluminate. However, the provided calculations appear to show that Alum and PACI (Hyper+Ion® 1997) are also being considered. Please verify that only sodium aluminate is being considered as part of the final design. Otherwise, my calculations show that the proposed pumps would not be adequate for the amount of alum needed per hour.

Response:

The calculations included Alum and PACI for internal comparison purposes only. Only sodium aluminate is being considered in the final design.


LETTER OF TRANSMITTAL

TRIAD ASSOCIATES, INC.

5835 Lawton Loop East Drive Indianapolis, Indiana 46216-1064 (317) 377-5230

ma	ianapons, me			
	(317) 3	77-5230		Date: September 28, 2021 Job No.: 202018A
	Fax (317)	377-52	41	Attention: Ms. Alissa O'Donnell, Project Engineer
				Reference: Ben Davis Conservancy District
Γο:. IDEM	– OWQ			WWTP Design and Construction Permit App
Facility	y Constructio	n & Eng	ineering Support	Response to Deficiency Notice
,			0 11	Project SRF-0668
100 N.	Senate Aven	ue, Roor	n N1255	
	apolis, IN 46			
WE ARE S	SENDING YO	OU	Attached	Under separate cover via the following items:
	Shop drav	vings	Prints	x Plans Samples x Specifications
	Copy of le	etter	Change order	x Other: See Description Below
•		-		
COPIES	DATE	NO.		DESCRIPTION
1	Sept 2021		Revised WWTP (Construction Permit Application
2	Sept 2021		Response 3 to Co.	mments of 9/23/21
3	Sept 2021		Revised Plan She	ets; C4 through C7, P18
4	Sept 2021		Revised Specifica	ation Sections 02650 (Piping); 02731 (Gravity, Effluent,
			Force Main)	
				9
				·
THESE AF	RE TRANSM	ITTED a	is checked below:	
X For app	roval		Approved as subn	nitted Resubmit copies for approval
For you			Approved as note	
X As requ	ested		Returned for corre	
_	ew and comm	nent —	Other:	
	DS DUE:	-		PRINTS RETURNED AFTER LOAN TO US
_	•			
REMARKS	S: Attached i	s the res	oonse to IDEM's c	omments of 9/23/21 for the Permit Application for
				along with applicable revisions. Please let us know if
			tion is needed. That	
COPY TO:	Angela W	irth, BD0	CD	SIGNED: All Kinal

If enclosures are not as noted, kindly notify us at once.

- 1. Gravity, Influent, 36-inch diameter, PVC Pipe (located on Sheet C4)
- D1784 is for rigid PVC compounds. Need to change.
- Need a standard that is listed under 327 IAC 3-6-8 (a, 5):
 - o (D) ASTM 679 is acceptable for the large diameter PVC gravity application.
- Section 02650 (Piping) includes ASTM 679 / only applies up to 27-inch diameter
 - o Proposed pipe is 36-inch in diameter
- State DR-21 but for ASTM F679 it should be either PS 46 or PS 115

Response:

All off-site piping (gravity influent to lift station, force main, effluent) have been changed to SDR-21. The gravity influent is now contained in revised section 02731, Gravity Main, Effluent, and Force Mains. Sheet C4, specification section 02650 and the design summary have been revised accordingly. The revised plan sheet C4 and updated specification sections 02650 and 02731 are included with this submittal.

- 2. Force Main, Influent, 18-inch/24-inch diameter, HDPE Pipe (located on C4, C5, C6, and C7)
- List ASTM C906 in design summary which is "test method for T-Peel Strength of Hot Applied Sealants). Should be AWWA C906.
- Drawing C4 only shows 16-inch and 24-inch HDPE force mains.
- Design summary states 125 psi pressure, DR-17. IDEM requires 160 psi minimum for HDPE and 200 psi minimum for PVC.
- Section 02650 (Piping) states HDPE shall meet the requirements of AASHTO.
 - o We don't allow AASHTO standards; needs to be ASTM or AWWA standards

Response:

All off-site piping has been changed to SDR-21. The Design Summary has been revised accordingly. The plans and the design summary both now indicate 16" and 24" force main. The pressure class has been changed to 200 psi to coincide with PVC. Revised plan sheets C4 through C7 are included with this submittal.

- 3. Gravity, Effluent, 42-inch diameter, HDPE Pipe (located on Sheet P18)
- Any reason why using HDPE pipe for gravity application?
- ASTM F714 is for force mains as stated in 327 IAC 3-6-8 (a, 6, C)
- If continuing, need a standard that is listed under 327 IAC 3-6-8 (a, 5) or variance to the technical standards request + supporting information.
 - o (F) ASTM F894 is the only one for polyethylene (PE) gravity application and goes up to the proposed diameter

- Section 02650 (Piping) states HDPE shall meet the requirements of AASHTO.
 - o We don't allow AASHTO standards; needs to be ASTM or AWWA standards

Response:

All off-site piping has been changed to SDR-21. The gravity effluent has been revised to 36 inch diameter SDR-21. The Design Summary has been revised accordingly. Specification sections 02650 and 02731 have been revised. Revised plan sheets P18 and C4 through C7 are included with this submittal.

Comment:

Section 02650 (Piping) was never updated, and the ductile iron pipe (2.02) is still listed. New specifications are needed.

Response:

Section 02650 has been updated to coincide with IDEM's comments and our responses. However, the ductile iron pipe section 2.02 has remained since there are other areas in the project that require ductile iron such as the RAS/WAS interior/exterior piping. Section 1.02, item 1, has been modified to note that ductile iron will be used in the plant yard. The effluent piping is now covered under section 02731. Updated sections 02650 and 02731 are included with this submittal.

Comment:

No horizontal directional drilling proposed on drawings, but is listed in Section 02610. Wanting to make sure that nothing besides the force main would be installed via horizontal directional drilling. Different standards may also be needed such as thermal butt fused joints. Gravity sewer HDD installations are usually not granted.

Response:

Horizontal directional drilling would only be considered for a portion of the effluent line that is upstream of the jack and bore pit for the railroad crossing. As an alternate this portion would be open cut. Both the force main and effluent pipe will be Jack and Bored under the railroad.

Clarifier # 1 effluent pipe to splitter ahead of UV 30" pipe 407 ft of equiv. pipe

n in parallel	
.⊑	
operation	•
.⊆	
clarifiers	
Both	
4	
MODE	-

Hazen Williams

	ADF	PEAK	MAX
Specified Data	3472	4166.5	6250
l = length of pipe (ft)	407	407	407
c = Hazen-Williams roughness constant	140	140	140
q = volume flow (gal/min)	3472	4166.5	6250
dh = inside or hydraulic diameter (inches)	28.77	28.77	28.77

MODE 2: Both clarifiers in operation in series

6944 8333 407 407 140 140 6944 8333 28.8 28.77	333 12500 407 407 140 140 333 12500 3.77 28.77
--	--

Calculated Pressure Loss

-	
0.10	0.04
0.05	0.02
0.03	0.01

0.15	0.07	0.05
0.34	0.16	0.12

1.40	0.60
0.66	0.28
0.47	0.20

0.39

0.13 90.0

6.17
4.11
3.43

3.09

2.06

Velocity	(ft/s)
4 Flow	elocity (
culate	flow vi
Cal	>

Head loss (ft H20) Head loss (psi)

•	t/s)
	city (f
	√ velo
	= fo

(ft/s)	
velocity	
= flow	
~	

142	10	150	80	25
Pipe length Horiz	Vert	90's 2 @ 75 ea	45's 2 @ 40 ea	22.5 1 @25

use manufacturer's headloss at .15 ft thru the unit

Post aeration

$H^{3/2}$
T
3.367

Cipolletti weir Max

|| |--|

4 ft

H> .2 ft P/H >2 b/H >2

1.503 ft ェ

24.817 cfs 16.031 MGD

Q

ADF

4.0 MGD 6.2 CFS 0.60 ft

∥ ⊥

12 MGD 18.58 CFS 1.24 ft

Peak

二

708.00 705.85 705.35 705.35 703.85 Set bottom of weir so max elev Top of Wall Top of Weir from UV Allow .5' drop at Max Bottom of weir

ا ہے				1
<u> </u>		7		
	4V: 1H			8
Ŧ				
			-	

IKIAL	ASSU	CIATES, II	VC.			DESIGN CALCULATIONS				
PROJEC	T NAME:	Ben Davis CD		PROJ	ECT ID:	202018A			DATE:	11/1/202
DESCRI	PTION:	Aeration Tank Sizi	ng for Extended	Aeration	on				Page 1 of	2
PREPAR	ED BV: I									
FILEAN	LUBI.			0.094.271(2.16		become somewhater	THE CONTRACT CARRY ON A CA			
Flow rates			MGD							
	Peak	12								
	Max	16								
BOD		170	ppm							
TSS		200	ppm							
Ammonia P		25 5								
1		3								
Convention	nal activate	d sludge design w	ould require a	loadin	g not to excee	d 40#bod/10	000 cf of tank	volume		
ADF loadir	ng io	4 × 170 × 9 24 =			F 074					
Aeration vo		4 x 170 x 8.34 = 5,671	/15 =		378,080	pounds cf or	2,828,038	gallons	total capacity	
If there are	4 tanks the	en			94,520	cf ea	707,010	gallons e	а	
Dimension	S								· ·	
211101131011	SWD =	15			6,301	sf area				
	W/L ratio =	range of 3/1 to 2/	1		Company of the post of the	Width	45			
	+					Length	140	ft		
Final adjus	tments for	dimensions								
		WD =	15	ft		Width	45		Length	14
					•					
Detention t	time @ ADF	:								
Dotortion		-								
	V/Q	=	16.97	hrs						
Organic Lo	odina	=	15.0	lbs/10	00-6					
Organic LC	aurig		15.0	UI \eal	UUCI					
	Volume in	aeration	378,080							
			2,828,038	Gallor	ns					
	ADF Load	of BOD	5,671	lhe						
	ADI LOGG	OI BOB	0,071	103.						
AIR REQU	IREMENTS									
CBOD	# 5671	multiplier 1.5	# O2 8,507							
NH4	834	4.6	3,836							
	i	TOTAL	12,343		#/02/Day					
SCFM=	oxygen reg	uired/cwf efficiend	cv*1440*densi	tv of ai	r*#02/#air)	•
			y Trie delle	Ly Or an	1102/11all					
	etric Air Re	equirements								
#02/# air std density			0.235 0.075							'
cwt eff	4		30%	%						
AOR/SOR			0.5							
scfm	=		3,242	scfm						
10 State S	tandards N	linimum Air for E	A					4		
SCFM air				scfm	2050 cfm/pd	BOD/day				
	#/02/Day	CuFt/Air/Day				,				
NH4	3,836	1500	3,996	scfm						
Total Air			12,070	scfm						
Furnish 3 b	olowers 400	0 scfm each with	1 Standby	4 Blov	vers Total					

		CIATES, IN				DESIGN CA	ALCULATIONS			
PROJECT NAME: Ben Davis CD		PROJE	ECT ID:	202018A			DATE:	11/1/20:		
DESCRI	PTION:	Aeration Tank Sizi	a for Extende	d Aeratio	n .				Page 1_ of	f 2
BECOM	111014.	relation falls of	ig for Exterior	u Acratic	711				rage _ i _ oi	
PREPAR	RED BY:		10 The same of the 1997 to					on byor Burst		alian Manhauta de Laco
	1									
:M ratio										
		influent CBOD in	pounds			lbs of CBOI				
	Volume of	tank				gallons in a	eration			
	MLSS MLVSS			-	2500		70/ 1 (:1		3500	
	Mass in ae	ration				assumes 75			2625	
	IVIASS III ac	Tation			44,223	IDS OF WILVE	55		61,913	
			F/M ratio =		0.13				0.09	
olide rete	ention time									
ondo rete	THOIT WITE									
		lids in aeration				lbs of MLSS			82,550.44	
		lids in effluent			334	lbs of solids	in effluent @10	O ppm	334	
	Mass of so	lids in waste		Hi		lbs of solids	in WAS stream	า	2,700	
				Lo	1,200				1,800	
			SRT =			days			27	days
					38				39	days
	Volume wa	sted at 1.0 % soli	ds	Hi	21,583	gallons			32,374	gallons
	,			Lo	14,388	gallons			21,583	J

TRIAD ASSOCIATES, INC.		DESIGN CALCULATIONS			
PROJECT NAME:	Ben Davis CD	PROJECT ID:	202018A	DATE: 20-Jan	
DESCRIPTION:	Clarifiers			Page of	
PREPARED BY:	Kent Schuch				

CLARIFIER DESIGN

Flow rate ADF =

4 mgd

PEAK =

12

MAX =

16

Criteria to meet

SWD > 12'

SLR < 40 #/day/sf

SOR < 1,000 gpd/sf

WLR < 30,000 gpd/LF of weir

Choose circular center feed perimeter collection

Radius

50 ft

Area =

7,854 sf

Total area

15,708 sf

SWD = Volume, ea tank

15.4 ft

120,951 cf 241,903 cf

Volume, total

1,809,432 gallons

Detention time =

0.45 days @ ADF

10.9 hours

0.15 days @ PEAK

3.6 hours

Surface	Overflow	Rate	(SOR)

at ADF 255 gpd/sf

at PEAK

764

Solids Loading Rate (SLR)

based on peak flow plus ras flow and MLSS design under aeration

Q peak

12 mgd

Q ras

6 mgd

MLSS low

2500 ppm

MLSS high

4200 ppm

TRIAD ASSOCIATES, INC.			DESIGN CALCULATIONS				
PROJECT NAME:	Ben Davis CD	PROJECT ID:	202018A	DATE: 20-jan			
DESCRIPTION:	Clarifiers			Page of			
PREPARED BY:	Kent Schuch						

 Solids, # Low
 375,300 lbs

 Solids, # High
 630,504 lbs

SLR, low	23.9 lbs/sf
SLR, high	40.1 lbs/sf

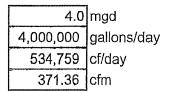
Weir Loading Rate (WLR)

Clarifier radius 50 ft
Effluent weir radius 1 49 ft
Effluent weir radius 2 46.5 ft

Perimeter r1 308 If per tank

Perimeter r2 292 If

TOTAL 1,200 LF of weir


WLR	
ADF	3,333 gpd/LF
PEAK	9,999
PEAK RS	14,999

DDOJE	CT NAME:	Dan Davis C	, INC.	IDDO IFOT	10		ALCULATIONS	,	T= . ==	
		Ben Davis C		PROJECT	ID:	202018A			DATE:	11/14/202
DESCF	RIPTION:	Aereobic Diges	sters						Page 1_ o	f_1_
PREPA	RED BY:	Jonathan Moer	1							
AEROBI	C DIGESTE	R								
		<u>.</u>								
ADF=	4.0	mgd	4,000,000	and						
CBOD=		ppm	4,000,000	gpu						
Total lbs		lbs/day								
	547									
roposed	tanks are 2 tanks ea	ah.	W 45	L 140	D		Volume,ea		Total	
	Z tariks ea	JN .	45	140	15		94,500 706,860	cf gallons	189,000	
							700,000	galloris	1,413,720	gais
IR REC	UIREMEN	Г		-						
-	30 cfm/1 0	00 of of tank v	olume results in	2		F 670	-f t-t-1 -'-			
	30 0111/1,0	oo ci oi tarik v	olume results ii	1		5,670	cfm total air			
				2 blowers	each	2,835	cfm			
							-			<u> </u>
Digester	Requireme	nts Ten State		(Section 8	35.31)					
/ a le con a	2.0 #	25 4.05	P.E.		107.100					
/olume	3.0 cu.ft x l		33,360		125,100					
	Cu.it x 7.40	,			935,748	gais				
	torage									
Sludge S										
Sludge S	0.13 cu.ft/c				4,337	cu.ft./day				
Sludge S	0.13 cu.ft/c Cu.ft x 7.48	3			32,439	gals/day				
Sludge S	0.13 cu.ft/c	3			- capter of the	gals/day				
	0.13 cu.ft/c Cu.ft x 7.48 15 days x g	gals/day	rage		32,439 486,589	gals/day				
4	0.13 cu.ft/c Cu.ft x 7.48 15 days x g	3	rage		32,439	gals/day				
otal Slud	0.13 cu.ft/c Cu.ft x 7.48 15 days x g dge Digeste	gals/day			32,439 486,589 1,422,337	gals/day				
otal Slud	0.13 cu.ft/c Cu.ft x 7.48 15 days x g dge Digeste	gals/day			32,439 486,589 1,422,337	gals/day gals				
otal Slud	0.13 cu.ft/c Cu.ft x 7.48 15 days x g dge Digeste	gals/day			32,439 486,589 1,422,337	gals/day gals				

TRIAD ASS	OCIATES, IN	C.	DESIGN CALCULA ⁻	TIONS
PROJECT NAME:	Ben Davis CD	PROJECT ID:	202018A	DATE: 25-Jan
DESCRIPTION:	Post Aeration			Page <u>I</u> of <u>I</u>
PREPARED BY:	Kent Schuch			

POST AERATION

ADF

Detention time

10 minutes

Volume

3,714 cf

Proposed tank dimensions

W =

10 L=

36 D=

10.5

Proposed volume

3,780 cf

Proposed air demand is 30 cfm/1,000 cf

Proposed air supplied 113 cfm

Single blower rated 120 cfm at 4.5 psi

Kaeser BB69C

7.5 HP

RAW PUMPING STATION

PROJECT:

Ben Davis

DESIGNED BY KFS

LOCATION:

Headworks

DATE: 12/17/2020

TAI#:

202018A

CHECKED BY: kfs

DATE:

DESCRIPTION: PUMP TDH CALCULATIONS

12/17/2020

GENERAL LIFT STATION INFORMATION:

Controlling Ele	vations		Flow Rate & Pump Rate	
Forcemain Discharge =	717.45	ft	Peak Inflow Rate = 1,390	gpm
Forcemain High Point =	717.45	ft	Pumping Rate = 2780	gpm
Pump ON =	677,00	ft	Pumping Rate = 6.19	cfs
Pump OFF =	673.83	ft	Pumping Rate = 4.003 200	ond

FRICTION LOSSES: Nominal Pipe Diameter, Pipe Ty Pipe Inside Diameter (inches) = C value = Average velocity in pipe (ft/s) = Total length of FM =	pe =	LS Discharge Piping 10" DI Class 350 10.58 120 10.15 19		LS Discharge Piping 16" DI Class 250 16.8 120 4.02 20		Forcemain 24" HDPE DR17 22.6 140 2.22 1610	
$V = 1.318 \text{ C } \text{R}^{0.63} \text{ S}^{0.54}$, therefore $S = h_1 / L$	e, S (ft/ft) =	0.0361		0.0038		0.0007	Friction
there	fore, h(friction)(ft) =	= 0.69		80.0		1.08	1.77
MINOR LOSSES (PIPE FITTING Reference: Chicago Pumps, Hydraulics							
Fittings Description	K-value	No.	Total	No.	Total	No.	Total
Entrance Loss	0.50	1	0.50	0	0.00	0	0.00
Outlet Loss	1.00	0	0.00	0	0.00	1	1.00
90 degree bend	0.30	2	0.60	1	0.30	3	0.90
45 degree bend	0.23	0	0.00	0	0.00	6	1.38
22.5 degree bend	0.15	0	0.00	0	0.00	2	0.30
	0.00	_	0.00	•		_	0.00
11.25 degree bend	0.09	0	0.00	0	0.00	0	0.00
11.25 degree bend Plug Valve	0.09	1	0.77	0	0.00	1	0.00
		1 1		_		1 0	
Plug Valve	0.77	1 1 0	0.77	0	0.00	1	0.77
Plug Valve Check Valve	0.77 2.50	1	0.77 2.50	0	0.00 0.00	1 0	0.77 0.00
Plug Valve Check Valve Tee (through)	0.77 2.50 0.60	1 1 0	0.77 2.50 0.00	0 0 3	0.00 0.00 1.80	1 0 0	0.77 0.00 0.00

Head Loss from fittings = $h_m = KV^2 / (2g)$

therefore, h(fittings)(ft) = 7.29 0.53 0.33

40.45

STATIC LOSSES: Elevation of highest point (discharge)(ft)= Low water level in LS (Pump OFF)(ft) = Static head losses = high point - LS level

Maximum Minimum 717,45 717.45 673.83 677.00

Total Static Head (Max) 43.62

53.5

ft

TOTAL DYNAMIC HEAD (TDH) = h(friction) + h(fittings) + h(static) =

43.62

Pressure (psi): 23

FLOW RATE	LS	DISCHARGE PIPI	NG		FORCEMAIN PIPIN	1G	TDH
LEOWING	VELOCITY	FRICTION LOSS	MINOR LOSS	VELOCITY	FRICTION LOSS	MINOR LOSS	IDN
(gpm)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft)
1500	5.47	0,22	2,12	1.20	0.35	0.10	46.4
1750	6.39	0,29	2.89	1.40	0.46	0.13	47.4
2780	10.15	0.69	7.82	2.22	1.08	0,33	53.5
3700	13.50	1.16	12.91	2.96	1.84	0.59	60.1
4000	14.60	1.34	15.09	3,20	2.12	0.69	62.9
5000	18.25	2.03	23.58	4.00	3.21	1.08	73.5

NET POSITIVE SUCTION HEAD AVAILABLE

Absolute Pressure on surface (ha-ft) 33.96 @ sea level Vapor Pressure of Ilqued (hvpa-ft) 0.78 @ 68°F (pump off - impeller) Static Height above impeller (hst-ft) Suction line losses (hfs-ft) 0.00 (submersible)

therefore, h(static)(ft)=

NPSHA = ha - hvpa + hst - hfs

33.2 ft

NPSHR must be 5' less than NPSHA (safety factor)

RAW PUMPING @ PEAK

PROJECT: LOCATION: Ben Davis

DESIGNED BY KFS

Headworks

DATE: 12/17/2020

TAI #:

202018A

CHECKED BY kfs

DESCRIPTION: PUMP TDH CALCULATIONS

DATE:

12/17/2020

GENERAL LIFT STATION INFORMATION:

Controlling Elevations Flow Rate & Pump Rate Forcemain Discharge = 717.45 Peak Inflow Rate = 4,167 gpm Forcemain High Point = 717.45 ft Pumping Rate = 8333 gpm Pump ON = 677.00 ft Pumping Rate = 18.57 cfs Pump OFF = 673,83 Pumping Rate = 11,999,520 gpd

LS Discharge LS Discharge FRICTION LOSSES: Piping Forcemain Pipina Nominal Pipe Diameter, Pipe Type = 10" DI Class 350 16" DI Class 250 24" HOPE DR17 Pipe Inside Diameter (inches) = 10.58 16.8 22.6 C value = 120 120 140 Average velocity in pipe (ft/s) = Q/3 10.14 12.06 6.67 Total length of FM = 20 1610 19 $V = 1.318 \text{ C R}^{0.63} \text{ S}^{0.54}$, therefore, S (ft/ft) = 0.0360 0.0290 0.0051 Friction S = h:/L therefore, h(friction)(ft) = 0.68 0.58 8.27 9,53 MINOR LOSSES (PIPE FITTINGS): Reference: Chicago Pumps, Hydraulics & Useful Information **Fittings Description** Total No. Total No. No. Total 0.50 0.50 0.00 0.00 Entrance Loss 0 0 Outlet Loss 0.00 1.00 0 0 0.00 1.00 90 degree bend 0.30 0.60 0.30 0.90 2 1 3 45 degree bend 0 0.23 0.00 n 0.00 6 1.38 0 0.00 0.00 22.5 degree bend 0.15 0 0.30 2 11.25 degree bend 0.09 0 0.00 0 0 0.00 0.00 Plug Valve 0.77 1 0.77 0 0.00 1 0.77 Check Valve 2,50 1 2.50 0 0.00 0 0.00 Tee (through) 0.60 0 0.00 3 1,80 0 0.00 Tee (side flow) 1.8 0 0.00 0 0.00 0 0.00 Wye (thru) 1.00 0 0.00 0 0.00 0 0.00 Reducer/Expander 0.19 0 0.00 0 0.00 0.19 Total K Values: 4.56 2.10 4.35 **Total Minor**

Head Loss from fittings = $h_m = KV^2 / (2g)$ Losses therefore, h(fittings)(ft) = 7.28 4.74 3.00 15.02

STATIC LOSSES: Elevation of highest point (discharge)(ft)=

Low water level in LS (Pump OFF)(ft) =

Static head losses # high point - LS level

therefore, h(static)(ft)=

Maximum Minimum 717.45 717.45 673.83 677.00

Total Static Head (Max) 43.62

68.2

ft

TOTAL DYNAMIC HEAD (TDH) = h(friction) + h(fittings) + h(static) =

43.62

Pressure (psi): 30

	LS DIS	CHARGE PIPIN	IG 10"	LS	DISCHARGE PIPIN	IG 16"	FOR	CEMAIN PIPI	NG	TDH
FLOW RATE	VELOCITY	FRICTION LOSS	MINOR LOSS	VELOCITY	FRICTION LOSS	MINOR LOSS	VELOCITY	FRICTION LOSS	MINOR LOSS	
(gpm)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(ft)
1500	1.82	0.03	0.24	2.17	0.02	0.15	1.20	0.35	0.10	44.5
3000	3.65	0.10	0.94	4,34	0.09	0.61	2,40	1.25	0,39	47.0
6000	7.30	0.37	3.77	8,68	0.32	2.46	4,80	4,50	1,56	56.6
8333	10.14	0.68	7.28	12.06	0,58	4,74	6.67	8.27	3.00	68.2
10000	12.17	0.96	10.48	14.47	0.81	6.83	8.00	11.59	4,32	78.6
12000	14.60	1.34	15.09	17.37	1.14	9.84	9.60	93.5		

40.45

NET POSITIVE SUCTION HEAD AVAILABLE

Absolute Pressure on surface (ha-ft) Vapor Pressure of liqued (hypa-ft) Static Height above impeller (hst-ft)

0.78 @ 68°F (pump off - impeller)

33,96

Suction line losses (hfs-ft)

0.00 (submersible)

@ sea level

NPSHA = ha - hvpa + hst - hfs

33.2 ft

NPSHR must be 5' less than NPSHA (safety factor)

Friction

RAW PUMPING @ MAX

PROJECT: LOCATION:

TAI #:

Ben Davis

Headworks

DESIGNED BY KFS DATE: 12/17/2020

202018A DESCRIPTION: PUMP TOH CALCULATIONS CHECKED BY kfs DATE: 12/17/2020

GENERAL LIFT STATION INFORMATION:

Controlling Elevations Forcemain Discharge = 717,45 ft Forcemain High Point = 717.45 ft Pump ON = 677.00 ft Pump OFF = 673.83

therefore, h(friction)(ft) =

Flow Rate & Pump Rate Peak Inflow Rate = 5,556 gpm Pumping Rate = 11111 gpm Pumping Rate = 24.76 cfs Pumping Rate = 15,999,840 gpd

LS Discharge LS Discharge FRICTION LOSSES: Piping Forcemain Piping 10" DI Class 350 16" DI Class 250 Nominal Pipe Diameter, Pipe Type = 24" HDPE DR17 Pipe Inside Diameter (inches) = 10.58 16.8 22.6 C value = 120 120 140 Average velocity in pipe (ft/s) = 10.14 16.08 8.89 Total length of FM = 19 20 1610

 $V = 1.318 \text{ C R}^{0.63} \text{ S}^{0.54}$, therefore, S (ft/ft) = 0.0360 0.0494 $S = h_t / L$

0.68

0.0088 0.99 14.09 15.76

MINOR LOSSES (PIPE FITTINGS):

Reference: Chicago Pumps, Hydraulics & Useful Information **Fittings Description** No. Total No. Total No. Total Entrance Loss 0.50 0 0.00 0,00 1 0 **Outlet Loss** 1.00 0 0.00 0.00 1.00 0 1 90 degree bend 0.30 2 0.60 0.30 0.90 1 3 45 degree bend 0 0 0.23 0.00 0.00 6 1.38 22.5 degree bend 0.15 0 0.00 0 0.00 0.30 2 11.25 degree bend 0.09 O 0.00 0 0.00 0 0.00 0.77 0.77 0 Plug Valve 1 0.00 1 0.77 Check Valve 2.50 2.50 0 0.00 0 0.00 Tee (through) 0.60 0 0.00 3 1.80 0 0.00 Tee (side flow) 1.8 n 0.00 0 0.00 0 0.00 Wye (thru) 1.00 0 0.00 0 0.00 0 0.00 Reducer/Expander 0.19 0,19 0 0,00 0 0.00

Total K Values: 4.56 2.10 4.35 Head Loss from fittings = $h_m = KV^2 / (2g)$ **Total Minor** Losses

therefore, h(fittings)(ft) = 7.28 8.43 5.33 21.05

STATIC LOSSES: Maximum Minimum Elevation of highest point (discharge)(ft)= 717.45 717.45 Low water level in LS (Pump OFF)(ft) = 673 83 677.00

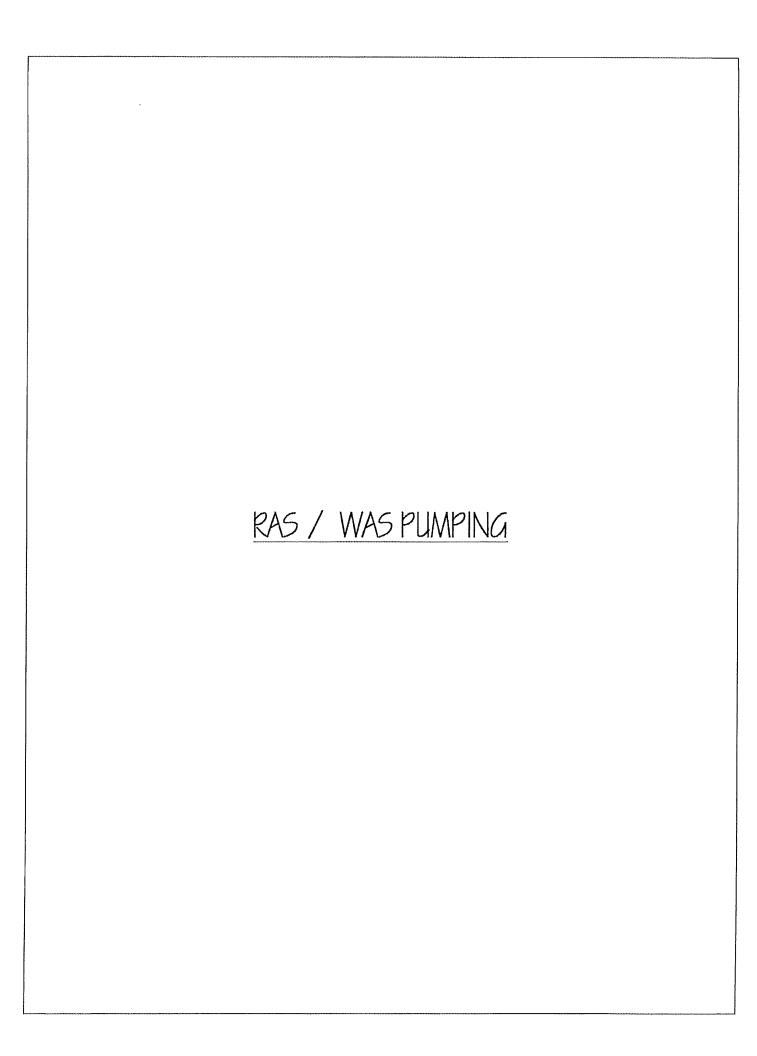
Total Static Static head losses = high point - LS level Head (Max) therefore, h(static)(ft)= 43.62 40 45 43.62

TOTAL DYNAMIC HEAD (TDH) = h(friction) + h(fittings) + h(static) =

Pressure (psi): 35

80.4

ft


LS DISCHARGE PIPING 10" LS DISCHARGE PIPING 16" FORCEMAIN PIPING TDH FLOW RATE FRICTION FRICTION VELOCITY LOSS MINOR LOSS VELOCITY FRICTION LOSS MINOR LOSS VELOCITY LOSS MINOR LOSS (ft/s) (ft) (ft) (ft/s) (ft) (ft) (ft/s) (ft) (ft) (ft) (gpm) 2.89 1.60 1.82 0.03 0.24 0.04 0.27 0.59 0.17 45.0 2000 5.79 2.12 0.15 1.09 0.10 0.94 3.20 48,7 4000 3.65 0,69 6000 5.47 0.22 2.12 8.68 0.32 2.46 4.80 4.50 1.56 54.8 3.77 7.67 0.37 2.77 8000 7.30 11.58 0.54 4.37 6.40 63.1 10.14 5.33 7.30 11111 0.68 7.28 16.08 0.99 8.43 8.89 14.09 80.4 13000 11.86 9.96 18.82 1.32 11.55 10.40 18,84 93.5

NET POSITIVE SUCTION HEAD AVAILABLE

Absolute Pressure on surface (ha-ft) 33.96 @ sea level Vapor Pressure of liqued (hvpa-ft) 0.78

Static Height above impeller (hst-ft) (pump off - impeller) Suction line losses (hfs-ft) 0.00 (submersible)

NPSHA = ha - hvpa + hst - hfs 33.2 ft NPSHR must be 5' less than NPSHA (safety factor)

Pump Head Loss Calculations c = 120

Pump Use: RAS/WAS pumping	Pun	Pump Model Specified:	sciffed:				Ď	Date: Jan 4.2021	2021	
Elevations:			ļ				ď	Project #: 201610A	01610A	
711.45	NWL at Discharge	717.45					Ü	Calc by: JPO	0	
Clarifier #2 708.20 CL of pump	-	705.5					Ř	Reviewed by: KFS	y: KFS	
ADF 4.00 MGD Flow range:	C C	C factor		120						
2778 GPM		C factor on new nine	oine	120	1					
###					ı					
#### 4167	7									
		Target Flow Rates:	Rafes:							
Suction is split into 2 parts	# Pumps	7	Ψ-	ν	_	_	_	2		2
Part 1 from clarifier to header	GPM	900	700	900	1050	1400	1800	2100	3200	4200
Part 2 from header to pump	CFS	1.34	1.56	2.01	2.34	3.12	4.01	4.68	7.13	9.36
	6" vel									
6"area	0.2 12" Vel	1.54	1.80	2.32	2.70	3.60	4.63	5.40	8.23	10.81
Part 1 Clarifier 2 to RAS/WAS Building	ng									
e 12 inch DI	.87 50% Q Ve	22.0	0.90	1.16	1.35	1.80	2.32	2.70	4.12	5.40
•			•		,	1	1	i		
Inside Dia 1.05 It 8.45" class 51	l Velocity H	0.01	0.01	0.02	0.03	0.05	0.08	0.11	0.26	0.45
Fittings	S	0.0002	0.0003	0.0005	0.0007	0.0012	0.0019	0.0025 0.0055		0.0092
	Total									
1	0.5 c#1 Hf=SxL	0.0177	0.024	0.038	0.05	0.085	0.135	0.18	0.393	0.6504
Tee thru 0 0.28	0 cl #2	0.03167	0.042	0.067	0.089	0.152	0.242	0.322	0.703	1.163
2 0.42	0.8 Minor	0.0124	0.017	0.028	0.038	0.068	0.112	0.152	0.353	0.6075
0										
		0.0301	0.04	0.065	0.088	0.153	0.247	0.332	0.746	1.2579
increaser 0 0.19	0 (Minor + Hf)	0.044	0.059	0.095	0.127	0.220	0.354	0.474	1.056	1.771
1	ગ <i>ભ</i>									
	cl #2	0.04	90.0	0.09	0.13	0.22	0.35	0.47	1.06	1.77
}	TOTAL PART 1	0.03	0.04	0.07	0.09	0.15	0.25	0.33	0.75	1.26

Pump Head Loss Calculations c = 120

7	4200	9.36		10.81		1.81		0.0331		0.6448		6.0207		6.6656	
	3200	4.68 7.13		8.23		1.05		0.0200		0.39		3.495		3.885	
7	2100 3200	4.68		5.40		0.45		0.0092 0.0200		0.179		1.505		1.684	
7	1800	4.01		4.63		0.33		0.0069		0.134		1.106		1.24	
7	1400	3.12		3.60		0.20		0.0043		0.084		0.669		0.753	
~	1050	2.34		2.70		0.11		0.0025		0.049		0.376		0.426	
~	900	2.01		2.32		0.08		0.0019		0.037		0.276		0.314	
~	700	1.56		1.80		0.05		0.0012		0.023		0.167		0.191	
-	009	1,34		1.54		0.04		0.0009		0.01755		0.12287		0.14042	
# Pumps	GPM	CFS		12" velocil		V head		S)		Hf=S×L		Minor		TOTAL	(Minor + Hf)
шр	ea: 0.87		О			Total	0	0.3	0.4	0.9	1.6	0.2	O ,	3.3	
Iding to Pu	DI Are		12.5 in ID			∽I	0.50	0.26	0.39	0.23	0.78	0.19	0.21		
Part 2 RAS/WAS Building to Pump	Pipe size 12 inch DI Area: 0:87	Length 20 ft	Inside Dia 1.05 ft		Fittings	al		Tee thru	-		Tee side 2		45 0		

Hs = Static Head Hf = friction head Hv=vapor pressure= .78@68deg Ha = atmospheric pressure = 33 @ 705' above sea level Net Positive Suction Head Available = NPSHa = Ha - Hr - Hf + Hs

7.92 8.44

2.02

1.59 1.49

0.97 0.91

0.55 0.51

0.18

1.68 3.88 6.666 4.63 4.94

1.24

0.75

0.43

0.31 0.38 0.41

0.19 0.23 0.25

0.1404 0.17

TOTAL PIPE/FITTINGS LOSSES GRAND TOTAL

Hs = 6.0 ft clarifier #1 and 2,7' clarifier #2

36.20	32.76
36.73	33.33
37.31	33,95
37.71	34.37
37.84	34.51
37.99	34.67
38.05	34.74
NPSHa =	NPSHa =
at Clarifier #1	At clarifier #2

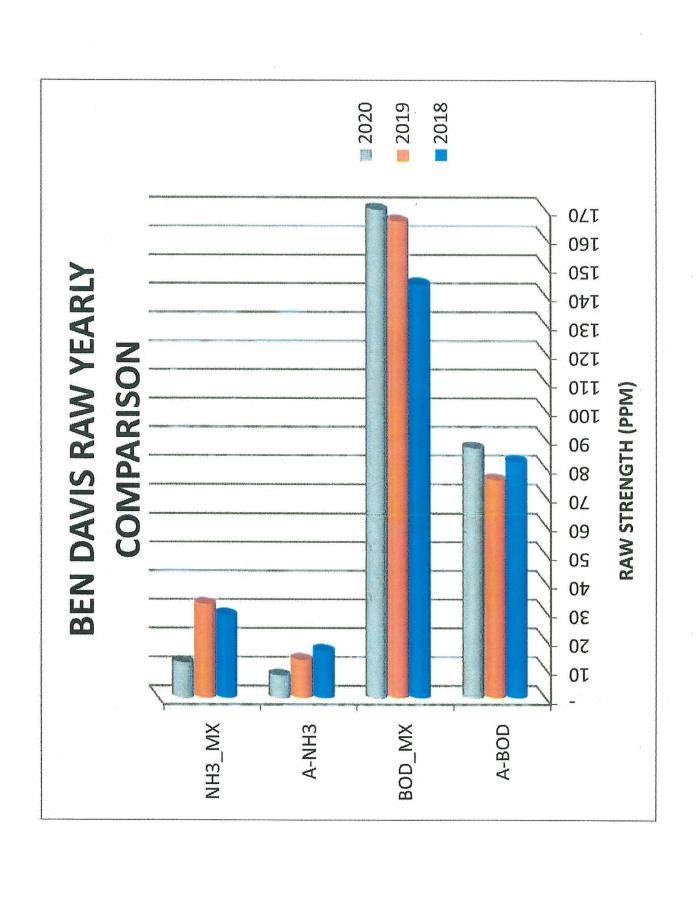
Pump Head Loss Calculations c = 120

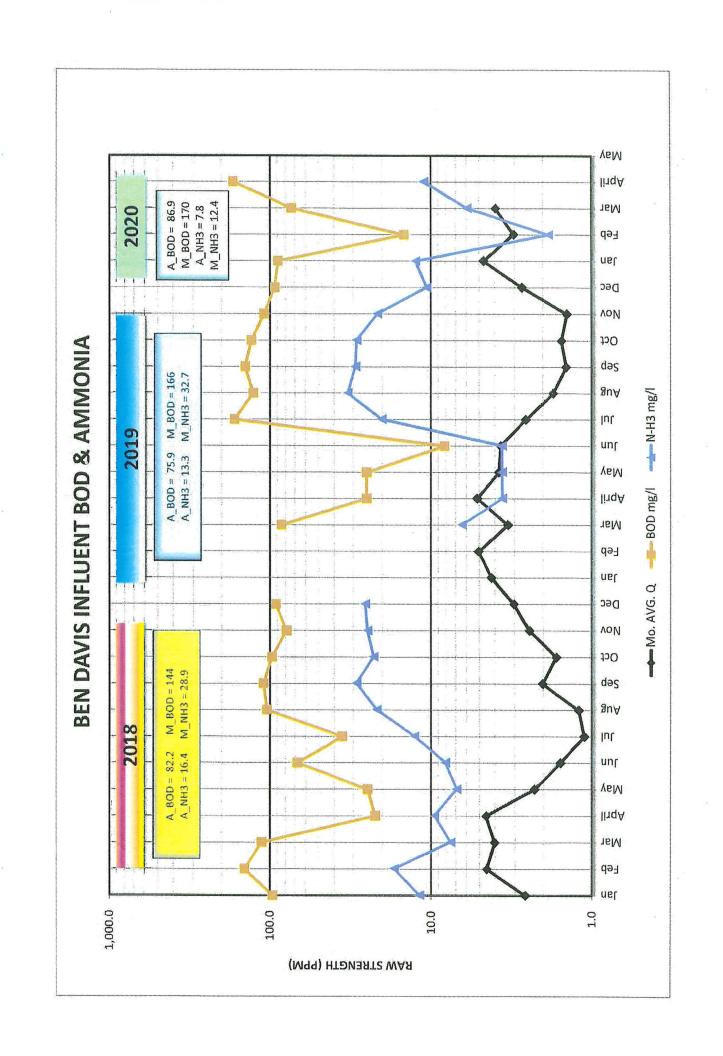
DISCHARGE HEAD 2 parts, header and RAS Pipe	nd RAS Pi	be l										
			# Pumps	/	₩.	~	~	A	7	2		7
Pipe size 12 inch DI Area: 0.87	Ol Area:	0.87	GPM	900	700	006	1050	1400	1800	2100	3200	4200
Length 29 ft			CFS	1.34	1.56	2.01	2.34	3.12	4.01	4.68	7.13	9.36
Inside Dia 1.05 ft	12.64"											
			12" velocit	1.53	1.79	2.30	2.68	3.58	4.60	5.37	8.18	10.74
Fittings												
Ø	·	Total	V head	0.04	0.05	0.08	0.11	0.20	0.33	0.45	1.04	1.79
Tee side 1	0.84	0.8										
Tee thru 2		9.0	S)	0.0000	0.0012	0.0019	0.0025	0.0043	0.0068	0.0090 0.0197	0.0197	0.0326
45	•	0										
PV 4	0.25	~~	Hf=S×L	0.02526	0.034	0.054	0.071	0.121	0.193	0.257	0.561	0.928
C		2.5										
90	•	0.4	Minor	0.20135	0.274	0.453	0.617	1.096	1.812	2.467	5.727	9.8664
Increaser 1	0.19	0.2										
			TOTAL	0.22661	0.308	0.507	0.688	1.218	2.005	2.724	6.288	10.794
		5.5	(Minor + Hf)									
Discharge header losses	iosses.			0.23	0.31	0.51	69.0	1.22	2.01	2.72	6.29	10.79

Pump Head Loss Calculations c = 120

2	3200 4200	7.13 9.36	8.23 10.81	1.05 1.81	0.0200 0.0331	2.358 3.902	1,600 2,756	3.958 6.659	3.958 6.659	10.25 17.45		4.63 7.92	4.94 8.44	3200 4200		24.44 35.14
7	2100	4.68	5.40	0.45	0.0092 0.0200	1.081	0.689	1.770	1.770	4.49		2.02	2.16	2		15.90
7	1800	4.01	4.63	0.33	0.0069	0.812	0.506	1.319	1.319	3.32		1.49	1.59	2	10.81	14.17
~	1400	3.12	3.60	0.20	0.0043	0.510	0.306	0.816	0.816	2.03	;	0.91	0.97	1400	8.94	12.26
~	1050	2.34	2.70	0.	0.0025	0.299	0.172	0.472	0.472	1.16		0.51	0.55	1050	75.7	10.96
~	900	2.01	2.32	0.08	0.0019	0.225	0.127	0.352	0.352	0.86		0.38	0.41	4	7.24	10.52
~	700	1.56	1.80	0.05	0.0012	0.141	0.077	0.218	0.22	0.53		0.23	0.25	700	6.76	10.03
- from	900	1.34	1.54	0.04	0.0009	0.106	0.056	0.162	0.162	0.39		0.17	0.18	- P	6.56	9.82
# Pumps	GPM	CFS	12" velocií	V head	Ŋ	H=S×L	Minor	TOTAL (Minor + Hf)	o aeration	H=	Clarifier #1 Clarifier #2	11	L	tatic H	-HQT	=======================================
	Area: 0.87			Total 0	0 4.0	0.8	0.3	7.	RAS pipe to aer	Discharge Hf =	6.00 ft C 9.25 C	Suction Hf =		tion Hf + S	Clarifier #1 TDH	Clarifier #2 TDH
	12 inch DI	ft 12.6		区 0.78	0.26	0.39	0.30					#1	#2	Hf + Suc		
	Pipe size 12	Length 118 ft Inside Dia 1.1 ft	Fittings	Q Tee side 0	Tee thru 0 45 2	90 2 PV 0	exit 1				Static Head at NWL =	Clarifier #1	Clarifier #2	TDH = Discharge Hf + Suction Hf + Static		

ATTACHMENT 1


WWTP Construction Plans Ben Davis Conservancy District


HISTORICAL LOADINGS

IDEM-WATER QUALITY

DEC 0 6 2021

RECEIVED

	See to make you	Flow	Rain	BOD	TSS	Ammonia	Phos
Tue	15-Sep	1.521	0	168	175	24.6	4.66
Wed	16-Sep	1.454	0	184	257	23.2	5.35
Thur	17-Sep	1.432	0	155	223	25.0	5.22
Fri	18-Sep	1.448	0	135	171	26.8	5.18
Sat	19-Sep	1.438	ő	159	148	26.2	4.42
Sun	20-Sep	1,437	0	135	227	27.4	5.50
Mon	21-Sep	1.453	0	133	215	24,0	5.85
	AVERAGE	1.455	-	153	202	25.3	5.17

AUG 2021

ATTACHMENT 2

WWTP Construction Plans Ben Davis Conservancy District

INCORPORATED INTO SPECIFICATIONS

REVISED INFLUENT SCREEN 11362 SPECIFICATIONS TO ADD TRASH BASKET

ATTACHMENT 3

WWTP Construction Plans Ben Davis Conservancy District

PHOSPHORUS CALCULATIONS

Chemical Phosphorus Removal Calculations Ben Davis Conservancy District WWTP

Existing Loading Data (September 15th to September 21st)

1.455 MGD

Flow (Q) PO4: PO4:

5.169 mg/L

62.71 lbs/day

Assumptions/Input:

* Ave influent is 5.169 mg/L PO4 @ 1.455 MGD = 62.71 lbs/day Phosphorus

 st Effluent limit is 1.0 mg/L, no mass limitation.

* Use 0.5 mg/L in effluent for calculation purposes.

* 0.421 lbs Al3+/gal in a 48% solution of aluminum sulfate

* 1.37 lbs Al3+/gal in a 43% solution of sodium aluminate

* 0.991 lbs Al3+/gal in a light Hyperlon 1997 solution (1.048 lbs/gal in a heavy solution)

*??? 5.4 lbs alum per gallon solution delivered

*??? Density 48% strength chemical solution = 11.1 lbs/gal

	Alum	Aluminate PAICI low PAICI high	AICI low	PAICI high	
lbs Al3+/gal solι	ioli 0.421	1.37	0.991	1.048	
SG	1.335	1.535	1.35	1.39	
Density, lb/gal		11.14151 12.81065	11.2667	11.2667 11.60052	
Cost Estimates	se				
\$/lb solution	0.115	0.27	0.2	0.2	

Parameter	Unit	Value
ADF	MGD	4.00
PDF	MGD	12.00
P Influent (Xi)	mg/L	5.169
P Influent (Xi)	lb/day	173
P Effluent (Xe)	mg/L	1.00
P Effluent (Xe)	lb/day	33.38
Storage	days	30

Stoichiometry:

L	$Al^{2+} + (PO_4)^{2-} \rightarrow AlPO_4$		$Al^{3+} + 3OH^{-} \rightarrow Al(OH)_3$		1 / CO > 1 1 1 1 CO C C C C C C C C C C C C C C C C C	$4I_2(SO_4)_3 \bullet 14H_2O + 2PO_4 \rightarrow 2AIPO_4(\lor) + 5SO_4 + 14H_2O_4$			
Atomic Weight	30.974	26.982	32.06	16		1.008	594.368	342.144	81.971
Atomic #	15	13	16	œ)	Н			
4	۵.	AI	S	C)	Ξ	AI2(SO4)3 - 14H2O	Dry Alum	NaAI02

EPA (625/1-76-001a, pg 3-3) Method:

PAICI High	Weight Ratio					
PAICI Low	Weight Ratio					
Aluminate:P	Weight Ratio	3.65:1	4.10:1	4.55:1	5.29:1	6.09:1
Alum:P	Weight Ratio	13:1	14.9:1	16:1	19.2:1	22:1
-					1.74:1	
7	Mole Ratio	1.38:1	1.55:1	1.72:1	2:1	2.3:1
P Reduction	Required	75%	%08	85%	%06	85%

Parameter	Unit	Value
Reduction	/lp/day	139
Reduction	%	80.7%

Gal Solution/day = (lbs P/day removed x Al3+:P weight ratio)/(lbs Al3+/gal Solution)

		Removal,						
% Removal	Mass Ratio	lbs/day		Alum	Alur	Aluminate	PAICI Low	PAICI High
			Feed Rate, gal/day	3	368.84	113.34	156.69	148.17
75%	1.2	129	Feed Rate, gph		15.37	4.72	6.53	6.17
			Storage Req'd, gal	ν-1	11065	3400	4701	4445
			Cost Estimate, \$/day		473	392	353	344
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Feed Rate, gal/day		443	136	188	178
%08	1.35	138	Feed Rate, gph		18	9	8	7
			Storage Req'd, gal	,-1	13278	4080	5641	5334
			Cost Estimate, \$/day		267	470	424	413
			Feed Rate, gal/day	5	522.52	160.57	221.98	209.91
85%	1.5	147	Feed Rate, gph		21.77	69.9	9.25	8.75
			Storage Req'd, gal	1	15676	4817	6599	6297
			Cost Estimate, \$/day		699	255	200	487
			Feed Rate, gal/day	ġ	641.78	197.22	272.64	257.81
%06	1.74	155	Feed Rate, gph		26.74	8.22	11.36	10.74
			Storage Req'd, gal		19253	5917	8179	7734
			Cost Estimate, \$/day		822	682	614	598
			Feed Rate, gal/day	7	99'8/2	239.28	330.79	312.80
85%	2.0	164	Feed Rate, gph		32.44	9.97	13.78	13.03
			Storage Req'd, gal		23360	7178	9924	9384
			Cost Estimate, \$/day		866	828	745	726
*harrad on harry	Avorage Flow	,						

*based on Design Average Flow

AUGUST 2021

ATTACHMENT 4

WWTP Construction Plans Ben Davis Conservancy District

-FINCOR PORATED INTO SPECIFICATIONS

REVISED PHOSPHORUS SPECIFICATION SECTION 11290

AUGUST 2021

ATTACHMENT 5

WWTP Construction Plans Ben Davis Conservancy District

UV MANUFACTURER'S TECHNICAL DATA SHEETS

Aquaray® 3X Vertical Lamp UV Disinfection Equipment

Budget Proposal
Ben Davis Conservancy District WWTP
Indiana

October 27, 2020

Contact information:

Prepared By:

SUEZ TREATMENT SOLUTIONS, INC

George Vrachimis Applications Engineer Tel: 201-676-2227

Email: george.vrachimis@suez.com

Local Sales Representative:

FACO WaterWorks LLC

Ken Sobbe
Tel: 317-694-1896

Email: Ken@facollc.com

October 27, 2020

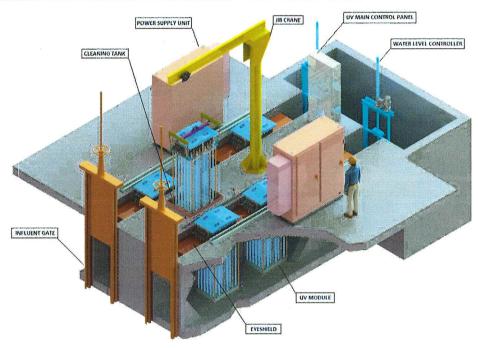
To: Kent Schuch, P.E. Triad Associates, Inc.

Re: Aquaray® 3X Ultraviolet Disinfection Equipment Ben Davis Conservancy District WWTP

SUEZ Treatment Solutions is pleased to submit our preliminary budget proposal for the Aquaray® 3X High Output Vertical Lamp ultraviolet disinfection system for the above referenced project. The proposed design is based on our latest Aquaray® 3X System which features vertically mounted high output amalgam lamps with variable output for greater power conservation. Some of the proposed Aquaray® 3X Vertical Lamp UV System's features include:

- Third-Party validated per 2012 NWRI guidelines
- Easy maintenance without the need to remove equipment from channel for lamp and ballast replacement.
- Automatic dose control is achieved by turning on/off lamps in combination with dimming in relation to a flow signal, ensuring that the plant is operated economically while still providing the required performance.

For a max disinfection flow of 16 MGD and a minimum UVT of 65%, SUEZ proposes to furnish two (2) UV disinfection channels. The proposed UV system will have UV modules mounted one (1) across by two (2) UV banks in series per channel. The UV system will deliver a minimum UV dose of $33,300 \, \mu WS/cm^2 \, (33.3 \, mJ/cm^2)$ at the peak flow with all UV modules in service.


If you have any questions or require any additional information, please don't hesitate to contact our local representative or the undersigned.

Sincerely,

For SUEZ Treatment Solutions Inc. George Vrachimis Applications Engineer

I. AQUARAY® 3X VERTICAL LAMP SYSTEM DESCRIPTION

- The UV lamps are mounted vertically and perpendicular to the flow, where all electrical connections
 are made out of the water. All the lamps are easily accessed through the lid of the top enclosure.
 This makes routine service such as lamp changes, performed without having to remove the lamp
 modules from the channel.
- Electronics, such as ballasts and communication cards, are all located in a remote enclosure away from the UV channel
- The UV lamps are mounted in a uniform staggered array. This ensures a semi-tortuous path for the effluent that avoids discharge of undisinfected wastewater.
- Flow pacing is achieved by a combination of dimming each row of lamps from 100% to 62% output and turning lamp rows on and off in relation to a plant flow signal. Each UV module has six (6) rows of lamps.
- Each UV module has a dedicated electric motor that powers a mechanical wiper. No failure of one wiping system component will result in the loss of wiping capability for the entire UV system.
- All UV modules are completely removable from the UV channel, allowing for regularly scheduled channel cleaning to remove algae or debris.

II. <u>DESIGN BRIEF:</u>

Parameter	Value	Unit
Max Disinfection Flow	16	MGD
Peak Flow	12	MGD
Average Daily Flow	4.0	MGD
Design UV Transmittance	65%	% UVT
TSS, 30 day geometric mean	<30	mg/L
TSS, Single sample maximum	<45	mg/L
E. Coli, 1-day maximum of daily samples	<235	CFU/100 mL
Minimum UV dose	33,300	μWS/cm²

III. PROPOSED AQUARAY® 3X UV SYSTEM DESIGN:

Description	Value			
System Designation	Aquaray® 3X			
Number of Channels	2			
Number of Modules Across (Modules per Bank)	1			
Number of Modules in Series (Number of Banks)	2			
Aquaray® Modules/Channel	2			
Total Number of Modules	4			
Number of Lamps/Module	36			
Total Number of Lamps	144			
Headloss across UV modules at 16 MGD, in.	1.71 inches			
Power Consumption per Lamp, W	400 watts			
Power Consumption at 16 MGD, kW Through 2 Channels	53.5 kW			
Power Consumption at 12 MGD, kW Through 2 Channels	42.8 kW			
Power Consumption at 4 MGD, kW Through 1 Channel	18.2 kW			
Max Operating Power, kW	58.4 kW			

Proposed Channel Dimensions	Value
Channel Length, ft.	19'
Channel Width, in.	29.5"
Nominal Water Depth, in.	61" - 69"
Minimum Channel Depth, in.	77"

IV. SCOPE OF SUPPLY:

UV System Component	Value		
Number of Aquaray® 3X Modules	4		
Number of UV Lamps (Excluding Spares)	144		
Number of UV Intensity Sensors (One per bank)	4		
Number of Power Supply Units (PSUs)	2		
Number of UV Main Control Panels (UMCPs)	1		
Number of Power Cables	12		
Number of Data Cables	8		
Number of Cable Trays	2		
Number of Stepdown Transformers	2		
Number of Mounting Rails/Eye Shields	6		
Level Control Weirs	1 set		
Number of Conductivity Level Switches	2		
Number of Cleaning Tanks	1		
Spare Parts	Included		
Field Service	Five (5) days in one (1) trip		
Freight to job site	Included		

V. SPARE PARTS REPLACMENT COST

PART/SERVICE	COST		
UV Lamps (16,000 hour warranty)	\$175 / lamp		
Sleeves (10 year warranty)	\$75 / sleeve		
Ballasts (5 year warranty)	\$400 / ballast		
Wipers (2,000 wipes)	\$8 / wiper		
Additional 8-hours field service on site	\$ 1,390 per day + expenses (hotel, rental car, flight, etc)		

VI. <u>ITEMS PROVIDED BY OTHERS</u>

Note that the following items are to be provided by others (unless indicated otherwise above):

- UV channel construction/modification
- Channel grating
- Influent/Isolation gates
- Piping and valves
- · Remote computer system
- Installation
- Embedded conduits
- Sample collection and laboratory analysis during performance testing
- Online UVT analyzer
- ½ Ton Jib or Overhead Crane

VII. PRICING, TERMS AND CONDITIONS

Budget Price	To be provided by local SUEZ Representative			
Taxes	Not included			
Payment Terms	 10% Net Cash, Payable in thirty (30) days from date of submittal of initial drawings for approval; 85% Net Cash, Payable in progress payments thirty (30) days from dates of respective shipments of the Products; 5% Net Cash, Payable in thirty (30) days from Product installation and acceptance or Ninety (90) 			
Submittals	6-8 weeks			
Equipment Delivery	18-20 weeks after submittal approval			
Freight	FOB jobsite			
Warranty	1 year after start-up or 18 months after delivery, whichever occurs first			

Typical Aquaray® Vertical Lamp Ultraviolet Disinfection System Installations

Plant Location:

Harnett County, NC

Peak Flow:

20 MGD

Number of Channels: 2

Number of Modules:

3 per channel (6 total)

Typical Aquaray® Vertical Lamp Ultraviolet Disinfection System Installations

Plant Location:

Madison, AL

Peak Flow:

34 MGD

Number of Channels: 1

Number of Modules:

3 per channel (6 total)

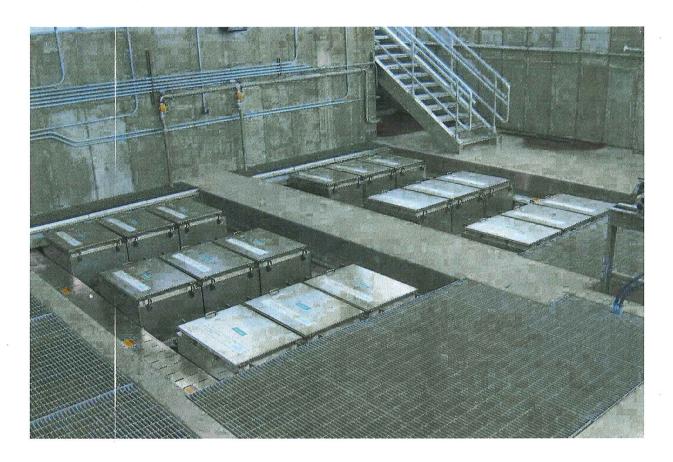
Typical Aquaray® Vertical Lamp Ultraviolet Disinfection System Installations

Plant Location:

Stratford, CT

Peak Flow:

39 MGD


Number of Channels: 1

Number of Modules:

9 per channel (9 total)

Typical Aquaray® Vertical Lamp Ultraviolet Disinfection System Installations

Plant Location:

Jefferson City, MO

Peak Flow:

66.6 MGD

Number of Channels: 2

Number of Modules:

9 per channel (18 total)

Typical Aquaray® Vertical Lamp Ultraviolet Disinfection System Installations

Plant Location:

Colorado Springs, CO

Peak Flow:

135 MGD

Number of Channels: 3

Number of Modules:

9 per channel (27 total)

BEN DAVIS CONSERVANCY 2019-2020 FLOWS/LOADINGS

		Flow	Rain	BOD	TSS	Ammonia	Phos	LBS BOD
Sat	3/30/2019	7.508		85	109	6.4	***************************************	5,316
Sun	4/28/2019	7.714		25	26	3.6		1,608
Mon	6/17/2019	9.257		8	15	1.4		633
Mon	7/29/2019	2.319		166	274	20.2	***************************************	3,211
Thu	8/15/2019	1.656		127	157	32.7	e	1,754
Fri	9/20/2019	1.479		142	388	29.2		1,752
Wed	10/2/2019	1.446		130	174	28.7		1,568
Tue	10/15/2019	1.331		197	412	30.6		2,187
Tue	11/5/2019	1.677		109	169	21.4		1,524
Tue	12/3/2019	2.725		94	175	10.6		2,127
Thu	1/9/2020	2.779		89	162	12.4		2,067
Tue	2/11/2020	9.055	•	15	21	1.8		1,110
Tue	3/3/2020	6.300		74	109	5.9		3,872
Tue	4/7/2020	3.002	į.	170	270	11.1		4,256
Tue	5/5/2020	2.454		74	95	12.4		1,523
Tue	6/2/2020	3.022		76	116	8.1		1,918
Wed	7/8/2020	3.384		78	198	7.8		2,199
Tue	8/4/2020	2.489		84	202	19.0		1,735
Wed	9/9/2020	1.587		122	328	26.8		1,615
	AVERAGE	3.747		98	179	15.3		2,209
100.00		Flow	Rain	BOD	TSS	Ammonia	Phos	11
Tue	15-Sep	1.521	0	168	175	24.6	4.66	2,131
Wed	16-Sep	1.454	0	184	257	23.2	5.35	2,231
Thur	17-Sep	1.432	0	155	223	25.0	5.22	1,851
Fri	18-(Sep	1.448	0	135	171	26.8	5.18	1,630
Sat	19-Sep	1.438	0	159	148	26.2	4.42	1,907
Sun	20-Sep	1.437	0	135	227	27.4	5.50	1,618
Mon	21-Sep	1.453	0	133	215	24.0	5.85	1,612
	AVERAGE	1.455		153	202	25.3	5.17	1,854

PER ATTACHMENT February 20 HISTORICAL FLOWS & WASTELOADS Ben Davis Conservancy District					
INFLUENT	Average Daily	Monthly	CROD	TSS	NH3-N
Print Aug Heliapter	Flows (MGD)	Flow	(mg/l)	(mg/l)	(mg/l)
2016					
January	3.57	110.80	151.2	140.0	14.1
February	2.84	79.50	34.8	141.8	11.0
March	3.98	123.30	61.5	245.8	6.7
April	4.22	126.60	22.8	473.8	7.8
May	4.77	148.00	28.9	135.5	11.9
June	3.06	91.70	45.0	138.8	12.9
July	3.18	98.50	118.8	254.5	15.0
August	3.79	117.60	52.7	136.3	11.0
September	3.49	104.80	42.7	100.1	11.0
October	2.37	73.40	109.0	246.0	18.0
November	1.68	50.30	45.2	166.9	27.8
Dec2016 2017	1.95	60.30	144.6	175.0	12.1
January	3.85	119.32	96.8	205.3	11.8
February	2.15	60.24	144.0	211.8	17.0
March	3.12	96.68	113.2	160.0	7.6
April	2.94	88.23	22.2	85.0	9.6
May	5.17	160.30	24.7	49.1	6.9
June	2.72	81.60	67.5	155.8	8.2
July	3.75	116.20	35.6	93.9	12.7
August	1.62	50.20	104.7	218.0	21.8
September	1.10	33,00	109.8	162.3	28.9
October	1.36	42,20	97.2	143.3	22.7
November	2.11	63.40	78.7	148.5	24.7
December 2019	2.37	73.40	92.0	177.0	25.5
January	4.21	130.47	0.0	0.0	0.0
February	5.05	141.53	0.0	0.0	0.0
March	3.30	102.38	84.9	109.0	6.4
April	5.15	154.56	25.0	26.0	3.6
May	3.77	116.87	25.0	26.0	3.6
June	3.67	109.99	8.2	26.0	3.6
July	2.56	79.29	166.0	274.0	20.2
August	1.72	53.27	127.0	157.0	32.7
September	1.43	42.92	142.0	388.0	29.7
October	1.53	47.38	130.0	174.0	28.7
November	1.41	42.41	109.0	169.0	21.4
December 2020	2.69	83.44	93.6	175.0	10.6
January	4.71	146.05	89.2	162.0	12.4
February	3.04	88.21	14.7	21.2	1.8
March	3.96	122.64	73.7	109.0	5.9
April	2.25	67.54	170.0	270.0	11.1
May	2.91	90.08	74.4	95.0	12.4
June	2.07	61.95	76.1	116.0	8.1
July	2.08	64.44	77.9	198.0	7.8
August	2.29	71.06	83.6	202.0	19.0
September	1.48	44.37	184.0	257.0	23.2
October	1.47	45.48	106.0	299.0	34.2
November	2.34	72.52	115.0	154.0	17.7
December	1.76	54.46	198.0	157.0	11.5
Daily Avg	2.87	87.56	83.7	161.0	14.2
Limit	4.00		250.0	300.0	20.0

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

We Protect Hoosiers and Our Environment.

100 N. Senate Avenue • Indianapolis, IN 46204

(800) 451-6027 • (317) 232-8603 • www.idem.IN.gov

Eric J. Holcomb

Bruno Pigott

October 28, 2020

VIA ELECTRONIC MAIL

Mr. James W. Frazell, Engineer Triad Associates, Inc. 5835 Lawton Loop East Drive Indianapolis, IN 46216

Dear Mr. Frazell:

Re:

Preliminary Effluent Limitations

Proposed Ben Davis Conservancy District Wastewater Treatment Plant (Option 1)

Marion County

This letter is in response to your request for preliminary effluent limitations for a proposed Ben Davis Conservancy District Wastewater Treatment Plant (WWTP). As indicated in your request, the average design flow of the WWTP will be 4.0 MGD. The proposed discharge location will be to Neeld Ditch. The Q7,10 low-flow of the receiving stream at the point of discharge is considered to be zero cfs.

This letter also serves as notification that supplemental information is required to fully evaluate the proposed discharge. Construction and NPDES permitting may not proceed until the supplemental information specified herein has been submitted to, and been preliminarily approved by, this Office.

Preliminary effluent limitations are impacted by numeric and narrative water quality criteria as well as antidegradation requirements. Current Indiana Antidegradation Standards at 327 IAC 2-1.3-3 contain a provision for all surface waters of the State. The existing uses and the level of water quality necessary to protect existing uses shall be maintained and protected. The antidegradation rules for Indiana are found in 327 IAC 2-1.3.

Before approving a new discharge of treated wastewater, alternatives to the proposed discharge must be evaluated to satisfy antidegradation requirements. If this office makes a preliminary determination that the new discharge is necessary on the basis of economic or social factors, the effluent limitations contained herein (developed to minimize the potential lowering of water quality) may be utilized for construction and NPDES permitting. If this office determines the discharge is not necessary on the basis of economic or social factors, the proposed new discharge will not be allowed, and construction and NPDES permits will not be issued.

ANTIDEGRADATION DEMONSTRATION REQUIREMENTS FOR AMMONIA-NITROGEN

327 IAC 2-1.3-5(a) requires every antidegradation demonstration shall include the following basic information:

- (1) The regulated pollutants known or believed to be present in the wastewater and proposed to be discharged.
- (2) The estimated concentration and mass loading of all regulated pollutants proposed to be discharged.
- (3) The location of the proposed discharge and a map of the area of the proposed discharge that shows the receiving water or waters that would be affected by the new or increased loading, including the area downstream of the proposed discharge.

Every antidegradation demonstration shall include the following necessary information:

- (1) The availability, reliability, cost-effectiveness, and technical feasibility of the following:
 - (A) No degradation.
 - (B) Minimal degradation.
 - (C) Degradation mitigation techniques or alternatives.
- (2) An analysis of the effluent reduction benefits and water quality benefits associated with the degradation mitigation techniques or alternatives required to be assessed under subdivision (1)(C), including the following:
 - (A) A review of pollution prevention alternatives and techniques that includes the following:
 - (i) A listing of alternatives and techniques, including new and innovative technologies.
 - (ii) A description of how the alternatives and techniques available to the applicant would minimize or prevent the proposed significant lowering of water quality.
 - (iii) The effluent concentrations attainable by employing the alternatives and techniques.
 - (iv) The costs associated with employing the alternatives and techniques.
 - (v) An identification of the pollution prevention alternatives and techniques selected to be employed and an explanation of why those selections were made.
 - (B) An evaluation of the feasibility and costs of connecting to an existing POTW or privately owned treatment works, within the vicinity of the proposed new or increased loading, that:
 - (i) will effectively treat the proposed discharge; and
 - (ii) is willing to accept wastewater from other entities.
 - (C) For POTWs, if the proposed significant lowering of water quality is a result of a proposed new or increased loading from one (1) or more indirect dischargers, the analysis shall also include the following:
 - (i) The requirements of clause (A) shall be completed for the

indirect discharger or dischargers as well as for the POTW. The POTW may require the indirect dischargers to prepare this information.

- (ii) If one (1) or more of the indirect dischargers proposes or does discharge to a combined sewer or sanitary sewer that is connected to a combined sewer, all combined sewer overflows (CSOs) between the point of discharge to the sewer and the POTW shall be identified.
- (3) The availability, cost-effectiveness, and technical feasibility of central or regional sewage collection and treatment facilities, including long-range plans for discharges outlined in:
 - (A) state or local water quality management planning documents; and
 - (B) applicable facility planning documents.
- (4) The availability, cost-effectiveness, and technical feasibility of discharging to another waterbody that:
 - (A) is not an OSRW; or
 - (B) has a higher assimilative capacity for the regulated pollutant.
- 327 IAC 2-1.3-5(g) requires the antidegradation demonstration include the following social and economic analysis information:(g) For each regulated pollutant in the proposed new or increased loading associated with activities in subsection (f), each antidegradation demonstration shall include the following social and economic analysis information:
 - (1) The anticipated impact on aquatic life and wildlife, considering the following:
 - (A) Endangered or threatened species.
 - (B) Important commercial or recreational sport fish species.
 - (C) Other individual species.
 - (D) The overall aquatic community structure and function.
 - (2) The anticipated impact on human health.
 - (3) The degree to which water quality may be lowered in waters located within the following:
 - (A) National, state, or local parks.
 - (B) Preserves or wildlife areas.
 - (C) OSRWs or ONRWs.
 - (4) The extent to which the resources or characteristics adversely impacted by the lowered water quality are unique or rare within the locality or state.
 - (5) Where relevant, the anticipated impact on economic and social factors, including the following:
 - (A) Creation, expansion, or maintenance of employment.
 - (B) The unemployment rate.
 - (C) The median household income.
 - (D) The number of households below the poverty level.
 - (E) Community housing needs.
 - (F) Change in population.
 - (G) The impact on the community tax base.
 - (H) Provision of fire departments, schools, infrastructure, and other necessary public services.
 - (I) Correction of a public health, safety, or environmental problem.

- (J) Production of goods and services that protect, enhance, or improve the overall quality of life and related research and development.
- (K) The impact on the quality of life for residents in the area.
- (L) The impact on the fishing, recreation, and tourism industries.
- (M) The impact on endangered or threatened species.
- (N) The impact on economic competitiveness.
- (O) Demonstration by the applicant that the factors identified and reviewed under clauses (A) through (N) are necessary to accommodate important social or economic development despite the proposed significant lowering of water quality.
- (P) Inclusion by the applicant of additional factors that may enhance the social or economic importance associated with the proposed discharge, such as an approval that recognizes social or economic importance and is given to the applicant by:
 - (i) a legislative body; or
 - (ii) other government officials.

In determining whether a proposed discharge is necessary to accommodate important economic or social development in the area in which the waters are located under antidegradation standards and implementation procedures, the commissioner will give substantial weight to any applicable determinations by governmental entities.

Once an antidegradation demonstration has been received by this Office and determined complete, the antidegradation demonstration will be public noticed for a thirty day period requesting comment in accordance with 327 IAC 5-2-11.2. If this office makes a tentative determination to approve the submitted antidegradation demonstration, then construction and NPDES permitting may proceed with the understanding that a final determination will not be made until public input on the tentative decision has been considered. This office will seek public input on the tentative decision during the public participation process for the issuance of the NPDES permit. It should be noted that the public participation process and/or permit appeal process included in the rules for the issuance of NPDES permits could alter (and possibly make more stringent) the limits that are established in the final NPDES permit, or result in the denial of the request. Should the tentative decision be to deny the antidegradation demonstration, the tentative decision for denial will be public noticed for a thirty day period requesting comment in accordance with 327 IAC 5-2-11.2. The public process for an antidegration demonstration can be found at 327 IAC 2-1.3-6.

Preliminary Effluent Limitations for Sanitary-Type Wastewater

Table 1

Summer		Summer	V		
Parameter	Monthly Average	Weekly Average	Monthly Average	Weekly Average	Units
CBOD5	10	15	10	15	mg/l
TSS	12	18	12	18	mg/l
Ammonia-N	1.1	1.6	1.6	2.4	mg/l
Phosphorus	1.0	1002 JUN 500 JUN	1.0		mg/l

Table 2

Parameter	Daily Minimum	Monthly Average	Daily Maximum	Units
pН	6.0		9.0	s.u
Dissolved	6.0			mg/l
Oxygen				
E. coli		125	235	count/100mL

The effluent flow must be measured. The mass limits for CBOD₅, NH₃-N, and TSS are calculated by multiplying the average design flow (in MGD) by the concentration value and by 8.345. Summer effluent limits apply from May 1 through November 30 of each year. Winter effluent limits apply December 1 through April 30 of each year.

*The effluent limitations for *E. coli* are 125 colonies/100 ml as a monthly average calculated as a geometric mean and 235 colonies/100 ml as a daily maximum. Ultraviolet light disinfection or disinfection by other non-halogen compounds is required as a consideration in antidegradation. Disinfection by chlorination or other halogen compounds will require the applicant to demonstrate that disinfection by ultraviolet light is either not technically feasible or that it is not affordable.

If the preliminary effluent limitations specified above are not acceptable to the discharger, then alternate limitations may be pursued. To pursue alternate limitations, an assessment of alternative feasible treatment technologies comparing the expected effluent concentrations with the expected capital and maintenance costs for each alternative, and the corresponding expected new or increased loading above the level generated by the effluent limits specified above must be submitted for review. The assessment must also include an affordability analysis and justification for selecting the most cost-effective treatment plant design that is affordable. In no case will limitations be approved which will result in exceedances of State water quality standards.

Please be advised that although we are providing you with preliminary effluent limitations, there are rules that may not allow IDEM to issue an NPDES permit for this facility. 327 IAC 5-2-7(e) states that no permit shall be issued for any discharge from a point source substantially inconsistent with a plan or plan amendment approved under

James Frazell, Engineer Page 6 of 6

section 208(b) of the Clean Water Act. Section 208(b) of the CWA established Areawide Regional Planning Commissions. The Hoosier Heartland Planning Commission was established in the 1970s for Marion County and all of the counties contiguous to Marion County. Although that Commission is now defunct, a recent federal court ruling determined that this provision of the NPDES rules is still applicable, regardless of whether the administrative entity is still in existence. The 208(b) plan will need to be reviewed to determine its applicability.

In addition, Indiana Code 13-18-26 requires the permit applicant to certify that the following documents have been prepared and completed for new facilities and/or facility expansions with a design capacity above 0.10 MGD:

- · A Life Cycle Cost-Benefit Analysis, as described in IC 13-18-26-3;
- · A Capital Asset Management Plan, as described in IC 13-18-26-4; and
- · A Cybersecurity Plan, as described in IC 13-18-26-5.

The certification of completion must be submitted to IDEM along with the permit application, and must be notarized. IDEM will not issue a permit to an applicant that is subject to IC 13-18-26 if the required certification is not included with the application packet, as required by IC 13-18-26-1(b).

The plans and analyses must be reviewed and revised (as necessary) at least once every five years. A new certification must be submitted to IDEM (with the NPDES renewal application) if any plan or analysis is revised during the five-year review.

If there are any questions regarding design requirements of the construction permit, please contact Ms. Missy Nunnery at 317/232-5579. The NPDES permit will not be issued until the construction permit is finalized.

If there are any questions regarding the antidegradation requirements or NPDES permit requirements, please feel free to contact Nicholas Eilerman at neilerma@idem.in.gov or 317/232-8619.

Sincerely,

Leigh Voss, Chief

Municipal NPDES Permits Section

Office of Water Quality

Legs Voss