OWQ- WATERSHED ASSESSMENT & PLANNING BRANCH IDEM/OWQ/WAPB/WM VIRTUAL FILE CABINET INDEX FORM

Program:	Water Monitoring
Document Type:	Report
*Document Date:	5/9/2023
*Security:	Public
*Project Name:	2023 Corvallis
*Project Type:	Watershed
*Report Type:	Work Plan
HUC Code:	05080003 Whitewater
Site #:	
Route Name:	
Document Control #	B-056-OWQ-WAP-XXX-23-W-R0
Analysis Set #	
County:	
Cross Reference ID:	2022 Brobabilistic Monitoring WD For The Creat Miami
Comments:	River Basin

Redaction Reference ID:

2023 PROBABILISTIC MONITORING WP FOR THE GREAT MIAMI RIVER BASIN

PREPARED BY

Mitchell C. Owens Probabilistic Monitoring Section

WATERSHED ASSESSMENT and PLANNING BRANCH Indiana Department of Environmental Management Office of Water Quality 100 North Senate Avenue MC65-40-2 Shadeland Indianapolis, Indiana 46204-2251

> **May 9, 2023** B-056-OWQ-WAP-XXX-23-W-R0

This page is intended to be blank

Approval Signatures

Stacey Sobat, Section Chief Probabilistic Monitoring Section

Ali Meils, Section Chief Targeted Monitoring Section

mother Bower

Timothy Bowren, Project Quality Assurance Officer, Technical and Logistical Services Section

Al The

Caleb Rennaker, Section Chief, Quality Assurance Manager Technical and Logistical Services Section,

Kristen Arnold, Branch Chief, Watershed Assessment and Planning Branch

IDEM Quality Assurance Staff reviewed and approves this Sampling and Analysis Work Plan.

triefe Colon

Quality Assurance Staff VIDEM Office of Program Support

4-18-2023

4/1 2023

4-18-2023 Date

4-18-2023 Date

5/22/2023

Date

This page is intended to be blank

Work Plan Organization

This sampling and analysis work plan is an extension of the existing Indiana Department of Environmental Management (IDEM) Watershed Assessment and Planning Branch (WAPB) March 2017 "Quality Assurance Project Plan (QAPP) for Indiana Surface Water Programs" (Surface Water QAPP) (IDEM 2017) and October 2020 "QAPP for Biological Community and Habitat Measurements" (IDEM 2020a), and serves as a link to the existing QAPP as well as an independent QAPP of the project. Per the United States Environmental Protection Agency (U.S. EPA) guidance for QAPPs (U.S. EPA 2006) and the U.S. EPA 2002 Guidance for Quality Assurance Project Plans (U.S. EPA 2002), this work plan establishes criteria and specifications pertaining to a specific water quality monitoring project that are usually described in the following four sections as QAPP elements.

A. Project Management

- A.1. Project Objective
- A.2. Project or Task Organization and Schedule
- A.3. Background and Project or Task Description
- A.4. Data Quality Objectives (DQOs)
- A.5. Training and Staffing Requirements

B. Data Generation and Acquisition

- B.1. Sampling Procedures
- B.2 .Analytical Methods
- B.3. Sample and Data Acquisition Requirements
- B.4. Quality Control (QC) Measures Specific to the Project
- B.5. Field Instrument Testing and Calibration

C. Assessment and Oversight

- C.1. External and Internal Checks
- C.2. Audits
- C.3. Data Quality Assessments (DQAs)
- C.4. Quality Assurance and Quality Control (QA/QC) Review Reports

D. Data Validation and Usability

- D.1. Data Handling and Associated QA/QC activities
- D.2. QA/QC Review Reports
- D.3. Laboratory and Estimated Cost

Table of Contents

Approv	al Signatures	i
Work P	Plan Organization	iii
Table c	of Contents	iv
List of I	Figures	v
List of /	Attachments	v
List of /	Appendices	v
List of /	Acronyms	vi
Α.	Project Management	1
A.1.	Project Objective	1
A.2.	Project or Task Organization and Schedule	2
A.3.	Background and Project or Task Description	4
A.4.	Data Quality Objectives (DQO)	4
A.5.	Training and Staffing Requirements	15
В.	Measurement and Data Acquisition	19
B.1.	Sampling Design and Site Locations	19
B.2.	Sampling Methods and Sample Handling	20
B.3.	Analytical Methods	24
B.4.	Quality Control and Custody Requirements	24
B.5.	Field Parameter Measurements/Instrument Testing/Calibration	29
C.	Assessment and Oversight	30
C.1.	Data Quality Assessment Levels	31
D.	Data Validation and Usability	31
D.1.	Quality Assurance – Data Qualifiers and Flags	31
D.2.	Data Usability	32
D.3.	Information, Data, and Reports	32
D.4.	Laboratory and Estimated Cost	32
E.	References	34
F.	Distribution List	39

List of Figures

List of Tables

Table 1. 2023 Probabilistic Monitoring Tasks, Schedule, and Evaluation	2
Table 2. Water Quality Criteria [327 IAC 2-1-6]	7
Table 3. List of Potential Sites for the Great Miami River Basin	.11
Table 4. Decision Error Associated with Probabilistic Monitoring.	.14
Table 5. Project Roles, Experience, and Training	.15
Table 6. Bacteriological and Field Parameters showing method and IDEM	
quantification limit.	.25
Table 7. Bacteriological and Water Chemistry Sample Container, Preservative,	ı
and Holding Time Requirements	.26
Table 8. Water Chemistry Parameters with Test Method and IDEM and	
Laboratory Reporting Limits	.27
Table 9. Total Estimated Laboratory Cost for the Project.	.33
Table 10. Personnel Safety and Reference Manuals	.33

List of Attachments

Attachment 1. IDEM Site Reconnaissance Form	40
Attachment 2. IDEM Stream Sampling Field Data Sheet	41
Attachment 3. IDEM Algal Biomass Lab Data Sheet	42
Attachment 4. IDEM Fish Collection Data Sheet	40
Attachment 5. IDEM OWQ Biological Qualitative Habitat Evaluation Index	42
Attachment 6. IDEM OWQ Field Chain of Custody Form	44
Attachment 7. IDEM Corvallis Water Sample Analysis Request Form (Pace	
Analytical)	45
Attachment 8. IDEM OWQ Biological Samples Laboratory Chain of Custody	
Form	46

List of Appendices

Appendix 1. Pace Laboratory Inc., Indianapolis: Accreditation Documents47

List of Acronyms

AIMS	Assessment Information Management System
ALUS	Aquatic Life Use Support
ASTM	American Society for Testing and Materials
CAC	Chronic Aquatic Criterion
CALM	Consolidated Assessment Listing Methodology
CFU	Colony Forming Unit
DO	Dissolved oxygen
DQA	Data Quality Assessment
DQO	Data Quality Objective
E. coli	Escherichia coli
GPS	Global Positioning System
HDPE	High-density polyethylene
HUC	Hydrologic Unit Code
IDOH	Indiana Department of Health (formerly ISDH)
IAC	Indiana Administrative Code
IBI	Index of Biotic Integrity
IDEM	Indiana Department of Environmental Management
μm	Micrometer
m	Meter
mg/L	Milligram per liter
MHAB	Multihabitat
mL	Milliliter
MPN	Most Probable Number
MS/MSD	Matrix Spike and Matrix Spike Duplicate
NHD	National Hydrography Database
NHEERL	National Health Environmental Effects Research Laboratory
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Unit(s)
OHEPA	Ohio Environmental Protection Agency
OWQ	Office of Water Quality
PPE	Personal Protective Equipment
QA	Quality Assurance
QC	Quality Control
QAPP	Quality Assurance Project Plan
QHEI	Qualitative Habitat Evaluation Index
SM	Standard Method
SOP	Standard Operating Procedure
SU	Standard Units
TUS	Total Dissolved Solids
	Total Kjeldani Nitrogen
U.S. EPA	United States Environmental Protection Agency
	Unites States Geological Survey
	vvalersned Assessment and Planning Branch
VVP	vvork plan

DEFINITIONS Assessment Unit Reaches of waterbodies, with similar features, assigned unique identifiers, to which all assessment information for a specific reach is associated, and which allow for mapping with geographic information systems. Backwater A part of the river not reached by the current, where the water is stagnant. Elutriate To purify, separate, or remove lighter or finer particles by washing, decanting, and settling. 15-minute pick A component of the multihabitat macroinvertebrate sampling method, used to maximize taxonomic diversity while in the field. The 1-minute kick sample and 50-meter sweep sample collected at a site are first combined and elutriated. Macroinvertebrates are then manually removed from the resulting sample for 15 minutes. 50-meter sweep sample A component of the multihabitat macroinvertebrate sampling method in which approximately 50 meters of all available habitat in a stream or river is sampled with a standard 500 micrometer mesh width D-frame dip net by taking 20-25 individual "jab" or "sweep" samples, which are then composited. Impoundment A body of water confined within an enclosure, such as a reservoir. Lotic A waterbody, such as a stream or river, in which the water is flowing. Macroinvertebrate Aquatic animals which lack a backbone, are visible without a microscope, and spend some period of their lives in or around water. Marsh An area of low-lying land that is flooded in wet seasons and typically remains waterlogged at all times. 1-minute kick sample A component of the multihabitat macroinvertebrate sampling method in which approximately 1 m² of riffle or run substrate habitat in a stream or river is sampled with a standard 500 µm mesh width D-frame dip net for approximately 1 minute.

Ocular reticle	A thin piece of glass marked with a linear or areal scale that is inserted into a microscope ocular, superimposing the scale onto the image viewed through the microscope.
Perennial Stream	A stream that has continuous flow in the stream bed all year during years of normal rainfall. Water must be present in at least 50% of the stream reach during the time of fish community sampling.
Periphyton	Algae attached to an aquatic substrate.
Reach	A segment of a stream used for sampling.
Target	A sampling point which falls on a perennial stream within the basin of interest and the boundaries of Indiana.
Wetland	Land areas that are wet for at least part of the year, are poorly drained and are characterized by hydrophytic vegetation, hydric soils, and wetland hydrology.

A. Project Management

A.1. Project Objective

The main objective of the probabilistic monitoring project is to provide a comprehensive, unbiased assessment of the ability of rivers and streams in the Great Miami River Basin to support aquatic life and recreational uses. Sampling for this project will begin in April and continue through November 2023, conditions permitting, with collected samples analyzed for chemical, physical, and biological parameters. Laboratory processing and data analysis for the project will continue through spring of 2024. Data collected during probabilistic monitoring will be used for the following purposes:

- To provide water quality and biological data for assessment of aquatic life and recreational uses as integral components of the IDEM biennial Integrated Water Monitoring and Assessment Report (Integrated Report); thus, satisfying Clean Water Act (CWA) sections 305(b) and 303(d) reporting requirements to the U.S. EPA (33 U.S.C. §1251 et seq. 1972).
- To give a statistically valid estimation of the percent of stream miles supporting or nonsupporting for aquatic life and recreational uses in the basin of interest.
- To provide water quality and biological data which may be useful for municipal, industrial, agricultural, and recreational decision-making processes. These include the Total Maximum Daily Load (TMDL) process and National Pollutant Discharge Elimination System (NPDES) permit modeling of waste load allocations.
- To compile water quality and biological data for trend analyses and future pollution abatement activities.
- To aid in refined chemical and narrative biological water quality criteria.

A.2. Project or Task Organization and Schedule

Table 1. 2023 Probabilistic Monitoring Ta	asks, Schedule, and Evaluation
---	--------------------------------

Activity	Date(s)	Number of Sites	Frequency of Sampling Related Activity	Parameter to be Sampled	How Evaluated
Site selection	Dec 2022	100 per basin of interest			Randomly ordered list generated by the National Health Environmental Effects Research Laboratory (NHEERL), Western Ecology Division, Corvallis, OR. Sites are stratified in statistically equal numbers of 1 st , 2 nd , 3 rd , and 4 th + stream order sites
Site reconnaissance	Jan 2 – Mar 15 2023	All 100 sites	At least one visit but may require several to obtain final approval		Landowner approval, stream access, and safety characteristics for the first 75 "Target" sites; "Nontarget" designations for remaining 25 sites.
Bacteriological sampling	Apr 3 – May 22 2023	First 40 target sites	Five times at equally spaced intervals over a 30 calendar- day period	Escherichia coli (E. coli)	Geometric mean (action level is ≥125 Colony Forming Units (CFU)/100mL or ≥125 Most Probable Number (MPN)/100 mL); sampled during recreational season (April – October)
Biological sampling	Jun – mid Nov 2023	First 38 target sites	Fish community (Jun 1 – Oct 15) Macroinvertebrate community	Fish community; Macroinvertebrate	Fish Index of Biotic Integrity (IBI) Macroinvertebrate IBI (mIBI)
			Qualitative Habitat Evaluation Index (QHEI), once per sample	Habitat quality	QHEI evaluated separately for fish and macroinvertebrate communities

Activity	Date(s)	Number of Sites	Frequency of Sampling Related Activity	Parameter to be Sampled	How Evaluated
Water chemistry	April –	First 45	Once each in April, Jun-July,	Total phosphorous	>0.3 mg/L (nutrients)
	Sep/Oct	target	and Sept-Oct with a minimum	Nitrogen, Nitrate and	>10.0 mg/L (nutrients)
	2023	sites	30 days between sampling	nitrite	<4.0 mg/L (warm water aquatic life); <6.0
			events	Dissolved oxygen	mg/L (cold water fish); dissolved oxygen
					>9.0 Standard Units (SU) (nutrients);
				pH	<6.0 or >9.0 SU (warm water aquatic life)
					Excessive (nutrients, based on field
				Algal conditions	observation)
					Chronic Aquatic Criterion (CAC) based on
				Dissolved metals	hardness
				(See Table 8)	CAC based on concentration of 150 µg/L, a
				Dissolved arsenic	CAC based on pH and temperature
				Nitrogen ammonia	CAC based on bardness and sulfate
				Chloride	CAC 5.2 µg/L
				Free cyanide*	CAC based on hardness and chloride
				Sulfate	750 mg/L (public water supply criterion)
				Total Dissolved Solids	There are no criteria for this parameter in the
				Dissolved Organic	Indiana Administrative Code (IAC).
				Carbon	
Algal samples	Sep –	First 45	Once with the 3 rd water	Algal Diatoms	Diatom Index of Biotic Integrity
	Oct 2023	target	chemistry sample in Sept or		
		sites	Oct		

Table 1. 2023 Probabilistic Monitoring Tasks, Schedule, and Evaluation (cont.)

*Analyzed only where the total value exceeds the free Cn criterion of 5.2 μ g/L.

A.3. Background and Project or Task Description

The Probabilistic Monitoring Program, created in 1996, is operated through the WAPB of IDEM. Other organizations which help with data preparation, collection, and analysis include private laboratories under contract with the State of Indiana, the Department of Biological and Environmental Sciences at Georgia College and State University, the U.S. EPA National Health Environmental Effects Research Laboratory (NHEERL), U.S. EPA Region V, and the Indiana Department of Natural Resources. Landowners and property managers throughout the state also participate in the Probabilistic Monitoring Program by assisting staff with access to remote stream locations for sample collection.

The Probabilistic Monitoring Program provides a comprehensive, unbiased assessment of all Indiana streams for their ability to support aquatic life and recreational uses by sampling randomly generated sites in major Indiana river basins. Major river basins are sampled using a nine-year rotating basin approach to assess and characterize overall water quality and biological integrity. For target sites, the following categories of data will be investigated and utilized for assessment purposes: bacteriological contamination indicated by *E. coli* counts; water chemistry; diatom, macroinvertebrate, and fish assemblages; and habitat evaluations.

A.4. Data Quality Objectives (DQO)

The DQO process (U.S. EPA 2006) is a planning tool for data collection activities. It provides a basis for balancing control of data uncertainty against available resources. The DQO process is required for all significant data collection efforts of a project. The process is a seven-step systematic planning process used to clarify study objectives, define the types of data needed to achieve the objectives, and establish decision criteria for evaluating data quality. The DQO process for the Probabilistic Monitoring Program is identified in the following seven steps.

A.4.1. State the Problem

Assessments: Indiana is required to assess all waters of the state to determine their designated use attainment status. "Surface waters of the state are designated for full-body contact recreation" and "will be capable of supporting" a "well-balanced, warm water aquatic community" [327 IAC 2-1-3]. This project will gather bacteriological, biological, chemical, and habitat data for the purpose of assessing the designated use attainment status of streams in the Great Miami River Basin.

A.4.2. Identify the Goals of the Study

The objective of this project is to produce a statistically valid estimation of the percent of stream miles supporting or nonsupporting for aquatic life use and recreational use in the Great Miami River Basin. To produce this evaluation, each target site will be sampled for concentrations of physical, chemical, and biological parameters. Sites will be evaluated as supporting or nonsupporting following the decision-making processes that are described in Indiana's 2022 Consolidated Assessment Listing Methodology (CALM). Water quality criteria are shown in Table 2 [327 IAC 2-1-6] and the Indiana 2022 CALM (IDEM 2022b).

In addition to the chemical and bacteriological criteria listed in Table 2, data for several nutrient parameters will be evaluated with the benchmarks listed below (IDEM 2022b). Assuming a minimum of three sampling events, if two or more of the conditions below are met on the same date, the waterbody will be classified as nonsupporting due to excessive nutrients.

- Total phosphorus: one or more measurements >0.3 mg/L
- Nitrogen, (nitrate and nitrite): one or more measurements >10.0 mg/L
- Dissolved oxygen: one or more measurements <4.0 mg/L, or measurements that are consistently at/close to the standard, in the range of 4.0-5.0 mg/L, or dissolved oxygen percent saturation >120%
- pH: one or more measurements >9.0 pH units or measurements consistently at or close to the standard, in the range of 8.7–9.0 pH units
- Algal conditions: visually observed as "Excessive" by trained staff using best professional judgment. Further explanation of this observance is documented in Measurement and Data Acquisition under Algal Community Data on page 28.

Biological criteria:

Indiana narrative biological criteria [327 IAC 2-1-3] states that "all waters, except as described in subdivision (5)," (i.e., limited use waters) "will be capable of supporting" a "well-balanced, warm water aquatic community". The water quality standard definition of a "well-balanced aquatic community" is "an aquatic community that: (A) is diverse in species composition; (B) contains several different trophic levels; and (C) is not composed mainly of pollution tolerant species" [327 IAC 2-1-9]. An interpretation or translation of narrative biological criteria into numeric criteria would be as follows: A stream segment is nonsupporting for aquatic life use when the monitored fish or macroinvertebrate community receives an IBI score of less than 36 (on a scale of 0–60 for fish and 12–60 for macroinvertebrate communities), which is considered "Poor" or "Very Poor" (IDEM 2022b).

Periphyton samples will be preserved and transported to the IDEM laboratory, located in the IDEM Shadeland facility. Diatoms will be identified and enumerated by Georgia College and State University, Department of Biological and Environmental Sciences. Following data entry, the diatom IBI will be calculated; however, assessment methodology for aquatic life use has not been finalized yet. Following the assessment of each site sampled in the Great Miami River Basin, the percent of stream miles attaining and not attaining recreational use and aquatic life use designations will be calculated. First a spreadsheet is developed which lists the following site information:

- All sites that were initially drawn
- Their status, including whether access denied; site sampled for biology, chemistry, or both; an overdraw site that was not needed
- The assessment status of the site, including impaired; not impaired; NA for denials and unused overdraw sites
- A weight based on stream order and stream miles within the basin.

This data is then analyzed by a software package (*spsurvey*) used with the R statistics environment (IDEM 2020b). Instructions on downloading and using the software are available at:

http://archive.epa.gov/nheerl/arm/web/html/software.html. The end product of this analysis is an estimate of the number of stream miles that are, or are not, impaired along with confidence intervals for that particular basin. Calculated mileages will be reported to U.S. EPA in the 2026 update of Integrated Report. Sites not attaining recreational use criteria, or the aquatic life use support (ALUS) designation will be listed in the CWA section 303(d) List of Impaired Waters for Indiana (Consolidated List). Sites not attaining the ALUS designation may be considered for possible additional sampling to determine the extent, causes, and likely sources of the ALUS non-attainment area as a watershed characterization project by the Targeted Monitoring Program.

Site-specific data will be used to classify associated assessment units into one of five major categories in the state's Consolidated List (IDEM 2022b), which will be included in IDEM's 2026 Integrated Report.

Parameter	Level	Criterion
Dissolved metals (Cd, Cr III, Cr VI, Cu, Pb, Ni, Zn	Calculated based on hardness	CAC
Dissolved arsenic III	150 µg/L (calculated based on a conversion factor and water-effect ratio of 1	CAC
Ammonia nitrogen	Calculated based on pH and temperature	CAC
Chloride	Calculated based on hardness and sulfate	CAC
Free cyanide	5.2 μg/L (analyzed only if Total Cyanide result exceeds the CAC for Free Cyanide)	CAC
Dissolved oxygen	At least 5.0 mg/L (warm water aquatic life)	Not less than 4.0 mg/L at any time.
	At least 6.0 mg/L (cold water fish*)	Not less than 6.0 mg/L at any time and shall not be less than 7.0 mg/L in areas where spawning occurs during the spawning season and in areas used for imprinting during the time salmonids are being imprinted.
рН	6.0 – 9.0 SU	Must remain between 6.0 and 9.0 SU except for daily fluctuations that exceed 9.0 due to photosynthetic activity
Nitrogen, Nitrate and nitrite	10 mg/L	HHC at point of drinking water intake
Sulfate	Calculated based on hardness and chloride	In all waters outside the mixing zone
<i>E. coli</i> (April–October Recreational season)	125 CFU/100mL or 125 MPN/100 mL 235 CFU/100 mL or 235 MPN/100 mL	 5 sample geometric mean based on at least 5 samples equally spaced over a 30-day period. Not to exceed in any one sample in a 30-day period except in cases where there are at least 10 samples, 10% of the samples may exceed the criterion
Dissolved solids	750 mg/L	Not to exceed at point of drinking water intake

Table 2. Water Quality Criteria [327 IAC 2-1-6]

CAC = Chronic Aquatic Criterion, SU = Standard Units, HHC = Human Health Criteria, MPN = Most Probable Number, CFU = Colony Forming Unit

*Waters protected for cold water fish include those waters designated by the Indiana Department of Natural Resources for put-and-take trout fishing, as well as salmonid waters listed in 327 IAC 2-1.5-5.

A.4.3. Identify Information Inputs

Under the probabilistic design, field monitoring activities are required to collect physical, chemical, algal, bacteriological, biological, and habitat data. These data are required to address the necessary decisions previously described. Monitoring activities take place at target sites for which permission to access has been granted by the necessary landowners or property managers. Due to the statistical nature of the survey design, historical data will not be used in the calculation of predicted stream mileages supporting or nonsupporting aquatic life or recreational uses. Collection procedures for field measurements, bacteriological, algal, chemical, biological, and habitat data will be described in detail under B. Measurement and Data Acquisition.

A.4.4. Define the Boundaries for the Study

For the purpose of this program, the Great Miami River Basin (Figure 1) is geographically defined as within the borders of Indiana contained by the 8-digit Hydrologic Unit Codes (HUC) 05080001, 05080002, and 05080003.

• The Upper Great Miami sub-basin (05080001), located in eastern Indiana, drains approximately 32 square miles within Indiana borders. Using the 2019 National Land Cover Database for the Conterminous United States (Dewitz 2021), predominant land uses are cropland (87%), urban (6%), and forest (6%).

• The Lower Great Miami sub-basin (05080002), located in southeastern Indiana, drains approximately 64 square miles within Indiana borders. Predominant land uses are cropland (74%), forest (10%), urban (9%), and pasture (5%).

• The Whitewater sub-basin (05080003), located in eastern Indiana, drains approximately 1329 square miles within Indiana borders. Major tributaries in this sub-basin include the East and West Forks of the Whitewater River. Predominant land uses are cropland (50%), forest (31%), urban (8%), and pasture (8%).

The target sample population for the basin is defined as all perennial streams in the Great Miami River Basin that lie within the geographic boundaries of Indiana. The sample frame is comprised of all rivers, streams, canals, and ditches as indexed through the NHDPlus HR dataset (Moore et al. 2019). Marshes, wetlands, backwaters, impoundments, dry sites, and streams with no apparent channel, including submerged, or run underground either through natural processes or by anthropogenic channel alterations, are excluded as they are considered nontarget populations. Table 3 gives the site status for 100 potential sampling sites for the Great Miami River Basin. From these 100 potential sites, the first 45 target sites will be sampled for physical, chemical, and algal parameters. Bacteriological sampling will be completed at the first 40 target sites. Biological communities and habitat information will be sampled at the first 38 target sites. For those sites listed as "Target,

Approved" but not sampled in Table 3, the site will be listed as "Notneeded" when using the *R* statistics environment software (R Core Team 2021) package *spsurvey* (available on the U.S. EPA Aquatic Resources Monitoring and Analysis webpage,

http://archive.epa.gov/nheerl/arm/web/html/software.html or at https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf) to calculate the percent of perennial stream miles in the basin that support or do not support aquatic life and recreational uses (IDEM 2020b). Sites listed as "Other, Deadline 3/15/2023" in Table 3 were thought to be part of the target population; however, the landowner could not be contacted before the site reconnaissance deadline which occurred on March 15, 2023.

A.4.5. Develop the Analytical Approach

Samples will be collected for physical, chemical, bacteriological parameters, and biological communities when the flow rate of the stream is safe for staff to enter. Considerations include times when water levels are at or above median base flow, when hazardous weather conditions like thunderstorms and heavy rain are in the vicinity; and when unexpected physical barriers prevent access to the site. The field crew chief makes the final determination if the stream is safe to enter. Even if the weather conditions and stream flow are safe, sample collections for biological communities may be postponed at a particular site for one to four weeks due to scouring of the stream substrate or instream cover following a high-water event resulting in nonrepresentative samples.

For assessment purposes in the Integrated Report, aquatic life use and recreational use support decisions will include independent evaluations of chemical, biological, and bacteriological criteria as outlined in Indiana's 2022 CALM (IDEM 2022b, pages 11–15 and 20-22). The fish assemblage will be evaluated at each site using the appropriate IBI (Dufour 2002, Simon 1997; Simon and Dufour 1998, 2005). Macroinvertebrate multihabitat samples will also be evaluated using a statewide mIBI developed for lowest practical taxonomic level identifications. Specifically, a site will be considered nonsupporting for aquatic life use when IBI or mIBI scores are less than 36. Diatom assemblages will be evaluated at each site using the appropriate IBI metrics (Jessup et al. 2021); however, the IBI score will not be used for determining aquatic life use support until an assessment methodology has undergone review in the CALM. Where biological or chemical criteria are nonsupporting for aquatic life use, the site may be considered for possible additional sampling to determine the extent, causes, and likely sources of the ALUS nonattainment area as a watershed characterization project by the Targeted Monitoring Program.

Statistical estimations of the percentage of perennial stream miles in the Great Miami River Basin that support or do not support aquatic life and recreational uses will be made following use-attainment decisions for each

site sampled. Estimations will be calculated using the *R* statistics environment software (R Core Team 2014) package *spsurvey* available on the U.S. EPA Aquatic Resources Monitoring and Analysis webpage, <u>http://archive.epa.gov/nheerl/arm/web/html/software.html,</u> or at <u>https://cran.r-project.org/web/packages/spsurvey/spsurvey.pdf</u> (IDEM 2020b).The percent attainment and nonattainment for the target population of the Great Miami River Basin will be published in a table within the 2026 Integrated Report.

Figure 1. Potential Sampling Sites for the Great Miami River Basin.

Site #	AIMS Site Name	Stream Name and Location	County	Latitude (Decimal Degree)	Longitude (Decimal Degree)	Stream Order	Site Status
1	GMW-02-0015	Black Water Branch @ Black Road	Wayne	39.83070795	-85.05959612	3	Non-target, dry
2	GMW-07-0063	Tributary of East Fork Whitewater River @ West Eaton Pike	Wayne	39.82725979	-84.81410209	1	Target, Approved
3	GMW-08-0031	Tributary of Big Cedar Creek @ English Hill Road	Franklin	39.36609539	-84.90058474	4	Non-target, dry
4	GMW-04-0023	Village Creek @ CR 300 South	Fayette	39.60480602	-85.09025169	3	Non-target, dry
5	GMW-01-0020	Whitewater River @ Mill Street	Wayne	39.78365141	-85.15086729	7	Target, Approved
e	GMW-02-0016	Greens Fork @ CR 100 S	Randolph	40.01925835	-84.96255752	5	Target, Approved
7	GMW-07-0064	Tributary of Hanna Creek	Union	39.60657855	-84.91245396	3	Non-target, dry
8	GMW-06-0024	Duck Creek @ Duck Creek Rd	Franklin	39.47633516	-85.13205614	5	Target, Approved
g	GMW-01-0021	Carlos Drain	Randolph	40.02683654	-85.06134805	4	Non-target, dry
10	GMW-07-0065	East Fork Whitewater River @ Abington Pike	Wayne	39.78885709	-84.92509225	6	Target, Approved
11	GMW-07-0077	Salt Well Creek @ Haynes Road	Franklin	39.5012298	-85.01940573	4	Target, Approved
12	GMW-04-0024	Tributary of Whitewater River @ Ziegler Road	Fayette	39.62867872	-85.14914865	3	Target, Approved
13	GMW-01-0022	Brick Creek @ Brick Church Road	Wayne	39.90811596	-85.18315933	4	Target, Approved
14	GMW-03-0026	Nolands Fork @ Tingler Road	Wayne	39.88753591	-84.96267095	3	Target, Approved
15	GMW-08-0032	Whitewater River @ River Road	Franklin	39.38360637	-84.99857208	8	Target, Approved
16	GMW-05-0016	Bull Fork	Franklin	39.44113484	-85.28575184	4	Non-target, access denied
17	GMW-03-0021	Butlers Creek @ Creek Road	Wayne	39.72448326	-85.08403877	6	Target, Approved
18	GMW-07-0078	Middle Fork East Fork Whitewater River @ Hollansburg Road	Wayne	39.92333575	-84.82033748	3	Target, Approved
19	GMW-08-0033	Tributary of Big Cedar Creek	Franklin	39.45295353	-84.91494368	3	Non-target, dry
20	GMW-06-0025	Whitewater River @ Whitewater Canal State Historical Site	Franklin	39.43996504	-85.12505584	8	Target, Approved
21	GMW-02-0022	Mixed Creek @ Lindsay Road	Wayne	39.75607693	-85.13901173	3	Target, Approved
22	GMW-07-0066	West Fork East Fork Whitewater River @ Bridge Avenue	Wayne	39.84074236	-84.89467194	5	Target, Approved
23	GMW-08-0034	Little Cedar Creek @ Little Cedar Road	Franklin	39.40188033	-84.98353441	5	Target, Approved
24	GMW-04-0025	Whitewater River @ Ott Road	Fayette	39.53006644	-85.17041703	8	Target, Approved
25	GMW-01-0033	Little Creek	Wayne	40.00353343	-85.14030595	4	Non-target, dry
26	GMW-07-0067	East Fork Whitewater River @ Brownsville Road	Union	39.67197732	-85.00216052	7	Target, Approved
27	GMW-07-0068	East Fork Whitewater River	Union	39.57730772	-84.99940344	7	Non-target, impounded stream
28	GMW-04-0037	Little Williams Creek	Fayette	39.66703388	-85.18860234	5	Non-target, access denied
29	GMW-01-0023	Tributary of Symons Creek @ CR 450 West	Fayette	39.78092386	-85.22087766	3	Target, Approved
30	GMW-08-0035	Whitewater River @ State Street	Dearborn	39.26437308	-84.82177513	8	Target, Approved
31	GMW-08-0036	Tributary of East Fork Blue Creek @ East Road	Franklin	39.31487461	-85.03007809	4	Non-target, dry
32	GMW-04-0038	Tributary of Sanes Creek @ South Beaver Road	Fayette	39.55901097	-85.27159874	4	Target, Approved
33	GMW-04-0026	Lick Creek @ SR 1	Fayette	39.68715842	-85.13767865	5	Target, Approved
34	GMU-10-0003	Greenville Creek @ CR 250 South	Randolph	40.12445969	-84.82152632	6	Target, Approved
35	GMW-08-0037		Franklin	39.46811022	-84.85462496	3	Non-target, no stream
36	GMW-06-0026	Duck Creek	Fayette	39.54128437	-85.07141886	3	Non-target, dry
37	GMW-01-0024	Dry Branch	Wayne	39.88158196	-85.0848704	3	Non-target, dry
38	GMW-07-0069	Middle Fork East Fork Whitewater River	Wayne	39.86597736	-84.86496551	6	Non-target, impounded stream
39	GMW-07-0070	Templeton Creek @ Snowden Road	Franklin	39.52424835	-84.94226035	4	Target, Approved
40	GMW-04-0027	Whitewater River @ Boys Club Road	Fayette	39.55794905	-85.16776304	8	Target, Approved
41	GMW-01-0025	Symonds Creek @ Goose Heaven Road	Wayne	39.83905939	-85.19151103	6	Target, Approved
42	GMW-07-0071	Tributary of East Fork Whitewater River	Wayne	39.78282678	-84.96392245	5	Target, Approved
43	GMW-07-0072	East Fork Whitewater River @ Philomah Road	Union	39.65283355	-85.00952536	7	Target, Approved
44	GMW-05-0022	Little Salt Creek	Franklin	39.47056128	-85.2436132	5	Target, Approved
45	GMW-01-0026	Symons Creek @ CR 700 South	Henry	39.831692	-85.256662	5	Target, Approved
46	GML-09-0001	Great Miami River @ Auction Lane	Dearborn	39.11595696	-84.82760799	9	Target, Approved
47	GMW-06-0027	Tributary of Western Creek @ Hoff Road	Ripley	39.28490254	-85.12166799	4	Target, Approved
48	GMW-05-0023	Tributary of Salt Creek @ Shady Road	Franklin	39.4094575	-85.22293021	4	Target, Approved
49	GMW-02-0017	Whitewater River @ Newman Lake Road	Fayette	39.714286	-85.12122075	7	Target, Approved
50	GMW-03-0022	Nolands Fork	Randolph	40.02544957	-84.87311854	5	Target, Approved

Table 3. List of Potential Sites for the Great Miami River Basin.

Table 3 (continued). List of Potential Sites for the Great Miami River I	Basin.
--	--------

Site #	AIMS Site Name	Stream Name and Location	County	Latitude (Decimal Degree)	Longitude (Decimal Degree)	Stream Orde	Site Status
51	GML-08-0001	Indian Creek	Union	39 6197877	-84 84519862	Julian	Non-target dry
52	GMW-04-0028	Whitewater River @ SR 121	Franklin	39 47301478	-85 18599696	4	Target Approved
52	GMW-02-0018	Town Creek	Wayne	39 98186956	-85 00786087	4	Target Approved
54	GMW-07-0073	Smith Creek @ Old SR 112	Wayne	39 72864912	-84 91330608	4	Target Approved
55	GMW-07-0079	Tributary of Wolf Creek	Franklin	39 46737849	-85 02105596	4	Target Approved
56	GMW-04-0029	Whitewater River	Favette	39.64519912	-85 12338876	8	Target Approved
57	GMW-01-0027	Bear Creek @ Heiney Road	Wayne	39 88176015	-85 16164443	4	Target Approved
58	GMW-03-0023	Tributary of Nolands Fork	Wayne	39 84430575	-84 98829395	5	Non-target impounded stream
59	GMW-08-0041	Whitewater River @ Graf Road	Franklin	39 35320657	-84 94518226	8	Target Approved
60	GMW-05-0017	Little Salt Creek	Franklin	39 49431609	-85 26205287	5	Non-target access denied
61	GMI-06-0004	Church Creek @ SR227	Union	39 68549487	-84 82111353	4	Other Deadline 3/15
62	GMW-08-0042	Whitewater River	Franklin	39 3197997	-84 89923211	8	Target Approved
63	GMW-05-0018	Harvey Branch @ Water Street	Franklin	39 33939545	-85 20667097	4	Target Approved
64	GMW-05-0019	Salt Creek @ Base Road	Decatur	39.32621204	-85.30713032	6	Target, Approved
65	GMW-01-0028	Whitewater River	Wayne	39 78195968	-85 14313126	7	Target Approved
66	GMW-07-0074	Clear Creek @ Earlham Cemetery	Wayne	39.81022192	-84.92225928	5	Target, Approved
67	GMW-07-0075	Tributary of Hanna Creek	Union	39.60734403	-84.92089585	3	Non-target, dry
68	GMW-04-0030	Tributary of Whitewater River	Franklin	39,51638399	-85.19512192	4	Non-target, dry
69	GMW-04-0031	Williams Creek @ Shrader-Weaver Nature Preserve	Favette	39 72159426	-85 23048486	6	Target Approved
70	GMW-08-0038	Whitewater River @ Pinhook Road	Dearborn	39.27189996	-84.83900939	8	Target, Approved
71	GMW-06-0028	Tributary of Pipe Creek @ Walters Road	Dearborn	39.26140023	-85.06650276	3	Other, Deadline 3/15
72	GMW-05-0020	Little Salt Creek	Franklin	39.50637862	-85.27113853	5	Other. Deadline 3/15
73	GMW-01-0029	Beard Run	Wavne	39.84445023	-85.14348292	3	Non-target, dry
74	GMW-07-0076	Tributary of Short Creek	Wayne	39.80215909	-84.87380675	2	Non-target, dry
75	GMW-08-0043	Little Cedar Creek	Franklin	39 43250634	-84 94629293	3	Target Approved
76	GMW-04-0032	Fall Creek @ CR 350 South	Favette	39.59419387	-85.17906203	4	Target, Approved
77	GMW-01-0030	Tributary of Roy Run	Henry	39.80339851	-85.24972022	3	Non-target, dry
78	GMW-08-0039	Johnson Fork @ Johnson Fork Road	Franklin	39.32750715	-84.85500484	4	Target, Approved
79	GMW-08-0044	Blue Creek @ Blue Creek Road	Franklin	39.36106322	-85.03519673	6	Target, Approved
80	GMW-04-0033	Tributary of Williams Creek	Favette	39.6560602	-85.2684128	4	Other, Deadline 3/15
81	GMW-02-0019	Whitewater River @ Newman Lake Road	Favette	39,70839532	-85.1199238	7	Target, Approved
82	GMW-03-0024	Fountain Creek	Wavne	39.97384789	-84.89600542	5	Target, Approved
83	GMW-08-0045	Big Cedar Creek @ Liberty Pike	Franklin	39,46058575	-84.90923985	5	Other, Deadline 3/15
84	GMW-06-0029	Tributary of Duck Creek @ Davis Road	Franklin	39.51195353	-85.0678823	3	Other. Deadline 3/15
85	GMW-02-0020	Snow Run @ CR 600 South	Randolph	40.07919451	-84.98031432	5	Other. Deadline 3/15
86	GMW-07-0080	Tributary of West Fork East Fork Whitewater River @ Tingler Road	Wavne	39.88784439	-84.8956266	4	Target, Approved
87	GMW-06-0030	Whitewater River	Franklin	39.43240732	-85.05671903	8	Other. Deadline 3/15
88	GMW-04-0034	Whitewater River @ SR 121	Favette	39.60050878	-85.15042415	8	Other. Deadline 3/15
89	GMW-01-0031	Whitewater River @ Canbridge Road	Wayne	39.82811017	-85,1673208	4	Other, Deadline 3/15
90	GMW-07-0081	East Fork Whitewater River @ Endslev Road	Wayne	39.75634684	-84.95346992	7	Other. Deadline 3/15
91	GMW-08-0040	Whitewater River @ SR 1	Franklin	39.35965771	-84.95449355	8	Other. Deadline 3/15
92	GMW-04-0035	Sanes Creek @ Sanes Creek Road	Franklin	39.4982526	-85.21773853	5	Other. Deadline 3/15
93	GMW-01-0032	Lick Branch	Henry	39.8583447	-85.2497149	4	Other, Deadline 3/15
94	GML-09-0002	Doublelick Run	Dearborn	39,1546453	-84.8283174	5	Other, Deadline 3/15
95	GMW-06-0031	Tributary of Western Creek @ Spader Road	Ripley	39.27696191	-85.10452562	3	Other. Deadline 3/15
96	GMW-05-0021	Bull Fork	Franklin	39.40698659	-85.27632094	5	Other, Deadline 3/15
	GMW-02-0021	Whitewater River	Wayne	39.72153211	-85.12460597	7	Other, Deadline 3/15
98	GMW-03-0025	Nolands Fork	Wayne	39.9483352	-84.91961853	5	Other, Deadline 3/15
99	GML-06-0005	Little Four Mile Creek @ 9 Mile Road	Union	39.60854269	-84.82745367	5	Other, Deadline 3/15
100	GMW-04-0036	Sillimans Creek	Franklin	39.46725863	-85.19935022	3	Other, Deadline 3/15

A.4.6. Specify Performance or Acceptance Criteria

Good quality data are essential for minimizing decision error. By identifying errors in the sampling design, measurement, and laboratory for physical, chemical, and biological parameters, more confidence can be placed in the percentage of perennial stream miles in the river basin that support or do not support aquatic life and recreational uses. In this project, it is desired to make decisions protective of human health and the environment; therefore, the null hypothesis is that the reach is not supportive of Indiana's aquatic life and recreational uses. The resulting Type 1 and Type 2 decision errors in this project are listed in Table 4 below.

	Actual Status of Sampled Stream Reaches of the Studied Watershed		
WAPB Work Plan Findings	Stream reach <u>IS</u> supportive of aquatic life and recreational use	Stream reach <u>IS NOT</u> supportive of aquatic life and recreational use	
Stream reach <u>IS</u> supportive of aquatic life and recreational use	Stream reach is correctly identified as supporting aquatic life and recreational use	Decision Error (Type 1)	
Stream reach <u>IS NOT</u> supportive of aquatic life and recreational use	Decision Error (Type 2)	Stream reach is correctly identified as <u>NOT</u> supporting aquatic life and recreational use	

Table 4. Decision Error Associated with Probabilistic Monitoring.

The probabilistic sampling design provides estimations of the proportion of streams in the basin attaining designated uses with a 95% confidence level. A minimum of 38 probabilistic sites will be sampled in the basin to assure this confidence level is reached for overall stream mileage estimations (see Sampling Design and Site Locations, page 19).

Site specific aquatic life use and recreational use assessments include program specific controls to identify the introduction of errors. These controls include water chemistry and bacteriological blanks and duplicates, biological site revisits or duplicates, and laboratory controls through verification of species identifications as described in IDEM QAPPs and SOPs (IDEM, 2017, 2020a, 2020c, 2020d, 2023a, 2023b, 2023d, 2023e, 2023f, 2023h).

The QA/QC process detects deficiencies in the data collection as set forth in the QAPP (IDEM 2017, 2020a). The QAPP requires all contract laboratories to adhere to rigorous standards during sample analyses and to provide good quality usable data. Chemists within the WAPB provide a QA review of the laboratory analytical results. Any data which is "Rejected" due to analytical problems or errors will not be used for water

quality assessment decisions. Any data flagged as "Estimated" may be used on a case-by-case basis and is noted in the QA/QC report. Criteria for acceptance or rejection of results as well as application of data quality flags is presented in the Surface Water QAPP, Table D3-1: Data Qualifiers and Flags, page 184 (IDEM 2017) and Biological and Habitat QAPP, pages 32-36 (IDEM 2020a). Precision and accuracy goals with acceptance limits for applicable analytical methods are provided in the Surface QAPP, Table A7-1: Precision and Accuracy Goals for Data Acceptability by Matrix, pages 61–63; and Table B2.1.1.8-2 Field Parameters, page 117 (IDEM 2017). Further investigation will be conducted in response to consistent "rejected" data in determining the source of error. Field techniques used during sample collection and preparation, along with laboratory procedures will be subject to evaluation by both the WAPB QA manager and project manager in troubleshooting error introduced throughout the entire data collection process. Corrective actions will be implemented once the source of error is determined per the QAPP (IDEM 2017, IDEM 2020a).

If funding and resources are available, results showing nonsupport for aquatic life use will be subsequently verified through a targeted monitoring program prior to completion of the Integrated Report. Those stream reaches showing nonsupport may also be verified through the TMDL development process.

A.4.7. Develop the Plan for Obtaining Data

The probabilistic rotating basin design is optimal for assessing the recreational use and ALUS status of river and stream resources in Indiana. The design facilitates statistically valid estimations of the total percent of perennial stream miles within the basin of interest that are nonsupporting for aquatic life and recreational uses. The estimations are derived from total perennial stream miles in the basin of interest and the design requires minimal use of sampling and staff resources (see Sampling Design and Site Locations, page 19).

A.5. Training and Staffing Requirements

Table 5. Project Roles, Experience, and Training

Role	Required	Responsibilities	Training
	Training/Experience		References
Project manager	-Database experience -Experience in project management and QA/QC procedures	-Establish project in the Assessment Information Management System (AIMS) II database -Oversee development of project work plan -Oversee entry and QC of field data	-AIMS II Database User Guide -IDEM 2017, 2018, 2020a, 2020b, 2022b -U.S. EPA 2002, 2006
		AIMS II to determine	

			May 9, 2023
Role	Required	Responsibilities	Training
	Training/Experience	results not meeting water quality criteria -Calculating predicted percentage of perennial stream miles nonsupporting for aquatic life uses and recreational uses in the river basin of interest	References
Field crew chief macroinvertebrate and fish community sampling	-At least one year of experience in sampling methodology and taxonomy of aquatic communities in the region -Annually review the principles and techniques of electrofishing -Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Complete field data sheets -Taxonomic accuracy -Sampling efficiency and representation -Voucher specimen tracking -Overall operation of the field crew -Adherence to safety and field SOP procedures by crew members -Ensure that multiprobe analyzers are calibrated weekly prior to field sampling activities -Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities	-Dufour 2002 -IDEM 2008, 2010a, 2010b, 2019, 2020a, 2020c, 2020d, 2021b, 2022a, 2022b, 2023b, 2023c, 2023d, 2023f -Simon 1997 -Simon and Dufour 1998, 2005 -YSI 2017, 2018
Field crew members – macroinvertebrate and fish community sampling	-Complete hands-on training for sampling methodology prior to participation in field sampling activities -Review the principles and techniques of electrofishing -Review relevant safety procedures -Review relevant SOP documents for field operations	-Follow all safety and SOP procedures while engaged in field sampling activities -Follow direction of field crew chief while engaged in field sampling activities	-IDEM 2008, 2010a, 2010b, 2019, 2020c, 2020d, 2021b, 2022a, 2023b, 2023c, 2023d, 2023f -YSI 2017, 2018
Field crew chief – water chemistry, algal, and/or bacteriological sampling	-At least one year of experience in sampling methodology -Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Completion of field data sheets -Sampling efficiency and representation -Overall operation of the field crew -Adherence to safety and field SOP procedures by crew members	-IDEM 2008, 2010a, 2010b, 2019, 2020a, 2020c, 2020d, 2021b, 2022a, 2022b, 2023a, 2023c, 2023e, 2023h -YSI 2017, 2018

			May 9, 2023
Role	Required	Responsibilities	Training
	Training/Experience	-Ensure that multiprobe analyzers are calibrated weekly prior to field sampling activities -Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities	References
Field crew members – water chemistry, algal, and/or bacteriological sampling	-Complete hands-on training for sampling methodology prior to participation in field sampling activities -Review relevant safety procedures -Review relevant SOP documents for field operations	-Follow all safety and SOP procedures while engaged in field sampling activities -Follow direction of field crew chief while engaged in field sampling activities	-IDEM 2008, 2010a, 2010b, 2019, 2020c, 2020d, 2021b, 2022a, 2023a, 2023c, 2023e, 2023h -YSI 2017, 2018
Laboratory supervisor – macroinvertebrate and fish community sample processing	-At least one year of experience in taxonomy of aquatic communities in the region -Annually review relevant safety procedures -Annually review relevant SOP documents for laboratory operations	 -Identification of fish and macroinvertebrate specimens collected during field sampling -Completion of laboratory data sheets -Verify taxonomic accuracy of processed samples -Voucher specimen tracking -Adherence to safety and SOP procedures by laboratory staff -Check data for completeness -Perform all necessary calculations on the data -Ensure that data are entered into the AIMS II Database -Ensure that required QA/QC are performed on the data -Querying data from AIMS II to determine results not meeting Water Quality Criteria 	-IDEM 2008, 2010a, 2010b, 2019, 2020a, 2021b -AIMS II Database User Guide
Laboratory staff – macroinvertebrate and fish community sample processing	-Complete hands-on training for laboratory sample processing methodology prior to participation in laboratory sample processing activities	-Adhere to safety and SOP procedures -Follow Laboratory Supervisor direction while processing samples -Identification of fish and macroinvertebrate	-IDEM 2008, 2010a, 2010b, 2019, 2021b -AIMS II Database User Guide

Dela	Deguined	Deeneneihilitiee	
Role	Training/Experience	Responsibilities	References
	-Annually review relevant safety procedures -Annually review relevant SOP documents for laboratory operations	specimens collected during field sampling -Completion of laboratory data sheets, perform necessary calculations on data, enter field sheets	
Laboratory supervisor – water chemistry, algal and/or bacteriological sample processing	-Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Completion of laboratory data sheets -Adherence to safety and SOP procedures by laboratory staff -Check data for completeness -Perform all necessary calculations on the data -Ensure that data are entered into the AIMS Data Base -Ensure that required QA/QC are performed on the data -Querying data from AIMS II to determine results not meeting Water Quality Criteria	-IDEM 2008, 2010a, 2010b, 2017, 2019, 2020a, 2021b, 2023e, 2023h -AIMS II Database User Guide
Quality assurance officer	-Familiarity with QA/QC practices and methodologies -Familiarity with the QAPPs and data qualification methodologies	-Ensure adherence to QA/QC requirements of QAPP -Evaluate data collected by sampling crews for adherence to project work plan -Review data collected by field sampling crews for completeness and accuracy -Perform a data quality analysis of data generated by the project -Assign data quality levels based on the data quality analysis -Import data into the AIMS data base -Ensure that field sampling methodology audits are completed according to WAPB procedures	-IDEM 2017, 2018, 2020a, 2021a, 2022b, 2023a -U.S. EPA 2002, 2006 -AIMS II Database User Guide

B. Measurement and Data Acquisition

B.1. Sampling Design and Site Locations

Sites are generated by the U.S. EPA, NHEERL, Western Ecology Division, in Corvallis, Oregon using Environmental Monitoring Assessment Program selection methods. The Environmental Monitoring Assessment Program design uses a statistically valid number of randomly selected sites to assess and characterize the overall water quality and biotic integrity of the basin of study. To statistically estimate the percent of the basin attaining designated uses with a 95% confidence level, a minimum of 38 probabilistic sites will be sampled in the basin of interest. This minimum required number of sites was determined by analyzing IDEM fish community IBI metric scores from 317 sites sampled from 1996–2000 with the following formula:

$$n = \frac{s^2}{(p)^2(\bar{x})^2}$$

where *n* is the number of sites required, *s* is the sample standard deviation (10.98922), \overline{x} is the sample mean (35.52366), and *p* is the p-value (set at 0.05 for a 95% confidence level) (Elliott 1983). A sample size of 38 was thereby determined to be sufficient to arrive at the "true" average IBI score for a basin 95% of the time. This sample size was also found to be sufficient to provide 80% estimations for eight of the more frequently used individual metrics used in the calculation of the fish community IBI.

Site selection is stratified to ensure effort is equally distributed between stream orders for equal representation of the various stream sizes within the basin. IDEM's site selection process incorporates a stratified random probability design in order to select an approximately equal number of 1st, 2nd, 3rd, and 4th order and higher streams in the basin. Utilizing the stratification method ensures that a greater number of sampling sites on lesser order streams are not chosen based on proportion of stream miles. An over draw of sampling sites is requested to compensate for denial of access, dry stream conditions, and sites presenting extremely difficult or unsafe access.

Site reconnaissance activities will be conducted in-house and through physical site visits (IDEM 2023g). In-house activities will include preparation and review of site maps and aerial photographs; initial evaluation of target or nontarget site status; potential access routes; and initial property owner searches. Physical site visits will include property owner consultations; verification of site status (target or nontarget); confirmation and documentation of access routes; and determination of equipment needed to properly sample the site. Precise coordinates for each approved target site will be determined using an agency approved handheld Global Positioning System (GPS) unit which can verify horizontal precision of five meters or less (IDEM 2022a, 2023c). All 100 potential sites are to be visited at least once during site reconnaissance to determine target or nontarget status (marsh, dry, backwater, etc.). However, landowner permission and site access

will be determined for only the first 75 potential sites with the remaining 25 sites noted only as "Target" or "NonTarget". After each site has been visited once, and at least 45 sites have been approved in the basin of interest, field work for site reconnaissance activities should be minimal. Although 12 weeks is the maximum time allotted for site reconnaissance field work (see A. Project Management, A.4 Data Quality Objectives), most work can be completed in a six-week period depending upon weather, drive time to sites, and other unforeseeable constraints. The remaining work, if possible, can be done in the office with phone calls to seek landowner permission. If permission to visit a site is then granted before the 12-week deadline, a daytrip or overnight may be needed to determine access routes, equipment, and more accurate GPS coordinates. Once the deadline is reached, those sites that were not accessible through bridge right-ofway, yet appeared to be "target" from the nearest bridge, will be entered into the database with the Reconnaissance Decision as "No, Other" with the following text in the Comments field "Unable to contact landowner by deadline" along with the date and initials of the person entering the data and writing it on the IDEM Site Reconnaissance Form (Attachment 1).

Table 3 lists the potential sampling sites generated by U.S. EPA Corvallis for the Great Miami River Basin. Target sampling sites will be taken in sequential order as shown in Table 3 until the 45 sites are sampled for algal community and water chemistry, 40 sites for bacteriological sampling, and 38 sites for biological sampling programs. If a site is considered "nontarget" (dry, backwater, marsh/wetland, etc.) or unavailable to sample for some other reason (physical barrier, landowner denial, etc.), the next target site on the list will be taken. Figure 1 depicts potential sampling sites generated by U.S. EPA Corvallis for this project and their approximate locations.

B.2. Sampling Methods and Sample Handling

B.2.1. Bacteriological Sampling

The bacteriological sampling will be conducted by one or two teams consisting of two staff (IDEM 2023a). The work effort will require an average of one hour per site per week. Samples will be processed in the IDEM Fixed and/or Mobile *E. coli* Laboratory (van) equipped with all materials and equipment necessary for the Standard Method (SM) 9223B Colilert® E. coli Test Method near the sampling sites. Five samples from each site (40 sites total) will be collected at equally spaced intervals over a thirty calendar-day period. Staff will collect the samples in a 120 mL presterilized wide mouth container from the center of flow (if the stream is wadeable) or from the shoreline using a pole sampler (if the stream is not wadeable). This is subject to field staff determination based on available Personal Protective Equipment (PPE), turbidity, and other factors. However, streams waist deep or shallower are generally considered wadeable. All samples will be consistently labeled, cooled, and held at a temperature less than 10°C during transport. All E. coli samples will be collected on a schedule such that any sampling crew can deliver them to

the IDEM Fixed or Mobile *E. coli* Laboratory for analyses within the bacteriological holding time of six hours.

The IDEM *E. coli* Mobile Laboratory is used in this project to facilitate *E. coli* testing by eliminating the necessity of transporting samples to distant contract laboratories within a six-hour holding time. The *E. coli* Mobile Laboratory provides workspace containing storage for samples, supplies for Colilert® Quanti-tray testing, and all equipment needed for collecting, preparing, incubating, and analyzing results. All supplies will be obtained from IDEXX Laboratories, Inc., Westbrook, Maine.

B.2.2. Water Chemistry Sampling

During three discrete sampling events, one team of two staff will collect grab water chemistry samples, and record water chemistry field measurements and physical site descriptions on the IDEM Stream Sampling Field Data Sheet (Attachment 2). All water chemistry sampling will adhere to the Water Chemistry Field Sampling Procedures (IDEM 2020d). Water chemistry sampling usually takes 30 minutes to complete for each site, depending on accessibility.

B.2.3. Algal Sampling

In addition to standard water chemistry sampling, one team of two staff will collect attached periphyton samples (IDEM 2023e) at all sites during the third round of water chemistry sampling in September or October (Table 1) for the purposes of diatom community enumeration, identification, and subsequent diatom IBI calculation.

Sampling for an average site that includes all of the above parameters will require approximately 1.5 hours of effort. The Algal Biomass Lab Datasheet (Attachment 3) will be used to record information regarding substrates sampled for periphyton and physical parameters of the stream sampling area. See IDEM 2023e for a description of methods used in algal community sampling.

Periphyton samples are processed in the IDEM laboratory to create permanent diatom slide mounts. See IDEM 2023h for a description of methods used in preparing samples for diatom identification and enumeration.

B.2.4. Fish Community Sampling

Fish community sampling will be performed using various standardized electrofishing methodologies depending on stream size and site accessibility. Fish assemblage assessments will be performed in a sampling reach of 15 times the average wetted width, with a minimum reach of 50 meters and a maximum reach of 500 meters (IDEM 2023b). An attempt will be made to sample all habitat types available (i.e., pools, shallows; see IDEM 2023g, pg. 10–11, for more potential habitat types) within the sample reach to ensure adequate representation of the fish

community present at the time of the sampling event. The possible list of electrofishers to be utilized include: the Midwest Lake Electrofishing Systems (MLES) Infinity XStream, Smith-Root LR-24 or LR-20B Series backpack electrofishers; or MLES Infinity Control Box with MLES junction box and rat-tail cathode cable, assembled in a canoe. If parts of the stream are not wadeable, the system may require the use of a dropper boom array outfitted in a canoe or possibly a 12- or 14-foot Loweline boat. For nonwadeable sites, the Smith-Root Type VI-A electrofisher or MLES Infinity Control Box assembled in a 16-foot Loweline or Blazer boat (IDEM 2023b) may be used.

Sample collections during high flow or turbid conditions will be avoided due to 1) low collection rates which result in nonrepresentative samples and 2) safety considerations for the sampling team. Sample collection during late autumn will be avoided due to the cooling of water temperature, which may affect the responsiveness of some species to the generated electric field. This lack of responsiveness can result in samples that are not representative of the stream's fish assemblage (IDEM 2023b).

Fish will be collected using dipnets with fiberglass handles and netting of 1/8-inch bag mesh. Fish collected in the sampling reach will be sorted by species into baskets or buckets. Young-of-the-year fish less than 20 millimeters (mm) total length will not be retained in the community sample (IDEM 2023b).

For each field taxonomist, generally the crew leader, a complete set of fish vouchers are retained for any different species encountered during the summer sampling season. Vouchers may consist of either preserved specimens or digital images. Prior to processing fish specimens and completion of the fish community datasheet, one to two individuals per new species encountered may be preserved in 3.7% formaldehyde solution to serve as representative fish vouchers if the fish specimens can be positively identified and the individuals for preservation are small enough to fit in a 2000 mL jar. If, however, the specimens are too large to preserve, a photo of key characteristics, like fin shape, size, or body coloration, will be taken for later examination (IDEM 2023b). Also, prior to sampling, 10% of the sites will be randomly selected for revisiting and a few representative individuals of all species found at the site will be preserved or photographed to serve as vouchers (IDEM 2020a). Taxonomic characteristics for possible species encountered in the basin of interest will be reviewed prior to field work. Fish specimens should also be preserved if they cannot be positively identified in the field, those that cooccur like the Striped and Common Shiners, and those that are difficult to identify when immature. Additionally, individuals appearing to be hybrids, have unusual anomalies, dead specimens that are taxonomically valuable

for undescribed taxa like the Red Shiner or Jade Darter, life history studies, or research projects (IDEM 2023b) should also be preserved.

Data will be recorded for nonpreserved fish on the IDEM Fish Collection Data Sheet (Attachment 4) consisting of the following: number of individuals, minimum and maximum total length (mm), mass weight in grams (g), and number of individuals with deformities, eroded fins, lesions, tumors, and other anomalies (DELTs). Once the data have been recorded, specimens will be released within the sampling reach from which they were collected. Data will be recorded for preserved fish specimens following taxonomic identification in the laboratory (IDEM 2023b).

B.2.5. Macroinvertebrate Sampling

Aquatic benthic macroinvertebrate samples are collected using a modification of the U.S. EPA Rapid Bioassessment Protocol multihabitat (MHAB) approach using a D-frame dip net (Plafkin et al. 1989; Barbour et al. 1999; Klemm et al. 1990; IDEM 2023d). The IDEM MHAB approach (IDEM 2023d) is composed of a 1-minute "kick" sample within a riffle or run. A kick sample is collected by disturbing one square meter of stream bottom substrate in a riffle or run habitat and collecting the dislodged macroinvertebrates within the dipnet. A 50-meter "sweep" sample of additional instream habitats is collected by disturbing habitats such as emergent vegetation, root wads, coarse particulate organic matter, depositional zones, logs, and sticks; and collecting the dislodged macroinvertebrates within the dipnet. The 50-meter length of riparian corridor that is sampled at each site will be defined using a tape measure or rangefinder. If the stream is too deep to wade, a boat will be used to sample the 50-meter zone along the shoreline that has the best available habitat. The 1-minute "kick" (if collected) and 50-meter "sweep" samples are combined in a bucket of water. The sample will be elutriated through a U.S. standard number 35 (500 µm) sieve a minimum of five times so that all rocks, gravel, sand, and large pieces of organic debris are removed from the sample. The remaining sample is then transferred from the sieve to a white plastic tray. The collector (while still onsite) will conduct a 15minute pick of macroinvertebrates at a single organism rate with an effort to pick for maximum organism diversity and relative abundance through turning and examination of the entire sample in the tray. The resulting picked sample will be preserved in 80% isopropyl alcohol; returned to the laboratory for identification at the lowest practical taxonomic level, usually genus or species level, when possible; and evaluated using the MHAB macroinvertebrate IBI.

B.2.6. Habitat Assessments

Habitat assessments will be completed immediately following macroinvertebrate and fish community sample collections at each site using a slightly modified version of the Ohio Environmental Protection Agency (OHEPA) Procedures for Completing the QHEI, 2006 edition (OHEPA 2006). A separate QHEI (Attachment 5) must be completed for these two sample types since the sampling reach length may differ. A sample reach length is 50 meters for macroinvertebrates and between 50 to 500 meters for fish. See IDEM 2023f for a description of the method used in completing the QHEI.

B.2.7. Field Parameter Measurements

Dissolved oxygen, pH, water temperature, specific conductance, and dissolved oxygen percent saturation will be measured with a data sonde during each sampling event, regardless of the sample type being collected. Measurement procedures and operation of the data sonde shall be performed according to the manufacturers' manuals (IDEM 2020c). Turbidity will be measured with a Hach turbidity kit, and the meter number written in the comments under the field parameter measurements (IDEM 2020d). If a Hach turbidity kit is not available, the data sonde measurement for turbidity will be recorded and noted in the comments. All field parameter measurements and weather codes will be recorded on the IDEM Stream Sampling Field Data Sheet (Attachment 2) with other sampling observations. A digital photo will also be taken upstream and downstream of the site during each sampling event.

B.3. Analytical Methods

Table 6 lists the *E. coli* bacteriological and field parameters with their respective test method and IDEM quantification limits. Table 7 shows bacteriological and water chemistry sample container, preservative, and holding time requirements when all samples must be iced to 4°C. Table 8 lists numerous parameters like priority metals, anions/physical, and nutrients/organic with their respective test methods, IDEM reporting limits, and contract laboratory reporting limits. The IDEM OWQ Field Chain of Custody Form (Attachment 6) and the 2023 Corvallis Water Sample Analysis Request Forms (Attachment 7) accompanies each sample set through the analytical process.

B.4. Quality Control and Custody Requirements

QA protocols will follow part B5 of the Surface Water QAPP (IDEM 2017, pg. 170) and B.5 of the Biological and Habitat QAPP (IDEM 2020a, pg. 27).

B.4.1. Bacteriological Data

Bacteriological samples will be analyzed using the SM 9223B Enzyme Substrate Coliform Test Method (see Table 6 for quantification limits). Samples will be collected using 120 mL presterilized wide mouth containers and adhere to the six-hour holding time (Table 7). Analytical results from the IDEM Fixed and/or Mobile *E. coli* Laboratory include QC check sample results from which precision, accuracy, and completeness can be determined for each batch of samples (IDEM 2017). Raw data are archived by analytical batch for easy retrieval and review. Chain of custody procedures must be followed and include: time of collection, time of setup, time of reading the results, and time and method of disposal (IDEM 2023a). Any method deviations will be thoroughly documented in the field notes.

All QA/QC samples will be tested according to the following guidelines:

Field duplicate: Field duplicates will be collected at a frequency of 1 per batch or at least 1 for every 20 samples collected (\geq 5%).

Field blank: Field blanks will be collected at a frequency of 1 per batch or at least 1 for every 20 samples collected ($\geq 5\%$).

Laboratory blank: Laboratory blanks (sterile laboratory water blanks) will be tested at a frequency of 1 per day.

Positive control: Each lot of media will be tested with *E. coli* bacterial cultures for positive performance (SM 9020 B.8 and B.9).

Negative controls: Each lot of media will be tested with bacterial cultures other than *E. coli* or a noncoliform for negative performance (SM 9020 B.8 and B.9).

QA documentation for each batch of samples consists of a chain of custody form, a QA/QC summary sheet, and spreadsheets of results. This documentation is submitted to the Technical and Logistical Services Section for QA review and the assignment of an appropriate DQA Level.

B.4.2. Water Chemistry Data

Sample bottles and preservatives certified for purity will be used. Sample collection procedures, including the container and preservative used for each parameter and holding times will adhere to U.S. EPA requirements for water chemistry testing (see Table 8). Field duplicates and matrix spike/matrix spike duplicates (MS/MSD) shall be collected at the rate of one per sample analysis set or one per every 20 samples, whichever is greater (IDEM 2017). Additionally, field blank samples using American Society for Testing and Materials (ASTM) D1193-91 Type I water will be taken at a rate of one set per sampling crew for each week of sampling activity (IDEM 2020d). All samples collected for water chemistry analysis will be processed by Pace Analytical Services, Inc. (Indianapolis, Indiana) following the specifications set forth in Request for Proposals 22-68153 (IDEM 2021a).

Table 6. Bacteriological and Field Parameters showing method and IDEMquantification limit.

Parameters	Method	IDEM Quantification Limit
<i>E. coli</i> (Enzyme Substrate Coliform Test)	SM ¹ 9223B	1 MPN ² / 100 mL
Dissolved oxygen (data sonde optical)	ASTM D888-09	0.05 mg/L
Dissolved oxygen % Saturation (data sonde optical)	ASTM D888-09	0.05 %
	May 0, 2020	
--------------------------	--	
SM4500-OG ³	0.05 mg/L	
U.S. EPA 150.2	0.10 SU	
SM 4500H-B ³	0.10 SU	
SM 2510B	1.00 µmhos/cm	
SM 2550B(2)	0.1 Degrees Celsius (°C)	
SM 2550B(2) ³	0.1 Degrees Celsius (°C)	
SM 2130B	0.02 NTU ⁴	
U.S. EPA 180.1	0.05 NTU ⁴	
	SM4500-OG ³ U.S. EPA 150.2 SM 4500H-B ³ SM 2510B SM 2550B(2) SM 2550B(2) ³ SM 2130B U.S. EPA 180.1	

¹ SM = Standard Method

² 1 MPN (Most Probable Number) = 1 CFU (Colony Forming Unit)
 ³ Method used for Field Calibration Check

^{4 NTU} = Nephelometric Turbidity Unit(s)

Table 7. Bacteriological and Water Chemistry Sample Container, Preservative, and Holding Time Requirements¹

Parameter	Container	Preservative	Holding Time
^{1,2} Alkalinity as CaCO₃*	1 L, HDPE, narrow mouth	None	14 days
³ Ammonia-N**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Chloride*	1 L, HDPE, narrow mouth	None	28 days
Chemical oxygen demand**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Cyanide (All forms)	1 L, HDPE, narrow mouth	NaOH > pH 12	14 days
Dissolved organic carbon	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
E. coli	120 mL, presterilized, wide mouth	$Na_2S_2O_3$	6 hours
Hardness (as CaCO ₃ *) calculated	1 L, HDPE, narrow mouth	HNO₃ < pH 2	6 months
Metals (Total and Dissolved)	1 L, HDPE, narrow mouth	HNO₃ < pH 2	6 months
Nitrogen, nitrate + nitrite**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Total phosphorus**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
⁵ Solids (All Forms)*	1 L, HDPE, narrow mouth	None	7 days
Sulfate*	1 L, HDPE, narrow mouth	None	28 days
Total Kjeldahl nitrogen**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Total organic carbon**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days
Dissolved organic carbon**	1 L, glass, Amber Boston Round	H ₂ SO ₄ < pH 2	28 days

¹ All samples iced to 4°C.

²General chemistry includes all parameters noted with an *

³Nutrients include all parameters noted with a **

⁴ HDPE – High Density Polyethylene

⁵ Separate 1 Liter sample is required for Total Suspended Solids

		Pri	ority Metals			Anions/Physical						
Parameter	<u>Total</u>	Dissolved	Test Method	<u>IDEM-</u> requested <u>Reporting</u> Limit (µg/L)	<u>Pace</u> <u>Laboratory</u> <u>Reporting</u> Limit (μg/L)	<u>Parameter</u>	Pace Test Method	IDEM- requested <u>Reporting</u> <u>Limit</u> (mg/L)	Pace Laboratory Reporting Limit (mg/L)			
Aluminum	X	X	U.S. EPA 200.8	10	10	Alkalinity (as CaCO ₃)	SM 2320B	10	10			
Antimony	X	X	U.S. EPA 200.8	1	1	Total Solids	SM 2540B	1	10			
Arsenic	X	X	U.S. EPA 200.8	2	1	Total Suspended Solids	SM 2540D	1	2.5			
Calcium	X		U.S. EPA 200.7	20	1,000	Dissolved Solids	SM 2540C	10	10			
Cadmium	X	X	U.S. EPA 200.8	1	0.2	Sulfate	U.S. EPA 300.0	0.05	0.25			
Chromium	X	X	U.S. EPA 200.8	3	2	Chloride	U.S. EPA 300.0	1	0.25			
Copper	X	X	U.S. EPA 200.8	2	1	Hardness (as CaCO ₃) by calculation	SM 2340B	0.4	10			
Lead	X	X	U.S. EPA 200.8	2	1							
Magnesium	X		U.S. EPA 200.7	95	1,000	Nutrior	ta/Ongania (Daga)					
Nickel	X	\mathbf{X}	U.S. EPA 200.8	1.5	0.5	Nutrien	its/Organic (Pace))				
Selenium	X	X	U.S. EPA 200.8	4	1							
Silver	X	X	U.S. EPA 200.8	0.3	0.5			IDEM-				
Zinc			U.S. EPA 200.8	5	3	<u>Parameter</u>	Pace Test Method	requested <u>Reporting</u> <u>Limit</u> (mg/L)	<u>Pace</u> <u>Laboratory</u> <u>Reporting</u> <u>Limit (mg/L)</u>			
						Total Kjeldahl Nitrogen (TKN)	U.S. EPA 351.2	0.1	0.5			
						Ammonia-N	U.S. EPA 350.1	0.01	0.1			
						Nitrogen, Nitrate + Nitrite	U.S. EPA 353.2	0.05	0.1			
						Total Phosphorus	U.S. EPA 365.1	0.01	0.05			
						Total Organic Carbon (TOC)	SM 5310C	1	1			
						Dissolved Organic Carbon (DOC)	SM 5310C	1	1			
						Cyanide-Total	U.S. EPA 335.4	0.01	0.005			
						Cyanide-Weak Acid Dissociable	SM 4500CN-I	0.01	0.005			

Table 8. Water Chemistry Parameters with Test Method and IDEM and Laboratory Reporting Limits.

SM: Standard Methods for the Examination of Water and Wastewater

U.S. EPA: United States Environmental Protection Agency

Chemical Oxygen Demand (COD)

U.S. EPA 410.4

3

10

B.4.3. Algal Community Data

Excessive algal conditions will be recorded by staff if an algal bloom is observed on the water's surface or in the water column. Staff are not calibrated on this rating and the decision as to the severity of the bloom is based on best professional judgement, but an algal mat on the surface of the water or a bloom that gives the water the appearance of green paint would be justification for a decision of excessive algal conditions.

Duplicate diatom samples will be collected at 10 percent of sampling sites, approximately 5 in the basin. To decrease the potential for cross contamination and bias of the algal samples, all equipment that has come in contact with the sample will be cleaned with detergent and rinsed with ASTM D1193-91 Type III water after sampling has been completed at a given site. All sample labels must be accurately and thoroughly completed, including AIMS II sample numbers, date, stream name, and sampling location. Chain of custody forms will be completed in the field to document the collection and transfer of samples to the laboratory. Upon arrival to the laboratory, samples will be checked in by the laboratory manager. For the diatom samples, a Laboratory Chain of Custody Form (Attachment 8) will be used to document when the sample is removed from storage to be processed and made into a permanent mount.

QC of the diatom sampling, enumeration, and identification project will be documented by QC checks of both field and laboratory data. See page 23 in IDEM 2023h for a description of QA/QC protocols used in Diatom Identification and Enumeration. At least ten percent and up to 100 percent of diatom samples will be analyzed and verified (IDEM 2020a) by the Department of Biological and Environmental Sciences of Georgia College and State University following the specifications set forth in IDEM 2023h.

B.4.4. Fish Community Data

Fish community sampling revisits will be performed at a rate of 10 percent of the total fish community sites sampled, approximately 4 in the basin (IDEM 2023b). Revisit sampling will be performed with at least 2 weeks of recovery between the initial and revisit sampling events. The fish community revisit sampling and habitat assessment will be performed with either a partial or complete change in field team members (IDEM 2023b). The resulting IBI and QHEI total score between the initial visit and the revisit will be used to evaluate precision (IDEM 2020a). The IDEM OWQ Chain of Custody Form is used to track samples from the field to the laboratory (Attachment 6). Fish taxonomic identifications made by IDEM staff in the laboratory may be verified by regionally recognized non-IDEM freshwater fish taxonomists (e.g., Brant Fisher, Nongame Aquatic Biologist, Indiana Department of Natural Resources). All raw data are: 1) checked for completeness; 2) utilized to calculate derived data (i.e., total weight of all specimens of a taxon), which is entered into the AIMS II database; and 3) checked again for data entry errors.

B.4.5. Macroinvertebrate Community Data

Sites at which duplicate macroinvertebrate field samples will be collected are randomly selected prior to the beginning of the field season and occur at a rate of 10 percent of the total macroinvertebrate community sites sampled, approximately 4 in the basin. The macroinvertebrate community duplicate sample and corresponding habitat assessment will be performed by the same team member who performed the original sample and will be conducted immediately after the initial sample is collected. This will result in a precision evaluation based on a 10% duplicate of samples collected (IDEM 2020a). Sites in the basin will be divided equally among the macroinvertebrate staff; each staff will be responsible for collecting at least one duplicate sample. The IDEM OWQ Field Chain of Custody Form is used to track samples from the field to the laboratory (Attachment 6). The IDEM macroinvertebrate laboratory supervisor maintains Laboratory identifications and QA/QC of taxonomic work. A Laboratory Chain of Custody Form (Attachment 8) will be used to document when the sample is removed from storage to be processed and when the sample is returned to storage. 10% of samples (the initial samples taken at sites where duplicate samples were collected) will be verified by an outside taxonomist (IDEM 2020a).

B.5. Field Parameter Measurements, Instrument Testing, Calibration

The data sonde will be calibrated immediately prior to each week's sampling (IDEM 2020c). The dissolved oxygen component of the calibration procedure will be conducted using the air calibration method. Calibration results and drift values will be recorded, maintained, stored, and archived in the calibration laboratories at the Shadeland facility. The drift value is the difference between two successive calibrations. Field parameter calibrations will conform to the procedures described in the instrument user's manuals (IDEM 2020c, IDEM 2020d). The unit will be field checked for accuracy once during the week by comparison with a YSI D.O. meter (IDEM 2020c) as well as Hach turbidity and Oakton pH and temperature meters (IDEM 2020d). Weekly field calibration records will be recorded in the field calibrations portion of Attachment 2 and entered into the AIMS II database. The YSI D.O. meter will also be used in the field at sites where the dissolved oxygen concentration is 4.0 mg/L or less.

B.5.1. Field Analysis Data

In-situ water chemistry field data are collected in the field using calibrated or standardized equipment. Calculations may be done in the field or later at the office. Analytical results, which have limited QC checks, are included in this category. Detection limits and ranges have been set for each analysis. QC checks are performed on information for field or laboratory results to estimate precision, accuracy, and completeness for the project, as described in the Surface Water QAPP (IDEM 2017) Section C1.1 on page 176.

B.5.2. Algal Community Data

IDEM 2023e describes the equipment required for the collection of periphyton; none of this equipment requires calibration. Equipment has been field tested to ensure its capability of appropriately removing periphyton from different types of substrates such as rocks, sticks, or sand/silt (IDEM 2023e).

IDEM 2023h describes the equipment required for the preparation of permanent diatom mounts; other than the micropipetter, none of the laboratory equipment requires calibration. The micropipetter will be checked and recalibrated as necessary according to manufacturer's specifications (IDEM 2023h).

A Nikon differential interference contrast (DIC) microscope, and Nikon Elements D camera and imaging system will be used for identification and enumeration of diatoms. Branch staff calibrated the ocular reticle in the microscope. The ocular reticle was calibrated at each magnification with a stage micrometer. The calibration should be checked again if the microscope is moved to a new location.

C. Assessment and Oversight

Field and laboratory performance and system audits will be conducted to ensure good quality data. The field and laboratory performance checks include precision measurements by relative percent difference (RPD) of field and laboratory duplicate (IDEM 2017, pp. 56, 61–63), accuracy measurements by percent of recovery of MS/MSD samples analyzed in the laboratory (IDEM 2017, pp. 58, 61–63), and completeness measurements by the percent of planned samples that are actually collected, analyzed, reported, and usable for the project (IDEM 2017, p. 58).

For biological and habitat measurements, field performance measurements include: completeness (IDEM 2020a, pp. 10-11, 14, 17) examination of fish IBI score differences and the RPD for number of fish species at the revisit sites (IDEM 2020a, pp. 9-10), RPD for number of taxon for macroinvertebrate duplicate samples (IDEM 2020a, p. 13), RPD for number of taxon for diatom duplicate samples (IDEM 2020a, p. 17), and RPD between the two total QHEI scores (IDEM 2020a, p. 18). Lab performance measurements include: PTD for fish (IDEM 2020a, p. 12), macroinvertebrates (IDEM 2020a, pp. 15-16) and diatoms (IDEM 2020a, p. 18); as well as PDE and PSE for macroinvertebrates (IDEM 2020a, pp. 14-16).

Field audits will be conducted biannually by staff of the IDEM WAPB to ensure that sampling activities adhere to approved SOPs. Audits are systematically conducted by WAPB QA staff to include all WAPB personnel that engage in field sampling activities. WAPB field staff involved with sample collection and preparation will be evaluated by QA staff trained in the associated sampling SOPs, and in the processes related to conducting an audit. QA staff will produce an evaluation report documenting each audit for review by those field staff audited, as well as WAPB management. Corrective actions will be communicated to, and implemented by, field staff as a result of the audit process (IDEM 2017, p. 176–177; IDEM 2020a, p. 31).

Contract laboratories are required to have NELAC audits at the beginning of a laboratory contract and at least once a year during the contract. In addition, performance studies conducted by the contract laboratories are reviewed annually by IDEM QA staff. The audit includes any or all of the operational quality control elements of the laboratory's quality assurance system. All applicable elements of this quality assurance project plan and the laboratory contract requirements are addressed including, but not limited to, sampling handling, sample analysis, record keeping, preventative maintenance, proficiency testing, personnel requirements, training, and workload. (IDEM 2017, pp. 177-178).

For macroinvertebrate verifications by an external lab, the lab is required to maintain Society for Freshwater Science taxonomic certifications for their taxonomists. Genus level taxonomic certifications are required for 1. Eastern General Arthropods, 2. Eastern Ephemeroptera, Plecoptera and Trichoptera, 3. Chironomidae, and 4. Oligochaeta.

C.1. Data Quality Assessment Levels

The samples and various types of data collected by this program are intended to meet the QA criteria and rated DQA Level 3, as described in the Surface Water QAPP (IDEM 2017, pp. 182–183) and the Biological and Habitat QAPP (IDEM 2020a, pp. 34-35).

D. Data Validation and Usability

Quality Assurance reports to management and data validation and usability are also important components of the QAPP which ensures good quality data for this project. A QA audit report will be submitted to the QA manager and project manager for review for this project should problems arise and need to be investigated and corrected. Data are reduced by converting from raw analytical data into final results in proper reporting units, validated by qualifying based on the performance of field and laboratory QC measures incorporated into the sampling and analysis procedures, and reported by describing so as to completely document the calibration, analysis, QC measures, and calculations. These steps allow users to assess the data to ensure it meets the project data quality objectives.

D.1. Quality Assurance – Data Qualifiers and Flags

The various data qualifiers and flags used for QA and validation of the data are found on pages 184–185 of the Surface Water QAPP (IDEM 2017) and pages 33-34 of the Biological and Habitat QAPP (IDEM 2020a).

D.2. Data Usability

The environmental data collected and its usability are qualified per each lab or field result obtained and classified into one or more of the four categories: Acceptable Data, Enforcement Capable Results, Estimated Data, and Rejected Data as described on page 184 of the Surface Water QAPP (IDEM 2017) and page 35-36 of the Biological and Habitat QAPP (IDEM 2020a).

D.3. Information, Data, and Reports

Data collected in 2023 will be recorded in the AIMS II database and presented in three compilation summaries. The first summary will be a general compilation of the 2023 Great Miami River Basin field and water chemistry data prepared for use in the 2024 Integrated Report. The second summary will be in database report format containing biological results and habitat evaluations, which will be produced for inclusion in the Integrated Report as well as individual site folders. All site folders are maintained at the WAPB facility. The third summary will include diatom species taxa names and enumerations on laboratory bench sheets. Using U.S. EPA's spsurvey package, written in the "R" programing language (R Core Team 2014), the percent of perennial stream miles in the basin that support, or do not support aquatic life and recreational uses will be made following use attainment decisions for each site sampled (IDEM 2020b). All data and reports will be made available to public and private entities which may find the data useful for municipal, industrial, agricultural, and recreational decision making processes (TMDL, NPDES permit modeling, Watershed Restoration Projects, Water Quality Criteria refinement, etc.).

D.4. Laboratory and Estimated Cost

Laboratory analysis and data reporting for this project will comply with the Surface Water QAPP and TMDL Program (B-001-OWQ-WAP-XX-17-Q-R4, see IDEM 2017), Request for Proposals 22-68153 (see IDEM 2021a), and the IDEM Quality Management Plan (IDEM 2018). Analytical tests on the water chemistry parameters outlined in Table 8 will be performed by Pace Analytical Services in Indianapolis, Indiana. Accreditation related to Pace Indy is included as Appendix 1. Supplies for the bacteriological sampling will come from IDEXX Laboratories, Inc., Westbrook, Maine. Algal samples will be collected by IDEM staff. Periphyton laboratory processing and diatom slide mounting will be performed by IDEM Staff. Diatom identification and enumeration will be performed by an outside contractor (IDEM 2020a), the Department of Biological and Environmental Sciences, Georgia College and State University. All fish and macroinvertebrate samples will be collected and analyzed by IDEM staff. An outside contractor (IDEM 2020a) will verify ten percent of macroinvertebrate samples. The anticipated budget for laboratory cost for the project is outlined in Table 9.

Analysis	Number of Samples Collected	Laboratory	Estimated Cost
Water chemistry	3 times @ 45 sites + 15 duplicates + 15 field blanks (1 per sample week) = 165 samples	Pace Analytical Services 7726 Moller Road. Indianapolis, Indiana 46268	\$95,255
Bacteriological (<i>E. coli</i>)	5 times @ 40 sites + 10 blanks + 10 duplicates + 30 equipment blanks = 250 samples	IDEM Fixed and/or Mobile <i>E.coli</i> Laboratory Supplies: IDEXX Laboratories, Inc. One IDEXX Drive Westbrook, Maine 04092	\$1,175
Diatom identification and enumeration	1 time @ 45 sites + 5 duplicates (1 per sample week) = 50 samples All samples sent out for verification	Department of Biological and Environmental Sciences Georgia College and State University 320 S. Wayne St. Milledgeville, Georgia 31061	\$8750
Macroinvertebrate identification	1 time @ 38 sites + 4 duplicates = 42 samples 4 samples (10%) sent out for verification	Rhithron Associates, Inc. 33 Fort Missoula Road Missoula, Montana 59804	\$920

Table 9. Total Estimated Laboratory Cost for the Project.

Total \$106,085

Table 10. Personnel Safety and Reference Manuals

Role	Required	Training	Training Notes
	Training/Experience	References	
All staff that	-Basic First Aid and	-A minimum of 4	-Staff lacking 4 hours of
participate in field	Cardiopulmonary	hours of in-service	in-service training or
activities	Resuscitation (CPR)	training provided by	appropriate certification
		WAPB (IDEM	will be accompanied in
		2010a)	the field at all times by
			WAPB staff that meet
			Health and Safety
			Training requirements
	-Personal Protective	-IDEM 2008	-When working on
	Equipment (PPE) Policy		boundary waters as
			defined by Indiana
	-Personal Flotation	-February 29, 2000	Code (IC) <u>14-8-2-27</u> or
	Devices (PFD)	WAPB internal	between sunset and
		memorandum	sunrise on any waters
		regarding use of	of the state, all
		approved PFDs	personnel in the
			watercraft must wear a
			high intensity whistle
			and Safety of Life at
			Sea (SULAS) certified
			strope light.

E. References

- Code of Federal Regulations, <u>40 CFR Part 130.7</u> Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.
- (U.S. EPA 2002). <u>Guidance for Quality Assurance Project Plans.</u> EPA QA/G-5, EPA/240R-02/009. U.S. EPA, Office of Environmental Information, Washington D.C.
- (U.S. EPA 2005). <u>Guidance for 2006 Assessment, Listing and Reporting</u> <u>Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean</u> <u>Water Act, July 29, 2005. Washington, D.C.: U.S. Environmental</u> <u>Protection Agency</u>.
- (U.S. EPA 2006). <u>Guidance on Systematic Planning Using the Data Quality</u> <u>Objectives Process.</u> EPA QA/G-4. EPA/240/B-06/001. U.S. EPA, Office of Environmental Information, Washington D.C.
- (U.S. EPA 2016). <u>Weight of Evidence in Ecological Assessment.</u> EPA/100/R-16/001. U.S. EPA, Office of Environmental Information, Washington D.C.
- U.S. EPA, National Health and Environmental Effects Research Lab (NHEERL)/Office of Research and Development (ORD) Western Ecology Division, 200 S.W. 35th Street, Corvallis, OR 97333-4902.
- (IC 14-8-2-27) IC (Indiana Code), <u>Title 14 Natural and Cultural Resources, Article</u> <u>8 General Provisions and Definitions.</u> 2017.
- [327 IAC 2] IAC (Indiana Administrative Code), <u>Title 327 Water Pollution Control</u> <u>Division, Article 2. Water Quality Standards</u>. Last updated March 14, 2018.
- (IDEM 2008). <u>IDEM Personal Protective Equipment Policy, revised May 1 2008</u>. A-059-OEA-08-P-R0. Office of External Affairs, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2010a). <u>IDEM Health and Safety Training Policy, revised October 1 2010</u>. A-030-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2010b). <u>IDEM Injury and Illness Resulting from Occupational Exposure</u> <u>Policy, revised October 1 2010.</u> A-034-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2017). <u>Quality Assurance Project Plan for Indiana Surface Water</u> <u>Programs, Revision 4.</u> B-001-OWQ-WAP-XX-17-Q-R4. Indiana Department of Environmental Management, Office of Water Quality, Watershed Assessment and Planning Branch, Indianapolis, Indiana.
- (IDEM 2018). <u>IDEM Agency Wide Quality Management Plan</u>. IDEM, Indiana Government Center North, 100 N. Senate Ave., Indianapolis, Indiana, 46204.
- (IDEM 2019) <u>IDEM Hazard Communication (HazCom) Plan</u>. IDEM, Office of Program Support, Indianapolis, Indiana.
- (IDEM 2020a). <u>Quality Assurance Project Plan for Biological Community and</u> <u>Habitat Measurements.</u> B-003-OWQ-WAP-XXX-20-Q-R0. Indiana

Department of Environmental Management, Office of Water Quality, Watershed Assessment and Planning Branch, Indianapolis, Indiana.

- (IDEM 2020b). <u>Calculation of Aquatic Life Use Support Estimates. S-001-OWQ-</u> <u>WAP-PRB-20-T-R0.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2020c). <u>Calibration of YSI Multiparameter Data Sondes. B-014-OWQ-</u> <u>WAP-XXX-20-T-R0.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2020d). <u>Water Chemistry Field Sampling Procedures. B-015-OWQ-WAP-XXX-20-T-R0.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2021a). <u>Request for Proposals 22-68153</u>, <u>Solicitation for Analyses</u>. Indiana Department of Environmental Management. Indiana Department of Administration. Indianapolis, Indiana.
- (IDEM 2021b) Office of Water Quality Watershed assessment and Planning Branch Laboratory Safety Plan. IDEM, Office of Program Support, Indianapolis, Indiana.
- (IDEM 2022a). <u>Global Positioning System (GPS) Data Creation. B-001-OWQ-</u> <u>WAP-XXX-22-T-R1</u>. Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2022b). Indiana's Integrated Water Monitoring and Assessment Report to the U.S. EPA (Revised), Appendix G: <u>IDEM's 2022 Consolidated</u> <u>Assessment and Listing Methodology (CALM). Office of Water Quality,</u> <u>Indiana Department of Environmental Management, Indianapolis, Indiana</u>.
- (IDEM 2023a). <u>E.coli Field Sampling and Analysis. B-013-OWQ-WAP-XXX-23-T-</u> <u>R1</u>. Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2023b). <u>Fish Community Field Collection Procedures</u>. B-009-OWQ-WAP-XXX-23-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023c). <u>Global Navigational Satellite System (GNSS) R1 Unit User</u> <u>Instructions. B-055-OWQ-WAP-XXX-23-T-R0</u>. Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2023d). <u>Multi-habitat (MHAB) Macroinvertebrate Collection Technical</u> <u>Standard Operating Procedure. B-011-OWQ-WAP-XXX-23-T-R1.</u> Watershed Planning and Assessment Branch, Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2023e). <u>Phytoplankton and Periphyton Field Collection Procedures.</u> B-004-OWQ-WAP-XX-23-T-R2. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.

- (IDEM 2023f). <u>Procedures for Completing the Qualitative Habitat Evaluation</u> <u>Index. B-003-OWQ-WAP-XX-19-T-R1</u>. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023g). <u>Site Reconnaissance Procedure.</u> B-002-OWQ-WAP-PRB-23-S-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023h). Processing and Identification of Diatom Samples. B-002-OWQ-WAP-TGM-23-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (OHEPA 2006). Ohio Environmental Protection Agency. 2006. <u>Methods for</u> <u>Assessing Habitat in Flowing Waters: Using the Qualitative Habitat</u> <u>Evaluation Index (QHEI)</u>. OHIO EPA Technical Bulletin EAS/2006-06-1. Revised by the Midwest Biodiversity Institute for State of Ohio Environmental Protection Agency, Division of Surface Water, Ecological Assessment Section, Groveport, Ohio.
- (Kentucky Department of Environmental Protection 2002). Methods for assessing biological integrity of surface waters. Kentucky Department of Environmental Protection, Division of Water, Frankfort, Kentucky.
- (Barbour et al. 1999) Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. <u>Rapid Bioassessment Protocols for Use in Streams and Wadeable</u> <u>Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition</u>. EPA/841/B-99/002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- (Caskey et al. 2013) Caskey, B.J., A.R. Bunch, M.E. Shoda, J.W. Frey, S. Selvaratnam, and R.J. Miltner. 2013. <u>Identifying Nutrient Reference Sites</u> <u>in Nutrient-Enriched Regions: Using Algal, Invertebrate, and Fish-</u> <u>Community Measures to Identify Stressor-Breakpoint Thresholds in</u> <u>Indiana Rivers and Streams, 2005–9</u>. U.S. Geological Survey Scientific Investigations Report 2012-5243. 28 pp.
- (Dewitz 2021) Dewitz, J. 2021. <u>National Land Cover Database (NLCD) 2019</u> <u>Products [Data Set]</u>. U.S. Geological Survey.
- (Dufour 2002) Dufour, R.L. 2002. Guide to appropriate metric selection for calculating the index of biotic integrity (IBI) for Indiana rivers and streams. Indiana Department of Environmental Management, Indianapolis, Indiana.
- (Elliott 1983) Elliott, J.M. 1983. Some Methods for the Statistical Analysis of Samples of Benthic Macroinvertebrates. Freshwater Biological Association Scientific Publication No. 25. 159 pp.
- (Hill et al. 1997) Hill, B. H., Herlihy, A.T., Kaufmann, P.R., Stevenson, R.J., McCormick, F.H. and Johnson, C.B. 1997. <u>The use of periphyton</u> <u>assemblage data in an index of biotic integrity.</u> Bulletin of the North American Benthological Society. 19(1): 50–67.

- (Jessup et al. 2021) Jessup, B., Block, B., Stamp, J., and Leppo, E. 2021. <u>Diatoms in Indiana Streams as Indicators of Biological Condition.</u> Tetra Tech, Montpelier, Vermont.
- (Klemm et al. 1990) Klemm, D.J., Lewis, P.A., Fulk, F. and Lazorchak, J.M. 1990. <u>Macroinvertebrate Field and Laboratory Methods for Evaluating the</u> <u>Biological Integrity of Surface Waters</u>. EPA/600/4-90/030. Environmental Monitoring Systems Laboratory, Monitoring Systems and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- (Moore et al. 2019) Moore, R.B., McKay, L.D., Rea, A.H., Bondelid, T.R., Price, C.V., Dewald, T.G., and Johnston, C.M. 2019, <u>User's guide for the</u> <u>national hydrography dataset plus (NHDPlus) high resolution</u>: U.S. Geological Survey Open-File Report 2019–1096.
- (Plafkin et al. 1989) Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K. and Hughes, R.M. 1989. <u>Rapid Bioassessment Protocols for Use in Streams</u> <u>and Rivers: Benthic Macroinvertebrates and Fish.</u> EPA/440/4-89/001. Assessment and Watershed Protection Division, U.S. Environmental Protection Agency, Washington, D.C.
- (Simon 1997) Simon, T.P. 1997. <u>Biological Characterization of the Middle Fork</u> <u>Anderson River, Perry County, Indiana</u>. U.S. Environmental Protection Agency, Region V, Water Division, Watershed and Non-Point Branch, Chicago. IL. EPA 905/R-96/007.
- (Simon and Dufour 1998) Simon, T.P. and Dufour, R.L. 1998. <u>Development of</u> <u>Index of Biotic Integrity Expectations for the Ecoregions of Indiana V.</u> <u>Eastern Cornbelt Plain</u>. U.S. Environmental Protection Agency, Region V, Water Division, Watershed and Non-Point Branch, Chicago. IL.
- (Simon and Dufour 2005) Simon, T.P. and Dufour, R.L. 2005. <u>Guide to</u> <u>appropriate metric selection for calculating the Index of Biotic Integrity (IBI)</u> <u>for Indiana Large and Great Rivers, Inland Lakes, and Great Lakes</u> <u>nearshore</u>. U.S. Department of the Interior, Fish and Wildlife Service, Bloomington Field Office, Bloomington, Indiana.
- (Stevenson 1998) Stevenson, R. J. 1998. <u>Diatom indicators of stream and</u> <u>wetland stressors in a risk management framework</u>. Environmental Monitoring and Assessment 51:107–118.
- (Stevenson and Pan 1999) Stevenson, R. J. and Pan, Y. 1999. <u>Assessing</u> <u>ecological conditions in rivers and streams with diatoms</u>. Pages 11–40 in E. F. Stoermer and J. P. Smol, editors. The Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.
- (R Core Team 2021). <u>R: A Language and Environment for Statistical Computing</u>. R Foundation for Statistical Computing, Vienna, Austria.
- (YSI Incoporated 2017). EXO User Manual, revision g. Yellow Springs, Ohio.

Ohio.

F. Distribution List

Name Organization	
Kristen Arnold IDEM, OWQ, WAPB (Branch Chief)	
Timothy Bowren IDEM, OWQ, WAPB, Technical and Logistical Service	es
Section	
Angela Brown IDEM, OWQ, WAPB, Watershed Planning and	
Restoration (Section Chief)	
Dylan Brown IDEM, OWQ, WAPB, Probabilistic Monitoring Section	
McKenzie Bruder IDEM, OWQ, WAPB, Probabilistic Monitoring Section	
Pat Colcord IDEM, Office of Program Support, QA Program	
Marissa Cubbage IDEM, OWQ, WAPB, Probabilistic Monitoring Section	
Kevin Gaston IDEM, OWQ, WAPB, Probabilistic Monitoring Section	
Kathleen Hagan IDEM, OWQ, WAPB, Watershed Planning and	
Restoration Section	
Paul Higginbotham IDEM, OWQ (Deputy Assistant Commissioner)	
Charles Hostetter IDEM, OWQ, WAPB, Technical and Logistical Service	es
Section	
David Jordan IDEM, OWQ, WAPB, Technical and Logistical Service	es
Section	
Paula Kaszynski IDEM, OWQ, WAPB, Probabilistic Monitoring Section	
Kalina Manoylov Georgia College and State University,	
Department of Biological and Environmental Sciences	3
Paul McMurray IDEM, OWQ, WAPB (Technical E7)	
All Mells IDEM, OWQ, WAPB, Targeted Monitoring Section	
(Section Unier)	
Martha Clark Mettler IDEM, OWQ (Assistant Commissioner)	~~
(Section Chief)	35
(Section Chief) Michalle Buen IDEM OWO WARP Targeted Menitering Section	
Michael Sebreider IDEM OWO, WAPB, Targeted Monitoring Section	
Addison Soldler IDEM, OWQ, WAPB, Probabilistic Monitoring Section	
Stacey Sobat	
(Section Chief)	
Kavla Werbianskyi IDEM OWO WAPR Targeted Monitoring Section	
Cameron Yeakle IDEM OWO WAPR Targeted Monitoring Section	
Scott Zello-Dean IDEM OWQ WAPB Probabilistic Monitoring Section	

Attachment 1. IDEM Site Reconnaissance Form

.ocation Description: Iandowner/Contact Information Reconnaissance Data Collected Iandowner/Contact Information Avg. Width Avg. Depth (m) Max. Depth (m) Nearest Town (m) Hard Avg. Depth (m) Max. Depth (m) Nearest Town Water Arg. Depth (m) Max. Depth (m) Nearest Town Street A. Water Arg. Depth (m) Max. Depth (m) Readeble? City Street A. Water Street Reduction City Street A. ddress Bitte Impacted by Collect Sediment? Gauge Present? Telephone E-Mail Address Investock? Collect Sediment? Gauge Present? Telephone E-Mail Address Distributed? Advance? Requested Requested Requested Noter Reconnaissance Decision Equipment Selected Circle Equipment Needed Needed Not, Stream charinel missing Not, Stream charinel missing Not, Max Needed Netwidted Needeed Serie Needeed Serie Needeed Serie Needeed Needeed Serie Needited stream Not, Stream charinel missing	ine Number:	11		Stream:		County:	».
Reconnaissance Data Collected Landowner/Contact Information Recon Date Crew Members First Name Last Name Avg. Wordn Avg. Depth (m) Max. Depth (m) Nearest Town ddress warer Street A ddress Crev Members Street A warer Street Wadeable? Present? Access Possible? Crty State Zip Distre Impacted by Collect Sediment? Gauge Present? Telephone E-Mail Address Investock? Category Advance? Requested? Sater Nocontait Seance Decision Pre-Recon	ocation Des	cription:			18		
Ivection Date Crew Members Inits Name Last Name Ivest Avg. Depth (m) Max. Depth (m) Nearest Town Street A Image: Street A ddress City State Zip Water Present? Access Possible? City State Zip Image: Street A Image: Street A Image: Street A Image: Street A Image: Street A Image: Street A Image: Street A Image: Street A Image: Street A Image: Street A Image: Street A Image: Image: Street A Image: Image: Image: Street A Gauge Present? City Street A Image: Street A Image: Image: Image: Street A Gauge Present? Telephone E-Mail Address Requested? Image: Image: Image: Street A Image: Image: Street A Street A Image: Street A Image: Street A Image: Street A Image: Image: Street A S		Reconnaissa	ance Data Collect	ad l	Lando	wner/Contact In	formation
wig, Width (m) Avg. Depth (m) Max. Depth (m) Nearest Town Street A ddress Water Present? Site Wadeable? Riffle/Run Present? Road/Public Access Possible? City State Zip Water Present? Image: Bit Maximum Livestock? Collect Sediment? Gauge Present? Telephone E-Mail Address Image: Bit Maximum Livestock? Collect Sediment? Gauge Present? Telephone E-Mail Address Image: Bit Maximum Livestock? Collect Sediment? Gauge Present? Telephone E-Mail Address Image: Bit Maximum Livestock? Collect Sediment? Gauge Present? Telephone E-Mail Address Image: Bit Maximum Livestock? Collect Sediment? Gauge Present? Please Call In Results Results Image: Bit Maximum Livestock? Reconnaissance Decision Pre-Recon Recon In process Approved Site No, Unpounded Site Man Equipment Selected Longline Scanoe Backpack Boat Tosebarge Longline Scanoe Backpack Boat No, Marsh/Welland No, Site Impacted by backwater No, Other Weighted Handline Waders Gill Net Womments No Cher Same Gill Net Same		Recon Date	CIEW	wembers	First Name		Name
Watter Present? Site Wadeable? Riffle/Run Access Possible? City State Zip Diste Impacted by Livestock? Collect Sediment? Gauge Present? Telephone E-Mail Address Diste Impacted by Livestock? Collect Sediment? Gauge Present? Telephone E-Mail Address Distributed? Please Call In Advance? Results Results Distributed? Please Call In Advance? Results Distributed? Results Comments Advance? Requested? Distributed? Results Circle Equipment Needed Reconnaissance Decision Equipment Selected Circle Equipment Needed Pre-Recon Recon In process Approved Site No, Dry No, Stream channel missing No, Marki/Wetland No, Stream channel missing No, Unate due to traffic or location No, Ste Impacted by backwater No, Other Backpack Boar Tosebarge Longline Scanoe Seine Waders Gill Net Somments Site Impacted by backwater No, Other No, Other Waders Gill Net	Avg. Wiath (m)	Avg. Depth (m)	Max. Depth (m)	Nearest Town	Street A ddress		
Site impacted by Livestock? Collect Sediment? Gauge Present? Telephone E-Mail Address Pamphlex Please Call in Bistinbured? Results Requested? Pamphlex Please Call in Bistinbured? Results Requested? Reconnaissance Decision Equipment Selected Circle Equipment Needed Recon in process Approved Site No, Dry No, Stream channel missing No, Physical barriers No, Dry No, Stream channel missing No, Stream chan	Water Present?	Site Wadeable?	Riffle/Run Present?	Road/Public Access Possible?	City		State Zip
State impacts of yrights Colliest: Sediment? Gauge Present? Telephone E-Mail Address Livestock? Pamphier Please Call in Results Results Distributed? Advance? Reguested? Results Rest Results Comments and Planning Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? Reconsistence? No Reconsistence? Reconsistence? Reconsistence? Recon Reconsistence Pre-Recon Reconsistence Reconsistence? Reconsistence No Landowner denied access No, Stream channel missing No, Stream channel missing Ro, MarchWeitand Ro, MarchWeitand Ro, MarchWeitand Ro, MarchWeitand Reconsistence Seine No, Stream channel missing No, Stream channel missing No, Stream channel missing Ro, MarchWeitand Ro, MarchWeitand Roders Gill Net No, Stream channel missing No, Other No, Other Roders							
Pamphler Please Call in Results Distributed? Advace? Requested? Requested? Bits Rating By Category Reconnaissance Decision Pre-Recon Recon all proceess Approved Stite No, Landowner denied access No, Dry No, Stream channel missing No, Britage gone or not accessible No, Marsh/Wetland No, Stheimpacted by backwater Weighted Handline Weighted Handline Weighted thandline Wo, Other Citre	Livestock	Collect See	diment? Gau	ige Present?	Telephone	E-	Mail Address
Raxing Results. Comments. and Planning Site Rating By Category 1=easy, 10=difficult) Reconnaissance Decision Equipment Selected Circle Equipment Needed Access Route Pre-Recon Recon in process Backpack Boat Safery Factor No, Dry No, Stream channel missing No, Physical barriers No, Impounded stream No, Marsh/Wetland Fine-Recon Backpack Sampling Effort No, Bridge gone or not accessible No, Other No, Bridge gone or not accessible No, Other Weighted Handline					Pamphler Distributed?	Please Call In Advance?	Results Requested?
Reconnaissance Decision Equipment Selected Circle Equipment Needed Access Route Pre-Recon Backpack Boat Recon in process Approved Site No, Landowner denied access Boat Torebarge Safety Factor No, Stream channel missing No, Physical barriers Scanoe Seine No, Dry No, Bridge gone or not accessible No, Unsafe due to traffic or location No, Stream channel missing Weightwei				Rating, Results, Comr	nents, and Planning		Market .
Access Roure Pre-Recon Recon In process Approved Site No, Landowner denied access Boat No, Dry No, Stream channel missing No, Physical barriers Scanoe No, Impounded stream Seine No, Bridge gone or not accessible Weighted Handline No, Strie impacted by backwater No, Other	ite Rating B 1=easy, 10=0	y Category difficult)	Reconnaissar	ice Decision	Equipment S	elected	Circle Equipment
Sampling Effort No, Bridge gone or not accessible Weighted Handline No, Unsafe due to traffic or location Waders Waders No, Stie Impacted by backwater No, Other Gull Net	Acces Safeŋ	y Factor	Pre-Recon Recon In proce Approved Site No, Landowner No, Dry No, Stream chi No, Physical bi No, Impounder No, Marsh/Well	ss r denied access annel missing arriers I sbream Land			Backpack Boat Totebarge Longline Scanoe Seine
omments	Sampli	ing Effort	No, Bridge gon No, Unsafe du No, Site Impac No, Other	e or not accessible e to traffic or location led by backwater			Weighted Handline Waders Gill Net
	Comments		<u></u>			14.00	
	Comments						

Attachment 2. IDEM Stream Sampling Field Data Sheet

	ЗV	<u>s</u>	tre	eam	<u>ا S</u>	amp	oling Fi	ield D)ata	I SI	heet	Analysis	Set #	EP	A Site	ID	Rank
Sample ‡	‡	Site	#				Sample M	ledium			Sa	ample Type		Dupli	cate S	amp	le #
Stream Nam	ne:					River Mile: County:											
Site Descript	tion:																
Survey	Sampl	Sample Collectors Sample Collected Hydrolab		W	later	Water Fl	ow I	Flow	Ala		Aquati						
Crew Chief	1 2	3	5	4		Date	Time	#		Depui	(ft)	(cf/sec	:) Est	imated	? Alg	der	Life?
															1		
Samp	ole Taken?			Ali	iquot	s	Wat	er Flow Ty	уре		N	ater Appear	ance	0	Canop	y Clo	osed %
◇ Yes	No; Fr	ozen	° 1	¢ 2	¢ 3	¢ 4	♦ Riffle	Dry	Stage	nant <	Clear	Green	Sheen	< (0-20%	0	60-80%
No; Stream I	Dry ◇ No; Ot	her	¢ 6	8	<u> </u>	2 ° 24	◇ Pool	Run	Floor	d <	° Murky	Our Black	Other	۰ ;	20-40%	•	80-100%
No; Owner re	efused Acces	S	<u> </u>	8 ° 72	¢ (S-Flow	♦ Glide	Eddy	Other	r <	Brown	Oray (Sep)	otic/Sewa	ge) 🌼	40-60%		
Special Notes:																	
Field Data	<u>a:</u>																
Date (m/d/w/)	24-hr Time	D.C). //i	pН	W	ater	Spec Cond	Turbidity	% S	at.	Chlorine	Chloride	Chloro	phyll	Wea	ther	Codes
(mayy)	()	(1119	,,,		Ten	P (0/	(ponins/citi)	(110)			(ingri)	(ing/i/	(111)	<i>9</i> /1/	30	mo	113 A
Comments																	
Comments												1	1				
Commente																	
Commenta			Т														
Comments																	
Comments												1			<u> </u>		
Comments																	
Commente					<	< Min	Meter Measuren	nent				Weather Co	de Defin	itions			
		Mea	sure Flag	ement Js	> E R	> Max. Estimat Rejecte	Meter Measurer ted (See Comme ed (See Comme	ment ents) nts)	Sky	SC Condi	itions	WD Wind Dire	ection	Wind	WS Streng	gth A	AT Air Temj
		L			1									1			
Field Cali	brations	-							1 Clear		8 Rain	00 North (0 de	grees)	0 Caln	n		1<32

Field Cal	ibration	s:						1 Clear 2 Scattered	8 Rain 9 Snow	00 North (0 degrees) 09 East (90 degrees)	0 Calm 1 Light	1 < 32 2 33-45
Date	Time (hh:	Calibrator			Calibrati	ons		3 Partly	10 Sleet	18 South (180 degrees)	2 Mod./Light	346-60
(m/d/yy)	mm)	Initials	Туре	9	Meter #	Value	Units	4 Cloudy 5 Mist		27 west (270 degrees)	3 Moderate 4 Mod /Strong	576-85
								6 Fog			5 Strong	6 > 86
								7 Shower			6 Gale	
								1				
ļ	·		-	ł								<u> </u>
		Calibration	DO									
		Tuno										

Preservatives/Bo	ottle Lots:				Groups: Preservatives	Bottle Types		
Group: Preservative	Preservative Lot #	Bottle Type	Bottle Lot #	GC Nx Metals	General Chemistry: Ice Nutrients: H2SO4 Metals: HNO3	2000P 1000P 500P	2000mL Plastic, Narrow Mouth 1000mL Plastic, Narrow Mouth 500mL Plastic, Narrow Mouth	
				CN O&G	Cyanide: NaOH Oil & Grease: H2SO4	250P 1000G	250mL Plastic, Narrow Mouth 1000mL Glass, Narrow Mouth	
				-Ecoli VOA	Bacteriology: Ice Volatile Organics: HCI & Thiosulfate	250G 125G	250mL Glass, Wide Mouth 250mL Glass, Wide Mouth 125mL Glass, Wide Mouth	
				Pest Phen Sed	Pesticides: Ice Phenols: H2SO4 Sediment: Ice	40GV 120PB 1000PF	40mL Glass Vial 120ml Plastic (Bacteria Only) 1000ml Plastic Corning Filter	
				Gly Hg	Glyphosate: Thiosulfate Mercury(1631): HCl	500PF 60P	500mL Plastic, Coming Filter 60mL Plastic	
				Cr6 MeHg	ChromiumVI(1636): NaOH Methyl Mercury(1630): HCI	250T 500T 125T	250mL Teflon 500mL Teflon 125mL Teflon	

Data Entered By: _____ QC1: _____ QC2: _____

Attachment 3. IDEM Algal Biomass Lab Data Sheet

Algal Biomass Lab Datasheet

Sample #	Site	Stream
Supporting Site Informa	ation	

Traditional Forestry % Close	Fraditional Forestry % Closed Canopy: 🛛 <=10m 🗅 >10m (Measure center only if width <=10m, record to nearest whole percent)											
	North	East	South	West	Average x 1.04 -							
Left Bank												
Center												
Right Bank												
Total %CC (Avera	age from above, or Ce	enter only = %CC)		100 - %CC								

Phytopiankton Information

Sampling Method: 🛛 Grab Sample	e (Dip) 🗖 Multiple Ver	ticles	Number of Verticles:					
Chiorphyli A	Blank	Filter 1	Filter 2	Filter 3	Filter 4			
Sample Time								
Sample Volume (mL)								

Periphyton Information

Periphyton Habitat:	Epllithic (Area-Sca	pe) 🗆 Epidendric (Cylinder	Scrape) 🗆 Epipsar	nmic (Petri Dish)	
Diatom Sample Collected:	🗆 Yes 🗆 No	Diatom Volume: mL	Formalin Vo	lume: mL	Slurry Volume mL
Chlorphyll A	Blank	Filter 1	Filter 2	Filter 3	Filter 4
Sample TI	ime				
Sample Volume (r	mL)				

Periphyton Area Calculation

Cylinder Scrape						
	Length	C	ircumferen	ce		Area
Snag #	(cm)(L)	U1	U ₂	Us	U	(L * U)
1						
2						
3						
4						
5						
				Total Ar	ea (cm²)	

Stream Discharge / Rainfall Information

Nearest USGS Gage Site: Dupstream Downstream No USGS Gage Near								
River miles from site:	Discharge CFS at sampling: CFS							
Gage location:	Discharge days since 50% flow exceeded: days							
Rainfall data source: 🗆 NOAA 🖾 CoCoRaHS 🖾 Indiana State Climate O	Rainfali data source: 🗆 NOAA 📄 CoCoRaHS 📄 Indiana State Climate Office 🗆 USGS gage rain gauge 🗖 Other:							
Total precipitation at sampling: In. on date:	Cumulative rain 7 days previous to sampling: In.							
Rain station location, county: Inches since last rainfail previous to sampling: Inches since s								

Identifier	Date	Reviewer 1	Date	Reviewer 2	Date	Notes:
		Review 1 Completed		Review 2 0	Completed	

Attachment 4. IDEM Fish Collection Data Sheet (front)

IDEM

OWQ-WATERSHED ASSESSMENT AND PLANNING BRANCH

Event ID	Voucher jars	Unknown jars	Equipment	Page of
Voltage	Time fished (sec)	Distance fished (m)	Max. depth (m)	Avg. depth (m)
Avg. width (m)	Bridge in reach	Is reach representative	If no, why	
Elapsed time at si	te (hh:mm): Comn	nents		

Museum data: Initials_____ ID date_____ Jar count_____ Fish Total___

Coding for Anomalies: D – deformities E – eroded fins L – lesions T – tumor M – multiple DELT anomalies O – other (A – anchor worm C – leeches W – swirled scales Y – popeye S – emaciated F – fungus P – parasites) H – heavy L – light (these codes may be combined with above codes)

TOTAL # OF FISH		WEIGHT (s)				ANON	IALIES	5	
	(mass g)		(length mm)					1	
			Min length	D	E	L	т	м	0
			Max length						
V P									
			Min length	D	E	L	Т	м	0
			May length						
V P									
			Min length	D	E	L	т	м	0
	<u> </u>		_						
			Max length						
V P									
			Min length	D	E	L	т	м	0
			Maylongth						
V P			wax length						
			Min length	D	E	L	т	м	0
	 		_						
			Max length						
V P									
			Min length	D	E	L	Т	М	0
	,,		A subscribes of						
V P			iviax length						
KPW/: Poy/09.26.19 Colculati	001 + Entry	001 002							

Event	: ID								Page		of	
						Min length	D	E	L	Т	М	0
			·	Ī		Max length						
v		Р										
						Min length	D	E	L	Т	М	0
						Max length						
v		Р										
						Min length	D	E	L	Т	М	0
						Max length						
v		Ρ										
						Min length	D	E	L	Т	М	0
				Ī		Max length						
v		Ρ										
						Min length	D	E	L	т	М	0
			·	-		Max length						
v		Р										
	II					Min length	D	E	L	т	М	0
						Max length						
v		Ρ										
						Min length	D	E	L	т	М	0
			-			Max length						
v		Ρ				_						
	· I					Min length	D	E	L	Т	М	0
						Maxlanath						
v		Р				iviax length						

Attachment 4. IDEM Fish Collection Data Sheet (back)

KRW: Rev/09.26.18

Attachment 5. IDEM OWQ Biological Qualitative Habitat Evaluation Index (front)

IDEM		OWQ Bio	ogical QHE	I (Qualit	ative Habitat I	Evaluation	Index)	
	Sample #		bioSample #	<u>s</u>	tream Name		Location	
1	Surveyor	Sample Date	County	Macro	Sample Type	🗆 Habitat		
						Complete	QHEI SO	ore:
1] <i>50</i>	BSTRATE d	heck ONLY Two pre	dominant substra	te TYPE BOX	ES			
	BEST TYPES	nd check every type	oTHER T	YPES	OR	Check ONE (Or IGIN	2 & average) QUAL	ТҮ
PREDOMI	NANT	PRESENT P/G R/R	PREDOMINANT	PRESENT P/G R/R		TONE[1]	S HEAVY	[-2]
	BLDR/SLABS [1 BOULDER [9]	0]	□ □ Hardpan □ □ Detritus	[4] 🗆 🖂 [3] 🗆 🗆		[1] AND5[0]	I d Moder	ATE [-1] L [0] Substrate
	COBBLE [8]			., 66		PAN[0]	_ FREE[1	
	AND[6]			r[0] 🔤		AP[0]		IVE [-2]
NUME	SEDROCK [5]	TYPES: 4 or I	ral substrates; ignore more [2]	sludge from po	int-sources) LACUS	51KLINE [U] E[-1]		ATE[-1] ∠ L[0] Maximum
Com	nents	🗆 3 or	less [0]		COAL	FINES [-2]	ទ្ធី 🗆 NONE [:	1] 20
2] IN	STREAM CO	OVER Indicate pre	sence 0 to 3: 0-4	bsent; 1-Ve	ry small amounts or if	more common		
of marg 3-High	inal quality; 2–I est quality in mo	Moderate amounts, oderate or greater a	but not of highes mounts (e.g., ver	t quality or ir y large bould	n small amounts of hig lers in deep or fast wa	hest quality; ter, large	Check ONE	(Or 2 & average)
diamete	er log that is sta	ble, well developed	root wad in deep	fast water, o	or deep, well-defined,	functional	EXTENSIVE MODERATE	E > 75% [11] E 25 - 75% [7]
Ú	IDERCUT BANK	S[1]	POOLS > 70	am[2]	OXBOWS, BACKWAT	TERS [1]		< 25% [3]
Sł	ALLOWS (IN S	LOW WATER)[1]	BOULDERS	[1]	LOGS OR WOODY D	EBRIS[1]		Cover
R0	XOTMATS[1]							Maximum 20
Com	nents	DDUOLOGY d	Lour		20 X			
SINU	IOSITY	DEVELO	PMENT	CHANN	2 & average) ELIZATION	STAB	ILITY	
	GH[4] Derate[3]		ENT[7] 5]		6] ERED [4]		H[3] Xerate[2]	Channel
	W [2] NE [1]	FAIR[3 FAIR[3] i]		ERING [3] TOR NO RECOVERY [⊔ LOW 1]	/[1]	Maximum 20
Com	nents							
4] BA	NK EROSIC		RIAN ZONE C	heck ONE in	each category for EAC	H BANK (Or 2 p	er bank & average)
LR	EROSION		> 50m [4]	DD FO	REST, SWAMP [3]	[CONSERVA	TION TILLAGE [1]
88	MODERATE[2]	3 LL MODE	RATE 10-50m [3] DW 5-10m [2]		SIDENTIAL, PARK, NE	2) WFTELD[1] [□□ Orbanior. □□ Mining/O	INDUSTRIAL[0]
	HEAVY/SEVERE	[1]	NARROW [1] [0]		NCED PASTURE [1] EN PASTURE, ROWCI	Indica ROP[0] past 1	te predominant lar 00m riparian.	nd use(s)
Com	nents							Maximum
5] PC	OL/GLIDE	AND RIFFLE/	RUN QUALIT	Ŷ				10 2 3
MAX Chec	KIMUM DEP kone (only!)	TH CHANI Check ONE	NEL WIDTH (Or 2 & average)	CURRENT VE Check ALL tha	LOCITY at apply	Recr (Check one	eation Potential and comment on back)
	> 1m[6]		DTH > RIFFLE W	ЮТН[2] [ЮТН[1] [TORRENTIAL [-1]	□ SLOW[1]	ПА [-1]	Primary Contact
Ē	0.4-<0.7m[2]		DTH < RIFFLE W	ютн[0]	FAST[1]		TENT [-2]	Pool/
8	< 0.2 - < 0.4 m [1] < 0.2 m [0] [me	bric = 0]			Indicate for reach –	pools and riffles	J 5.	Maximum
Comr Indi	nents cate for function	al riffles; Best area	s must be large e	nough to sup	port a population			12
of ri	ffle-obligate spe	cies:			Check ONE (Or 2 & average)		LE[metric=0]
	STAREAS > 100	m[2] □ MAXD	MUM > 50am [2]		eg, Cobble, Boulder	E RI)[2] □	NONE[2]	IDEDUEUNESS
	STAREAS 5 - 10 STAREAS < 5 a	om [1] □ MAX00 m [mebric = 0]	MUM < 50am [1]	UNSTA	TABLE (e.g., Large Gra BLE (e.g., Fine Gravel.)	svel)[1] □ Sand)[0] □	LOW [1] MODERATE [0]	Riffle/
Com	nents						EXTENSIVE [-1]	Maximum 8
6] GA	ADIENT (ft/mi)	VERY LOW	-LOW [2-4] %POOL:[%GL	IDE:	Gradient
DR	RAINAGE AI	REA (mi²)		:[6 - 10] YHIGH[10 -	6] %RUN:[%RIF	FLE:	10
Entered		QC1		QC2				IDEM 02/01/2023

Attachment 5 (cont.). IDEM OWQ Biological QHEI (back)

	Comment		OWO	Q Biological	QHEI (Quali	tative Ha	bitat Evaluation Index)	
A-CANOPY		B-AESTHETI	CS		C-RECRE	ATION	D-MAINTENANCE	E-ISSUES
□ >85%-0)pen	Nuisance alga	e 🗆 Oils	heen	Area	Depth	Public Private	
□ 55%-<8	5%	Invasive mad	rophytes 🗌 Tras	h/Litter	Pool: □ > 100 ft ²	⊡>3ft	Active Historic	🗆 Industry 🗆 Urban
□ 30%-<5	5%	Excess turbid	ity 🗆 Nuis	sance odor			Succession: 🗆 Young 🗆 Okl	□ Hardened □ Dirt & Grime
□ 10%-<3	0%	Discoloration	Sluc	lge deposits			Spray Islands Scoured	Contaminated Landfill
□ <10%-0	losed	🗆 Foam/Scum		s/SSOs/Outfalls			Snag: Removed Modified	BMPs: Construction Sediment
							Leveed: 🗆 One sided 🗆 Both banks	□ Logging □ Inigation □ Cooling
Looking upstream	n (> 10m, 3 rea	dings; <u><</u> 10m, 1 readin	g in middle); Round	to the nearest w	hole percent		Relocated Cutoffs	Erosion: 🗆 Bank 🗆 Surface
	Right	Middle	Left	Total Averag	e		Bedload: 🗆 Moving 🗆 Stable	🗆 False bank 🗆 Manure 🗆 Lagoon
% open	%	%	%	%			Armoured Slumps	🗆 Wash H2O 🗆 Tile 🗆 H2O Table
							Impounded Desiccated	Mine: 🗆 Acid 🗆 Quarry
	\ /		× /				Flood control Drainage	Flow: 🗆 Natural 🗆 Stagnant
	\sim	\sim	\sim					🗆 Wetland 🗆 Park 🗆 Golf
	\sim	\frown	\sim	Str	eam Width (m):			🗆 Lawn 🗆 Home
					cuiii i i i i i i i i i i i i i i i i i			Atmospheric deposition
								Agriculture Livestock
Stream D	rawing:							

IDEM 02/01/2023

Attachment 6. IDEM OWQ Field Chain of Custody Form

Indiana Department of Environmental Management OWQ Chain of Custody Form Project:

OWQ Sample Set or Trip #:

I Certify that the sample(s) listed below was/were collected by me, or in my presence. Date:____

Signature:	re:Section:													
Sample Media (🗆 \	Water, 🗆 Alga	ne,⊡ Fisł	h, 🗆 Ma	acro, 🗆	Cyanob	acteria/l	Microcy	stin, ⊡	Sedime	nt)				
Lab Assigned	IDEM	ple pe	ed		M.	n a	ml act)) ml ene	ene ene	ml ss	Date and T	ime Collected	One	check
Number / Event ID	Control Number	Sam Ty	D	1000 P.N.I	1000 G.N.I	40 I Viâ	120 P (B	2000 Nalg	250 Nalg	125 Gla	Date	Time	per pr	esent
P = Plastic M = MS/MSD	G = Glass B = Blank	N.I	M. = Na = Dupli	rrow Mo	outh	Bact =	Bacter	iologica	l Only	[Should sample	s be iced?	Y	N

Carriers

I certify that I have received the above sample(s). Signature Date Time Seals Intact Comments Relinguished By: Y Ν Received By: Relinquished By: Y Ν Received By: Relinquished By: Y Ν Received By: IDEM Storage Room #

Lab Custodian

I certify that I have received the above sample(s), which has/have been recorded in the official record book. The same sample(s) will be in the custody of competent laboratory personnel at all times, or locked in a secured area.

Address:

Signature:

Date:_____ Time:____

Lab:_____

Revision Date: 4/27/2016

47

Attachment 7. IDEM Corvallis Water Sample Analysis Request Form (Pace Analytical)

Indiana Department of Environmental Management Office of Water Quality Watershed Planning and Assessment Branch

Water Sample Analysis Request PROFILE #284

Project Name: 2023 Probabilistic Monitoring _Composite 🗆 Grab 🛛

OWQ Sample Set	23WQW001	IDEM Sample Nos.	
Crew Chief		Lab Sample Nos.	
Collection Date		Lab Delivery Date	

Anions and Physical Parameters							
Parameter	Test Method	Total	Dissolved				
Akalinity (as CaCO ₁)	SM23208	⊠ "					
Total Solids	SM25408	\boxtimes					
Suspended Solids	SM2540D	⊠ "					
Dissolved Solids	SM2540C		⊠ **				
Sulfate (as SO _k)	300.0		⊠ **				
Chioride (as CI)	300.0		≥**				
Hardness (Calculated)	SM-23408	×	••				
Fluoride (as F)	SM4500-F-C	—	—				
Priority Pollutant M	letais Water P	arameter	8				
Parameter	Test Method	Total	Dissolved				

www.idem.IN.gov

Parameter	Test Method	Total	Dissolved
Antimony (as Sb)	200.8	×	×
Arsenic (as As)	200.8	×	
Berylium (as Be)	200.8		
Cadmium (as Cd)	200.8	X	X
Chromium (as Cr)	200.8	X	X
Copper (as Cu)	200.8	X	X
Lead (as Pb)	200.8	X	X
Mercury, Low Level	1631, Rev E.		
Nickel (as Ni)	200.8	X	X
Selenium (as Se)	200.8	X	X
Silver (as Ag)	200.8	X	X
Thallium (as TI)	200.8		
Zinc (as Zn)	200.8	X	X

Cations and Secondary Metals Parameters

Parameter	Test Method	Total	Dissolved
Aluminum (as Al)	200.8	×	×
Barium (as Ba)	200.8		
Boron (as B)	200.8		
Calcium (as Ca)	200.7	⊠ ***	
Cobalt (as Co)	200.8		
Iron (as Fe)	200.7		
Magnesium (as Mg)	200.7	⊠ •••	
Manganese (as Mn)	200.8		
Sodium (as Na)	200.7		
Silica, Total Reactive (as SiCr)	200.7		
Strontium (as Sr)	200.8		
Send reports (hed, bx, or UPS) to	p: Deliver repo	ette bo:	

send reports (red. Ex. or 01-5	/10
Tim Bowren - IDEM	
3ldg. 20, STE 100	
525 North Shadeland Ave.	
ndiamapolis. IN 46219	

Tim Bowen - IDEM Bidg, 20, STE 100 2525 North Shadeland Ave. Indianapolis, IN 46219

Organic Water Para	ametera					
Parameter		Test	Method	Total		
Priority Pollutants: Oranochlorine Pesticid PCBs	608					
Priority Pollutants: VO Purgeable Organics	Cs -	624				
Priority Pollutants: Base/Neutral Extractat	iles	625				
Priority Pollutants: Aci Extractables	d	625				
Phenolics, 4AAP		420.4	1			
Oil and Grease, Total						
Nutrient & Organic Water Chemistry Parameter						
Parameter	Test Me	thod	Total	Dissolved		
Ammonia Nitrogen	350.1		×			
CBODs	SM52100	SM5210B		SM5210B		
Total Kjeldahl Nitrogen (TKN)	351.2					
Nitrogen, Nitrate + Nitrite as N	353.2					
Total Phosphorus	365.1	35.1				
TOC (Total Organic Carbon)	SM 5310	С	×			
DOC (Desived Depends Carlord)	SM 5310	C		×		
COD	410.4		×			
Cyanide (Total)	335.4					
Cyanide (Free)	SM4500	CN-I 🛛 *				
Cyanide (Amenable)	SM4500	CN-G	⊠•			
Sulfide, Total	376.2					
RFP 22-68153	58463 (Pa	ace-Inc	ty)			
Contract Number:	PO#200	03041-	4 (Pace-Ir	icty)		

30 day reporting time required.

Notes:

 = RUN ONLY IF TOTAL CYANIDE IS DETECTED
 = Report Calcium, Magnesium components of Total Hardness (Calculated)

Testing Laboratory:	Pace Analytical Services, Inc.
Phone: 317-228-3102	Attn: Olivia Deck 7726 Moller Road Indianapolis, IN 46268

^{** =} DO NOT RUN PARAMETER IF SAMPLE IDENTIFIED AS A BLANK ON THE CHAIN OF CUSTODY

Attachment 8. IDEM OWQ Biological Samples Laboratory Chain of Custody Form

IDEM				_	IN	DIANA I	DEPARTI	MENT	OF	_							
		01	FIC	E e of	NVII WA	RONMEN	TAL MA	NAGE	EMEN ICAI	Τ ςαμριβ	s						
		01	TIC.		BOR	ATORY	CHAIN	OF CU	JSTO	DY	3						
						ROO	M #										
3y placing your initials below, you are certifying that the sample(s) listed below was/were processed by you or in your presence in the processing room noted below and returned to the noted storage room.																	
Sample Type	Event ID	IDEM				Remove	ed from			Placed in	1 Storage	# u				<u>e</u>	
AD = Algae Diatom AS = Algae, Soft	or Macro #	Sample #	000 mL ne Jar	50 mL ne Jar	25 mL Jar	Stora Proce	ge for ssing	sing #	~	after Pr	ocessing	je Roor	80	live ter Jars	lides	lose Tc	Sample Split P = Permanent
M = macro	(YY) or		# of 2(Nalgei	# of 2 Nalger	# of 1 Glass	Date	Time	Proces	Initial	Date	Time (24br)	Storag	Initial	# of O Vouch	# of S	# of C Test T	T = Temporary
		(AD)				(IIII) dd yyyy)	(24111)			(mm/da/yyyy)	:				<u> </u>		
							:				:				-		
							:				:				<u> </u>		
							:				:				<u> </u>		
							:				:				<u> </u>		
							:				:				<u> </u>		
							:				:				<u> </u>		
							:				:						
							:				:						
							:				:						
							:				:						
							:				:						
							:				:						
							:				:						
							:				:						
							:				:			1			
							:				:						
							:				:						
							:				:						
							:				:						
							:				:						. <u></u>
Lab: Indiana Depar	tment of Environmer	ntal Managemen	t				Address: 2	525 N. S	hadelan	d Ave., Labora	atory Room 1	21, 124.	125, Inc	lianapo	olis, IN	46219	2

	ATTA PER AN	
Division of Environment Kansas Health and Environmental Laboratories Environmental Laboratory Improvement Program 6810 SE Dwight Street Topeka, KS 66620	Kansas Department of Health and Environment	Phone: 785-296-3811 Fax: 785-559-5207 KDHE.ELIPO@KS.GOV www.kdheks.gov/esvlab
Janet Stanek, Secretary		Laura Kelly, Governor

The Kansas Department of Health and Environment encourages all clients and data users to verify the most current scope of accreditation for certification number E-10177

The analytes tested and the corresponding matrix and method which a laboratory is authorized to perform at any given time will be those indicated in the most recently issued scope of accreditation. The most recent scope of accreditation supersedes all previously issued scopes of accreditation. It is the certified laboratory's responsibility to review this document for any discrepancies. This scope of accreditation will be recalled in the event that your laboratory's certification is revoked.

Accreditation Start: 5/1/2022 Accreditation End: 4/30/2023

Pace Analytical Services, Inc - In	dianapolis IN	Primary AB
Program/Matrix: CWA (Non Pot	able Water)	
Method ASTM D516-11		
Sulfate		KS
Method EPA 1631E		
Mercury		KS
Method EPA 1664A		-
Oil & Grease		KS
Method EPA 180.1		
Turbidity		KS
Method EPA 200.7		
Aluminum		KS
Antimony		KS
Arsenic		KS
Barium		KS
Beryllium		KS
Boron		KS
Cadmium		KS
Calcium		KS
Chromium		KS
Cobalt		KS
Copper		KS
Copper		KS
Iron		KS
Lead		KS
Magnesium		ĸs
Manganese		KS
Molybdenum		KS
Molybdenum		KS 5 ⁴⁸
Kansas	Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620	The second se
and Environment Head and Environment discontacies		Company

PA Number: IN00043	Scope of Accreditation for Certification Number:	E-10177	Page 2 of 26
ace Analytical Services, Inc - India	anapolis IN		Primary AB
rogram/Matrix: CWA (Non Potabl	le Water)		
Nickel			KS
Potassium			ND
Selenium			KS
Silver			KS
Strantium			KS
Thallium			KS
Tin			KS
Titanium			KS
Vanadium			KS
Zinc			KS
Mathad EDA 200 9			
A huminum			KS
Antimony			KS
Arsenic			KS
Barium			KS
Beryllium			KS
Boron		1	KS
Cadmium			KS
Chromium			KS
Cobalt	· · · · ·		KS
Copper			KS
Lead			KS
Manganese			KS
Molybdenum			KS
Nickel			KO
Selenium			KS
Silver			KS
Thallium			KS
1 m			KS
i nanium Vanadium			KS
v anacium Zinc			KS
Zillo Netherl FIDA GAE 1			
Method EFA 245.1			KS
Method EPA 300.0			KS
Bromide			KS
Chloride			KS
riuorido			KS
Nitrate-nitrite			KS
Nitrite			KS
Sulfate			KS
Method EPA 335.4			
Amenable cvanide			KS
Cvanide			KS
cymmer .			N RECORD
	Kansas Department of Health and Environment		Prove B
Kansas	Kansas Health Environmental Laboratories		17 mill
Department of Health	0810 SE LIWIGHT SHOEL, 10PEKS, KS 00020		Common P

:

.

e Analytical Services, Inc - Indianapolis IN	I	Primary AB	
gram/Matrix: CWA (Non Potable Water)			
thed EPA 350.1			
Ammonia as N		KS	
thad EPA 351 7			
Total Kieldahl Nitrogen (TKN)		KS	
thad FDA 351 2 minus FDA 350.1			
Organic nitrogen		KS	
whod EDA 352 7			
Nitrote		KS	
Nitrate-nitrite		KS	
Nitrite		KS	
ALL DEDA ACCI			
Character E.F.A. 303.1		KS	
r nosphotus			
ethod EPA 410.4		KS	
Chemical oxygen demand		N.Q	
thod EPA 420.4		VC	
Total phenolics		r.o	
ethod EPA 6010B		110	
Arsenic		KS	
Cadmium		KS VS	
Copper		KS	
Lead	•	KS	
Moiyodenum		KS	
		KS	
Strontium		KS	
Total chromium		KS	
Zinc		KS	
Arsenic		KS	
Cadmium		KS	
Copper		KS	
Lead		KS	
Nickel		KS	
Selenium		KS	
Total chromium		KS	
Zinc		KS	
thod EPA 608.3 GC-ECD			
4,4'-DDD		KS	
4,4'-DDE		KS	
4,4'-DDT		KS	
Aldrin		KS	
alpha-BHC (alpha-Hexachlorocyclohexane)		KS	
Aroclor-1016 (PCB-1016)		KS	
Aroclor-1221 (PCB-1221)		KS	
Aroclor-1232 (PCB-1232)		KS	lin.
	YF	Store RECO.	48.0
ancac	Kansas Lepartment of Health and Environment Kansas Health Environmental Laboratories		
effortment of Health	6810 SE Dwight Street, Topeka, KS 66620	¥ 199	Z

oram/Matrix: CWA (Non Potable Wa	F 4.4 TA 5.4 S	Destination of the second s
oram/Watrix: CWA (Non Potable Wa		Frimary AB
Brand the second for a second to a	ter)	
Aroclor-1242 (PCB-1242)		KS
Aroclor-1248 (PCB-1248)		KS
Aroclor-1254 (PCB-1254)		KS
Aroclor-1260 (PCB-1260)		KS
beta-BHC (beta-Hexachlorocyclohexan	e)	KS
Chlordane (tech.)(N.O.S.)		KS
delta-BHC		KS
Dieldrin		KS
Endosulfan I		KS
Endosulfan II		KS
Endosulfan sulfate	•	KS
Endrin		KS
Endrin aldehyde		KS
gamma-BHC (Lindane, gamma-Hexach	lorocyclohexanE)	KS
Heptachlor		KS
Heptachlor epoxide		KS
Methoxychlor		KS
Toxaphene (Chlorinated camphene)		KS
ached EDA (2/1		1. M. W.
t 1 1 Teleblan theme		WO.
1,1,1-1 Fichloroethane		N.S V.S
1,1,2,2-1 etrachioroethane		NG
1,1,2-1 richloroemane		KS
1,1-Dichioroethane		KS
I, I-Dichloroethylene		KS
1,2-Dichlorobenzene (o-Dichlorobenze	ne)	KS
1,2-Dichloroethane (Ethylene dichlorid		KS
1,2-Dichloropropane		KS .
1,3-Dichlorobenzene		KS
1,4-Dichlorobenzene		KS
2-Chloroethyl vinyl ether		KS
Acrolein (Propenal)		KS
Acrylonitrile		KS
Benzene		KS
Bromodichloromethane		KS
Bromoform		KS
Carbon tetrachloride		KS
Chlorobenzene		KS
Chlorodibromomethane		KS
Chloroethane (Ethyl chloride)		KS
Chloroform	x	KS
cis-1,3-Dichloropropene		KS
Ethylbenzene		KS
Methyl bromide (Bromomethane)		KS
Methyl chloride (Chloromethane)		ĸs
*		KS
Methylene chloride (Dichloromethane)		

.

.....

e Analytical Services, Inc - Indianapolis IN gram/Matrix: CWA (Non Potable Water)	r runar	
gram/Matrix: CWA (Non Potable Water)		
	KS	
Tetrachloroethylene (Perchloroethylene)	KS	
Toluene	KS	
trans-1,2-Dichloroethylene	KS	
trans-1,3-Dichloropropylene	KS	
Trichloroethene (Trichloroethylene)	KS	
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS	
Vinyl chloride	KS	
Xylene (total)		
thod EPA 625.1	ve	
1,2,4-Trichlorobenzene	VC	
1,2-Dichlorobenzene (o-Dichlorobenzene)	NO VC	
1,3-Dichlorobenzene	NO VO	
1,4-Dichlorobenzene	NO	
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	K6 K9	
2,4,6-Trichlorophenol	NO	
2,4-Dichlorophenol	KS	
2,4-Dimethylphenol	VS	
2,4-Dinitrophenol	VQ	
2,4-Dinitrotoluene (2,4-DNT)	rc rc	
2,6-Dinitrotoluene (2,6-DNT)	KS	
2-Chloronaphthalene	KS	
2-Chlorophenol	KS	
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	KS	
2-Nitrophenol	KC	
3,3'-Dichlorobenzidine	KS	
4-Bromophenyl phenyl ether	KS	
4-Chloro-3-methylphenol	KS	
4-Chlorophenyl phenylether	KS	
4-Nitrophenol	KS	
Acenaphthene	KS	
Acenaphthylene	KS	
Anthracene	KS	
Benzidine	KS	
Benzo(a)anutracene	KS	
Benzo(a)pyrene	KS	
Benzo(b)nuoranmene	KS	
Benzo(g,n,i)perviene	KS	
Benzo(K)nuorannene	KS	
Dis(2-Chlorosthul) ather	KS	
Dis(2-Ciliorociliyi) cilici Busid hanzid natioalate	KS	
Dutyi ochzyi pitulaiate	KS	
Unrysene	KS	
Dif area b) anthranene	KS	
Dischul abthalate	KS	
Dieuty phuaac	KS	
Dimensi bunarare		
Kansas Department of Health and Environment		HUAP RECOG
Kansas Health Environmental Laboratories		9.85

a se a trata da se	NY .	Primary AB
ce Analytical Services, Inc - Indianapolis I	IN .	
ogram/Matrix: CWA (Non Potable Water)		KS
Di-n-butyl phthalate		KS
Di-n-octyl phthalate		KS
Fluoranthene		KS
Fluorene		KS
Hexachlorobenzene		KS
Hexachlorobutadiene		KS
Hexachloroethane		KS
Indeno(1,2,3-cd) pyrene		KS
Isophorone		KS
Naphthalene		KS
Nitrobenzene		KS
n-Nitrosodimethylamine		KS
n-Nitrosodi-n-propylamine		KS
n-Nitrosodiphenylamine		KS
Pentachlorophenol		KS
Phenanthrene		KS
Phenol		KS
Pyrene		
fethod EPA 7470A		KS
Method EPA /4/1A Mercury		KS
Method EPA 8015D		
Propylene glycol		KS
Mathad EDA 9760C		
1 1 2 Trichloro-1 2 2-trifluoroethane		KS
1,3,5-Trichlorobenzene		KS
Method EPA 8270C		KS
1-Methylnaphthalene		KS
Carbazole		
Method OIA 1677-09		KS
Available Cyanide		KS
Free cyanide		
Method SM 2310 B-2011		VC
Acidity, as CaCO3		2013
Method SM 2320 B-2011		
Alkalinity as CaCO3		KS
Mathad SM 2340 B-2011		
Hardness		KS
LIGUINOS 34-41-31 - CBE 9240 D 9011		
Methou SIVI 2340 D-2011		KS
Kesidue-totai		
Method SM 2540 C-2011		KS
Method SM 2540 D-2011		
	Kawas Department of Health and Environment	Stre RECO
Kansas	Kannas Heidt Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620	

PA Number: IN00043 Scope of .	Accreditation for Certification Rumber.	Duimper AP
ace Analytical Services, Inc - Indianapolis IN		r finary AD
rogram/Matrix: CWA (Non Potuble Water) Residue-nonfilterable (TSS)		KS
Method SM 2540 F-2011 Residue-settleable		KS
Method SM 3500-Cr B-2011 Chromium VI		KS
Method SM 4500-Cl G-2011 Total residual chlorine		KS
Method SM 4500-CI E-2011 Chloride		KS
Method SM 4500-CN ⁻ C-2011 Cyanide		KS
Method SM 4500-CN ⁻ E-2011 Cyanide	· · · · · · · · · · · · · · · · · · ·	KS
Method SM 4500-CN ⁻ G-2011 Amenable cyanide		KS
Method SM 4500-F ^C -2011 Fluoride		KS
Method SM 4500-H+ B-2011 pH		KS
Method SM 4500-NH3 G-2011 Ammonia as N		KS
Method SM 4500-P E-2011 Orthophosphate as P		KS
Method SM 4500-S2 D-2011 Sulfide		KS
Method SM 5210 B-2011 Biochemical oxygen demand		KS KS
Method SM 5310 C-2011 Total organic carbon		KS
Method SM 5540 C-2011 Surfactants - MBAS		KS
Method TKN-NH3-CAL		KS

Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620

ce Analytical Services, Inc - Indianapolis	IN	Primary	r AB
ogram/Matrix: RCRA (Non Potable Water))		
lethod EPA 1010A		VS	
Ignitability		NO	
Lethod EPA 1311		Ke	
Toxicity Characteristic Leaching Procedure	e (TCLP)	140	
lethod EPA 1312		KS	
Synthetic Precipitation Leaching Procedure	e (SPLP)	110	
fethod EPA 6010B		KŠ	
Aluminum		KS	
Antimony		KS	
Arsenic		KS	
Barium		KS	
Beryllium		KS	
Boron		KS	
Calcium		KS	
Chromium		KS	
Cobalt		KD V S	
Copper		KS KS	
Iron		KS	
Lead		KS	
Lithium		KS	
Magnesium		KS	
Manganese		KS	
Molybdenum		KS	
Nickel		KS	
Salanium		KS	
Silicon		KS	
Silver		KS	
Sodium		KS	
Strontium		KS	
Thallium	9 	KS	
Tin		KS	
Titanium		KS	
Vanadium		KS	
Method EPA 6020		KS	
Aluminum		KS	,
Arcenic		KS	
Barium		KS	
Beryllium		KS	
Cadmium		KS	
Chromium		KS	
Cobalt		KS	
Copper			CLAS RECO.
	Kansas Department of Health and Environment		" south
Kansas Department of heith and Reviewing	Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620		Balanto

and Analytical Familian Indianamolis IN		Dataman in
ace Analytical Services, inc - molanapolis in		rrimary AB
ogram/Matrix: RCRA (Non Potable Water)		
Lead		KS
Manganese		KS
Molybdenum		KS
Nickel		KS
Selenium		KS
Silver		KS
Thallium		KS
Thorium		KS
Uranium		KO
Vanadium		NO KO
Zinc		Ko
ethod EPA 7196A		
Chromium VI		KS
ethod EPA 7470A		
Mercury		KS
ethod EPA 7471A		
Mercury		KS
ethod EPA 8011		
1.2-Dibromo-3-chloropropane (DBCP)		KS
1,2-Dibromoethane (EDB, Ethylene dibromide)		KS
ethod EPA 8015D		
Diesel range organics (DRO)		KS
Ethanol		KS
Ethylene glycol		KS
Gasoline range organics (GRO)		KS
Isobutyl alcohol (2-Methyl-1-propanol)		KS
Isopropyl alcohol (2-Propanol, Isopropanol)		KS
Methanol		KS
n-Butyl alcohol (1-Butanol, n-Butanol)		KS
n-Propanol (1-Propanol)		KS
Propylene glycol		KS
ethod FPA 8081R	97	
4 4'-DDD		KS
4.4'-DDE		KS
4.4'-DDT		KS
Aldrin		KS
alnha-BHC (alpha-Hexachlorocyclohexane)		KS
alpha-Chlordane, cis-Chlordane		KS
beta-BHC (beta-Hexachlorocyclohexane).		KS
Chlordane (tech.)(N.O.S.)		KS
delta-BHC		KS
Dieldrin		KS
Endosulfan I		KS
Endosulfan II		KS
Endosulfan sulfate		KS
	h and Paulenment	SULT RECO
Kansas Department of Healt Kansas Health Environme	n and anvironment	
Department of Health 6810 SE Dwight Street, T	opeka, KS 66620	10

bas Analytical Samian Ins. Indiananali	a IN	D
ace Analytical Services, Inc - Indianapoin	S LIN	Primary AB
rogram/Matrix: RCRA (Non Potable Wate	er)	
Endrin		KS
Endrin aldehyde		KS
Endrin ketone		KS
gamma-BHC (Lindane, gamma-Hexachlo	procyclohexanE)	KS
gamma-Chlordane		KS
Heptachlor		KS
Heptachlor epoxide		KS
Methoxychlor		KS
Toxaphene (Chlorinated camphene)		KS
Method EPA 8082A		
Aroclor-1016 (PCB-1016)		KS
Aroclor-1221 (PCB-1221)		KS
Aroclor-1232 (PCB-1232)		KS
Arocior-1242 (PCB-1242)		KS
Aroclor-1248 (PCB-1248)		KS
Aroclor-1254 (PCB-1254)		KS
Aroclor-1260 (PCB-1260)		KS
And NDA 0141D		
Attesting		RG
Atrazine A simples mathel (Cathian)		KG
Azinphos-metayi (Guanion)		KG
Chlorpyrilos		Ve
Chiorpyritos-metnyi		Ve
Demeton-o		NO VO
Demeton-s		N.S.
Diazinon		ND .
Dichlorovos (DDVP, Dichlorvos)		NO VO
Dimethoate		N.S MG
Disulfoton		NO VO
Famphur		KS
Malathion		KS
Merphos		KS
Methyl parathion (Parathion, methyl)		KS
Naled		KS
Parathion, ethyl		KS
Phorate		KS
Ronnel		KS
Simazine		KS
Terbufos	,	KS
Tetrachlorvinphos (Stirophos, Gardona) I	E-isomer	KS
Method EPA 8151A		
2,4,5-T		KS
2,4-D		KS
2,4-DB		KS
3,5-Dichlorobenzoic acid		KS
Acifluorfen		KS
Bentazon		KS
		PRECO
/	Kansas Department of Health and Environment	*
Kansas	Kansas Health Environmental Laboratories	1 Stand
Department of Health	6810 SE Dwight Street, Topeka, KS 66620	10

.

		FILMARY AD
rogram/Matrix: RCRA (Non Potable Wat	er)	
Dalapon		KS
DCPA di acid degradate		KS
Dicamba		KS
Dienoroprop (Dieniorprop)	Page 179 751	KS
Dinosed (2-sec-butyi-4,6-dinitrophenol, i	UNBP)	KS
MCPA		KS
MCPP		KS
Pentachiorophenoi		KS
Ficioram		KS
Suvex (2,4,5-1P)		KS
Method EPA 8260C		
1,1,1,2-Tetrachloroethane		KS
1,1,1-Trichloroethane		KS
1,1,2,2-Tetrachioroethane		KS
1,1,2-1 richloro-1,2,2-trifluoroethane		KS
1,1,2-Trichloroethane		KS
1,1-Dichloroethane		KS
I,I-Dichloroethylene		KS
I, I-Dichloropropene		KS
1,2,3-1 richlorobenzene		KS
1,2,5-Trichloropane		KS
1.2.4-Trimethylbenzene		KS VC
1.2. Thinking to the concern (DRCP)		KO
1.2-Dibromoethane (EDB Ethylene dibro	omide)	Ve
1.2-Dichlorobenzene (o-Dichlorobenzene	a)	NG
1.2-Dichloroethane (Ethylene dichloride)	*/	NO
1 2-Dichloropropage		KC.
1.3.5-Trichlorobenzene		KS
1 3 S-Trimethylbenzene		KS
1 3-Dichlorobenzene		KS
1.3-Dichloropropane		KS
1.4-Dichlorobenzene	$(A_{1}, \dots, A_{n}) = \{A_{n}, \dots, A_{n}\} = \{A_{$	KS
1,4-Dioxane (1,4- Diethyleneoxide)		KS
1-Methylnaphthalene		KS
2,2-Dichloropropane		KS
2-Butanone (Methyl ethyl ketone, MEK)		KS
2-Chloroethyl vinyl ether		KS
2-Chlorotoluene		KS
2-Hexanone		KS
2-Methylnaphthalene		KS
4-Chlorotoluene		KS
4-Isopropyltoluene (p-Cymene,p-Isopropy	yltoluene)	KS
4-Methyl-2-pentanone (MIBK)		KS
Acetone		KS
A		VC

x ----
.

Number: IN00043 Scop	e of Accreditation for Certification Mumber:	#2""# W # 1. I		
Analytical Services, Inc - Indianapolis I	N		Primary AB	
am/Matrix: RCRA (Non Potable Water)			K.S.	
Acrolein (Propenal)			KS	
Acrylonitrile			KS	
Allyl chloride (3-Chloropropene)			KS	
Benzene			KS	
Bromobenzene			KS	
Bromochloromethane			KS	
Bromodichloromethane			KS	
Bromoform			KC	
Carbon disulfide			KS	
Carbon tetrachloride			KS	
Chlorobenzene			KS	
Chlorodibromomethane			KS	
Chloroethane (Ethyl chloride)			KS	
Chloroform			KS	
Chloroprene (2-Chloro-1,3-butadiene)			KS	
cis-1,2-Dichloroethylene			KS	
cis-1,3-Dichloropropene			KS	
Cyclohexane			KS	
Dibromomethane (Methylene bromide)			KS	
Dichlorodifluoromethane (Freon-12)			KS	
Diethyl ether			KS	
Ethyl acetate			KS	
Ethyl methacrylate			KS	
Ethylbenzene			KS	
Hexachlorobutadiene		•	KS	
Iodomethane (Methyl iodide)			KS	
Isobutyl alcohol (2-Methyl-1-propanol)			KS	
Isopropylbenzene			KS	
Methacrylonitrile			KS	
Methyl acetate			KS	
Methyl bromide (Bromomethane)			KS	
Methyl chloride (Chloromethane)			KS	
Methyl methacrylate			KS	
Methyl tert-butyl ether (MIBE)			KS	
Methylcyclonexane			KS	
Melnylene chloride (Dichloromediane)			KS	
m-xyiene			KS	
Naprinaiene			KS	
n-butyl alconor (1-butanor, n-butanor)			KS	
n-Duty Weitzene			KS	
H-FICXAIC			KS	
n-rropylocizene			KS	
o-Aylene Dronionitrile (Ethyl cyanide)			KS	
r Tulono			KS	
persylence sec-Butylbenzene			KS	
Sco-Duty inclination			KS	-
Styrelle				e ne
	Kansas Department of Health and Environment			ŵ.
Cancas	Kansas Health Environmental Laboratories			

A Number: IN00043 Scope of Accreditation for Certification Number. E-1011	
ce Analytical Services, Inc - Indianapolis IN	Primary AB
ogram/Matrix: RCRA (Non Potable Water)	
tert-Butyl alcohol	KS
tert-Butylbenzene	KS
Tetrachloroethylene (Perchloroethylene)	KS
Tetrabydrafiuran (THF)	KS
Toluene	KS
trans-1 2-Dichloroethylene	KS
trong_1 3-Dichloronronvlene	KS
tenna 1 4 Dichloro-2-blutene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinul postate	KS
V Inyi acciaic	KS
V my cinorad	KS
Aylene (lota)	
Lethod EPA 8270C	KS
1,2,4,5-Tetrachlorobenzene	KS
1,2,4-Trichlorobenzene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Diphenylhydrazine	KS
1,3,5-Trinitrobenzene (1,3,3-1 NB)	KS
1,3-Dichlorobenzene	KS
1,3-Dinitrobenzene (1,3-DNB)	KS
1,4-Dichlorobenzene	KS
1,4-Naphthoquinone	KS
1,4-Phenylenediamine	KS
1-Methylnaphthalene	KS
1-Naphthylamine	KS
2,2-Oxybis(1-chloropropane), bis(2-chloro-1-meuryleuryl)chlor	KS
2,3,4,6-Tetrachiorophenol	KS
2,4,5-Trichlorophenol	KS
2,4,6-Trichlorophenol	KS
2,4-Dichlorophenol	KS
2,4-Dimethylphenol	KS
2,4-Dinitrophenol	KS
2,4-Dinitrotoluene (2,4-DNT)	KS
2,6-Dichlorophenol	KS
2,6-Dinitrotoluene (2,6-DNT)	KS
2-Acetylaminofluorene	KS
2-Chloronaphthalene	KS
2-Chlorophenol	KS
2-Methyl-4,6-dinitrophenol (4,6-Dimtro-2-methylphenol)	KS
2-Methylaniline (o-Toluidine)	KS
2-Methylaniline (o-Toluidine)	KS
2-Methyinaphthalene	KS
2-Methylphenol (ö-Cresol)	KS
2-Naphthylamine	KS
2-Nitroaniline	100
	SUN RECO
Kansas Department of Health and Environment	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Kansas Kansas Health Environmental Laboratories	
Department of Heilb Do 10 of DWight Guoda, reparts, no www	Dirano

A stat 1 Gautan Inc. Indianonalis IN	······	Primary AB	
e Analytical Services, inc - indianapons in			
gram/Matrix: RCRA (Non Potable Water)		KS	
2-Nitrophenol		KS	
2-Picoline (2-Methylpyridine)		KS	
3,3'-Dichlorobenzidine		KS	
3,3'-Dimethylbenzidine		KS	
3-Methylcholanthrene		KS	
3-Methylphenol (m-Cresol)		KS	
3-Nitroaniline		KS	
4-Aminobiphenyl		KS	
4-Bromophenyl phenyl ether		KS	
4-Chloro-3-methylphenol		KS	
4-Chloroaniline		KS	
4-Chlorophenyl phenylether		KS	
4-Dimethyl aminoazobenzene		KS	
4-Methylphenol (p-Cresol)		KS	
4-Nitroaniline		KS	
4-Nitrophenol		KS	
4-Nitroquinoline 1-oxide		KG	
5-Nitro-o-toluidine		KS	
7,12-Dimethylbenz(a) anthracene		KS	
a-a-Dimethylphenethylamine		KS	
Acenaphthene		KS	
Acenaphthylene		KS	
Acetophenone		KS	
Aniline		KS	
Anthracene		KS	
Aramite		KS	
Atrazine		KS	
Benzaldehyde		KS	
Benzidine		KS	
Benzo(a)anthracene		KS	
Benzo(a)pyrene		KS	
Benzo(b)fluoranthene		KS	
Benzo(g,h,i)perylene		KS	
Benzo(k)fluoranthene		KS	
Benzoic acid		KS	
Benzyl alcohol		KS	
Biphenyl		KS	
bis(2-Chloroethoxy)methane		KS	
bis(2-Chloroethyl) ether		KS	
Butyl benzyl phthalate		KS	
Caprolactam		KS	
Carbazole		KS	
Chlorobenzilate		KS	
Chrysene	D Literate DEID	KS	
Di(2-ethylhexyl) phthalate (bis(2-Ethylhe)	xyl)phthalate, DEHP)	KS	
Diallate		KŚ	
Dibenz(a,h) anthracene		12.02	en-
	The sector and a Strately and Day(populat)	St. St.	
Vancas	Kansas Department of Health and Environment		
Nallsas	6810 SE Dwight Street, Topeka, KS 66620	35	

		Primary AB
ram/Matrix: RCRA (Non Potable W	Vater)	
Dibenzohuran		KS
Diethyl phthalate	•	KS
Dimethoate		KS
Dimethyl phthalate	· · · · · · · · · · · · · · · · · · ·	KS
Di-n-butyl phthalate		KS
Di-n-octyl phthalate		KS
Diphenylamine		KS
Disultoton		KS
Ethyl methanesulfonate		KS
Famphur		KS
Fluoranthene		KS
Fluorene		KS
rlexachlorobenzene		KS
riexachlorobutadiene		KS
texachlorocyclopentadiene		KS
lexachloroethane		KS
lexachlorophene		KS
lexachloropropene		KS
ndeno(1,2,3-cd) pyrene		KS
sodrin		KS
sophorone		KS
sosafrole		KS
Kepone		KS
Aethapyrilene		KS
Aethyl methanesulfonate		KS
Activity parathion (Parathion, methyl)		KS
Naphinalene		KS
lirobenzene		KS
-Nitrosodiethylamine		KS
-Nitrosodimethylamine		KS
-Nitroso-di-n-butylamine		KS
-Nitrosodi-n-propylamine		KS
Nitrosodiphenylamine	1 ¹ 1	KS
-Nitrosomethylethylamine		KS
-Nitrosomorpholine		KS
-Nitrosopiperidine		KS
-Nitrosopyrrolidine		KS
o,o-Triethyl phosphorothioate		KS
arathion, ethyl		KS
entachlorobenzene		KS
entachloronitrobenzene		KS
entachlorophenol		KS
nenacetin		KS
nenanthrene		KS
		KS
norae Dhanadana Jianaina		KŠ
Phenylenediamine		KS
	Kansas Department of Health and Environment	and the second

BLACHURDER, AV00045 Seu	w or secreturation for Certification (Authoer:	10177	
ace Analytical Services, Inc - Indianapolis	N		Primary AB
rogram/Matrix: RCRA (Non Potable Water)			
Pronamide (Kerb)			KS
Pyrene			KS
Pyridine			KS -
Satrole			KS
Sulfotep (Tetraethyl dithiopyrophosphate)	l.		KS
Thionazin (Zinophos)			KS
Method EPA 8270C SIM			
1-Methylnaphthalene			KS
2-Methylnaphthalene			KS
Acenaphthene			KS
Acenaphthylene			KS
Anthracene			KS
Benzo(a)anthracene			KS
Benzo(a)pyrene			KS
Benzo(b)fluoranthene			KS
Benzo(g,h,i)perylene			KS
Benzo(k)fluoranthene			KS
Chrysene	·		KS
Dibenz(a,h) anthracene			KS
Fluoranthene			KS
Fluorene			KS
Indeno(1,2,3-cd) pyrene			KS
Naphthalene			KS
Phenanthrene			KS
Pyrene			KS
Method EPA 9012A			
Amenable cvanide			KS
Cyanide			KS
Method FPA 9038			
Sulfate			1/0
			KS
Method EPA 9056A			
Bromide			KS
Chioriae			KS
r Horige			KS
loaide			KS
Initate			KS
INITIE			KS
Suirate			KS
Method EPA 9066			
Total phenolics			KS
Method EPA 9095B			
Paint Filter Test			KS
dethod EPA RSK-175 (GC/FID)			
Ethane			KS
Ethene			KS
TZ	Kansas Department of Health and Environment		and the second second
Kansas	Kansas Health Environmental Laboratories		Contract of
Department of Health and Brivingment	os to Sr. Dwight Street, Topeka, KS 66620		A Same

EPA Number: IN00043 Pace Analytical Services, Inc - In	Scope of Accreditation for Certification Number: dianapolis IN	E-10177	Page 17 of 26 Primary AB
Program/Matrix: RCRA (Non Po Methane	table Water)		KS

Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620

67

1

e Analytical Services, Inc - Indianapolis I	IN	Primary AB
gram/Matrix: RCRA (Solid & Hazardous	Material)	· ·
thed EPA 1010A		
Ignitability		KS
Toxicity Characteristic Leaching Procedure		KS
I DAMAY CHARLED AND LOUGHNS I TOTOMA	((m.c.n.m.)	
Sunthetic Precinitation Leaching Procedure	(SPLP)	KS
Symmetric recognition beaching recorded		
Aluminum		KS
Antimony		KS
Arsenic		KS
Barium		KS
Bervllium		KS
Boron		KS
Cadmium		KS
Calcium		KS
Chromium		KS
Cobalt		KS
Copper		KS
Iron		KS
Lead		KS
Magnesium		KS
Manganese		KS
Molybdenum		KS
Nickel		KS
Potassium		KS
Selenium		KS
Silver		KS
Sodium		Kõ
Strontium		NO
Thallium		VS
Tin		KS
1 Itanjum		KS
V anadium Zinc		KS
thod EPA 6020		KS
Aluminum		KS
Antimony		KS
Arsenic		KS
Daritum		KS
Cadmium		KS
Chromium		KS
Cobalt		KS
Copper		KS
Lead		KS
Manganese		KS
		AF RECOCH.
T	Kansas Department of Health and Environment	
Nansas	Nansas ricalia Environmental Laboratories	

and Analytical Services Inc. Indianonalis I	IN	Driman, AD
ace Analytical Services, inc - Indianapons i		r runary AD
rogram/Matrix: RCRA (Solid & Hazardous)	Material)	
Nickel		KS
Selenium		KS
Silver		KS
Thallium		KS
Vanadium		KS
Zinc		KS
fathod FDA 7106A		
Character M		KS
Chroimain VI		no i
lethod EPA 7470A		
Mercury		KS
fethod EPA 7471A		
Mercury		KS
CHIOU EFA 80130		Re
Diesel range organics (DRO)		N.C.
Ethanol		NO
Ethylene glycol		KS
Gasoline range organics (GRO)	· · · · · · · · · · · · · · · · · · ·	KS
Isobutyl alcohol (2-Methyl-1-propanol)		KS
Isopropyl alcohol (2-Propanol, Isopropanol)	KS
Methanol		KS
n-Butyl alcohol (1-Butanol, n-Butanol)		KS
n-Propanol (1-Propanol)		KS
Propylene glycol		K.S
Method EPA 8081B	•	
4.4'-DDD		KS
4.4-DDE		KS
4 4'-DDT		KS
Aldrin		KS
alpha-BHC (alpha-Heyachlorocycloheyane))	KS
alpha-Dire (alpha-riczaemerobyerosiesame)	KS
appra-Chiordane, cis-Chiordane		KS
Beta-BHC (Beta-Hexachiorocyclonexalle)		KS VS
Chlordane (tech.)(N.U.S.)		Ve
delta-BHC		KS KS
Dieldrin	$F_{\rm c}$	VO
Endosullan I		NO
Endosulfan II		K.S
Endosulfan sulfate		KS
Endrin		KS
Endrin aldehyde		KS
Endrin ketone	×	KS
gamma-BHC (Lindane, gamma-Hexachloro	pcyclohexanE)	KS
gamma-Chlordane		KS
Heptachlor		KS
Heptachlor epoxide		KS
Methoxychlor		KS
Toxaphene (Chlorinated camphene)		KS
		SUPPRECOS
Vanaad	Kansas Department of Health and Environment	and the
NAUSAS	indiana indiana conversional carboration	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

ce Analytical Services Inc.	adianapolis IN	.
ce Anarytical Schvices, Inc - I		Primary AB
ogram/Matrix: KCKA (Solid &	k Hazardous Material)	
ethod EPA 8082A		
Aroclor-1016 (PCB-1016)		KS
Aroclor-1221 (PCB-1221)		KS
Aroclor-1232 (PCB-1232)		KS
Aroclor-1242 (PCB-1242)		KS
Aroclor-1248 (PCB-1248)		KS
Aroclor-1254 (PCB-1254)		KS
Aroclor-1260 (PCB-1260)		KS
thod EPA 8141B		
Atrazine		KS
Azinphos-methyl (Guthion)		KS
Chlorpyrifos		KS
Chlorpyrifos-methyl		KS
Demeton-o		KS
Demeton-s		KS
Diazinon		KS
Dichlorovos (DDVP, Dichlory	/os)	KS
Dimethoate	1	KS
Disulfoton		KS
Famphur		KS
Malathion		KS
Merphos	•	KS
Methyl parathion (Parathion, r	nethyl)	KS
Naled		KS
Parathion, ethyl		KS
Phorate		KS
Ronnel		KS
Simazine		KS
Terbufos		KS
Tetrachlorvinphos (Stirophos,	Gardona) E-isomer	KS
thod EPA 8151A		
2,4,5-T		KS
2,4-D		KS
2,4-DB		KS
3,5-Dichlorobenzoic acid		KS
Acifluorfen		KS
Bentazon		KS
Dalapon		KS
DCPA di acid degradate		KS
Dicamba		KS
Dichloroprop (Dichlorprop)		K8
Dinoseb (2-sec-butyl-4,6-dinit	rophenol, DNBP)	KS
MCPA		KS
MCPP		KS
Pentachlorophenol		KS
Picloram		KS
1 and the second se		Upp RECO
Cancac	Kansas Department of Health and Environment	100
L ausas	Nausas ricatan Latviroinneatai Laboratories	1

e Analytical Services Inc. Indianonalia IN	1450 21 01 20
Mathew BCB (C. 11 a B. 10 - Mathematical Street Str	Primary AB
Silver (2.4.5 TD)	
Silvex (2,+,,="I")	KS
Aethod EPA 8260C	
1,1,1,2-1 etrachioroethane	KS
1,1,1-1 richloroethane	KS
1,1,2,2-Tetrachloroethane	KS
1,1,2-Trichloro-1,2,2-trifluoroethane	KS
I, I, 2-Trichloroethane	KS
1,1-Dichloroethane	KS
1,1-Dichloroethylene	KS
1,1-Dichloropropene	KS
1,2,3-Trichlorobenzene	KS
1,2,3-Trichloropropane	KS
1,2,4-1 richlorobenzene	KS
1,2,4-1 rimethylbenzene	KS
1,2-Dibromo-3-chloropropane (DBCP)	KS
1,2-Dibromoethane (EDB, Ethylene dibromide)	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Dichloroethane (Ethylene dichloride)	KS
1,2-Dichloropropane	KS
1,3,5-1 richlorobenzene	KS
1,3,3-1 rimethylbenzene	KS
1,3-LJIChlorobenzene	KS
1,2-Dichloropropane	KS
1,4 Distance (1,4, Distance (1))	KS
1,4-Dioxane (1,4- Diemyleneoxide)	KS
1-Methylnaphthalene	KS
2,2-Dichioropropane	KS
2-Butanone (Methyl ethyl ketone, MEK)	KS
2-Chlorothyl vinyl emer	KS
2-Uniorotoinene	KS
2-Hexanone	KS
2-internyinaprinatene	KS
4-Chloropoluene	KS
4 Mathul 2 nontragene (MIRK)	KS
4-intensy-2-pentanone (intesk)	KS
Acetonic	KS
Accident (Propagal)	KS
Acrocht (Topena)	KS
Activitation	KS
Renzene	KS KO
Bromohenzene	KS KS
Bromochloromethane	KS KD
Bromodichloromethane	KS VO
Bromoform	KS
Carbon disulfide	K5 V6
	КЗ
Kanzao Dangdonani of Hasida and Danisana an	SALA BECOLUMN
Aunsas Department of Health and Environmental Laboratories	
experiment of Health 6810 SE Dwight Street, Topeka, KS 66620	

nalytical Services. Inc - Indianapolis IN	Primare AF
mary wear our recess and a meaning bers and	1 (Alla) y AL
m/Matrix: RCKA (Solid & Hazaraous Material)	KS
aroon tetracinoride	KS
allorodikromométhéne	KS
Information of (Ethyl ablavida)	KS
Incroentane (Eury) Choine)	KS
	KS
is-1.2-Dichloronronane	KS
Is-1,J-Didition op openic	KS
Notomoniculare (Nechylene Orong 12)	KS
nenorounuoroununane (Freon=12)	KS KS
Abul - anteta	KS KS
Anyi acetate	Ve
any) memoryane Marikaneano	Ke
	KG
lexachioroduladiene	NO NO
baomeusate (Meury) (bolde)	KS
sopropy identice for the second se	KS
Actual bramide (Bramamethane)	KS
Active obligation (Chloromethane)	KS
Actual methodosiate	KS
Active test-hutve ether (MTRE)	KS
Activitene chloride (Dichloromethane)	KS
n-Xulene	KS
Iantithalene	KS
-Butyl alcohol (1-Butanol, n-Butanol)	KS
-Butylbenzene	KS
-Hexane	KS
-Propylbenzene	KS
-Xvlene	KS
Propionitrile (Ethyl cyanide)	KS
-Xvlene	KS
ec-Butylhenzene	KS
itvrene	KS
ert-Butyl alcohol	KS
ert-Butylbenzene	KS
Tetrachloroethylene (Perchloroethylene)	KS
Toluene	KS
rans-1.2-Dichloroethylene	KS
rans-1,3-Dichloropropylene	KS
rans-1,4-Dichloro-2-butene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinyl acetate	KS
Vinyl chloride	KS
Kvlene (total)	KS

Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620

Analytical Company Ing Indianonali	e IN	Primary AR
Analytical Services, inc - indianapoli:	5 111	11111119750
am/Matrix: RCRA (Solid & Hazardou	s Material)	Ve
1,2,4,5-Tetrachlorobenzene		NO Ve
1,2,4-Trichlorobenzene		NS VS
1,2-Dichlorobenzene (o-Dichlorobenzene		NO NG
1,2-Diphenylhydrazine		NO
1,3-Dichlorobenzene	• •	·N3
1,3-Dinitrobenzene (1,3-DNB)		N.D V.S
1,4-Dichlorobenzene		KO
1,4-Naphthoquinone		N.O.
1,4-Phenylenediamine		-NO
1-Methylnaphthalene		KA
1-Naphthylamine		KS
2,2'-Oxybis(1-chloropropane), bis(2-Chlo	pro-1-methylethyl)ether	K.S
2,3,4,6-Tetrachlorophenol		KS V C
2,4,5-Trichlorophenol		NO
2,4,6-Trichlorophenol		NO
2,4-Dichlorophenol		N.J V C
2,4-Dimethylphenol		VC
2,4-Dinitrophenol		KG
2,4-Dinitrotoluene (2,4-DNT)		KS
2,6-Dichlorophenol		KS
2,6-Dinitrotoluene (2,6-DNT)		KS
2-Acetylaminofluorene		KS
2-Chloronaphthalene		KS
2-Chlorophenol	2	KS
2-Methyl-4,6-dinitrophenol (4,6-Dinitro	-2-methylphenol)	KS
2-Methylaniline (o-Toluidine)		KS
2-Methylaniline (o-Toluidine)		KS
2-Methylnaphthalene		KS
2-Methylphenol (o-Cresol)		KS
2-Naphthylamine		KS
2-Nitroaniline		KS
2-Nitrophenol		KS
2-Picoline (2-Methylpyridine)		KS
3,3'-Dichlorobenzigine		KS
3,3-Dimenyiberizidine		KS
3-Methylcholanurcho		KS
3-Methylphenol (m-Cresol)		KS
3-Nitroaniine		KS
4-Aminobiphenyi		KS
4-Bromophenyi phenyi emer		KS
4-Chlorospiline		KS
4 Chlorophenyl phenylether		KS
4-Dimethyl aminoszohenzene		KS
4-Mathydahenol (n-Ctesol)		KS
4-Nitroaniline		KS
4-Nitronhenol		KS
-t-raimobilence		SULL B
-	Kansas Department of Health and Environment	
ansas	Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620	2
epartment of Health	AATA ATT TALETY PRANT PRANT CARACTER CARACTER VALUE AND	Actor.

.5. .4

Analytical Services, Inc - Indianan	oolis IN	Primary AB
ram/Matrix: RCPA (Solid & Hanas	dous Material)	· · · · · · · · · · · · · · · · · · ·
A-Nitroquingline 1-avide	HUMO ATRANET PHILI	KS
5 Nitro a taluídine		NO
7 12 Dimethylbanz(a) anthrocene		NO
7,12-Dimethyloenz(a) anthracene		KS VS
a-a-conneurypheneurypannie	Φ	12.5 12.5
Acenaphinene		N3 VS
Acenaphinytene		NO KO
Acetophenone		KS
Anime		KS VO
Annracene		KS
Aramite		KS
Benzidine		KS
Benzo(a)anthracene		KS
Benzo(a)pyrene		KS
Denzo(o)nuoranniene		K0
isenzo(g,n,i)peryiene		KS
Benzo(K)Huoranmene		K.S
Benzoic acid		KS
Benzyl alcohol		KS
bis(2-Chloroethoxy)methane		KS
bis(2-Chloroethyl) etner		KS KS
Butyl benzyl phthalate		KS
Carbazole		KS
Chiorobenzilate		KS VO
Di(2 sthethours) white late (hig(2 Fil	withown() whitheriote DELID)	NO
Dicz-eurymexyr) primaiate (bis(2-bu	lymexyl)phinalate, DErr)	NO VO
Dianate		NO
Dibenz(a,n) anthracene		NO
Dibenzoruran		NS VS
Dietnyi phinaiate		NO NO
Dimethoate		KO
Dimethyl phtnalate		NO
Di-n-butyl phinaiale		KO
Di-n-octyl phthalate		ve
Dipnenylamine		KS
Disurroton		N.O V.C
Ethyl methanesulfonate		NO VC
Famphur		NO
Fluorantnene		VS
r morene		KG
riexachiorobenzene		KS
Hexachiorodutadiene		KS
riexachiorocyclopentadiene		KS
riexachioroeinane		KS
Herechlorophene		KS
Hexachioropropene		KS
indeno(1,2,3-ca) pyrene		K.G
Isoarin		NO
	Kansas Department of Health and Environment	Ser Recog
Cansas	Kansas Health Environmental Laboratories	
Separate of Health	6810 SE Dwight Street, Topeka, KS 66620	

 $\chi = -$

Analytical Services Inc. Indianonalia	IN .	Data An
Analytical Scivices, inc - inclaimapons	ur Madaian	r rimary AB
ram/watrix: KCKA (Sona & Mazaraous) Isonhorone	muternup	KS
Isoesfrole		KS
Kenone		KS
Methanyrilene		KS
Methyl methanesulfonate		KS
Methyl narathion (Parathion, methyl)		KS
Nanhthalene		KS
Nitrobenzene		KS
n-Nitrosodiethylamine		KS
n-Nitrosodimethylamine	•	KS
n-Nitroso-di-n-butylamine		KS
n-Nitrosodi-n-propylamine		KS
n-Nitrosodiphenylamine		KS
n-Nitrosomethylethylamine		KS
n-Nitrosomorpholine		KS
n-Nitrosopiperidine		KS
n-Nitrosopyrrolidine		KS
o,o,o-Triethyl phosphorothioate		KS
Parathion, ethyl		KS
Pentachlorobenzene		KS
Pentachloronitrobenzene		KS
Pentachiorophenol		KS
Phonaceum		KS
Phenal		KS
Phomete		KS
Pronamide (Kerb)		KS
Pyrene		KS
Pyridine		KS
Safrole		KS
Sulfotep (Tetraethyl dithiopyrophosphate)		KS
Thionazin (Zinophos)		KS
od EPA 8270C SIM	λ.	
1-Methylnaphthalene		KS
2-Methylnaphthalene		KS
Acenaphthene		KS
Acenaphthylene		KS
Anthracene		KS
Benzo(a)anthracene		N.S V.D
Benzo(a)pyrene		NS VS
Benzo(b)fluoranthene		KS
Benzo(g,h,i)perylene		KS
Benzo(k)fluoranthene		KS
Chrysene Dillegen(a, b) antibasesta		KS
Libenz(a,n) annracene		KS
riwrannene		
-	Kansas Department of Health and Environment	Sec. 12
ansas	Kansas Healin Environmental Laboratories	

FPA Number: IN00043	Scope of Accreditation for Certification Number: E-10177	Page 26 of 2
Deep Analytical Services Inc Indiananalis IN		
Pace Analytical Bol (1005, 110 12	Hazardaus Material)	
Programmatia. ACADA (Boost C		KS
Fluorenc		KS
Indeno(1,2,3-cd) pyrene		KS
Naphthalene		KS
Phenanthrene		KS
Pyrene		
Method EPA 9012A		KS
Amenable cyanide		KC
Cyanide		160
Method EPA 9045C		VS
pH		15 P
Method EPA 9066		VS
Total phenolics		D. 13
Method EPA 9095B		K.C
Paint Filter Test		NO
	End of Scope of Accreditation	

۰,

Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620

. . .

