

2024 Watershed Characterization Work Plan for Indian Creek-White River Watershed (Hydrologic Unit Code 0512020208)

PREPARED BY

Zoey Benton

Indiana Department of Environmental Management Office of Water Quality Watershed Assessment and Planning Branch Watershed Planning and Restoration Section 100 North Senate Avenue MC65-40-2 Shadeland Indianapolis, Indiana 46204-2251

November 8, 2023

B-063-OWQ-WAP-TGM-23-W-R0

This page is intended to be blank

Approval Signatures

Michaèla Hecox, Project Manager Targeted Monitoring Section

John Sparks, TMDL Project Manager Watershed Planning and Restoration Section

Douren

Timothy Bowren, Project Quality Assurance Lead Technical and Logistical Services Section

Stacey Sobat, Section Chief Probabilistic Monitoring Section

Ali Meils, Section Chief Targeted Monitoring Section

Caleb Rennaker, Section Chief Technical and Logistical Services Section

Kristen Arnold, Branch Chief Watershed Assessment and Planning Branch

This work plan is consistent with agency requirements.

Patrick Colar

IDEM Quality Assurance Staff Office of Program Support

11/15/23 Date

11 (16/2023

Date

2023

11/15/2023 Date

18/23 Date

116/2023

12/11/23

Date

This page is intended to be blank

Work Plan Organization

This work plan is an extension of the existing Indiana Department of Environmental Management (IDEM) Office of Water Quality (OWQ) Watershed Assessment and Planning Branch (WAPB) Quality Assurance Project Plan (QAPP) for Indiana Surface Water Programs (Surface Water QAPP) (IDEM 2023a) and QAPP for Biological Community and Habitat Measurements (IDEM 2020a); and serves as a link to the existing QAPP as well as an independent QAPP of the project. Per the United States Environmental Protection Agency (U.S. EPA) Guidance on Systematic Planning Using the Data Quality Objectives (DQO) Process (U.S. EPA 2006) and the U.S. EPA Guidance for Quality Assurance Project Plans (U.S. EPA 2002), this work plan establishes criteria and specifications pertaining to a specific water quality monitoring project usually described in the following four QAPP groups and associated elements.

Group A. Project Management

- Title and Approval
- Table of Contents
- Distribution List
- Project Organization
- Problem Definition and Background
- Project Description
- Quality Objectives and Criteria Measurement Data
- Special Training Needs or Certification
- Documents and Records

Group B. Data Generation and Acquisition

- Sampling Process Design (Experimental Design)
- Sampling Methods
- Sample Handling and Custody
- Analytical Methods
- Quality Control
- Instrument or Equipment Testing, Inspection, and Maintenance
- Instrument or Equipment Calibration and Frequency
- Inspection and Acceptance of Supplies and Consumables
- Nondirect Measurements
- Data Management

Group C. Assessment and Oversight

- Assessments and Response Actions
- Reports to Management

Group D. Data Validation and Usability

- Data Review, Verification, and Validation
- Verification and Validation Methods
- Reconciliation with User Requirements

This page is intended to be blank

Table of Contents

Approval	Signatures	i
Work Pla	n Organization	iii
Table of (Contents	v
List of Att	tachments	vi
List of Fig	gures	vi
List of Ta	bles	vi
List of Ac	ronyms	. vii
DEFINITI	IONS	.viii
A. PF	ROJECT MANAGEMENT	
A.1.	Project Objective	1
A.2.	Project Organization and Schedule	2
A.3.	Background and Project Description	2
A.4.	Data Quality Objectives (DQOs)	
A.5.	Training and Staffing Requirements	9
B. DA	ATA GENERATION AND ACQUISITION	
B.1.	Sampling Sites and Sampling Design	.11
B.2.	Sampling Methods and Sample Handling	.15
B.3.	Analytical Methods	.18
B.4.	Quality Control and Custody Requirements	
C. AS	SSESSMENT AND OVERSIGHT	
C.1.	Field and laboratory performance and system audits	
C.2.	Data Quality Assessment Levels	
D. DA	ATA VALIDATION AND USABILITY	.23
D.1.	Quality Assurance, Data Qualifiers, and Flags	.24
D.2.	Data Usability	.24
D.3.	Information, Data, and Reports	
D.4.	Laboratory and Estimated Cost	.24
D.5.	Reference Manuals and Personnel Safety	.25
	NCES	-
	UTION LIST	
ATTACH	MENTS	.31

List of Attachments

Attachment 1: Modified Geometric Design Steps for Watershed Characterization Studies	31
Attachment 2: IDEM OWQ Site Reconnaissance Form	35
Attachment 3: IDEM OWQ Stream Sampling Field Data Sheet	36
Attachment 4: IDEM OWQ Fish Collection Data Sheet	37
Attachment 5: IDEM OWQ Biological Qualitative Habitat Evaluation Index (front)	39
Attachment 6: IDEM OWQ Chain of Custody Form	41
Attachment 7: IDEM OWQ Water Sample Analysis Request Form	42
Attachment 8: Pace Analytical Services Indianapolis Laboratory Accreditation	43

List of Figures

Figure 1. Indian Creek-White River Watershed Land Use 5	
Figure 2. Indian Creek-White River Watershed Characterization Sampling Area	

List of Tables

Table 1. Water Quality Criteria [327 IAC Article 2]	. 8
Table 2. Project Roles, Experience, and Training	. 9
Table 3. Sampling Locations for Watershed Characterization of Indian Creek-White River	
Watershed (HUC 0512020208)	14
Table 4. Water Chemistry Sample Handling	15
Table 5. E.coli, Nutrient, and General Chemistry Parameters Test Methods ⁴	19
Table 6. Field Parameters Test Methods	19
Table 7. Personnel Safety and Reference Manuals Manuals	25

List of Acronyms

	Assessment Information Management Custom
AIMS	Assessment Information Management System
ASTM	American Society for Testing and Materials
AUID	Assessment Unit IDs
CFU	Colony Forming Units
DO	Dissolved Oxygen
DQA	Data Quality Assessment
DQO	Data Quality Objectives
E. coli	Escherichia coli
GPS	Global Positioning System
HUC	Hydrologic Unit Code
IAC	Indiana Administrative Code
IBI	Index of Biotic Integrity
IDEM	Indiana Department of Environmental Management
µS/cm	Microsiemens per Centimeter
mg/L	Milligram per Liter
MHAB	Multihabitat
mL	Milliliter
NTU	Nephelometric Turbidity Unit(s)
OHEPA	Ohio Environmental Protection Agency
OWQ	Office of Water Quality
PPE	Personal Protective Equipment
QA/QC	Quality Assurance and Quality Control
QAPP	Quality Assurance Project Plan
QHEI	Qualitative Habitat Evaluation Index
S.U.	Standard Units
SM	Standard Methods
SOP	Standard Operating Procedures
TDS	Total Dissolved Solids
TKN	Total Kjeldahl Nitrogen
TMDL	Total Maximum Daily Load
U.S. EPA	United States Environmental Protection Agency
WAPB	Watershed Assessment and Planning Branch
	C

DEFINITIONS

Assessment unit	Reaches of waterbodies, with similar features, assigned unique identifiers, to which all assessment information for a specific reach is associated, and which allow for mapping with geographic information systems.
Elutriate	To purify, separate, or remove lighter or finer particles by washing, decanting, and settling.
15-minute pick	A component of the multihabitat macroinvertebrate sampling method, used to maximize taxonomic diversity while in the field. The 1-minute kick sample and 50-meter sweep sample collected at a site are first combined and elutriated. Macroinvertebrates are then manually removed from the resulting sample for 15 minutes.
50-meter sweep sample	A component of the multihabitat macroinvertebrate sampling method in which approximately 50 meters of all available habitat in a stream or river is sampled with a standard 500 micrometer mesh width D-frame dip net by taking 20-25 individual "jab" or "sweep" samples, which are then composited.
Geometric site	Sampling site chosen according to its drainage area within a watershed.
Macroinvertebrate	Aquatic animals which lack a backbone, are visible without a microscope, and spend some period of their lives in or around water.
1-minute kick sample	A component of the multihabitat macroinvertebrate sampling method in which approximately 1 m^2 of riffle or run substrate habitat in a stream or river is sampled with a standard 500 µm mesh width D-frame dip net for approximately 1 minute.
Pour point	An outlet of a subwatershed or the common point where all the water flows out of any given subwatershed.
Reach	A segment of a stream used for sampling.
Targeted site	A sampling site intentionally selected based on specific monitoring objectives or decisions to be made.

A. PROJECT MANAGEMENT

A.1. Project Objective

IDEM selected the Indian Creek-White River watershed (10-digit Hydrologic Unit Code (HUC) 0512020208) for a watershed characterization project. The main objective of the watershed characterization monitoring project is to use an intensive targeted watershed design which characterizes the current condition of an individual watershed. This type of monitoring provides valuable data for the purposes of assessment, Total Maximum Daily Load (TMDL) development, watershed planning, and allows for future comparisons to evaluate changes in the water quality within the watershed studied. Selecting a spatial monitoring design, with sufficient sampling density to accurately characterize water quality conditions, is a critical step in the process of developing an adequate local scale watershed study.

The water quality data generated from this monitoring effort is anticipated to provide information needed to characterize the watershed for the TMDL program, for local water quality managers, to identify sources of impairment, to designate critical areas, and to enable users in making valid and informed watershed decisions. By design, this project also adds new stream reaches which allow for assessment of aquatic life use support, recreational use support, and future comparisons to evaluate changes in water quality.

The 303(d) list for 2022 submitted to the U.S. EPA (IDEM 2022a) identifies 29.3 miles of impaired streams in the Indian Creek-White River watershed. The total number of miles per each impairment in the Indian Creek-White River watershed is reported in the following ways:

• Category 5(a): Escherichia coli (E. coli), 29.3 miles

Category 5(a): Impaired Biotic Communities (IBC), 21.4 miles Multiple IDEM programs and projects have collected assessment data in this watershed.

A.2. Project Organization and Schedule

The main project objective is to provide a comprehensive assessment of the Indian Creek-White River watershed streams' capability to support aquatic life and recreational uses. Sampling will begin in November 2023 and end in October 2024. Barring any hazardous weather conditions or unexpected physical barriers to access a site, sampling activities will be conducted for physical, chemical, and bacteriological parameters; and biological communities.

Sampling activity timeframes include:

- 1. Site reconnaissance activities were completed in February and March 2023. Reconnaissance activities were conducted in the office and through physical site visits.
- Monthly water chemistry sampling will occur at all watershed sites during the recreational season, defined as April through October in [327 IAC 2-1-6]. During the months of November through March, monthly sampling will occur only at the pour point sites of each 12-digit HUC (six sites). The first sampling event will occur in November 2023 and the study concludes in October 2024.
- 3. Biological sampling activities will begin in the summer of 2024 and end no later than October 18, 2024. Fish and macroinvertebrate community sampling will be conducted at all watershed sites via the observation, counting, and collection techniques described in section B.2. Sampling Methods and Sample Handling. Stream habitats will also be evaluated at all watershed sites. Although providing specific dates for fish and macroinvertebrate community collection is not possible, since sampling may be postponed due to a high-water event resulting in scouring of the stream substrate or instream cover creating nonrepresentative samples, the time period for macroinvertebrate sampling is July 15, 2024, through November 15, 2024, and for fish sampling can occur between the dates of June 3, 2024, through October 18, 2024. Bacteriological sampling for *E. coli* at all sites in the watershed will take place monthly from April through October of 2024. In addition, collect five *E. coli* samples from each site at equally spaced intervals over a 30-day period during the recreational season of April to October 2024 to determine a geometric mean.

A.3. Background and Project Description

The Watershed Characterization Monitoring program was instituted to assist in characterizing existing conditions in watersheds throughout the state. The TMDL program will utilize the Indian Creek-White River watershed data set and share the data set with local watershed groups and any other interested parties. The monitoring will provide data for TMDL development and watershed planning and will aid in future evaluations of changes within the basin. This study will use the data for assessment purposes: water chemistry, bacteriological contamination in the form of *E. coli*, fish community, macroinvertebrate assemblages, and habitat evaluations.

A.4. Data Quality Objectives

The DQO process (U.S. EPA 2006) is a tool for planning data collection activities. The process provides a basis for balancing decision uncertainty with available resources. U.S. EPA recommends the DQO process when selecting between two alternatives or deriving an estimate of contamination. The DQO process is a seven-step systematic planning process used to clarify study objectives; define the types of data needed to achieve the objectives; and establish decision criteria for evaluating data quality. The following seven sections document the results of the DQO seven step process for the watershed characterization monitoring of the Indian Creek-White River watershed.

1. State the Problem

Indiana Administrative Code requires Indiana to assess all waters of the state to determine their designated use attainment status. "Surface waters of the state are designated for full-body contact recreation" and "will be capable of supporting" a "well-balanced, warm water aquatic community" [327 IAC 2-1-3]. Data from the intensive sampling of the Indian Creek-White River watershed provides a full characterization of the current water quality of the watershed. This project will gather water chemistry, bacteriological, biological (fish and macroinvertebrates), and habitat data for the purpose of assessing the designated use attainment status of the Indian Creek-White River watershed.

2. Identify the Goals of the Study

The main objective of this study is to fully assess whether the surface waters in the watershed are supporting or non-supporting for aquatic life use and recreational use. In addition, use the data from the watershed characterization monitoring for TMDL development and possibly for watershed planning and future comparisons to evaluate changes in water quality within the watershed studied.

3. Identify Information Inputs

Collect grab samples at the surface water sampling locations for *E. coli* and the parameters listed in Section B.3. Conduct field measurements listed in Section B.3. at each site during each sampling event. Visual field observations will include weather conditions, stream conditions, and percent stream canopy at each sampling location. Analyze all samples collected for bacteriological samples for *E. coli* using SM9223B Idexx Colilert Enzyme Substrate Standard Method per *E. coli* Field Sampling and Analysis. Collect surface water chemistry samples monthly and Pace Analytical Services will process and analyze using the analytical methods listed in Section B.3. Collect a fish and a macroinvertebrate community sample once at each site and perform a corresponding habitat evaluation.

4. Define the Boundaries of the Study

The Indian Creek-White River watershed covers approximately 99.41 square miles in Sullivan, Green, Daviess, and Knox Counties. The watershed is approximately 63% agriculture, 13% forest, 12% hay or pasture, 7% developed land (combined types), less than 5% open water, 2% wetlands, and less than 1% shrub or scrub (Figure 1).

Section B.1. lists the sampling locations for watershed characterization of Indian Creek-White River Watershed, and Figure 2 provides a spatial representation of sites for the 2024 Indian Creek-White River watershed characterization study.

Site reconnaissance activities were completed in March 2023. Sampling activities will begin in November 2023 and will conclude in October 2024. Sample water chemistry monthly during the recreational season, defined as April through October in [327 IAC 2-1-6]. Conduct biological sampling activities in the summer of 2024 and end no later than October 18, 2024. Conduct bacteriological sampling activities from April through October of 2024.

Field crews may not conduct sampling activities when stream flow is potentially too dangerous for staff to enter the stream, hazardous weather conditions (e.g., thunderstorms or heavy rain in the vicinity) exist, or unexpected physical barriers exist. The field crew chief will make the final determination as to whether or not a stream is safe to enter.

A high-water event resulting in scouring of the stream substrate could result in nonrepresentative samples, therefore biological community sampling may be postponed for one to four weeks to allow communities to recover.

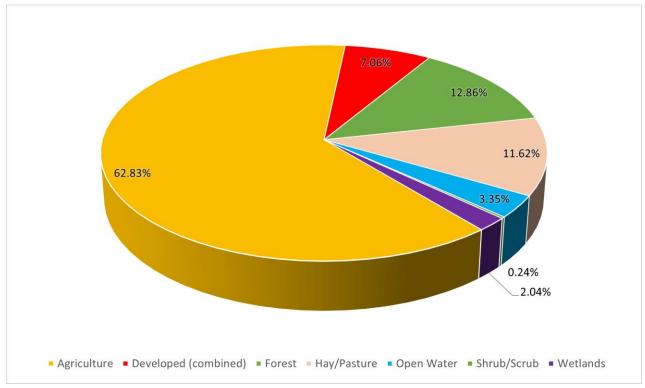


Figure 1. Indian Creek-White River Watershed Land Use

⁴ Data collected and calculated from USDA National Agricultural Statistics Service 2021 Cropland Data Layer

5. Develop the Analytical Approach

Collect samples for physical, chemical, bacteriological parameters, and biological communities. Analyze *E. coli* samples in the IDEM mobile laboratory or IDEM Shadeland laboratory with the Idexx[™] Colilert Test. The Colilert Test is a multiple-tube enzyme substrate standard method SM-9223B (Clesceri et al. 2012). Analyze samples for nutrient and general chemistry parameters at Pace Analytical Services. Section B.3 lists the nutrient and general chemistry parameters and respective test methods. Measure field parameters of DO, pH, water temperature, specific conductance, and DO percent saturation with a data sonde. Measure turbidity with a Hach[™] turbidity kit.

6. Specify Performance or Acceptance Criteria

Utilizing a comprehensive checklist of informational sources, evaluation of historical information, and a thorough watershed presurvey minimizes sampling design error. Surface Water QAPP (IDEM 2023a) Section B.1.5.3 describes the sampling design which is formulated to address data deficiencies and render the optimum amount of data needed to fill gaps in the decision process.

Good quality data are essential for minimizing decision error. Place more confidence in the conclusions drawn on the stressors and sources affecting the water quality by minimizing both sampling design error and measurement error for physical and biological parameters.

Site specific aquatic life use and recreational use assessments include program specific controls to identify the introduction of errors. These controls include blanks and duplicates for water chemistry and bacteriological samples; biological site revisits or duplicates; and laboratory controls through verification of species identifications as described in field procedure manuals (IDEM 2020a, 2020b, 2020c, 2023a, 2023c, 2023d, 2023e, 2023f, 2023g).

The Quality Assurance and Quality Control (QA/QC) process detects deficiencies in the data collection as set forth in the Surface Water QAPP (IDEM 2023a) and QAPP for Biological Community and Habitat Measurement (Biological and Habitat QAPP) (2020a). The QAPPs require all contract laboratories to adhere to rigorous standards during sample analyses and to provide good quality usable data. Laboratory accreditation (Attachment 8) is verified before awarding the lab contract and before beginning the project. Review laboratory performance studies annually in October. Chemists within the WAPB review the laboratory analytical results for quality assurance. Compare lab QA/QC for each data set against acceptance limits specified in the laboratory methods, the laboratory's QA Manual, the Surface Water QAPP Section B5.3 Laboratory Quality Control Checks, and the Surface Water QAPP Section D3 Reconciliation with DQO. Validate the data based on the QA/QC review. Do not use any data which is "Rejected" due to analytical problems or errors for water quality assessment decisions. Use any data flagged as "Estimated" on a case-by-case basis and note in the QA/QC report. The Surface Water QAPP (IDEM 2023a pp 106-107), Biological and Habitat QAPP (IDEM 2020a pp 32–36) present criteria for acceptance or rejection of results as well as application of data quality flags. The Surface Water QAPP Table 3: Performance, Acceptance, and Decision Criteria for this Study; and Table 14: Field Parameters showing method and IDEM quantification limit (IDEM 2023a, p 37 and p 91) provide precision and accuracy goals with acceptance limits for applicable analytical methods.

Conduct further investigation in response to consistent "Rejected" data to determine the source of error. Subject field techniques, used during sample collection and preparation along with laboratory procedures, to evaluation by both the WAPB QA manager and project manager to troubleshoot error introduced throughout the entire data collection process. Implement corrective actions upon determination of the source of error per the Surface Water QAPP (IDEM 2023a) and Biological Community and Habitat QAPP (IDEM 2020a).

Evaluate sites as supporting or non-supporting following the decision-making processes described in Indiana's 2022 Consolidated Assessment Listing Methodology (CALM) and based upon the water quality criteria shown in Table 1.

Base recreational use attainment decisions on bacteriological criteria developed to protect primary contact recreational activities [<u>327 IAC 2-1-6</u>]. Aquatic life use support decisions will include independent evaluations of biological and chemical data. Evaluate the fish assemblage data at each site using the appropriate Index of Biotic Integrity (IBI)

for the White River and tributaries in the Interior River Lowland (Simon DRAFT; Simon and Dufour 1998, 2005). Also evaluate macroinvertebrate multihabitat (MHAB) samples using a statewide IBI developed for lowest practical taxonomic level identifications.

Indiana narrative biological criteria [<u>327 IAC 2-1-3</u>] states that "all waters, except as described in subdivision (5)," (i.e., limited use waters) "will be capable of supporting" a "well-balanced, warm water aquatic community." The water quality standard definition of a "well-balanced aquatic community" is "an aquatic community that: (A) is diverse in species composition; (B) contains several different trophic levels; and (C) is not composed mainly of pollution tolerant species" [<u>327 IAC 2-1-9 (59)</u>]. An interpretation or translation of narrative biological criteria into numeric criteria would be as follows: A stream segment is non-supporting for aquatic life use when the monitored fish or macroinvertebrate community receives an IBI score of less than 36 (on a scale of 0-60 for fish and 12-60 macroinvertebrate communities), which is considered "Poor" or "Very Poor" (IDEM 2022a).

In addition, evaluate data for several nutrient parameters with the benchmarks listed below (IDEM 2022a). Assuming a minimum of three sampling events, if two or more of the conditions below are met on the same date, classify the waterbody as non-supporting due to nutrients.

- Total phosphorus (TP):
 - $\circ~$ One or more measurements greater than 0.3 mg/L
- Nitrogen (measured as Nitrate + Nitrite):
 - One or more measurements greater than 10.0 mg/L
- Dissolved oxygen (DO):
 - Any measurement less than 4.0 mg/L
 - Any measurements consistently at or close to the standard, range 4.0-5.0 mg/L
- DO percent saturation
 - Any measurement greater than 120%
- pH:
 - Any measurement greater than 9.0 SU
 - \circ Measurements consistently at or close to the standard, range 8.7-9.0 SU

Report assessment of each site sampled to U.S. EPA in the 2026 update of <u>Indiana's</u> <u>Integrated Water Monitoring and Assessment Report</u> (Integrated Report). Use sitespecific data to classify associated assessment units into one of five major categories in the State's Consolidated 303(d) list. Category definitions are available in Indiana's CALM (IDEM 2022a, pp G-49, G-50).

	Table 1. Water Quality Criteria [327 IAC 2-1-0]					
Parameters	Water Quality Criteria	Criterion				
<i>E. coli</i> (April-October	<u><</u> 125 MPN/100 mL	5-sample geometric mean				
recreational season)	<u><</u> 235 MPN/100 mL	Single sample maximum				
Total ammonia (NH3-N)	Calculate based on pH and Temperature	Calculate CAC				
Nitrate+Nitrite-Nitrogen	<u>≤</u> 10 mg/L	Human health point of drinking water intake				
Sulfate	Calculate based on hardness and chloride	In all waters outside the mixing zone				
Dissolved oxygen	At least 5.0 mg/L (warm waters)	Daily average				
Dissolved oxygen	Not less than 4.0 mg/L at any time	Single reading				
рН	6.0 – 9.0 S.U. except for daily fluctuations which exceed 9.0 due to photosynthetic activity	Single reading				
Temperature	Varies monthly	1% annual; maximum limits				
Chloride	Calculate based on hardness and sulfate values	Calculate CAC				
Dissolved solids	750 mg/L	Public water supply				

Table 1. Water Quality Criteria [327 IAC 2-1-6]

MPN = Most Probable Number, CAC = Chronic Aquatic Criterion, S.U. = Standard Units

7. Develop the Plan for Obtaining Data

Use the Ohio Environmental Protection Agency (OHEPA) Modified Geometric Design (OHEPA 2012, 2022) site selection process in Attachment 1 to obtain the necessary spatial representation of the entire study area. Site selection within the watershed is based on a geometric progression of drainage areas and then located to the nearest bridge. Sample sites at road crossings allow for more efficient sampling of the watershed.

A.5. Training and Staffing Requirements

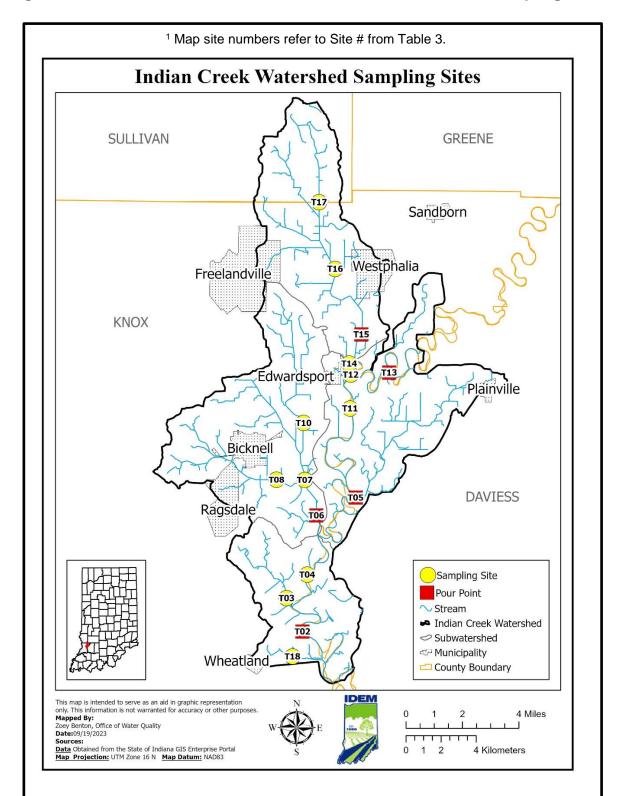
Table 2.	Project	Roles.	Experience,	and	Training
			,		· · ~ · · · · · · · · · · · · · · · · ·

Role	Required Training or Experience	Responsibilities	Training References
Project manager	-Database experience -Experience in project management and QA/QC procedures	 Establish project in the Assessment Information Management System (AIMS) II database Oversee development of project work plan Oversee entry and QC of field data Querying data from AIMS II to determine results not meeting Water Quality Criteria. 	- IDEM 2018, 2020a, 2022a, 2022b, 2023a - U.S. EPA 2002, 2006
Field crew chief macroinvertebra te and fish community sampling	 At least one year of experience in sampling methodology and taxonomy of aquatic communities in the region Annually review the Principles and Techniques of Electrofishing. Annually review relevant safety procedures. Annually review relevant Standard Operating Procedure (SOP) documents for field operations. 	 Complete field data sheets Taxonomic accuracy Sampling efficiency and representation Voucher specimen tracking Overall operation of the field crew Adherence to safety and field SOP procedures by crew members Ensure that multiprobe analyzers are calibrated weekly prior to field sampling activities Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities 	- IDEM 2008, 2010, 2016, 2019a, 2019b, 2020a, 2020c, 2023b, 2023d, 2023e, 2023g -Simon DRAFT -Simon and Dufour 1998, 2005 - YSI 2017, 2018
Field crew members – macroinvertebra te and fish community sampling	 Complete hands-on training for sampling methodology prior to participation in field sampling activities Review the Principles and Techniques of Electrofishing Review relevant safety procedures Review relevant SOP documents for field operations 	 Follow all safety and SOP procedures while engaged in field sampling activities Follow direction of field crew chief while engaged in field sampling activities 	- IDEM 2008, 2010, 2016, 2019a, 2019b, 2020c, 2023b, 2023d, 2023e, 2023g - YSI 2017, 2018
Field crew chief – water chemistry or bacteriological sampling	 At least one year of experience in sampling methodology Annually review relevant safety procedures Annually review relevant SOP documents for field operations 	-Completion of field data sheets -Sampling efficiency and representation -Overall operation of the field crew -Adherence to safety and field SOP procedures by crew members -Ensure that multiprobe analyzers are calibrated weekly prior to field sampling activities -Ensure that field sampling equipment is functioning properly and loaded into field vehicles prior to field sampling activities	- IDEM 2008, 2010, 2016, 2019a, 2019b, 2020b, 2020c, 2023a, 2023b, 2023c - YSI 2017, 2018

November 8, 20				
Role	Required Training or Experience	Responsibilities	Training References	
Field crew members – water chemistry or bacteriological sampling	-Complete hands-on training for sampling methodology prior to participation in field sampling activities -Review relevant safety procedures -Review relevant SOP documents for field operations	 -Follow all safety and SOP procedures while engaged in field sampling activities -Follow direction of field crew chief while engaged in field sampling activities 	- IDEM 2008, 2010, 2016, 2019a, 2019b, 2020b, 2020c, 2023b, 2023c - YSI 2017, 2018	
Laboratory supervisor – macroinvertebra te and fish community sample processing	-At least one year of experience in taxonomy of aquatic communities in the region -Annually review relevant safety procedures -Annually review relevant SOP documents for laboratory operations	-Identification of fish and macroinvertebrate specimens collected during field sampling -Completion of laboratory data sheets -Verify taxonomic accuracy of processed samples -Voucher specimen tracking -Adherence to safety and SOP procedures by laboratory staff -Check data for completeness -Perform all necessary calculations on the data -Ensure that data are entered into the AIMS II Database -Ensure that required QA/QC are performed on the data -Querying data from AIMS II to determine results not meeting Water Quality Criteria	- IDEM 2008, 2010, 2016, 2019a, 2019b, 2020a, 2021b, 2022a, 2022b, 2023f	
Laboratory staff – macroinvertebra te and fish community sample processing	-Complete hands-on training for laboratory sample processing methodology prior to participation in laboratory sample processing activities -Annually review relevant safety procedures -Annually review relevant SOP documents for laboratory operations	-Adhere to safety and SOP procedures -Follow Laboratory Supervisor direction while processing samples -Identification of fish and macroinvertebrate specimens collected during field sampling -Completion of laboratory data sheets, perform necessary calculations on data, enter field sheets	- IDEM 2008, 2010, 2016, 2019a, 2019b, 2021b, 2022b, 2023f	
Laboratory supervisor – water chemistry or bacteriological sample processing	 Annually review relevant safety procedures Annually review relevant SOP documents for field operations 	-Completion of laboratory data sheets -Adherence to safety and SOP procedures by laboratory staff -Check data for completeness -Perform all necessary calculations on the data -Ensure that data are entered into the AIMS Data Base -Ensure that required QA/QC are performed on the data -Querying data from AIMS II to determine results not meeting Water Quality Criteria	- IDEM 2008, 2010, 2016, 2019a, 2019b, 2021b, 2022a, 2022b, 2023a, 2023c, 2023f	

2024 Watershed Characterization Work Plan for the Indian Creek-White River Watershed B-063-OWQ-WAP-TGM-23-W-R0 November 8, 2023

Role	Required Training or Experience	Responsibilities	Training References
Quality assurance officer	-Familiarity with QA/QC practices and methodologies -Familiarity with the QAPPs and data qualification methodologies	 -Ensure adherence to QA/QC requirements of QAPP -Evaluate data collected by sampling crews for adherence to project work plan -Review data collected by field sampling crews for completeness and accuracy -Perform a data quality analysis of data generated by the project -Assign data quality levels based on the data quality analysis -Import data into the AIMS data base -Ensure that field sampling methodology audits are completed according to WAPB procedures 	- IDEM 2018, 2020a, 2021a, 2022a, 2022b, 2023a, 2023b - U.S. EPA 2006


B. DATA GENERATION AND ACQUISITION

B.1. Sampling Sites and Sampling Design

Sample sites are chosen using a modified geometric site selection process as well as targeted site selection in order to obtain the necessary spatial representation of the entire watershed. Site selection within the watershed is based on a geometric progression of drainage areas starting with the area at the mouth of the main stem stream and then working upstream through the tributaries to the headwaters. Monitoring site establishment is at the nearest bridge.

A more complete description of the Modified Geometric Design Steps for Watershed Characterization Studies selection process is included as Attachment 1. Sample sites are also chosen at the bridge nearest to the pour point of each 12-digit HUC in the watershed or chosen to characterize sources for TMDL development.

Site reconnaissance activities are conducted in-house and through physical site visits. Inhouse activities include preparation and review of site maps and aerial photographs. Physical site visits include verification of accessibility, safety considerations, equipment needed to properly sample the site, and property owner consultations, if required. Record all information on the IDEM Office of Water Quality (OWQ) Site Reconnaissance Form (Attachment 2) and enter into the AIMS II database. Determine precise coordinates for each site during the physical site visits or at the beginning of the sampling phase. Use an agency approved handheld Global Positioning System (GPS) unit which can verify horizontal precision within five meters or less (IDEM 2023b). Enter the coordinates into the AIMS II database. Also take digital photos upstream and downstream of the site during reconnaissance. Store digital photos on the shared drive upon return to the office in a specific folder for the Indian Creek-White River watershed characterization. Label photos with the site number and indication of whether the photo faces upstream or downstream. Table 3 provides a list of the selected sampling sites with the stream name, Assessment Unit IDs (AUID), AIMS Site Number, County Name, and the latitude and longitude of each site. Figure 2 gives a spatial overview of the site locations for this project.

Figure 2. Indian Creek-White River Watershed Characterization Sampling Area

Table 3. Sampling Locations for Watershed Characterization of Indian Creek-White River Watershed (HUC 0512020208)

Site #	EPA Site ID	IDEM Station ID	Stream Name	Location	County	Latitude	Longitude	AUID
T02	24T-002	WWL-08-0009	White River	Washington Road	Knox	38.67995	-87.273396	INW0284_03
T03	24T-003	WWL-08-0021	Bens Creek	Apraw Road	Knox	38.697058	-87.283033	INW0284_T100 1
T04	24T-004	WWL-08-0008	White River	Apraw Road	Knox	38.70903307	-87.26964484	INW0284_02
T05	24T-005	WWL-08-0010	White River	CR 650 North	Daviess	38.747987	-87.2375	INW0283_06
T06	24T-006	WWL-08-0011	Indian Creek	River Road	Knox	38.739657	-87.26381	INW0282_03
T07	24T-007	WWL-08-0012	Pickel Ditch	McGlone Road	Knox	38.758102	-87.271483	INW0282_T100 4
T08	24T-008	WWL-08-0013	Indian Creek	Mine Road	Knox	38.758082	-87.289984	INW0282_02
T10	24T-010	WWL-08-0018	Purdy-Marsh Ditch	Snyder Road	Knox	38.787494	-87.272396	INW0282_T100 3
T11	24T-011	WWL070-0003	West Fork White River	SR 358	Daviess	38.79504631	-87.24186646	INW0283_06
T12	24T-012	WWL-08-0015	White River	CR 1000 North	Daviess	38.812173	-87.242705	INW0283_04
T13	24T-013	WWL-08-0016	White River	Dinkens Road	Daviess	38.813608	-87.216393	INW0283_03
T14	24T-014	WWL-08-0017	Pollard Ditch	Unnamed Farm Lane	Knox	38.818193	-87.242339	INW0283_T100 1
T15	24T-015	WWL070-0002	Pollard Ditch	CR 725 North	Knox	38.833262	-87.23481	INW0281_02
T16	24T-016	WWL-08-0019	Pollard Ditch	SR 58	Knox	38.86717	-87.252224	INW0281_02
T17	24T-017	WWL-08-0020	Pollard Ditch	County Line Road	Knox	38.901684	-87.262589	INW0281_01
T18	24T-018	WWL-08-0022	Nimnicht Creek	Nimnicht Road	Knox	38.666701	-87.279271	INW0284_T100 3

¹T## gray shading of the Site # denotes these are the selected pour points for this project (5 sites).

B.2. Sampling Methods and Sample Handling

1. Water Chemistry Sampling

One team of two staff will collect water chemistry grab samples, record water chemistry field measurements, and record physical site descriptions on the IDEM OWQ Stream Sampling Field Data Sheet (Attachment 3). All water chemistry sampling will adhere to the Water Chemistry Field Sampling Procedures (IDEM 2020b). Preserve samples as specified in Table 4 and follow all applicable holding times.

Table 4. Water Chemistry	/ Sample Handling
--------------------------	-------------------

Parameter	Preservative	Holding Times
Alkalinity (as CaCO ₃)	lce	14 days
Solids, total residue (TS)	lce	7 days
Solids, nonfilterable residue (TSS)	lce	7 days
Solids, filterable residue (TDS)	lce	7 days
Sulfate (dissolved)	lce	28 days
Chloride	lce	28 days
Hardness (as CaCO ₃)	HNO ₃	6 months
Ammonia as Nitrogen	H ₂ SO ₄	28 days
Total Kjeldahl Nitrogen (TKN) as Nitrogen	H ₂ SO ₄	28 days
Nitrate + Nitrite as Nitrogen	H ₂ SO ₄	28 days
Phosphorous (Applicable to all)	H ₂ SO ₄	28 days
Total organic carbon (TOC)	H ₂ SO ₄	28 days
Chemical oxygen demand	H ₂ SO ₄	28 days
Calcium	HNO₃	6 months
Magnesium	HNO ₃	6 months

2. Bacteriological Sampling

One team consisting of one or two staff conduct bacteriological sampling. Process samples in an IDEM fixed or mobile *E. coli* laboratory equipped with all materials and equipment necessary to perform the Colilert® Test Method (Standard Method 9223B), per A.2. Project Organization and Schedule (IDEM 2023c). The expected time frame for bacteriological sampling is April through October of 2024. Staff will collect the samples in a 120 mL presterilized wide-mouth container from the center of flow, if the stream is wadeable, or from the shoreline using a pole sampler, if the stream is not wadeable. Wadeability is subject to field staff determination based on available personal protective equipment (PPE), turbidity, and other factors. However, streams waist deep or shallower are generally considered wadeable. Consistently label, cool, and hold all samples at a temperature less than 10°C during transport. Preserve samples with

0.0008% Na₂S₂O₃ for residual chlorine. While still in the field and at the end of each sampling run, process and analyze water samples for *E. coli* within the six-hour holding time for collection and transportation, and the two-hour holding time for sample processing (IDEM 2023c).

The IDEM mobile laboratory facilitates *E. coli* testing by eliminating the necessity of transporting samples to distant contract laboratories within a six-hour holding time. The IDEM mobile *E. coli* laboratory (van) provides a workspace containing sample storage; supplies for Colilert® Quanti-tray testing; and all equipment needed for collecting, preparing, incubating, and analyzing results in the same manner as the IDEM fixed *E. coli* laboratory. Obtain all supplies from IDEXX Laboratories, Inc., Westbrook, Maine.

3. Fish Community Measurements

Teams of three to five staff will complete the fish community sampling. Perform sampling using various standardized electrofishing methodologies dependent upon the stream size and site accessibility. Perform fish assemblage assessments in a sampling reach of 15 times the average wetted width, with a minimum reach of 50 meters and a maximum reach of 500 meters (IDEM 2023d). Make an attempt to sample all habitat types available within the sample reach to ensure adequate representation of the fish community present at the time of the sampling event. The list of possible electrofishers for utilization include: the Smith-Root LR-24, Smith-Root LR-20B, or Midwest Lake Electrofishing System (MLES) Infinity XStream backpack electrofisher; the Smith-Root model 2.5 Generator Powered Pulsator electrofisher, with RCB-6B junction box and rattail cathode cable; or MLES Infinity Control Box with MLES junction box and rattail cathode cable assembled in a canoe. If parts of the stream are not wadeable, the system may require the use of a dropper boom array outfitted in a canoe or possibly a 12 or 14-foot Loweline[™] boat; or for nonwadeable sites, the Smith-Root Type VI-A or MLES Infinity Control Box electrofisher assembled in a 16-foot boat (IDEM 2023d).

Avoid sample collections during high flow or turbid conditions due to 1) low collection rates which result in nonrepresentative samples and 2) safety considerations for the sampling team. Avoid sample collection during late autumn due to the cooling water temperature, which may affect the responsiveness of some species to the electrical field. This lack of responsiveness can result in samples which are not representative of the streams' fish assemblage (IDEM 2023d).

Collect fish using dip nets with fiberglass handles and netting of 1/8 inch mesh bag. Sort fish collected in the sampling reach by species into baskets or buckets. Do not retain young-of-the-year fish less than 20 millimeters (mm) total length in the community sample (IDEM 2023d).

For each field taxonomist (generally the crew leader), retain a complete set of fish vouchers for each new or different species encountered during the summer sampling season. Vouchers may consist of either preserved specimens or digital images. Prior to processing fish specimens and completion of the IDEM OWQ Fish Collection Data Sheet (Attachment 4), preserve one to two individuals per new species encountered. If

the fish specimens can be positively identified and the individuals for preservation are small enough to fit in a 2000 mL jar, preserve in 3.7% formaldehyde solution to serve as representative fish vouchers. If, however, the specimens are too large to preserve, take a photo of key characteristics (e.g., fin shape, size, body coloration) for later examination (IDEM 2023d). Also, prior to sampling, randomly select 10% of the sites for a revisit, and preserve or photograph a few representative individuals of all species found at the site to serve as vouchers (IDEM 2020a). Review, prior to field work, taxonomic characteristics of possible species encountered in the basin of interest.

Also preserve fish specimens if positive identification cannot be made in the field (e.g., those co-occurring like the Striped and Common Shiners or are difficult to identify when immature); individuals which appear to be hybrids or have unusual anomalies; dead specimens which are taxonomically valuable for undescribed taxa (e.g., Red Shiner or Jade Darter); life history studies; or research projects (IDEM 2023d).

Record data for fish, which are not preserved, on the IDEM OWQ Fish Collection Data Sheet (Attachment 4) consisting of: number of individuals; minimum and maximum total length in millimeters (mm); mass weight in grams (g); and number of individuals with deformities, eroded fins, lesions, tumors, and other anomalies (DELTs). Once the data are recorded, release specimens within the sampling reach from which they were collected, when possible. Record data for preserved fish specimens following taxonomic identification in the laboratory (IDEM 2023d).

4. Macroinvertebrate Community Measurements

Crews of two to three staff conduct macroinvertebrate community sampling immediately following the fish community sampling event or on a different date. Collect samples using a modification of the U.S. EPA Rapid Bioassessment Protocol MHAB approach using a D-frame dip net with 500 µm mesh (Plafkin et al. 1989; Klemm et al. 1990; Barbour et al. U.S. EPA 1999). The IDEM MHAB approach (IDEM 2023e) is composed of a 1-minute "kick" sample within a riffle or run. Collect, if the stream is wadeable, by disturbing one square meter of stream bottom substrate in a riffle or run habitat and collecting the dislodged macroinvertebrates within a dip net. Also, a 50-meter "sweep" sample of all available habitats. Collect by disturbing habitat such as emergent vegetation, root wads, coarse particulate organic matter, depositional zones, logs, and sticks; and collecting the dislodged macroinvertebrates within the dip net. Define the 50meter length of riparian corridor sampled at each site using a rangefinder or tape measure. If the stream is too deep to wade, use a boat or canoe to only sample the 50meter zone along the shoreline with the best available habitat. In addition, do not collect a 1-minute kick sample if the stream is too deep to wade and no available shoreline to collect the sample exists. Combine the 1-minute "kick" and 50-meter "sweep" samples in a bucket of water. Elutriate the combined sample through a U.S. Standard Number 35 (500 µm) sieve a minimum of five times to remove all rocks, gravel, sand, and large pieces of organic debris from the sample. Then transfer the remaining sample from the sieve to a white plastic tray. The collector, while still on-site, will conduct a 15-minute pick of macroinvertebrates at a single organism rate endeavoring to pick for maximum

organism diversity, and relative abundance through turning and examining the entire sample in the tray. Preserve the resulting picked sample in 80% isopropyl alcohol. Return the sample to the laboratory for identification at the lowest practical taxonomic level (usually genus or species level, if possible; IDEM 2023f). Evaluate the sample using the MHAB macroinvertebrate IBI.

5. Habitat Assessments

Complete habitat assessments immediately following macroinvertebrate and fish community sample collections at each site using a slightly modified version of OHEPA Qualitative Habitat Evaluation Index (QHEI), 2006 edition (OHEPA 2006). Complete a separate IDEM OWQ Biological QHEI (Attachment 5) for each sample type, since the sampling reach length may differ (i.e., 50 meters for macroinvertebrates and between 50 and 500 meters for fish). IDEM 2023g describes the method used in completing the QHEI.

6. Field Parameter Measurements

Measure dissolved oxygen (DO), pH, water temperature, specific conductance, and DO percent saturation with a data sonde, during each sampling event regardless of the sample type collected. Perform measurement procedures and operation of the data sonde according to the manufacturers' manuals (IDEM 2020c; YSI 2017, 2018) and Sections 2.0 and 4.0 of the Water Chemistry Field Sampling Procedures TSOP (IDEM 2020b). Measure turbidity with a Hach[™] turbidity kit and write the meter number in the comments under the field parameter measurements. If a Hach[™] turbidity kit is not available, record the data sonde measurement for turbidity and note in the comments. During each sampling run, note and document field observations from each site and ambient weather conditions at the time of sampling on IDEM Stream Sampling Field Data Sheets (Attachment 3).

B.3. Analytical Methods

1. Laboratory Procedure for *E. coli* Measurements:

Process and analyze all waters sampled for *E. coli* in the IDEM *E. coli* mobile laboratory or IDEM Shadeland laboratory, which is equipped with required materials and equipment necessary for the Idexx[™] Colilert Test. The Colilert Test is a multiple-tube enzyme substrate standard method SM-9223B Enzyme Substrate Coliform Test Method (Clesceri et al., 2012). Table 5 identifies the *E. coli* test method and quantification limit.

 Nutrient and General Chemistry Parameters Measurements: Pace Analytical Services will perform analyses of nutrient and general chemistry parameters, in accordance with preapproved test methods and within the allotted time frames. Table 5 identifies the nutrient and general chemistry parameters, and respective test methods and quantification limits.

Parameter	Method	Lab Reporting Limit	Units
E. coli	SM-9223B Enzyme Substrate Test	1.0	*MPN/100 mL
Alkalinity (as CaCO ₃)	SM 2320B	10.0	mg/L
Solids, total residue (TS)	SM 2540B	10.0	mg/L
Solids, nonfilterable residue (TSS)	SM 2540D	2.5	mg/L
Solids, filterable residue (TDS)	SM 2540C	10.0	mg/L
Sulfate	EPA 300.0	0.25	mg/L
Chloride	EPA 300.0	0.25	mg/L
Hardness (as CaCO ₃)	SM 2340B	10.0	mg/L
Ammonia as Nitrogen	EPA 350.1	0.10	mg/L
Total Kjeldahl Nitrogen (TKN) as Nitrogen	EPA 351.2	0.50	mg/L
Nitrate + Nitrite as Nitrogen	EPA 353.2	0.10	mg/L
Phosphorous, total	EPA 365.1	0.05	mg/L
Total organic carbon (TOC)	SM 5310C	1.0	mg/L
Chemical oxygen demand (COD)	EPA 410.4	10.0	mg/L
Calcium	EPA 200.7	1.0	mg/L
Magnesium	EPA 200.7	1.0	mg/L

Table 5. <i>E. coli</i> . Nutrient.	and General Chemist	ry Parameters Test Methods ⁴

* Clesceri et al., 2017. 1 MPN = 1 CFU/100 mL ⁴ Methods accredited by NELAP (State of Kansas, 2023)

3. Field Parameters Measurements:

Take the field measurements of DO, DO percent saturation, temperature, pH, conductivity, and turbidity each time a sample is collected. Table 6 identifies the field parameters, respective test methods, and sensitivity limits. Locate the data sonde in the center of flow during sampling. The field staff member collecting the sample shall wait for all readings to stabilize before recording the readings on the IDEM Stream Sampling Field Data Sheet (Attachment 3).

Table 6. Field Parameters Test Methods

Parameter	Method	Sensitivity Limit	Units
DO (data sonde optical)	ASTM D888-09(C)	0.01	mg/L
DO (membrane probe)	SM4500-OG ⁵	0.03	mg/L
DO % saturation (data sonde optical)	ASTM D888-09(C)	0.01	%
Turbidity (data sonde)	SM 2130B Mod	0.02	NTU
Turbidity (Hach turbidimeter)	EPA 180.1 ⁵	0.01	NTU
Specific conductance (data sonde)	SM 2510B	1.0	µmho/cm
Temperature (data sonde)	SM 2550B(2)	0.1	°C
Temperature (field meter)	SM 2550B(2) ⁵	0.1	°C
pH (data sonde)	EPA 150.2	0.01	SU
pH (field meter)	SM 4500-HB⁵	0.01	SU

⁵ Method used for Field Calibration Verification

B.4. Quality Control and Custody Requirements

Quality assurance protocols will follow part B.5. of the Surface Water QAPP (IDEM 2023a, pp 92-94) and part B.5. of the Biological and Habitat QAPP (IDEM 2020a, p 27).

1. Field Instrument Testing and Calibrations

Calibrate the data sonde prior to each week's sampling (IDEM 2020c). Record, maintain, store, and archive calibration results and drift values in logbooks located in the calibration laboratories at the Shadeland facility. The drift value is the difference between two successive calibrations. Field parameter calibrations will conform to the procedures as described in the instrument users' manuals (YSI 2017, 2018). Field check the unit for accuracy once during the week by comparison with a YSI EcoSense DO200A DO Probe, and/or the YSI ProSolo Probe (IDEM 2020b, p 24), Hach[™] turbidity, and an Oaktown Series 5 pH meter. Record weekly calibration verification results on the field calibrations portion of the IDEM OWQ Stream Sampling Field Data Sheets (Attachment 3) and enter into the AIMS II database. At field sites where the DO concentration is 4.0 mg/L or less, use the YSI EcoSense DO meter.

2. Field Measurement Data

Collect in-situ water chemistry field data in the field using calibrated or standardized equipment and record on the IDEM OWQ Stream Sampling Field Data Sheet (Attachment 3). The same staff member will collect and record the data. Perform calculations either in the field or later at the office. Include analytical results, which have limited QC checks, in this category. Detection limits and ranges have been set for each analysis (Table 6). Quality control checks (such as duplicate measurements, measurements of a secondary standard, or measurements using a different test method or instrument) performed on field or laboratory data, are usable for estimating precision, accuracy, and completeness for the project, as described in the Surface Water QAPP (IDEM 2023a Section D. pp 102-110).

3. Bacteriological Measurement Data

Analytical results, from an IDEM fixed or mobile *E. coli* laboratory, include QC check sample results from which precision, accuracy, and completeness can be determined for each batch of samples. Archive raw data by analytical batch for easy retrieval and review. Follow chain of custody procedures, including time of collection, time of setup, time of reading the results, and time and method of disposal (IDEM 2023c). The field staff member who collected the samples signs the chain of custody form upon delivery of samples to the laboratory. Thoroughly document any method deviations in the raw data. Test all QA/QC samples according to the following guidelines:

Field duplicate: Collect at a frequency of one per batch or at least one for every 20 samples collected (\geq 5%).

- Field blank: Collect at a frequency of one per batch or at least one for every 20 samples collected (\geq 5%).
- Laboratory blank: Test at a frequency of one per day.

- Positive control: Test each lot of media for performance using *E. coli* bacterial cultures.
- Negative controls: Test each lot of media for performance using non-*E. coli* and noncoliform bacterial cultures.
- 4. Water Chemistry Measurement Data

The manufacturer will certify sample bottles and preservatives for purity. Do not use damaged sample bottles and preservatives, and do not use preservatives past their stated expiration date. Field blanks check the purity of sample bottles and preservatives. Sample collection containers for each parameter, preservative, and holding time (Table 4) will adhere to U.S. EPA requirements. Collect field duplicates and matrix spike/matrix spike duplicates at the rate of one per sample analysis set or one per every 20 samples, whichever is greater. Additionally, take field blank samples at a rate of one set per sample analysis set or one per every 20 samples, whichever is greater. Additionally, take field blank samples at a rate of one set per sample analysis set or one per every 20 samples, whichever is greater. A chain of custody (COC) form created by the AIMS II database IDEM OWQ COC (Attachment 6) and an IDEM Water Sample Analysis Request form (Attachment 7) accompany each sample set through the analytical process. The field staff member collecting the samples signs the COC form upon delivery of samples to the laboratory.

5. Fish Community Measurement Data

Perform fish community sampling revisits at a rate of 10 percent of the total fish community sites sampled, in this case, two in the watershed (IDEM 2020a). Perform revisit sampling with at least two weeks of recovery between the initial and revisit sampling events. Perform the fish community revisit sampling and habitat assessment with either a partial or complete change in field team members (IDEM 2020a). Use the resulting IBI and QHEI total score between the initial visit and the revisit to evaluate precision, as described in the QAPP for Biological Community and Habitat Measurements (IDEM 2020a). Use the IDEM OWQ COC form (Attachment 6) to track samples from the field to the laboratory. A field staff member from the crew signs the COC form after sampling is complete, and the samples and COC form are relinquished to a lab custodian to verify the sampling information is accurate. All raw data are: 1) checked for completeness; 2) utilized to calculate derived data (e.g., total weight of all specimens of a taxon), which is entered into the AIMS II database; and 3) checked again for data entry errors.

6. Macroinvertebrate Community Measurement Data

Collect duplicate macroinvertebrate field samples at a rate of 10 percent of the total macroinvertebrate community sites sampled, in this case, two in the watershed. Perform the macroinvertebrate community duplicate sample and corresponding habitat assessment by the same team member who performed the original sample, immediately after the initial sample collection. The 50-meter section of stream and riffle area utilized for the duplicate sample are different from those used for the original sample but have features as similar to habitat types and availability as possible. This will result in a precision evaluation based on a 10% duplicate of samples collected, as

described in the QAPP for Biological Community and Habitat Measurements (IDEM 2020a).

Use the IDEM OWQ COC form (Attachment 6) to track samples from the field to the laboratory. A field staff member from the crew completes the OWQ COC form after sampling is complete. After completion of weekly field sampling activities, the laboratory custodian uses the OWQ COC form to check in samples prior to long-term storage. The IDEM Probabilistic Monitoring Section laboratory supervisor maintains laboratory identifications and QA/QC of taxonomic work.

C. ASSESSMENT AND OVERSIGHT

C.1. Field and Laboratory Performance and System Audits

Conduct performance and system audits to ensure good quality data. The field and laboratory performance checks include precision measurements by relative percent difference of field and laboratory duplicate (IDEM 2023a, pp 37, 105-106); accuracy measurements by percent of recovery of matrix spike and matrix spike duplicate samples analyzed in the laboratory (IDEM 2023a, pp 47-48, 105); and completeness measurements by the percent of planned samples versus the actual number collected, analyzed, reported, and usable for the project (IDEM 2023a, p 37).

Biological and habitat measurements, field performance measurements include:

- Completeness (IDEM 2020a, pp 10-11, 14)
- Examination of fish IBI score differences and the relative percent difference (RPD) for number of fish species at the revisit sites (IDEM 2020a, pp 9-10)
- RPD for number of taxa for macroinvertebrate duplicate samples (IDEM 2020a, p 13)
- RPD between the two total QHEI scores (IDEM 2020a, p 18)

Lab performance measurements include:

- Percent taxonomic difference (PTD) for fish (IDEM 2020a, p 12)
- PTD for macroinvertebrates (IDEM 2020a, pp 15-16)
- Percent difference in enumeration (PDE) and percent sorting efficiency (PSE) for macroinvertebrates (IDEM 2020a, pp 14-16)

Regionally recognized non-IDEM freshwater fish taxonomists may verify fish taxonomic identifications made by IDEM staff in the laboratory. Send ten percent of macroinvertebrate samples, the initial samples taken at sites where duplicate samples were collected, to Rhithron Associates, Inc. (Missoula, MT) for verification by an outside taxonomist (IDEM 2020a). For macroinvertebrate verifications by an external lab, the lab's taxonomists must maintain Society for Freshwater Science taxonomic certifications. Genus level taxonomic certifications are required for (1) Eastern General Arthropods; (2) Eastern Ephemeroptera, Plecoptera, and Trichoptera; (3) Chironomidae; and (4) Oligochaeta.

Require contract laboratories to have NELAC audits at the beginning of a laboratory contract and at least once a year during the contract. In addition, IDEM QA staff annually

review performance studies conducted by the contract laboratories. The audit includes any or all the operational quality control elements of the laboratory's quality assurance system. All applicable elements of this QAPP and the laboratory contract requirements are addressed including, but not limited to, sampling handling, sample analysis, record keeping, preventative maintenance, proficiency testing, personnel requirements, training, and workload. (IDEM 2023a, p 99).

IDEM WAPB staff conduct field audits every other year to ensure sampling activities adhere to approved SOPs. WAPB staff will systematically conduct audits to include all WAPB personnel engaging in field sampling activities. Staff trained in the associated sampling SOPs and in the processes related to conducting an audit evaluate WAPB field staff involved with sample collection and preparation. Staff will produce an evaluation report documenting each audit for review by those field staff audited as well as WAPB management. Communicate corrective actions to field staff who implement the corrective actions as a result of the audit process (IDEM 2023a, pp 99-100; IDEM 2020a, p 31).

The QA officer submits quality assurance reports upon completion of a dataset's data validation to the program manager or WAPB branch chief. The QA manager, relevant section chief, project manager, any technical staff working on corrective actions, and quality assurance staff receive copies of the progress reports when new developments arise. The section chief, project officer, or QA officer is responsible for working with relevant staff members to develop corrective actions and notifying the QA manager of corrective action progress. Depending on the associated corrective actions, either the section chief or the QA officer approves the final corrective action (IDEM 2023a, p 101).

C.2. Data Quality Assessment Levels

The samples and various types of data collected by this program are intended to meet the quality assurance criteria and rated DQA Level 3, as described in the Surface Water QAPP (IDEM 2023a, p 108) and the Biological and Habitat QAPP (IDEM 2020a, pp 34–35).

D. DATA VALIDATION AND USABILITY

Quality assurance reports to management, and data validation and usability are also important components of Indiana's Surface Water QAPP which ensures good quality data for this project. The QA officer submits quality assurance reports upon completion of a dataset's data validation to the program manager or WAPB branch chief. This is done to ensure investigation and correction of problems arising during the sampling and analysis phases of the project (IDEM 2023a, p 102). As described in Section D of the Surface Water QAPP (IDEM 2023a), data are reduced (converted from raw analytical data into final results in proper reporting units); validated (qualified based on the performance of field and laboratory QC measures incorporated into the sampling and analysis procedures); and reported (described so as to completely document the calibration, analysis, QC measures, and calculations). These steps allow users to assess the data ensuring the project DQOs are met.

D.1. Quality Assurance, Data Qualifiers, and Flags

Use various data qualifiers and flags for quality assurance and validation of the data found in the Surface Water QAPP (IDEM 2023a pp 108-109) and the Biological and Habitat QAPP (IDEM 2020a pp 33-34).

D.2. Data Usability

Qualify the environmental data's collection and usability per each lab or field result obtained and classify into one or more of the four categories: Acceptable Data, Enforcement Capable Results, Estimated Data, and Rejected Data as described in the Biological and Habitat QAPP (IDEM 2020a pp 35-36).

D.3. Information, Data, and Reports

Record data collected in 2023-2024 in the AIMS II database and present in two compilation summaries. The first summary is a general compilation of the watershed field and water chemistry data prepared for use in the 2024 Indiana Integrated Report. The second summary is in database report format containing biological results and habitat evaluations, produced for inclusion in the Integrated Report as well as individual site folders. Maintain all site folders at the WAPB facility. All data and reports are available to public and private entities, which may find the data useful for municipal, industrial, agricultural, and recreational decision-making processes (TMDL, NPDES permit modeling, watershed restoration projects, water quality criteria refinement, etc.). Upload the work plan into the virtual file cabinet. Store all field sheets in the AIMS II database. Upload chemistry, fish community and macroinvertebrate results to U.S. EPA's Water Quality Portal via the Water Quality Exchange (formerly STORET), which allows the data to be shared with U.S. EPA and others. The Water Quality Exchange is a framework which allows states, tribes, and other data partners to submit and share water quality monitoring data via the web to the Water Quality Portal.

D.4. Laboratory and Estimated Cost

Laboratory analysis and data reporting for this project complies with the Surface Water QAPP (IDEM 2023a); Request for Proposals 22-68153 (IDEM 2021a); the IDEM QMP (IDEM 2018b); and Pace-Indy contract PO # 20003041-4 Pace Analytical Services in Indianapolis, Indiana will perform analytical tests on general chemistry and nutrient parameters outlined in Table 5 with a total estimated cost of \$46,000. IDEXX Laboratories, Inc., Westbrook, Maine supplies the bacteriological sampling supplies, with a total estimated cost of \$1,400. IDEM staff will test and analyze bacteriological samples. IDEM staff will collect and analyze all fish and macroinvertebrate samples. Rhithron Associates, Inc. in Missoula, Montana (IDEM 2020a) will verify ten percent of macroinvertebrate samples with a total estimated cost of \$460. The anticipated total budget for laboratory costs for the project is \$47,860.

D.5. Reference Manuals and Personnel Safety

Role	Required Training or	Training References	Training Notes
	Experience		
All staff participating in field activities	- Basic first aid and cardio-pulmonary resuscitation (CPR)	- A minimum of 4 hours of in-service training provided by WAPB (IDEM 2010)	- WAPB staff meeting Health and Safety Training requirements will accompany staff lacking 4 hours of in-service training or appropriate certification in the field at all times.
	- Personal Protective Equipment (PPE) Policy	- IDEM 2008	- When working on boundary waters as defined by Indiana Code (IC) 14-8-2-27 or between sunset and sunrise on any waters of the state, all personnel in the watercraft must wear a high
	- Personal Flotation Devices	- February 29, 2000, WAPB internal memorandum regarding use of approved Personal Flotation Devices	intensity whistle and Safety of Life at Sea (SOLAS) certified strobe light.

Table 7. Personnel Safety and Reference Manuals

REFERENCES

- *Document may be inspected at the Watershed Assessment and Planning Branch office, located at 2525 North Shadeland Avenue Suite 100, Indianapolis, Indiana.
- [327 IAC 2] IAC (Indiana Administrative Code), Title 327 Water Pollution Control Division, Article 2. <u>Water Quality Standards</u>. Last updated on October 11, 2023.
- (Clesceri et al. 2012) Clesceri, L.S., Greenburg, A.E., Eaton, A.D., 2017. SM-Standards Methods for the Examination of Water and Wastewater 23rd Edition. American Public Health Association.
- (IDEM 2008) <u>IDEM Personal Protective Equipment Policy</u>, revised May 1, 2008. A-059-OEA-08-P-R0. IDEM, Office of External Affairs. Indianapolis, Indiana. *
- (IDEM 2010) <u>IDEM Health and Safety Training Policy</u>, revised October 1, 2010. A-030-OEA-10-P-R2. IDEM, Office of External Affairs. Indianapolis, Indiana. *
- (IDEM 2016) IDEM Injury and Illness Resulting from Occupational Exposure Policy, revised February 12, 2016. A-034-AW-16-P-R3. IDEM, Office of the Commissioner. Indianapolis, Indiana. *
- (IDEM 2018) <u>IDEM Agency Wide Quality Management Plan 2018</u>. IDEM, Indiana Government Center North, 100 N. Senate Ave. Indianapolis, Indiana, 46204.
- (IDEM 2019a) IDEM Hazard Communication (HazCom) Plan. IDEM, Office of Program Support. Indianapolis, Indiana. *
- (IDEM 2019b) IDEM Health and Safety Manual. IDEM, Office of Program Support. Indianapolis, Indiana. *
- (IDEM 2020a) <u>Quality Assurance Program Plan (QAPP) for Biological Community and Habitat</u> <u>Measurements</u>. B-003-OWQ-WAP-XXX-20-Q-R0. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2020b) <u>Water Chemistry Field Sampling Procedures</u>. B-015-OWQ-WAP-XXX-20-T-R0. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2020c) <u>Calibration of YSI Multiparameter Data Sondes</u>. B-014-OWQ-WAP-XXX-20-T-R0. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2021a) <u>Request for Proposals 22-68153</u>, <u>Solicitation for Analyses</u>. IDEM. Indiana Department of Administration. Indianapolis, Indiana. *
- (IDEM 2021b) Office of Water Quality Watershed Assessment and Planning Branch Laboratory Safety Plan. IDEM, Office of Program Support, Indianapolis, Indiana. *
- (IDEM 2022a) <u>Indiana's 2022 Consolidated Assessment and Listing Methodology (CALM)</u>. IDEM, Office of Water Quality, Indianapolis, Indiana.
- (IDEM 2022b) AIMS II Database User Guide. Watershed Assessment and Planning Branch. Office of Water Quality, Indiana Department of Environmental Management. Indianapolis, Indiana. *

- (IDEM 2023a) <u>WAPB Indiana Surface Water Programs Quality Assurance Program Plan</u> (QAPP). (Rev. 5, Jul. 2023). B-001-OWQ-WAP-XX-23-Q-R5. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023b) <u>Global Navigation Satellite System (GNSS) R1 Unit User Instructions</u>. B-055-OWQ-WAP-XXX-23-T-R0. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana. *
- (IDEM 2023c) <u>E. coli Field Sampling and Analysis</u>. B-013-OWQ-WAP-XXX-23-T-R1. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023d) <u>Fish Community Field Collection Procedures</u>. B-009-OWQ-WAP-XXX-23-T-R1. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2023e) <u>Multi-habitat (MHAB) Macroinvertebrate Collection Procedure</u>. B-011-OWQ-WAP-XXX-23-T-R1. IDEM, OWQ, Watershed Planning and Assessment Branch. Indianapolis, Indiana.
- (IDEM 2023f) Processing and Identification of Macroinvertebrate Samples. B-061-OWQ-WAP-XXX-23-T-R0. IDEM, OWQ, Watershed Planning and Assessment Branch. Indianapolis, Indiana.
- (IDEM 2023g) <u>Procedures for Completing the Qualitative Habitat Evaluation Index</u>. B-003-OWQ-WAP-XX-23-T-R2. IDEM, OWQ, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (Kansas 2023) NELAP Environmental Laboratory Accreditation, Certificate E-10177. State of Kansas Department of Health and Environment, May 2023.
- (Klemm et al. 1990) Klemm, D.J., Lewis, P.A., Fulk, F. and Lazorchak, J.M. 1990.
 <u>Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters</u>. EPA/600/4-90/030. Environmental Monitoring Systems Laboratory, Monitoring Systems and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- (OHEPA 2006) Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). OHIO EPA Technical Bulletin EAS/2006-06-1. Revised by the Midwest Biodiversity Institute for State of Ohio Environmental Protection Agency, Division of Surface Water, Ecological Assessment Section, Groveport, Ohio.
- (OHEPA 2012) <u>2011 Biological and Water Quality Study of Mill Creek and Tributaries,</u> Hamilton County, Ohio. Technical Report MBI/2012-6-10. MSD Project Number 10180900. Prepared for: Metropolitan Sewer District of Greater Cincinnati, 1081 Woodrow Street, Cincinnati, OH 45204. Submitted by: Midwest Biodiversity Institute, P.O. Box 21561, Columbus, Ohio 43221-0561. Pages 40-1.
- (OHEPA 2022) <u>Compiled Surface and Ground Waters Monitoring Strategy 2022</u>. Ohio EPA Technical Bulletin MAS/1999-7-2. Division of Surface Water, Lazarus Government Center, 211 S. Front Street, Columbus, Ohio 43215. Page 70.

- (Plafkin et al. 1989) Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K. and Hughes, R.M. 1989. <u>Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic</u> <u>Macroinvertebrates and Fish</u>. EPA/440/4-89/001. Assessment and Watershed Protection Division, U.S. Environmental Protection Agency, Washington, D.C.
- (Simon DRAFT) Simon, T.P. DRAFT. Development of Index of Biotic Integrity Expectations for the Ecoregions of Indiana. Interior River Lowland. U.S. Environmental Protection Agency, Region V, Water Division, Watershed and Non-Point Branch, Chicago. IL. *
- (Simon and Dufour 1998) Simon, T.P. and Dufour, R.L. 1998. <u>Development of Index of Biotic Integrity Expectations for the Ecoregions of Indiana V. Eastern Cornbelt Plain</u>. U.S. Environmental Protection Agency, Region V, Water Division, Watershed and Non-Point Branch, Chicago. IL.
- (Simon and Dufour 2005) Simon, T.P. and Dufour, R.L. 2005. <u>Guide to appropriate metric selection for calculating the Index of Biotic Integrity (IBI) for Indiana Large and Great Rivers, Inland Lakes, and Great Lakes nearshore</u>. U.S. Department of the Interior, Fish and Wildlife Service, Bloomington Field Office, Bloomington, Indiana.
- (U.S. EPA 1999) Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. <u>Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition</u>. EPA/841/B-99/002. U.S. EPA, Office of Water. Washington D.C.
- (U.S. EPA 2002) <u>Guidance for Quality Assurance Project Plans</u> EPA QA/G-5, EPA/240R-02/009 U.S. EPA, Office of Environmental Information. Washington D.C.
- (U.S. EPA 2006) <u>Guidance on Systematic Planning Using the Data Quality Objectives</u> <u>Process</u>. EPA QA/G-4. EPA/240/B-06/001. U.S. EPA, Office of Environmental Information. Washington D.C.
- (YSI 2017) YSI Incorporated. EXO User Manual, revision g, 2017. Yellow Springs, Ohio.
- (YSI 2018) YSI Incorporated. ProDIGITAL User Manual, revision f, 2018. Yellow Springs, Ohio.

DISTRIBUTION LIST

<u>Name</u>	Organization							
Kristen Arnold	IDEM OWQ WAPB Branch Chief							
Zoey Benton	IDEM OWQ WAPB Watershed Planning and Restoration Section							
Timothy Bowren	IDEM OWQ WAPB Technical and Logistical Services Section							
Josh Brosmer	IDEM OWQ WAPB Watershed Planning and Restoration Section							
Angela Brown	IDEM OWQ WAPB Watershed Planning and Restoration Section							
	Chief							
Patrick Colcord	IDEM OPS Recycling Education and Quality Assurance Quality							
	Assurance IDEM QA Manager							
Kevin Gaston	IDEM OWQ WAPB Probabilistic Monitoring Section							
Michaela Hecox	IDEM OWQ WAPB Targeted Monitoring Section							
Paul McMurray	IDEM OWQ WAPB Technical E7							
Ali Meils	IDEM OWQ WAPB Targeted Monitoring Section Chief							
Mitchell Owens	IDEM OWQ WAPB Probabilistic Monitoring Section							
Caleb Rennaker	IDEM OWQ WAPB Technical and Logistical Services Section Chief							
John Sparks	IDEM OWQ WAPB Watershed Planning and Restoration Section							
Stacey Sobat	IDEM OWQ WAPB Probabilistic Monitoring Section Chief							

Electronic Distribution Only

ATTACHMENTS

Attachment 1: Modified Geometric Design Steps for Watershed Characterization Studies Introduction

The Modified Geometric Site Selection process is employed within watersheds which correspond to the 12-14-digit HUC scale in order to fulfill multiple water quality management objectives, not just the conventional focus on status assessment. The design is employed at a spatial scale which is representative of the scale at which watershed management is generally being conducted.

Sites within the watershed are allocated based on a geometric progression of drainage areas starting with the area at the mouth of the main stem river or stream (pour point) and working "upwards" through the various tributaries to the primary headwaters. This approach allocates sampling sites in a semirandom fashion and according to the stratification of available stream and river sizes based on drainage area. The Geometric Site Selection process is then modified by adding a targeted selection of additional sampling sites used to focus on localized management issues such as point source discharges, habitat modifications, and other potential impacts within a watershed. These sites are then "snapped to bridges" to facilitate safe and easy access to the stream. This design also fosters data analysis which takes into consideration overlying natural and human caused influences within the streams of a watershed. The design has been particularly useful for watersheds targeted for TMDL development.

Selection Process

In ArcGIS, download from NHD Plus site (<u>http://www.horizon-systems.com/nhdplus/HSC-wthMS.php</u>) the following files for Region 5 (and then again for Region 7) and zip them into the appropriate file structure.

File Description	File Name (.zip***)	Format
Region 05, Version 01_01, Catchment Grid	NHDPlus05V01_01_Catgrid	ESRI Grid
Region 05, Version 01_01, Catchment Shapefile	NHDPlus05V01_01_Catshape	Shapefile
Region 05, Version 01_02, Catchment Flowline Attributes	NHDPlus05V01_02_Cat_Flowline_Attr	DBF
Region 05, Version 01_02, Elevation Unit a	NHDPlus05V01_02_Elev_Unit_a	ESRI Grid
Region 05, Version 01_02, Elevation Unit b	NHDPlus05V01_02_Elev_Unit_b	ESRI Grid
Region 05, Version 01_02, Elevation Unit c	NHDPlus05V01_02_Elev_Unit_c	ESRI Grid
Region 05, Version 01_01, Flow Accumulation and Flow Direction Unit a	NHDPlus05V01_01_FAC_FDR_Unit_a	ESRI Grid
Region 05, Version 01_01, Flow Accumulation and Flow Direction Unit b	NHDPlus05V01_01_FAC_FDR_Unit_b	ESRI Grid
Region 05, Version 01_01, Flow Accumulation and Flow Direction Unit c	NHDPlus05V01_01_FAC_FDR_Unit_c	ESRI Grid
Region 05, Version 01_02, National Hydrography Dataset	NHDPlus05V01_03_NHD	Shapefile and DBF
Region 05, Version 01_01, Stream Gage Events	NHDPlus05V01_01_StreamGageEvent	Shapefile
Region 05, Version 01_01, QAQC Sinks Spreadsheet	NHDPlus05V01_01_QAQC_Sinks	Excel Spreadsheet

Create a new point shapefile (or geodatabase feature class) named Geometric Design within ArcCatalog with the same projection as the unzipped layers above.

Within an ArcMap project, add the following:

- nhdflowline layer
- Geometric Design layer
- catchment shapefile
- the FlowlineAttributesFlow table

Add the following fields to the nhdflowline layer:

- LENGTHMi (type: double, precision: 9, scale 4)
- DrainMi (type: double, precision: 9, scale 4)
- MinElev (type: double, precision: 9, scale 4)
- MaxElev (type: double, precision: 9, scale 4)
- Gradient (type: double, precision: 9, scale 4)

Add the following field to the GeometricDesign layer (use the add field-batch tool):

- Geometric (type: double, precision: 5, scale 2)
- Lat (type: double, precision: 8, scale 5)
- Long (type: double, precision: 8, scale 5)
- COMID (type: long, precision: 9)

Join the nhdflowline layer with the FlowlineAttributesFlow table based on the COMID field.

Use the field calculator within the nhdflowline attribute table, with the appropriate metric to imperial conversion to populate the following fields:

- LENGTHMi (from LENGTHKM kilometers to miles)
- DrainMia (from CumDrainage square kilometers to square miles (sq mi))
- MinElev (from MinElevSmo meters to feet)
- MaxElev (from MaxElevSmo meters to feet)

• Gradient ((MaxElev-MinElev)/LENGTHMI).

Unjoin the FlowlineAttributesFlow table.

Label the "nhdflowline" layer based new "LengthMi" field – note: this field shows the cumulative drainage at the *end* of the line segment, which is rarely more than 2-3 miles in between nodes.

Calculate the geometric break points (i.e., for a 500 sq mi watershed: 500, 250, 125, 62.5, 31, 15, 7, 4, 2).

It is recommended to change the symbology (Symbology: Show Quantities: Classification (Manual)) of the actual flowline to reflect the drainage. This will help identify when and where sites need to be allocated.

Start a new editing session, with the GeometricDesign layer as your target layer.

Add a new point within this layer to the pour point for the watershed (500 sq mi in this case).

Travel upstream through the main stem and "find" the next place on the stream where the river drainage brackets 250 sq mi. Use the catchment shapefile layer to identify more precisely the drainage value, if needed.

Populate the "Geometric" field within the GeometricDesign layer accordingly to the identified drainage level, then change the symbology (Symbology: Categories: Unique Values: Geometric field) of this layer to reflect the drainage levels.

Proceed through the watershed (either around the outer portions or start with largest values and work in), adding points accordingly to each geometric level. Change the symbology to find areas or levels that were missed. Note – the drainage level must be exact. Use the catchment shapefile to subtract drainage areas from larger drainage areas until the exact drainage level is reached. It is ok to "skip" a geometric level if it is not exactly reached. Sometimes there are large tributaries whose contribution to the main stem skips a drainage level.

Populate the COMID (manually), and Lat/Long (right click on field and select calculate geometry - lat = xcoordinates and long = y-coordinates) accordingly for reference within the GeometricDesign Layer.

Once sites are selected in this fashion, they will need to be snapped to a bridge or access point.

Additional sites should be placed at pour points of subwatersheds (12-digit HUCs) to meet TMDL document requirements.

Once the initial sites are selected, the following features are taken into account to move or add sites:

- Permitted facilities
- Urban areas
- Historical sampling sites
- Assessment Unit IDs (AUID)
- External stakeholder information
- Resources maximum of 35 sites per project

After refining site selections, there may be additional sites added to ensure spatial representation of the project area.

Sites may be removed or changed after site reconnaissance if there are problems accessing the site or if sites are dry.

Notes regarding the NHD dataset:

All units are initially set to metric and need to be converted to imperial.

Within the nhdflowline layer, the GNIS_Name/ID refers to the whole river name and ID, while the COMID is a unique identifier for the particular segment.

There is not a value GNIS_Name/ID for every river, especially where primary streams and ditches are concerned.

Segments within the nhdflowline layer are based on linear miles between "nodes," which are broken up (typically) by tributary. Typically, these lengths are less than 2-3 miles.

The cumulative drainage values in the NHD dataset have been compared against other and deemed "reasonable" (read – not statistically compared). Also note that the drainage is calculated through the model to be at the pour point of that segment.

The elevation values, however, are **not** reliable and require supervision. These values are calculated from the associated digital elevation model (DEM) and sometimes have null values for either the maximum or minimum elevation values. In addition, the length of the stream is not long enough (i.e., >1 mile) to calculate gradient. In either case, this associated value is helpful to identify contour changes against a USGS contour map. However, to note the calculated gradient from the NHD information has been observed to be within several tenths of mile compared to a manual calculation of gradient.

Important tables from NHD

- FlowlineAttributesFlow (found in: Region 05, Version 01_02, Catchment Flowline Attributes)
- Key fields: CumDrainag, Max ElevRaw, MinElevSmo,

Important Layers from NHD

- Region 05, Version 01_01, Catchment Shapefile
- Region 05, Version 01_02, National Hydrography Dataset

Attachment 2: IDEM OWQ Site Reconnaissance Form

ocation Des	cription:							
	Reconnaissa	ince Data Collect	ad	Lando	wner/Contact	Information		
	Recon Date		Members	First Name		t Name		
Avg. Width (m)	Avg. Depth (m)	Max. Depth (m)	Nearest Town	Street A ddress				
Water Present?	Site Wadeable?	Rnffle/Run Present? D diment? Gau	Road/Public Access Possible?	City Telephone	E	State Zip		
			П	Pamphlet Distributed?	Please Call In Advance?	Results Requested?		
			Rating, Results, Comn	ients, and Planning				
Site Rating By Category '1=easy, 10=difficult)		Reconnaissan	nce Decision	Equipment Se	ected	Circle Equipment Needed		
	r Factor	No, Dry No, Stream chi No, Physical bi No, Impounded No, Marsh/Wel	r denied access annel missing arriers 1 stream			Backpack Boar Totebarge Longline Scanoe Seine Weighted Handline		
			e to traffic or location led by backwater			Waders Gill Net		
Comments				1000	0.56	08		
Sketch of Stre	aam & Access Route	– Indicate Flow,	Direction, Obstacles, & La	nd Use (Use Back of Pag	e, If Necessar	y)		

	Stream Sampling Field Data Sheet													
Sample	#	Site #			Sample N	ledium	m Sample Tj			mple Type		Duplicate Sam	pie #	
Stream Nan	ne:						River Mile:					County:		
	Site Description: Sturvey Sample Collectors Sample Collected H							v	Vater					
Survey Crew Chief	1 2	_	4	Date	Time	Hydro			VGage Ht (ft)	Water Fic (cf/sec		Flow Imated? Algae	? Aquatic Life?	
Pom	ple Taken?		Allq	uoto	Mai	er Flow 1	Current Current		LAL	ater Appeara	-	Canopy C		
Vec	No;		1 2		Rime	Dry Run	Sta Fic		Clear Murky	Green Black	Sheer Other	n 🗌 0-20% 🛛	80-80%	
No; Owner				A8-Flow	Glide	Eddy			Brown	Gray (Se)		age) 40-80%	00-100%	
Special Notes:	Special Notes:													
Field Data: Date 24-hr Time D.O. , Water Spec Cond Turbidity stept Chiorine Chioride Chiorophyli Weather Codes														
(m/d/yy)	(hh:mm)		рн	Femp (°C)	(population)	(NTU)	%	Sat.	(mg/l)	(mg/l)	(mg		WS AT	
Comments							+							
Comments														
Comments							+							
Comments														
Comments														
Comments														
		Measur	ement	> > Max.	Aeter Measuren Meter Measurei	ment			<u> </u>	Veather Cod	le Defin	1		
Field Col		Fla			ed (See Comm d (See Comme		Sky 1 Cie	SC y Cond		WD Wind Dire 00 North (0 de		WS Wind Strength 0 Calm	AT Air Temp 1<32	
Field Cal	Time	Calibrator		Callb	rations		2 8cz 3 Par 4 Cio		10 Sleet	09 East (90 de 18 South (180 27 West (270 d	degrees)	1 Light 2 Mod./Light 3 Moderate	2 33-45 3 46-60 4 61-75	
(m/d/yy)	(hh:mm)	initiais	Түрө	Meter	# Value	Units	5 Mis 6 Fog	st D		27 West (270 (iegrees)	4 Mod./Strong 5 Strong	576-85 6>86	
							7 Sh	ower				6 Gale		
	C	Calibration Type	pH DO Turbidity											
Preserva Group: Pre		ttle Lot		Bottle Typ	e Bottle L	ot# GK	Ge	eneral C	: Preserva hemistry: Ic		2000P	Bottle Types 2000mL Plastic, Na	mow Mouth	
Group. Pre	oervauve	P10001 Val		Dorme 13h	bottle L	N	tais Me	itrients: I etais: HM	H2804 103		1000P 500P 250P	1000mL Plastic, Na 500mL Plastic, Nar 250mL Plastic, Nar	row Mouth	
						OR To	eics To	wics: ice			1000G 500G	1000mL Glass, Na 500mL Glass, Wide	row Mouth Mouth	
						NO.	XA Vo	atie Or	ganics: HC	& Thiosulfate	250G 125G 40GV	250mL Glass, Wide 125mL Glass, Wide 40mL Glass Vial	Mouth	
						Ph	en Ph d Se	enois: H diment:	12804 Ice e: Thiosulfa	-	120PB 1000PF 500PF	120ml Plastic (Bac 1000mL Plastic, Co 500mL Plastic, Co	ming Filter	
						Gi He Cr	i Me 6 Ch	ercury(1) romium	631): HCI VI(1636): N	аОН	60P 250T	50mL Plastic 250mL Teflon	ning Filler	
						Me	Hg Ma	ethyl Me	rcury(1630)	HCI	500T 125T	500mL Tefion 125mL Tefion		
Data Entered QC2:	1 By:		QC	1:						tream Same	lina Fleir	1 Data Sheet		
QU2.		_							5	wearn Samp	my riek	o data oneet		

Attachment 3: IDEM OWQ Stream Sampling Field Data Sheet

Attachment 4: IDEM OWQ Fish Collection Data Sheet

IDEM

OWQ-WATERSHED ASSESSMENT AND PLANNING BRANCH

Event ID	Voucher jars	Unknown jars	Equipment	Page of
Voltage	Time fished (sec)	_ Distance fished (m)	Max. depth (m)	Avg. depth (m)
Avg. width (m)	Bridge in reach	_ Is reach representative	If no, why	121 0 421 979
Elapsed time at si	te (hh:mm):Con	nments	- 1821 - 1924 - 1924 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925 - 1925	

Museum data: Initials_____ ID date_____ Jar count_____ Fish Total_____

TOTAL # OF FISH	(mass g)	WEIGHT (s)	ANOMALIES						
	(mass g)		(length mm) Min length	D	-		-		
				D	E	L	Т	М	0
			Max length						
V P				_					
			Min length	D	E	L	Т	м	0
			Max length						
V P									
			Min length	D	E	L	т	м	0
			Max length						
V P									
			Min length	D	E	L	Т	М	0
			Max length						
V P									
			Min length	D	E	L	Т	м	0
	()								
			Max length				-		
V P									
			Min length	D	E	L	Т	М	0
			Max length						
V P									
KRW: Rev/09.26.18 Calculation	0.01	EntryQC 1QC 2							

Attachment 5: IDEM OWQ Biological Qualitative Habitat Evaluation Index (front)

IDEM	Sample #	OWQ Biol	ogical QHEI bioSample #		ve Habitat m Name	Evaluation	Index) Location	
1	Surveyor	Sample Date	County	Macro San	nple Type	Habitat Complete	QHEI So	ore:
1] <i>SU</i>		heck ONLY Two pre nd check every type		e TYPE BOXES		Check ONE (Or	2 & average)	
PREDOMIN	BEST TYPES	S PRESENT	OTHER TY	PRESENT		IGIN	QUALI	
B B C C C C C C C C C C C C C C C C C C	ients	(Score natu (Score natu TYPES: 4 or n 3 or	ess [0]	[3]	TILLS WETL HARL SANC SANC RIP/I rces) LACU SHAL COAL	ÂNDS [0] DPAN [0] DSTONE [0] STONE [0] STRINE [0] E [-1] FINES [-2]		ATE [-1] L[0] Substrate IME [-2] IME [-2] ATE [-1] Azimum
of margi 3-Highe diameter pools.) UN OV SH	nal quality; 2–I st quality in mo r log that is stal DERCUT BANK ERHANGING V ALLOWS (IN S OTMATS [1]	OVER Indicate pre Moderate amounts, oderate or greater a ble, well developed (S [1] /EGETATION [1] LOW WATER) [1]	but not of highest mounts (e.g., very	quality or in smal large boulders in fast water, or dee m[2] OXB [1] AQU	I amounts of hig deep or fast wa	phest quality; ater, large functional TERS [1] TYTES [1]	Check ONE EXTENSIVE MODERATE SPARSE 5-	MOUNT (Or 2 & average) > 75% [11] 25 - 75% [7] < 25% [3] ISENT < 5% [1] Cover Maximum 20
SINU Hig Moi	OSITY H[4] DERATE[3] V[2] NE[1]	RPHOLOGY ch DEVELO EXCELL GOOD FAIR[3 POOR[2	PMENT ENT[7] 5]	CHANNELIZ INONE[6] RECOVERED RECOVERED	ATION		1[3] ERATE[2]	Channel Maximum 20
4] BA	NK EROSIC	ON AND RIPAR	IAN ZONE Ch	eck ONE in each	category for EAG	CH BANK (Or 2 p	er bank & average)
Rive	r right looking down EROSION IONE/LITTLE [] IODERATE [2] IEAVY/SEVERE	stream L R RIPA 	RIAN WIDTH > 50m[4] RATE 10-50m[3] DW 5-10m[2] VARROW[1] [0]	I L R FLOOD FOREST, SHRUB(RESIDE FENCED OPEN P/) PLAIN QU/ ;SWAMP[3] OROLD FIELD [ALITY [2] [EWFIELD[1] [Indica	CONSERVAT	TION TILLAGE [1] INDUSTRIAL [0] INSTRUCTION [0]
MAX Ched 0 0 0 0 0 0 0 0 0 0 0 0 0	IMUM DEP ONE (ONLY!) 1m[6] 7-<1m[4] 4-<0.7m[2] 2-<0.4m[1] 0.2m[0] [me tents	Check ONE POOLWII POOLWII POOLWII	NEL ŴIDTH (Or 2 & average) DTH > RIFFLE WII DTH = RIFFLE WII DTH < RIFFLE WII	0TH[2] 0 TO 0TH[1] 0 VE 0TH[0] 6A 0 MK Ind		at apply	(Check one IAL[-1] <u>5</u> TAL[-2]	eation Potential and comment on back) Primary Contact Secondary Contact Pool/ Current Maximum 12
of rif RIFFI BES BES BES	fle-obligate spe LE DEPTH TAREAS > 100 TAREAS 5 - 10 TAREAS < 5 o Nents	RUN Di cm[2]	EPTH 1UM > 50cm [2] 1UM < 50cm [1]	RIFFLE/RUN STABLE(eg, MOD.STABL UNSTABLE(e	Check ONE (SUBSTRAT, Cobble, Boulde E (eg., Large Gravel, Eg., Fine Gravel,	r)[2] avel)[1] Sand)[0] 	FFLE/RUN EN NONE[2] LOW[1] MODERATE[0] EXTENSIVE[-1]	8
-	ADIENT ₍ AINAGE AI	ft/mi) REA (mi²)	 VERYLOW- MODERATE HIGH-VERY 	[6-10]	%POOL:[%RUN:[%GL %RIF		Gradient Maximum 10
Entered		QC1		QC2				IDEM 02/01/2023

Attachment 5 (continued): IDEM OWQ Biological Qualitative Habitat Evaluation Index (back)

	COMMENT		owo	2 Biological QHEI (Quali	tative Ha	bitat Evaluation Index)	
A-CANOPY > 85%-C8 55%-C8 30%-C5 10%-C3 Coking upstream % open	0pen 15% 15% 10% 10sed	Excess turbid Discoloration Foam/Scum	rophytes Oils rophytes Tras ity Nuis Slud CSO		ATION Depth ⊡>3ft	D-MAINTENANCE Public Private Active Historic Succession: Young Old Spray Islands Soured Snag: Removed Modified Leveed: One sided Both banks Relocated Outoffs Bedload: Moving Stable Amoured Slumps Impounded Desiccated	E-ISSUES WWTP CSO NPDES Industry Utban Hardened Dirt & Grime Contaminated Landfill BMPs: Construction Sedimen Logging Irrigation Cooling Erosion: Bank Surface False bank Manue Lagoo Wash H ₂ O Tile H ₂ O Table Mine: Acid Quarry
Stream D	×	\times	\times	Stream Width (m):		Impounded Descause Flood control Drainage	Flow:

IDEM 02/01/2023

Attachment 6: IDEM OWQ Chain of Custody Form

Indiana Department of Environmental Management OWQ Chain of Custody Form Project:

OWQ Sample Set or Trip #:

I Certify that the sample(s) listed below was/were collected by me, or in my presence. Date:____

Signature:									Se	ction:				
Sample Media (🗆	Water, 🗆 Alga	e,🗆 Fisl	<u>h,</u> □ Ma	icro, 🗆 🤇	Cyanob	acteria/l	Microcy	stin, ⊡	Sedime	nt)			-	
Lab Assigned	IDEM	Sample Type	ID	E V	E V	al n	0 ml (act)	2000 ml Nalgene	250 ml Nalgene	125 ml Glass	Date and Ti	me Collected		ne check er bottle
Number / Event ID	Control Number	San	10	1000 ml P.N.M.	1000 ml G.N.M.	40 ml Vial	P (B	200 Nalg	250 Nalg	125 Gla	Date	Time		present
													\perp	
													\perp	
													+	
													+	
													+	
													+	
													+	
													+	
													+	
													1	
													\perp	
													+	
													+	
													+	
P = Plastic	G = Glass		M = Na	rrow Me		Bact =	Bacter	iologica	d Only		Should sample	s be iced?	Y	N
M = MS/MSD	B = Blank		m. – ma = Dupli			R=R		lonogica	. Only		onouru sample.	v oc locu:		

Carriers

I certify that I have received the above sample(s).					
Signature	Date	Time	Seals	Intact	Comments
Relinquished By:			v	N	
Received By:					
Relinquished By:			~	N	
Received By:			· ·		
Relinquished By:			~	N	
Received By:			· ·		
IDEM Storage Room #					

Lab Custodian

I certify that I have received the above sample(s), which has/have been recorded in the official record book. The same sample(s) will be in the custody of competent laboratory personnel at all times, or locked in a secured area.

Signature:

Date: _____ Time: _____

Address:

Revision Date: 4/27/2016

Attachment 7: IDEM OWQ Water Sample Analysis Request Form

Indiana Department of Environmental Management Office of Water Quality Watershed Planning and Assessment Branch www.idem.IN.gov Water

Water Sample Analysis Request PROFILE #284

Project Name: 2024 Indian Creek White River_Composite 🗌 Grab 🖂

OWQ Sample Set	IDEM Sample Nos.	
Crew Chief	Lab Sample Nos.	
Collection Date	Lab Delivery Date	

Parameter	Test Method	Total	Dissolved
Alkalinity (as CaCO ₃)	SM2320B	⊠ **	
Total Solids	SM2540B	⊠ **	
Suspended Solids	SM2540D	⊠ **	
Dissolved Solids	SM2540C	1	⊠ **
Sulfate (as SO ₄)	300.0	⊠ **	
Chloride (as Cl)	300.0	⊠ **	*
Hardness (Calculated)	SM-2340B	⊠ **	□**
Fluoride (as F)	SM4500-F-C	- **	 **
Priority Pollutant M	Aetals Water P	aramete	rs
Parameter	Test Method	Total	Dissolved
Antimony (as Sb)	200.8		
Arsenic (as As)	200.8		
Beryllium (as Be)	200.8		
Cadmium (as Cd)	200.8		
Chromium (as Cr)	200.8		
Copper (as Cu)	200.8		
Lead (as Pb)	200.8		
Mercury, Low Level	1631, Rev E.		
Nickel (as Ni)	200.8		
Selenium (as Se)	200.8		
Silver (as Ag)	200.8		
Thallium (as TI)	200.8		
Zinc (as Zn)	200.8		

Parameter	Test Method	Total	Dissolved
Aluminum (as Al)	200.8		
Barium (as Ba)	200.8		
Boron (as B)	200.8		
Calcium (as Ca)	200.7	⊠ ***	
Cobalt (as Co)	200.8		
Iron (as Fe)	200.7		
Magnesium (as Mg)	200.7	⊠ ***	
Manganese (as Mn)	200.8		
Sodium (as Na)	200.7		
Silica, Total Reactive (as SIO2)	200.7		
Strontium (as Sr)	200.8		

Send reports (Fed. Ex. or UPS) to: Tim Bowren - IDEM Deliver reports to: Tim Bowren - IDEM

Bldg. 20, STE 100 2525 North Shadeland Ave. Indianapolis, IN 46219 Bidg. 20, STE 100 2525 North Shadeland Ave. Indianapolis, IN 46219

Parameter		Test	Method	Total
Priority Pollutants: Oranochlorine Pesticid PCBs	es and	608		
Priority Pollutants: VO Purgeable Organics	Cs -	624		
Priority Pollutants: Base/Neutral Extractables Priority Pollutants: Acid Extractables		625	5	
		625		
Phenolics, 4AAP		420.4	4	
Oil and Grease, Total		1664	A	
Nutrient & Organic	Water (hemis	try Para	meters
Parameter	Test Me		Total	Dissolved
Ammonia Nitrogen	350.1			
CBOD ₅	SM5210	B		
Total Kjeldahl Nitrogen (TKN)	351.2			
Nitrogen, Nitrate + Nitrite as N	353.2			
Total Phosphorus	365.1			
TOC (Total Organic Carbon)	SM 531	DC		
DOC (Dissolved Organic Carbon)	SM 531	0C		
COD	410.4			
Cyanide (Total)	335.4			
Cyanide (Free)	SM4500	CN-I		
Cyanide (Amenable)	SM4500	CN-G		
Sulfide, Total	376.2			
RFP 22-68153 Contract Number:				

30 day reporting time required.

Notes:

- ** = DO NOT RUN PARAMETER IF SAMPLE IDENTIFIED AS A BLANK ON THE CHAIN OF CUSTODY
- * = RUN ONLY IF TOTAL CYANIDE IS DETECTED
- *** = Report Calcium, Magnesium components of Total Hardness (Calculated)
- Testing Laboratory: Pace Analytical Services, Inc. Attn: Olivia Deck Phone: 317-228-3102 7726 Moller Road Indianapolis, IN 46268

Attachment 8: Pace Analytical Services Indianapolis Laboratory Accreditation

State of Kansas

Department of Health and Environment

CERTIFICATE

This is to certify that Certification No.: E-10177

Pace Analytical Services, Inc - Indianapolis

7726 Moller Road Indianapolis, IN 46268-4163

has been accredited in accordance with K.S.A. 65-1,109a under the standards adopted in K.A.R. 28-15-36 for performing environmental analyses for the parameters listed on the most current scope of accreditation. Continuous accreditation depends on successful, ongoing participation in the program. Clients are urged to verify with this agency the laboratory's certification status for particular methods and analytes.

Effective Date: 5/1/2023

Les De Henning

Leo Henning Acting Director Office of Laboratory Services

Expiration Date: 4/30/2024

Carissa Robertson Certification Section Chief Office of Laboratory Services

Attachment 5: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Division of Environment Cansas Health and Environmental Laboratories Environmental Laboratory Improvement Program 8810 SE Dwight Street Topeka, KS 66620	Department of Health and Environment	Phone: 785-296-3811 Fax: 785-559-5207 KDHE.ELIPO@KS.GOV www.kdheks.gov/envlab
--	---	--

The Kansas Department of Health and Environment encourages all clients and data users to verify the most current scope of accreditation for certification number E-10177

The analytes tested and the corresponding matrix and method which a laboratory is authorized to perform at any given time will be those indicated in the most recently issued scope of accreditation. The most recent scope of accreditation supersedes all previously issued scopes of accreditation. It is the certified laboratory's responsibility to review this document for any discrepancies. This scope of accreditation will be recalled in the event that your laboratory's certification is revoked.

Accreditation Start: 5/1/2023 Accreditation End: 4/30/2024

EPA Number: <i>IN00043</i> Scope of Accreditation for Certification Number: E-10177	Page 1 of 26
Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: CWA (Non Potable Water)	
Method ASTM D516-16	
Sulfate	KS
Method EPA 120.1	
Conductivity	KS
Method EPA 1631E	
Mercury	KS
Method EPA 1664A	
Oil & Grease	KS
Method EPA 1664A (SGT-HEM)	
n-Hexane Extractable Material - Silica Gel Treated (HEM-SGT)	KS
Method EPA 180.1 Rev. 2 - 1993	
Turbidity	KS
Method EPA 200.7 Rev 4.4	
Aluminum	KS
Antimony	KS
Arsenic	KS
Barium	KS
Beryllium	KS
Boron	KS
Cadmium	KS
Calcium	KS
Chromium	KS
Cobalt	KS
Copper	KS
Copper	KS
Iron	KS
Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620	Tomoranou up

Attachment 6: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Pace Analytical Services, Inc - India	anapolis	Primary AB
Program/Matrix: CWA (Non Potable		
Lead		KS
Magnesium		KS
Manganese		KS
Molybdenum		KS
Nickel		KS
Potassium		KS
Selenium		KS
Silver		KS
Sodium		KS
Strontium		KS
Thallium		KS
Tin		KS
Titanium		KS
Vanadium		KS
Zinc		KS
Method EPA 200.8 Rev 5.4		
Aluminum		KS
Antimony		KS
Arsenic		KS
Barium		KS
Beryllium		KS
Boron		KS
Cadmium		KS
Chromium		KS
Cobalt		KS
Copper		KS
Lead		KS
Manganese		KS
Molybdenum		KS
Nickel		KS
Selenium		KS
Silver		KS
Thallium		KS
Tin		KS
Titanium		KS
Vanadium		KS
Zinc		KS
		RD I
Method EPA 245.1 Mercury		KS
		KO
Method EPA 300.0		1/0
Bromide		KS
Chloride		KS
Fluoride		KS
Nitrate		KS
Nitrate plus Nitrite as N		KS
Nitrite		KS
V	Kansas Department of Health and Environment	SAP RECO

Attachment 7: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

CPA Number: IN00043	Scope of Accreditation for Certification Number: E-101	
ace Analytical Services, Inc - Ind		Primary AB
rogram/Matrix: CWA (Non Potal	ble Water)	
Sulfate		KS
Method EPA 335.4		
Amenable cyanide		KS
Cyanide		KS
Method EPA 350.1		
Ammonia as N		KS
Method EPA 351.2		
Total Kjeldahl Nitrogen (TKN)		KS
Method EPA 351.2 minus EPA 350).1	
Organic nitrogen		KS
Method EPA 353.2		
Nitrate		KS
Nitrate plus Nitrite as N		KS
Nitrite		KS
Aethod EPA 365.1		
Phosphorus		KS
Method EPA 410.4		
Chemical oxygen demand		KS
Aethod EPA 420.4		
Total phenolics		KS
Method EPA 6010B		
Arsenic		KS
Cadmium		KS
Copper		KS
Lead		KS
Molybdenum		KS
Nickel		KS
Selenium		KS
Strontium		KS
Total chromium		KS
Zinc		KS
Method EPA 6020		
Arsenic		KS
Cadmium		KS
Copper		KS
Lead		KS
Nickel		KS
Selenium		KS
Total chromium		KS
Zinc		KS
Method EPA 608.3 GC-ECD		
4,4'-DDD		KS
4,4'-DDE		KS
4,4'-DDT		KS

Attachment 8: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

EPA Number: IN00043 Scope of Accreditation for Certification Number Pace Analytical Services, Inc - Indianapolis	
	Primary AB
Program/Matrix: CWA (Non Potable Water)	VC
Aldrin alpha-BHC (alpha-Hexachlorocyclohexane)	KS KS
	KS
Aroclor-1016 (PCB-1016)	KS
Aroclor-1221 (PCB-1221)	
Aroclor-1232 (PCB-1232)	KS
Aroclor-1242 (PCB-1242)	KS KS
Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)	KS
Aroclor-1260 (PCB-1260)	KS
beta-BHC (beta-Hexachlorocyclohexane)	KS
Chlordane (tech.)(N.O.S.) delta-BHC	KS
	KS
Dieldrin	KS
Endosulfan I	KS
Endosulfan II Endosulfan sulfate	KS
	KS
Endrin	KS
Endrin aldehyde	KS
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	KS
Heptachlor	KS
Heptachlor epoxide	KS
Methoxychlor	KS
Toxaphene (Chlorinated camphene)	KS
Method EPA 624.1	
1,1,1-Trichloroethane	KS
1,1,2,2-Tetrachloroethane	KS
1,1,2-Trichloroethane	KS
1,1-Dichloroethane	KS
1,1-Dichloroethylene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Dichloroethane (Ethylene dichloride)	KS
1,2-Dichloropropane	KS
1,3-Dichlorobenzene	KS
1,4-Dichlorobenzene	KS
2-Chloroethyl vinyl ether	KS
Acrolein (Propenal)	KS
Acrylonitrile	KS
Benzene	KS
Bromodichloromethane	KS
Bromoform	KS
Carbon tetrachloride	KS
Chlorobenzene	KS
Chlorodibromomethane	KS
Chloroethane (Ethyl chloride)	KS
Chloroform	KS
cis-1,3-Dichloropropene	KS

Attachment 9: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: CWA (Non Potable Water)	
Ethylbenzene	KS
Methyl bromide (Bromomethane)	KS
Methyl chloride (Chloromethane)	KS
Methylene chloride (Dichloromethane)	KS
Naphthalene	KS
Tetrachloroethylene (Perchloroethylene)	KS
Toluene	KS
trans-1,2-Dichloroethylene	KS
trans-1,3-Dichloropropylene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinyl chloride	KS
Xylene (total)	KS
Method EPA 625.1	
1,2,4-Trichlorobenzene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,3-Dichlorobenzene	KS
1,4-Dichlorobenzene	KS
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	KS
2,4,6-Trichlorophenol	KS
2,4-Dichlorophenol	KS
2,4-Dimethylphenol	KS
2,4-Dinitrophenol	KS
2,4-Dinitrotoluene (2,4-DNT)	KS
2,6-Dinitrotoluene (2,6-DNT)	KS
2-Chloronaphthalene	KS
2-Chlorophenol	KS
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	KS
2-Methylphenol (o-Cresol)	KS
2-Nitrophenol	KS
3,3'-Dichlorobenzidine	KS
4-Bromophenyl phenyl ether	KS
4-Chloro-3-methylphenol	KS
4-Chlorophenyl phenylether	KS
4-Methylphenol (p-Cresol)	KS
4-Nitrophenol	KS
Acenaphthene	KS
Acenaphthylene	KS
Anthracene	KS
Benzidine	KS
Benzo(a)anthracene	KS
Benzo(a)pyrene	KS
Benzo(b)fluoranthene	KS
Benzo(g,h,i)perylene	KS
Benzo(k)fluoranthene	KS
bis(2-Chloroethoxy)methane	KS

Attachment 10: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ace Analytical Services, Inc - Indianapolis	Primary AB
rogram/Matrix: CWA (Non Potable Water)	
bis(2-Chloroethyl) ether	KS
Butyl benzyl phthalate	KS
Carbazole	KS
Chrysene	KS
Di(2-ethylhexyl) phthalate (bis(2-Ethylhexyl)phthalate, DEHP)	KS
Dibenz(a,h) anthracene	KS
Diethyl phthalate	KS
Dimethyl phthalate	KS
Di-n-butyl phthalate	KS
Di-n-octyl phthalate	KS
Fluoranthene	KS
Fluorene	KS
Hexachlorobenzene	KS
Hexachlorobutadiene	KS
Hexachlorocyclopentadiene	KS
Hexachloroethane	KS
Indeno(1,2,3-cd) pyrene	KS
Isophorone	KS
Naphthalene	KS
n-Decane	KS
Nitrobenzene	KS
n-Nitrosodimethylamine	KS
n-Nitrosodi-n-propylamine	KS
n-Nitrosodiphenylamine	KS
n-Octadecane	KS
Pentachlorophenol	KS
Phenanthrene	KS
Phenol	KS
Pyrene	KS
fethod EPA 7470A	
Mercury	KS
Iethod EPA 7471A	
Mercury	KS
-	KS
Iethod EPA 8015D	
Propylene glycol	KS
fethod EPA 8260C	
1,3,5-Trichlorobenzene	KS
Iethod EPA 8270C	
1-Methylnaphthalene	KS
Carbazole	KS
Iethod SM 2310 B-2011	
Acidity, as CaCO3	KS
Athod SM 2320 B-2011	
	KS
Alkalinity as CaCO3 Iethod SM 2340 B-2011	K0

Attachment 11: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: CWA (Non Potable Water)	
Hardness	KS
Method SM 2510 B-2011	
Conductivity	KS
Method SM 2540 B-2015	
Residue-total	KS
Method SM 2540 C-2015	
Residue-filterable (TDS)	KS
Method SM 2540 D-2015	
Residue-nonfilterable (TSS)	KS
Method SM 2540 F-2015	
Residue-settleable	KS
Method SM 3500-Cr B-2011	
Chromium VI	KS
Method SM 4500-Cl G-2011	
Total residual chlorine	KS
Method SM 4500-CI ⁻ E-2011	
Chloride	KS
Method SM 4500-CN ⁻ C-2016	1/2
Cyanide	KS
Method SM 4500-CN ⁻ E-2016 Cyanide	KS
	KS
Method SM 4500-CN ⁻ G-2016 Amenable cyanide	KS
Method SM 4500-F ⁻ C-2011	KS
Fluoride	KS
Method SM 4500-H+ B-2011	Kö
pH	KS
Method SM 4500-NH3 G-2011	RD .
Ammonia as N	KS
Method SM 4500-P E-2011	
Orthophosphate as P	KS
Method SM 4500-S2 ⁻ D-2011	
Sulfide	KS
Method SM 5210 B-2016	
Biochemical oxygen demand	KS
Carbonaceous BOD, CBOD	KS
Method SM 5310 C-2014	
Total organic carbon	KS
Method SM 5540 C-2011	
Surfactants - MBAS	KS
Method TKN-NH3-CAL	
Organic nitrogen	KS

Attachment 12: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ace Analytical Services, Inc - Indianap	polis	Primary AB
		Frimary Ab
rogram/Matrix: RCRA (Non Potable W	raierj	
Aethod EPA 1010A		K0
Ignitability		KS
Aethod EPA 1311		
Toxicity Characteristic Leaching Proc	edure (TCLP)	KS
Aethod EPA 1312		
Synthetic Precipitation Leaching Proc	edure (SPLP)	KS
Aethod EPA 6010B		
Aluminum		KS
Antimony		KS
Arsenic		KS
Barium		KS
Beryllium		KS
Boron		KS
Cadmium Calcium		KS KS
Chromium		KS
Cobalt		KS
Copper		KS
Iron		KS
Lead		KS
Lithium		KS
Magnesium		KS
Manganese		KS
Molybdenum		KS
Nickel		KS
Potassium		KS
Selenium		KS
Silicon		KS
Silver		KS
Sodium		KS
Strontium		KS
Thallium		KS
Tin		KS
Titanium		KS
Vanadium		KS
Zinc		KS
Iethod EPA 6020		
Aluminum		KS
Antimony		KS
Arsenic		KS
Barium		KS
Beryllium		KS
Cadmium		KS
Chromium Cobalt		KS KS
Copper		KS
Copper		K.S
Kansas	Kansas Department of Health and Environment Kansas Health Environmental Laboratorics 6810 SE Dwight Street, Topeka, KS 66620	State We

Attachment 13: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Non Potable Water)	
Lead	KS
Manganese	KS
Molybdenum	KS
Nickel	KS
Selenium	KS
Silver	KS
Thallium	KS
Thorium	KS
Uranium	KS
Vanadium	KS
Zinc	KS
Method EPA 7196A	
Chromium VI	KS
Method EPA 7470A	
Mercury	KS
	KS
Method EPA 7471A	
Mercury	KS
Method EPA 8011	
1,2-Dibromo-3-chloropropane (DBCP)	KS
1,2-Dibromoethane (EDB, Ethylene dibromide)	KS
Method EPA 8015D	
Diesel range organics (DRO)	KS
Ethanol	KS
Ethylene glycol	KS
Gasoline range organics (GRO)	KS
Isobutyl alcohol (2-Methyl-1-propanol)	KS
Isopropyl alcohol (2-Propanol, Isopropanol)	KS
Methanol	KS
n-Butyl alcohol (1-Butanol, n-Butanol)	KS
n-Propanol (1-Propanol)	KS
Propylene glycol	KS
Method EPA 8081B	
4.4'-DDD	KS
4,4'-DDE	KS
4.4'-DDT	KS
Aldrin	KS
alpha-BHC (alpha-Hexachlorocyclohexane)	KS
alpha-Chlordane, cis-Chlordane	KS
beta-BHC (beta-Hexachlorocyclohexane)	KS
Chlordane (tech.)(N.O.S.)	KS
delta-BHC	KS
Dieldrin	KS
Endosulfan I	KS
Endosulfan II	KS
Endosulfan sulfate	KS

Attachment 14: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Non Potable Water)	Truinity Ab
Endrin	KS
Endrin aldehyde	KS
Endrin alteriyee	KS
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	KS
gamma-Chlordane	KS
Heptachlor	KS
Heptachlor epoxide	KS
Methoxychlor	KS
Toxaphene (Chlorinated camphene)	KS
Method EPA 8082A	
Aroclor-1016 (PCB-1016)	KS
Aroclor-1221 (PCB-1221)	KS
Aroclor-1222 (PCB-1222)	KS
Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242)	KS
Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248)	KS
Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)	KS
Aroclor-1260 (PCB-1260)	KS
	KS
Method EPA 8141B	
Atrazine	KS
Azinphos-methyl (Guthion)	KS
Chlorpyrifos	KS
Chlorpyrifos-methyl	KS
Demeton-o	KS
Demeton-s	KS
Diazinon	KS
Dichlorovos (DDVP, Dichlorvos)	KS
Dimethoate	KS
Disulfoton	KS
Famphur	KS
Malathion	KS
Merphos	KS
Methyl parathion (Parathion, methyl)	KS
Naled	KS
Parathion, ethyl	KS
Phorate	KS
Ronnel	KS
Simazine	KS
Terbufos Teter-blandinghan (Stimphon Condern) Elization	KS
Tetrachlorvinphos (Stirophos, Gardona) E-isomer	KS
Method EPA 8151A	
2,4,5-T	KS
2,4-D	KS
2,4-DB	KS
3,5-Dichlorobenzoic acid	KS
Acifluorfen	KS
Bentazon	KS

Attachment 15: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ace Analytical Services, Inc - Indianapolis	Primary AB
• • •	T finiary Ab
rogram/Matrix: RCRA (Non Potable Water)	KS
Dalapon DCPA di acid degradate	KS
Dicamba	KS
Dichloroprop (Dichlorprop)	KS
	KS
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP) MCPA	KS
MCPA	KS
Pentachlorophenol	KS
Picloram	KS
Silvex (2,4,5-TP)	KS
	Kö
fethod EPA 8260C	K0
1,1,1,2-Tetrachloroethane	KS
1,1,1-Trichloroethane	KS
1,1,2,2-Tetrachloroethane	KS
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	KS
1,1,2-Trichloroethane	KS
1,1-Dichloroethane	KS
1,1-Dichloroethylene	KS
1,1-Dichloropropene	KS
1,2,3-Trichlorobenzene	KS
1,2,3-Trichloropropane	KS
1,2,4-Trichlorobenzene	KS
1,2,4-Trimethylbenzene	KS
1,2-Dibromo-3-chloropropane (DBCP)	KS
1,2-Dibromoethane (EDB, Ethylene dibromide)	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Dichloroethane (Ethylene dichloride)	KS
1,2-Dichloropropane	KS
1,3,5-Trichlorobenzene	KS
1,3,5-Trimethylbenzene	KS
1,3-Dichlorobenzene	KS
1,3-Dichloropropane	KS
1,4-Dichlorobenzene	KS
1,4-Dioxane (1,4- Diethyleneoxide)	KS
1-Methylnaphthalene	KS
2,2-Dichloropropane	KS
2-Butanone (Methyl ethyl ketone, MEK)	KS
2-Chloroethyl vinyl ether	KS
2-Chlorotoluene	KS
2-Hexanone	KS
2-Methylnaphthalene	KS
4-Chlorotoluene	KS
4-Isopropyltoluene (p-Cymene,p-Isopropyltoluene)	KS
4-Methyl-2-pentanone (MIBK)	KS
Acetone	KS

Attachment 16: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Analytical Services, Inc - Indianapolis	Primary Al
	rrimary Al
ram/Matrix: RCRA (Non Potable Water) Acrolein (Propenal)	KS
Acrylonitrile	KS
Allyl chloride (3-Chloropropene)	KS
Benzene	KS
Bromobenzene	KS
Bromochloromethane	KS
Bromodichloromethane	KS
Bromoform	KS
Carbon disulfide	KS
Carbon tetrachloride	KS
Chlorobenzene	KS
Chlorodibromomethane	KS
Chloroethane (Ethyl chloride)	KS
Chloroform	KS
Chloroprene (2-Chloro-1,3-butadiene)	KS
cis-1,2-Dichloroethylene	KS
cis-1,3-Dichloropropene	KS
Cyclohexane	KS
Dibromomethane (Methylene bromide)	KS
Dichlorodifluoromethane (Freon-12)	KS
Diethyl ether	KS
Ethyl acetate	KS
Ethyl methacrylate	KS
Ethylbenzene	KS
Hexachlorobutadiene	KS
Iodomethane (Methyl iodide)	KS
Isobutyl alcohol (2-Methyl-1-propanol)	KS
Isopropylbenzene	KS
Methacrylonitrile	KS
Methyl acetate	KS
Methyl bromide (Bromomethane)	KS
Methyl chloride (Chloromethane)	KS
Methyl methacrylate	KS
Methyl tert-butyl ether (MTBE)	KS
Methylcyclohexane	KS
Methylene chloride (Dichloromethane)	KS
m-Xylene	KS
Naphthalene	KS
n-Butyl alcohol (1-Butanol, n-Butanol)	KS
n-Butylbenzene	KS
n-Hexane	KS
n-Propylbenzene	KS
o-Xylene	KS
Propionitrile (Ethyl cyanide)	KS
p-Xylene	KS
sec-Butylbenzene	KS
Styrene	KS

Attachment 17: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ce Analytical Services, Inc - Indianapolis	Primary AB
	Timary Ab
ogram/Matrix: RCRA (Non Potable Water) tert-Butyl alcohol	VE
tert-Butylbenzene	KS KS
Tetrachloroethylene (Perchloroethylene)	KS
Tetrahydrofuran (THF)	KS
Toluene	KS
trans-1,2-Dichloroethylene	KS
trans-1,3-Dichloropropylene	KS
trans-1,4-Dichloro-2-butene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinyl acetate	KS
Vinyl chloride	KS
Xylene (total)	KS
• • • •	Kb
ethod EPA 8270C	
1,2,4,5-Tetrachlorobenzene	KS
1,2,4-Trichlorobenzene	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Diphenylhydrazine	KS
1,3,5-Trinitrobenzene (1,3,5-TNB)	KS
1,3-Dichlorobenzene	KS
1,3-Dinitrobenzene (1,3-DNB)	KS
1,4-Dichlorobenzene	KS
1,4-Naphthoquinone	KS
1,4-Phenylenediamine	KS
l-Methylnaphthalene	KS
1-Naphthylamine	KS
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	KS
2,3,4,6-Tetrachlorophenol	KS
2,4,5-Trichlorophenol	KS
2,4,6-Trichlorophenol	KS
2,4-Dichlorophenol	KS
2,4-Dimethylphenol	KS
2,4-Dinitrophenol 2,4-Dinitrotoluene (2,4-DNT)	KS KS
2,6-Dichlorophenol	KS
2,6-Dinitrotoluene (2,6-DNT)	
2-Acetylaminofluorene	KS KS
2-Chloronaphthalene	KS
2-Chlorophenol	KS
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol) 2-Methylaniline (o-Toluidine)	KS
	KS
2-Methylnaphthalene	KS
2-Methylphenol (o-Cresol)	KS
2-Naphthylamine	KS
2-Nitrophenol	KS KS

Attachment 18: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ce Analytical Services, Inc - Indianapolis	Primary AB
	Thinary Ab
rogram/Matrix: RCRA (Non Potable Water) 2-Picoline (2-Methylpyridine)	KS
3,3'-Dichlorobenzidine	KS
3,3'-Dimethylbenzidine	KS
3-Methylcholanthrene	KS
3-Methylphonal (m-Cresol)	KS
3-Nitroaniline	KS
4-Aminobiphenyl	KS
4-Bromophenyl phenyl ether	KS
4-Chloro-3-methylphenol	KS
4-Chloroaniline	KS
4-Chlorophenyl phenylether	KS
4-Dimethyl aminoazobenzene	KS
4-Methylphenol (p-Cresol)	KS
4-Nitroaniline	KS
4-Nitrophenol	KS
4-Nitroquinoline 1-oxide	KS
5-Nitro-o-toluidine	KS
7,12-Dimethylbenz(a) anthracene	KS
a-a-Dimethylphenethylamine	KS
Acenaphthene	KS
Acenaphthylene	KS
Acetophenone	KS
Aniline	
Anthracene	KS KS
Annacene	KS
Atrazine	KS
Benzaldehyde	KS
Benzidine	KS
Benzo(a)anthracene	KS
Benzo(a)pyrene	KS
Benzo(b)fluoranthene	KS
Benzo(g,h,i)perylene	KS
Benzo(k)fluoranthene	KS
Benzoic acid	KS
Benzyl alcohol	KS
Biphenyl	KS
bis(2-Chloroethoxy)methane	KS
bis(2-Chloroethyl) ether	KS
Butyl benzyl phthalate	KS
Caprolactam	KS
Carbazole	KS
Chlorobenzilate	KS
Chrysene	KS
Di(2-ethylhexyl) phthalate (bis(2-Ethylhexyl)phthalate, DEHP)	KS
Diallate	KS
Dibenz(a,h) anthracene	KS
Dibenzofuran	KS

Attachment 19: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ce Analytical Services, Inc - Indianapolis	Primary AB
ogram/Matrix: RCRA (Non Potable Water)	Frimary Ab
Diethyl phthalate	KS
Dimethoate	KS
Dimethyl phthalate	KS
Di-n-butyl phthalate	KS
Di-n-octyl phthalate	KS
Diphenylamine	KS
Disulfoton	KS
Ethyl methanesulfonate	KS
Famphur	KS
Fluoranthene	KS
Fluorene	KS
Hexachlorobenzene	KS
Hexachlorobutadiene	KS
Hexachlorocyclopentadiene	KS
Hexachloroethane	KS
Hexachlorophene	KS
Hexachloropropene	KS
Indeno(1,2,3-cd) pyrene	KS
Isodrin	KS
Isophorone	KS
Isosafrole	KS
Kepone	KS
Methapyrilene	KS
Methapyriene Methyl methanesulfonate	KS
Methyl parathion (Parathion, methyl)	KS
Naphthalene	KS
Nitrobenzene	KS
n-Nitrosodiethylamine	KS
n-Nitrosodimethylamine	KS
	KS
n-Nitroso-di-n-butylamine n-Nitrosodi-n-propylamine	KS
n-Nitrosodiphenylamine	KS
n-Nitrosomethylethylamine	KS
	KS
n-Nitrosomorpholine n-Nitrosopiperidine	KS
n-Nitrosopyrrolidine	KS
o,o,o-Triethyl phosphorothioate	KS
Parathion, ethyl	KS
Pentachlorobenzene	KS
Pentachloronitrobenzene	KS
	KS
Pentachlorophenol Phenacetin	KS
Phenanthrene	KS
Phenol	
	KS
Phorate P Bhamdanatianing	KS
p-Phenylenediamine	KS
Pronamide (Kerb)	KS

Attachment 20: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Pace Analytical Services, Inc - Indianapolis	Duimour A D
	Primary AB
Program/Matrix: RCRA (Non Potable Water)	K.C.
Pyrene Pyridine	KS KS
Safrole	KS
	KS
Sulfotep (Tetraethyl dithiopyrophosphate)	KS
Thionazin (Zinophos)	KS
Method EPA 8270C SIM	1/2
1-Methylnaphthalene	KS
2-Methylnaphthalene	KS
Acenaphthene	KS
Acenaphthylene	KS
Anthracene	KS
Atrazine	KS
Azinphos-methyl (Guthion)	KS
Benzo(a)anthracene	KS
Benzo(a)pyrene	KS
Benzo(b)fluoranthene	KS
Benzo(g,h,i)perylene	KS
Benzo(k)fluoranthene	KS
Chlorpyrifos	KS
Chlorpyrifos-methyl	KS
Chrysene	KS
Demeton-o	KS
Demeton-s	KS
Diazinon	KS
Dibenz(a,h) anthracene	KS
Dichlorovos (DDVP, Dichlorvos)	KS
Dimethoate	KS
Disulfoton	KS
Famphur	KS
Fluoranthene	KS
Fluorene	KS
Indeno(1,2,3-cd) pyrene	KS
Malathion	KS
Merphos	KS
Methyl parathion (Parathion, methyl)	KS
Naled	KS
Naphthalene	KS
Parathion, ethyl	KS
Phenanthrene	KS
Phorate	KS
Pyrene	KS
Ronnel	KS
Simazine	KS
Terbufos	KS
Tetrachlorvinphos (Stirophos, Gardona) Mixed isomers	KS

Method EPA 9012A

Attachment 21: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

EPA Number: IN00043 Se	cope of Accreditation for Certification Number: E-1	0177 Page 17 of 26
Pace Analytical Services, Inc - Indianapol	lis	Primary AB
Program/Matrix: RCRA (Non Potable Wa	ter)	
Amenable cyanide		KS
Cyanide		KS
Method EPA 9038		
Sulfate		KS
Method EPA 9056A		
Bromide		KS
Chloride		KS
Fluoride		KS
Iodide		KS
Nitrate		KS
Nitrite		KS
Sulfate		KS
Method EPA 9066		
Total phenolics		KS
Method EPA 9095B		
Paint Filter Test		KS
Method EPA RSK-175 (GC/FID)		
Ethane		KS
Ethene		KS
Methane		KS

Attachment 22: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ace Analytical Services, Inc - Indianapolis	
	Primary AB
rogram/Matrix: RCRA (Solid & Hazardous Material)	
Aethod EPA 1010A	
Ignitability	KS
Aethod EPA 1311	
Toxicity Characteristic Leaching Procedure (TCLP)	KS
Aethod EPA 1312	
Synthetic Precipitation Leaching Procedure (SPLP)	KS
fethod EPA 6010B	
Aluminum	KS
Antimony	KS
Arsenic	KS
Barium	KS
Beryllium	KS
Boron	KS
Cadmium	KS
Calcium	KS
Chromium	KS
Cobalt	KS
Copper	KS
Iron Lead	KS KS
Magnesium	KS
-	KS
Manganese Molybdenum	KS
Nickel	KS
Potassium	KS
Selenium	KS
Silver	KS
Sodium	KS
Strontium	KS
Thallium	KS
Tin	KS
Titanium	KS
Vanadium	KS
Zinc	KS
Iethod EPA 6020	
Aluminum	KS
Antimony	KS
Arsenic	KS
Barium	KS
Beryllium	KS
Cadmium	KS
Chromium	KS
Cobalt	KS
Copper	KS
Lead	KS
Manganese	KS
Kansas Department of Health and Environment Kansas Health Environmental Laboratories 6810 SE Dwight Street, Topeka, KS 66620	Surve Rec.

Attachment 23: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Solid & Hazardous Material)	
Nickel	KS
Selenium	KS
Silver	KS
Thallium	KS
Vanadium	KS
Zinc	KS
Method EPA 7196A	
Chromium VI	KS
Method EPA 7470A	
Mercury	KS
Method EPA 7471A	
Mercury	KS
-	KS
Method EPA 8015D	KC
Diesel range organics (DRO)	KS
Ethanol	KS
Ethylene glycol	KS
Gasoline range organics (GRO)	KS
Isobutyl alcohol (2-Methyl-1-propanol) Isopropyl alcohol (2-Propanol, Isopropanol)	KS KS
Methanol	KS
	KS
n-Butyl alcohol (1-Butanol, n-Butanol)	
n-Propanol (1-Propanol)	KS
Propylene glycol	KS
Method EPA 8081B	
4,4'-DDD	KS
4,4'-DDE	KS
4,4'-DDT	KS
Aldrin	KS
alpha-BHC (alpha-Hexachlorocyclohexane)	KS
alpha-Chlordane, cis-Chlordane	KS
beta-BHC (beta-Hexachlorocyclohexane)	KS
Chlordane (tech.)(N.O.S.)	KS
delta-BHC Dialatia	KS
Dieldrin	KS
Endosulfan I	KS
Endosulfan II Endosulfan sulfate	KS KS
Endosunan sunate	KS
Endrin Endrin aldehyde	KS
Endrin aldenyde Endrin ketone	KS
gamma-BHC (Lindane, gamma-HexachlorocyclohexanE)	KS
gamma-BHC (Lindane, gamma-Hexachiorocyclonexane) gamma-Chlordane	KS
Heptachlor	KS
Heptachlor epoxide	KS
Methoxychlor	KS
Toxaphene (Chlorinated camphene)	KS
Comparente (Canor materie)	K.S

Attachment 24: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

PA Number: IN00043 Scope of Accreditation for Certification Number: E-10177	
ace Analytical Services, Inc - Indianapolis	Primary AB
rogram/Matrix: RCRA (Solid & Hazardous Material)	
Aethod EPA 8082A	
Aroclor-1016 (PCB-1016)	KS
Aroclor-1221 (PCB-1221)	KS
Aroclor-1232 (PCB-1232)	KS
Aroclor-1242 (PCB-1242)	KS
Aroclor-1248 (PCB-1248)	KS
Aroclor-1254 (PCB-1254)	KS
Aroclor-1260 (PCB-1260)	KS
Aethod EPA 8141B	
Atrazine	KS
Azinphos-methyl (Guthion)	KS
Chlorpyrifos	KS
Chlorpyrifos-methyl	KS
Demeton-o	KS
Demeton-s	KS
Diazinon	KS
Dichlorovos (DDVP, Dichlorvos)	KS
Dimethoate	KS
Disulfoton	KS
Famphur	KS
Malathion	KS
Merphos	KS
Methyl parathion (Parathion, methyl)	KS
Naled	KS
Parathion, ethyl	KS
Phorate	KS
Ronnel	KS
Simazine	KS
Terbufos	KS
Tetrachlorvinphos (Stirophos, Gardona) E-isomer	KS
lethod EPA 8151A	
2,4,5-T	KS
2,4-D	KS
2,4-D 2,4-DB	KS
3,5-Dichlorobenzoic acid	KS
Acifluorfen	KS
	KS
Bentazon	
Dalapon DCPA di acid degradate	KS KS
DCPA di acid degradate Dicamba	KS
Dichloroprop (Dichlorprop)	KS
Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)	KS
MCPA	KS
MCPP	KS
Pentachlorophenol	KS
Picloram	KS

Attachment 25: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

EPA Number: IN00043 Scope of Accreditation for Certification Number: E-10177	Page 21 of 26
Pace Analytical Services, Inc - Indianapolis	Primary AB
Program/Matrix: RCRA (Solid & Hazardous Material)	
Silvex (2,4,5-TP)	KS
Method EPA 8260C	
1,1,1,2-Tetrachloroethane	KS
1,1,1-Trichloroethane	KS
1,1,2,2-Tetrachloroethane	KS
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	KS
1,1,2-Trichloroethane	KS
1,1-Dichloroethane	KS
1,1-Dichloroethylene	KS
1,1-Dichloropropene	KS
1,2,3-Trichlorobenzene	KS
1,2,3-Trichloropropane	KS
1,2,4-Trichlorobenzene	KS
1,2,4-Trimethylbenzene	KS
1,2-Dibromo-3-chloropropane (DBCP)	KS
1,2-Dibromoethane (EDB, Ethylene dibromide)	KS
1,2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Dichloroethane (Ethylene dichloride)	KS
1,2-Dichloropropane	KS
1,3,5-Trichlorobenzene	KS
1,3,5-Trimethylbenzene	KS
1,3-Dichlorobenzene	KS
1,3-Dichloropropane	KS
1,4-Dichlorobenzene	KS
1,4-Dioxane (1,4- Diethyleneoxide)	KS
1-Methylnaphthalene	KS
2,2-Dichloropropane	KS
2-Butanone (Methyl ethyl ketone, MEK)	KS
2-Chloroethyl vinyl ether	KS
2-Chlorotoluene	KS
2-Hexanone	KS
2-Methylnaphthalene	KS
4-Chlorotoluene	KS
4-Isopropyltoluene (p-Cymene,p-Isopropyltoluene)	KS
4-Methyl-2-pentanone (MIBK)	KS
Acetone	KS
Acetonitrile	KS
Acrolein (Propenal)	KS
Acrylonitrile	KS
Allyl chloride (3-Chloropropene)	KS
Benzene	KS
Bromobenzene	KS
Bromochloromethane	KS
Bromodichloromethane	KS
Bromoform	KS
Carbon disulfide	KS

Attachment 26: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

e Analytical Services, Inc - Indianapolis	n
	Primary AB
gram/Matrix: RCRA (Solid & Hazardous Material)	VC
Carbon tetrachloride	KS
Chlorobenzene	KS
Chlorodibromomethane	KS
Chloroethane (Ethyl chloride)	KS
Chloroform	KS
cis-1,2-Dichloroethylene	KS
cis-1,3-Dichloropropene	KS
Dibromomethane (Methylene bromide)	KS
Dichlorodifluoromethane (Freon-12)	KS
Diethyl ether	KS
Ethyl acetate	KS
Ethyl methacrylate	KS
Ethylbenzene	KS
Hexachlorobutadiene	KS
Iodomethane (Methyl iodide)	KS
Isopropylbenzene	KS
Methacrylonitrile	KS
Methyl bromide (Bromomethane)	KS
Methyl chloride (Chloromethane)	KS
Methyl methacrylate	KS
Methyl tert-butyl ether (MTBE)	KS
Methylene chloride (Dichloromethane)	KS
m-Xylene	KS
Naphthalene	KS
n-Butyl alcohol (1-Butanol, n-Butanol)	KS
n-Butylbenzene	KS
n-Hexane	KS
n-Propylbenzene	KS
o-Xylene	KS
Propionitrile (Ethyl cyanide)	KS
p-Xylene	KS
sec-Butylbenzene	KS
Styrene	KS
tert-Butyl alcohol	KS
tert-Butylaconol	KS
Tetrachloroethylene (Perchloroethylene)	KS
	KS
Toluene	
trans-1,2-Dichloroethylene	KS
trans-1,3-Dichloropropylene	KS
trans-1,4-Dichloro-2-butene	KS
Trichloroethene (Trichloroethylene)	KS
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	KS
Vinyl acetate	KS
Vinyl chloride	KS

Method EPA 8270C

Attachment 27: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

e Analytical Services, Inc - Indianapolis	Primary Al
gram/Matrix: RCRA (Solid & Hazardous Material)	
1.2.4.5-Tetrachlorobenzene	KS
1,2,4-Trichlorobenzene	KS
1.2-Dichlorobenzene (o-Dichlorobenzene)	KS
1,2-Diphenylhydrazine	KS
1.3-Dichlorobenzene	KS
1,3-Dinitrobenzene (1,3-DNB)	KS
1.4-Dichlorobenzene	KS
1,4-Naphthoquinone	KS
1,4-Phenylenediamine	KS
1-Methylnaphthalene	KS
1-Naphthylamine	KS
2,2'-Oxybis(1-chloropropane), bis(2-Chloro-1-methylethyl)ether	KS
2,3,4,6-Tetrachlorophenol	KS
2,4,5-Trichlorophenol	KS
2,4,6-Trichlorophenol	KS
2,4-Dichlorophenol	KS
2,4-Dimethylphenol	KS
2,4-Dinitrophenol	KS
2.4-Dinitrotoluene (2.4-DNT)	KS
2,6-Dichlorophenol	KS
2,6-Dinitrotoluene (2,6-DNT)	KS
2-Acetylaminofluorene	KS
2-Chloronaphthalene	KS
2-Chlorophenol	KS
2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol)	KS
2-Methylaniline (o-Toluidine)	KS
2-Methylnaphthalene	KS
2-Methylphenol (o-Cresol)	KS
2-Naphthylamine	KS
2-Nitroaniline	KS
2-Nitrophenol	KS
2-Picoline (2-Methylpyridine)	KS
3,3'-Dichlorobenzidine	KS
3.3'-Dimethylbenzidine	KS
3-Methylcholanthrene	KS
3-Methylphenol (m-Cresol)	KS
3-Nitroaniline	KS
4-Aminobiphenyl	KS
4-Bromophenyl phenyl ether	KS
4-Chloro-3-methylphenol	KS
4-Chloroaniline	KS
4-Chlorophenyl phenylether	KS
4-Dimethyl aminoazobenzene	KS
4-Methylphenol (p-Cresol)	KS
4-Nitroaniline	KS
4-Nitrophenol	KS
4-Nitroquinoline 1-oxide	KS

Attachment 28: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

e Analytical Services, Inc - Indianapolis	Primary A
gram/Matrix: RCRA (Solid & Hazardous Material)	
5-Nitro-o-toluidine	KS
7,12-Dimethylbenz(a) anthracene	KS
a-a-Dimethylphenethylamine	KS
Acenaphthene	KS
Acenaphthylene	KS
Acetophenone	KS
Aniline	KS
Anthracene	KS
Aramite	KS
Benzidine	KS
Benzo(a)anthracene	KS
Benzo(a)pyrene	KS
Benzo(b)fluoranthene	KS
Benzo(g,h,i)perylene	KS
Benzo(k)fluoranthene	KS
Benzoic acid	KS
Benzyl alcohol	KS
bis(2-Chloroethoxy)methane	KS
bis(2-Chloroethyl) ether	KS
Butyl benzyl phthalate	KS
Carbazole	KS
Chlorobenzilate	KS
Chrysene	KS
Di(2-ethylhexyl) phthalate (bis(2-Ethylhexyl)phthalate, DEHP)	KS
Diallate	KS
Dibenz(a,h) anthracene	KS
Dibenzofuran	KS
Diethyl phthalate	KS
Dimethoate	KS
Dimethyl phthalate	KS
Di-n-butyl phthalate	KS
Di-n-octyl phthalate	KS
Diphenylamine	KS
Disulfoton	KS
Ethyl methanesulfonate	KS
Famphur	KS
Fluoranthene	KS
Fluorene	KS
Hexachlorobenzene	KS
Hexachlorobutadiene	KS
Hexachlorocyclopentadiene	KS
Hexachloroethane	KS
Hexachlorophene	KS
Hexachloropropene	KS
Indeno(1,2,3-cd) pyrene	KS
Isodrin	KS
Isophorone	KS

Attachment 29: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

ace Analytical Services, Inc - Indianapolis	Primary AB
rogram/Matrix: RCRA (Solid & Hazardous Material)	rrinary Ab
Isosafrole	KS
Kepone	KS
Methapyrilene	KS
Methyl methanesulfonate	KS
Methyl parathion (Parathion, methyl)	KS
Naphthalene	KS
Nitrobenzene	KS
n-Nitrosodiethylamine	KS
n-Nitrosodimethylamine	KS
n-Nitroso-di-n-butylamine	KS
n-Nitrosodi-n-propylamine	KS
n-Nitrosodiphenylamine	KS
n-Nitrosomethylethylamine	KS
n-Nitrosomorpholine	KS
n-Nitrosopiperidine	KS
n-Nitrosopyrrolidine	KS
o,o,o-Triethyl phosphorothioate	KS
Parathion, ethyl	KS
Pentachlorobenzene	KS
Pentachloronitrobenzene	KS
Pentachlorophenol	KS
Phenacetin	KS
Phenanthrene	KS
Phenol	KS
Phorate	KS
Pronamide (Kerb)	KS
Pyrene	KS
Pyridine	KS
Safrole	KS
Sulfotep (Tetraethyl dithiopyrophosphate)	KS
Thionazin (Zinophos)	KS
Method EPA 8270C SIM	
1-Methylnaphthalene	KS
2-Methylnaphthalene	KS
Acenaphthene	KS
Acenaphthylene	KS
Anthracene	KS
Atrazine	KS
Azinphos-methyl (Guthion)	KS
Benzo(a)anthracene	KS
Benzo(a)pyrene	KS
Benzo(b)fluoranthene	KS
Benzo(g,h,i)perylene	KS
Benzo(k)fluoranthene	KS
Chlorpyrifos	KS
Chlorpyrifos-methyl	KS

Attachment 30: Pace Analytical Services Indianapolis Laboratory Accreditation (cont.)

EPA Number: IN00043	Scope of Accreditation for Certification Number: E-10177	Page 26 of 26
Pace Analytical Services, Inc - India	napolis	Primary AB
Program/Matrix: RCRA (Solid & Ho	azardous Material)	
Chrysene		KS
Demeton-o		KS
Demeton-s		KS
Diazinon		KS
Dibenz(a,h) anthracene		KS
Dichlorovos (DDVP, Dichlorvos)		KS
Dimethoate		KS
Disulfoton		KS
Famphur		KS
Fluoranthene		KS
Fluorene		KS
Indeno(1,2,3-cd) pyrene		KS
Malathion		KS
Merphos		KS
Methyl parathion (Parathion, meth	nyl)	KS
Naled		KS
Naphthalene		KS
Parathion, ethyl		KS
Phenanthrene		KS
Phorate		KS
Pyrene		KS
Ronnel		KS
Simazine		KS
Terbufos		KS
Tetrachlorvinphos (Stirophos, Ga	rdona) Mixed isomers	KS
Method EPA 9012A		
Amenable cyanide		KS
Cyanide		KS
Method EPA 9045C		
pH		KS
Method EPA 9066 Total phenolics		KS
Method EPA 9095B		110
Paint Filter Test		KS
rant ritter i est		ND
	End of Scope of Accreditation	

