DAVID M. PETERSON, PE, PC

A PROFESSIONAL ENGINEERING CORPORATION SPECIALIZING IN ENVIRONMENTAL SOLUTIONS 7000 Bridlewood Drive Concord Twp., OH 44077 Email: *dave@dmpetersonpe.com*

January 15, 2024

Sent via Email

Mr. Dion Novak HSRL-6J Remedial Project Manager U.S. Environmental Protection Agency Region V 77 West Jackson Blvd. Chicago, IL 60604-3590

Subject:4Q2023 Progress ReportReilly Superfund Site, 1500 S. Tibbs Ave., Indianapolis, Indiana

Dear Mr. Novak:

This quarterly progress report is being submitted on behalf of 1500 South Tibbs LLC in accordance with Section IX A of the Administrative Order by Consent in the matter of Reilly Industries, Inc. (Reilly), 1500 South Tibbs Avenue, Indianapolis, Indiana 46242, U.S. EPA Docket No. V-W-'87-C-006, effective date July 6, 1987, as amended. This quarterly progress report also satisfies the requirements of Section XI of the RD/RA Consent Decree, Civil Action No. (lodged August 10, 1993), effective June 10, 1993 and Section XI of the Consent Decree for the Second Operable Unit, Civil Action No. IP93-1045-C, effective September 14, 1994 CD for OU3-4-5 Civil Action No. IP-93-1045-C. This report is being submitted on behalf of 1500 South Tibbs LLC, which is not a party to the referenced Administrative Order by Consent or Consent Decrees. 1500 South Tibbs LLC reserves all rights and defenses, including all applicable statutory and common-law defenses.

This quarterly report summarizes the following work elements:

- Groundwater operation and maintenance (O&M)
- Cover inspections and maintenance
- Sewer testing and repairs

1.0 Groundwater O&M

The groundwater pumping system at two locations (PW-1 and PW-2) has been on-line since October 3, 1994. Two additional wells (PW-3 and PW-4) were added during August 1997. PW-1 and PW-2 were replaced in 2002 and 2003. The system now consists of PW-1S, PW-1D, PW-2S, PW-3, and PW-4. The five-well system was on-line from April 2003 to March 2005. Wells PW-3 and PW-4 were shut down following approval from the EPA. **Figure 1** is a site map depicting the locations of pumping and monitoring wells.

The following table presents the total volume of groundwater pumped and average pumping rates for the operating wells during the quarter for PW-1S, PW-1D, and PW-2S. Pumping wells PW-1S and PW-2S

operated continuously (100% uptime) during the quarter. The pump failed in PW-1D on December 24 and is in the process of being replaced. The uptime for PW-1D was 91% during the quarter.

Dumping Wall	October	November	December
Pumping Well	(gallons / average gpm)	(gallons / average gpm)	(gallons / average gpm)
PW-1S	69,252 / 1.6	58,138 / 1.3	54,400 / 1.2
PW-1D	697,620 / 15.6	642,648 / 14.9	773,682 / 17.3
PW-2S	149,289 / 3.3	129,752 / 3.0	112,045 / 2.5

The quarterly groundwater monitoring event occurred on December 4, 2023 in accordance with the monitoring plan. **Table 1** presents the measured groundwater levels. Groundwater levels decreased in RI-4S and RI-4D by 0.97 and 1.81 feet, respectively, compared to 3Q2023. **Attachment A** contains well monitoring data.

Table 2 presents the groundwater analytical results. The remedial goals (RGs) for benzene (B), pyridines (P), and ammonia (A), collectively the compounds of concern (COC), are 0.005 mg/L, 0.035 mg/L for each pyridine, and 30 mg/L, respectively. Levels of COC were measured above the RG in the OU1 shallow aquifer at RI-4S (P). Levels of COC were measured above the RG in the OU1 deep aquifer at PW-1D (B) and RI-4D (B & P). **Attachment B** contains laboratory analytical data.

2.0 Cover Inspections and Maintenance

Cover inspections are performed semi-annually and the second half of 2023 was completed on December 4, 2023. **Attachment C** contains cover inspection and maintenance checklist forms and a map of the OU2, OU3 and OU4 Superfund areas.

Results from the second half of 2023 indicated that no anomalies were identified in OU2, OU3, or OU4 with one exception. A section of concrete that is approximately 2 ft by 4 ft was removed to repair a broken water pipe in OU4. The area has been backfilled with aggregate and is pending concrete restoration. A purchase order has been issued to a contractor to install new concrete in accordance with the Remedial Action Work Plan for OU4 and work is anticipated to be completed early next quarter.

No tar derived material (TDM) was found or collected, and no seeps were identified. The following table summarizes the amount of material that has been collected for off-site disposal since 2000. The volumes were initially reported in drums and are currently tracked in pounds, as some of the drums in the past were not full.

	Annua	I Disposal from	the South Landf	ill Area	
Year	TDM (lbs)	Year	TDM (lbs)	Year	TDM (lbs)
2000 / 2001	10 / 8 drums	2008 / 2009	363	2015	20
2002 / 2003	1,348 / 2,475	2010	1,280	2016	60
2004	1,430	2011 / 2012	375	2017	300
2005	1,455	2013	800	2018 - 2023	0
2006 / 2007	600	2014	1,825	Total = 18 drur	ns + 12,331 lbs

3.0 Sewer Testing and Repairs

No sewer testing or repair activities occurred in 4Q2023. However, as plant processes are shut down sewers are being flushed with water and lift stations are being cleaned using a vacuum truck and water. All water utilized for flushing and cleaning is being treated by the on-site wastewater treatment plant. Updates on these activities will be provided in future quarterly status reports.

Please feel free to contact me at (216) 554-0413 or via email at *dave@dmpetersonpe.com* if you have any questions or require additional information.

Sincerely,

David M. Peterson, PE President

cc: Josh Zaharoff, USEPA – via Email Courtney Townsend, IDEM – via Email Brett Fishwild, Jacobs – via Email Laura Groom, Rolls Royce – via Email Mark Thrine, Aurorium – via Email Andrea Marrs, Aurorium – via Email

Attachments

- Table 1 Groundwater Elevations
- Table 2 Groundwater Concentrations

Figure 1 – Site Map

Attachment A – Well Monitoring Data

Attachment B – Laboratory Analytical Data

Attachment C - Cover Inspection and Maintenance Checklist

Attachment A

Well Monitoring Data

Attachment B

Laboratory Analytical Data

Attachment C

Cover Inspection and Maintenance Checklist

Table 1

Vertellus Integrated Pyridines LLC 4Q2023 Groundwater Elevations

OU1 / OU5 SHALLOW AQUIFER WELLS

Well ID	Op. Unit	Easting	Northing	TOC (ft asl)	DTW (ft)	Elev (ft asl)
RI-4S	OU1	173515	1637705	700.68	19.50	681.18

OU1 DEEP / OU5 MEDIUM AQUIFER WELLS

Well ID	Op. Unit	Easting	Northing	TOC (ft asl)	DTW (ft)	Elev (ft asl)
RI-4D	OU1	173515	1637688	700.69	26.85	673.84

OU5 DEEP AQUIFER WELLS

Well ID	Op. Unit	Easting	Northing	TOC (ft asl)	DTW (ft)	Elev (ft asl)
None measu	red.					

Notes:

- 1. Eastings and Northings in Indiana State Plane coordinates.
- 2. Well locations are estimated, not surveyed.
- 3. TOC = Top of Casing, DTW = Depth to Water, Elev = Groundwater Elevation
- 4. Groundwater levels were measured on December 4, 2023.

Table 2

Vertellus Integrated Pyridines LLC 4Q2023 Groundwater Concentrations

OU1 / OU5 SHALLOW AQUIFER WELLS

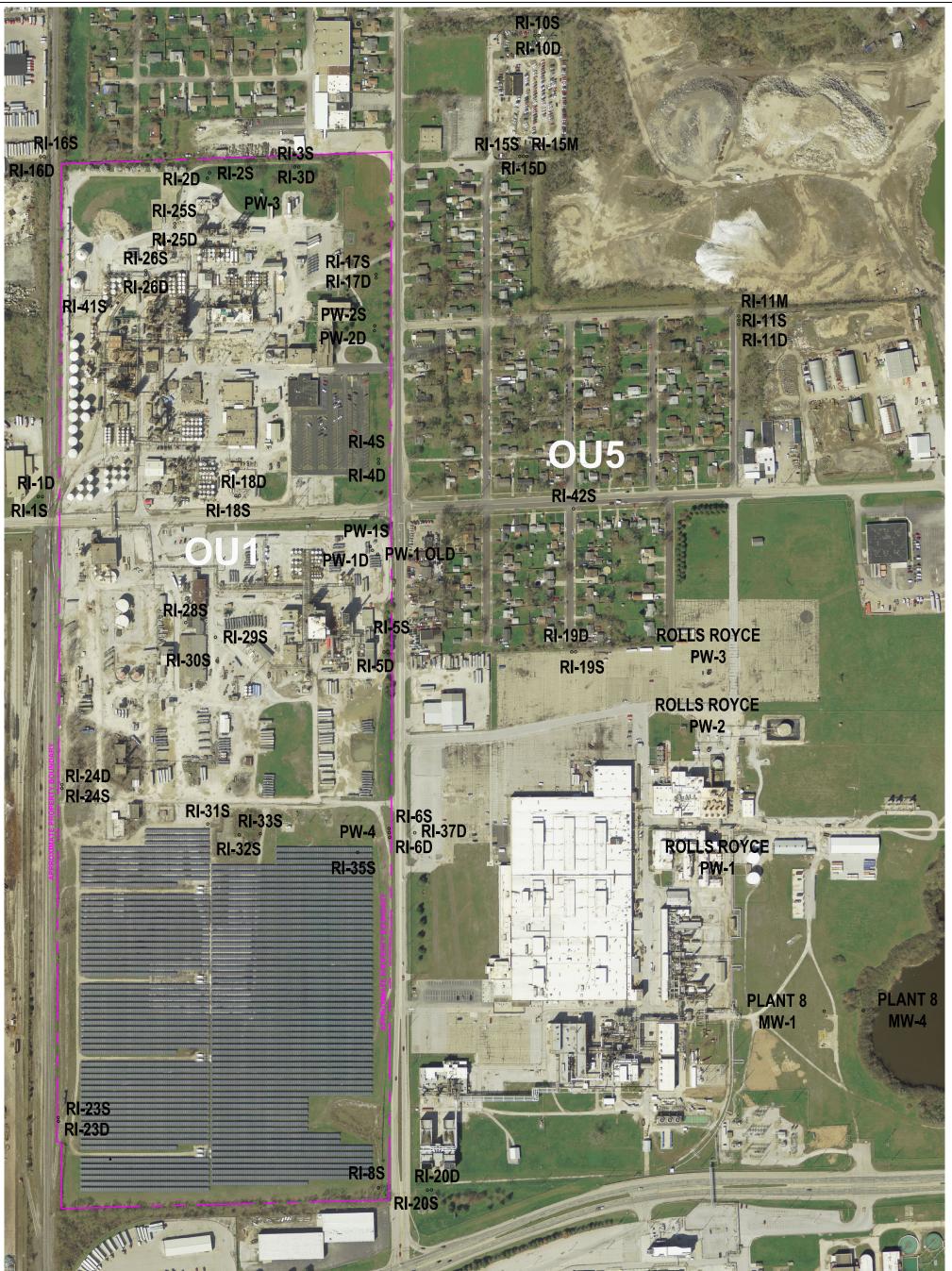
														2-Methyl-5-	2-Methyl-3-	3-Ethyl-4-
					3/4-	2,6-	2-Ethyl	2,4/2,5-	2,3-	3-Ethyl	4-Ethyl	3,5-	3,4-	ethyl	ethyl	methyl
Well Name	Benzene	Ammonia	Pyridine	2-Picoline	Picoline	Lutidine	pyridine	Lutidine	Lutidine	pyridine	pyridine	Lutidine	Lutidine	pyridine	pyridine	pyridine
PW-2S	<5.0	18.7	<9.5	<9.5	<9.5	<9.5	<9.5	<9.5	<9.5	<9.5	<9.5	11.8	<9.5	<9.5	<9.5	<9.5
RI-4S	<5.0	8.2	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	70.1	<10.0	<10.0	<10.0	<10.0
DVA/ 1C	0				12	1								-		

PW-1S <5.0 Note: PW-1S sampled for discharge compliance only.

OU1 DEEP / OU5 MEDIUM AQUIFER WELLS

														2-Methyl-5-	2-Methyl-3-	3-Ethyl-4-
					3/4-	2,6-	2-Ethyl	2,4/2,5-	2,3-	3-Ethyl	4-Ethyl	3,5-	3,4-	ethyl	ethyl	methyl
Well Name	Benzene	Ammonia	Pyridine	2-Picoline	Picoline	Lutidine	pyridine	Lutidine	Lutidine	pyridine	pyridine	Lutidine	Lutidine	pyridine	pyridine	pyridine
RI-4D	7	14.3	<10.5	<10.5	<10.5	15.7	<10.5	12.8	<10.5	<10.5	<10.5	231	<10.5	12.8	36.0	<10.5
PW-1D	22.2	Note: PW-1	.D sampled f	or discharge	compliance	only.										

OU5 DEEP AQUIFER WELLS


														2-Methyl-5-	2-Methyl-3-	3-Ethyl-4-
					3/4-	2,6-	2-Ethyl	2,4/2,5-	2,3-	3-Ethyl	4-Ethyl	3,5-	3,4-	ethyl	ethyl	methyl
Well Name	Benzene	Ammonia	Pyridine	2-Picoline	Picoline	Lutidine	pyridine	Lutidine	Lutidine	pyridine	pyridine	Lutidine	Lutidine	pyridine	pyridine	pyridine

No wells sampled

Notes: 1. All Results in ug/L except for ammonia which is in mg/L.

2. Bold and shaded text indicate result is above the cleanup objectives (5 ppb for benzene, 30 ppm for ammonia, and 35 ppb for individual pyridines).

3. Samples collected on December 4, 2023.

		QUARTI	ERLY REPORT	
	REV. DATE:	DRAWING DAT	TE: ACAD FILE: INDY PLANT.D	WG
		SI	te map	
	CLIENT: R	EILLY SU	PERFUND SITE	DMP
0 350 700	LOCATION:		S. TIBBS AVE. POLIS, INDIANA	DRAWING:
SCALE (FEET)	DESIGNED: DMP	DETAILED: DMP	PROJECT NO.:	1

Attachment A

Well Monitoring Data

					M	ONITO	RING WELL		P۷	1-/5
FACILITY	Αι	ırorium Ind	ianapol	is LLC/VIP	LLC	-	DATE	12/	4	/ 2023
PURPOSE	OF SAMPL	ING	Qua	irterly Moi	nitoring	-	SAMPLER	0	i. Steve	enson
WEATHER		DNS -	Temp	37	°F	Precip	Ø		Wind	NNGe 4
WELL DIA	METER	~10"		STICKUP	x	_ FL	USHMOUNT			
DEPTH TO	WATER	28.66	\$	TO	TAL DEPTH	prof	STANDI	NG WATER	N 6	t
WELL WA	TER VOLU	ME		~+	gallons					
			WELL	/OLUME C	ALCULATIO	ON FOR	2-inch WELL			
		ange an Managan na sa P Pro			RECORD	_				
Time	Volu	ime of Wate	9 r	рН	Conduc	tance	Temp.	Comment	S	
1048	0 (B	efore purge	NR NR			~ ~ ~				
1055	~ 5 501	lows		NB	N A		μA			
		Dissolve Ox	ygen (D	00) [prior t	o purging]	N	A			
Oxida	ation Redu	iction Poter	ntial (OF	RP) [prior t	o purging]	, m fs	1			
WELL YIEL	.D (gpm @		Low psi		Rech	arge Rat	e (if known)			
	spin @		P21	SAMPLE	RECORD	-				
Time Sam	pled	1057		Turbidity	clem	Color	dem		Odor	YES
Laborator	y Analytica	al Paramete	rs				Benzene or	nly		
Laborator	y-Supplied	l Containers	s (prese	rvative)	<u></u>		3-40r	nl (HCl)		······
SAMPLE	S DELIVER	ED TO		Ра	ice Analyti	cal Servi	ces, inc in	dianapolis,	IN	· ·····

					MC	ONITOR	RING WELL		PW	<u>- 15</u>
FACILITY	Au	ırorium Ind	ianapoli	is LLC/VIP	LLC	-	DATE	12/	4	/ 2023
PURPOSE	OF SAMPL	ING	Qua	rterly Mo	nitoring	-	SAMPLER	G.	Steve	nson
WEATHER)NS -	Temp	38.	°F	Precip	ø	N	Nind	NNEC 4
WELL DIA	METER	~ 12	P3	STICKUP	X	. FLU	JSHMOUNT			
								NG WATER_	NA	
WELL WA	TER VOLUI	ME	~	14	gallons	-				
			WELL V	OLUME C	ALCULATIO	N FOR 2	2-inch WELL			
L				PURGE	RECORD	n , ,				
Time	Volu	me of Wate	er	рН	Conduc	tance	Temp.	Comments		
1058	3 O (Before purge)				NA		NA			
1105	~5541	1000		n f	NE		or A			
· · ·					•••••••					
·····										
	I	Dissolve Ox	ygen (D	O) [prior t	o purging]		NA			
Oxida	ation Redu	ction Poter	ntial (OR	P) [prior t	o purging]		r A			
			Low		Recha	arge Rate	e (if known)		11 ////	
22.8	gpm @		psi	SAMPLE	RECORD					
Time Sam	pled	1108		Turbidity	CLEAR	Color	CLEAR	C	Odor	YES
Laborator	y Analytica	il Paramete	rs _				Benzene or	nly		
Laborator	y-Supplied	Containers	s (preser	vative)			3-40n	nl (HCl)		
SAMPLE	S DELIVERI	ED TO		Pa	ce Analytic	al Servi	ces, Inc Inc	dianapolis, II	N	

MONITORING WELL PW-2S									
FACILITY	Au	ırorium Indianapo	lis LLC/VIP	LLC		DATE	12/	4	/ 2023
PURPOSE	OF SAMPL	ING Qua	arterly Mor	nitoring		SAMPLER	G.	Steve	enson
WEATHER)NS - Temp	_ 37_	°F	Precip	ß	V	Vind	NNE CH
WELL DIA	METER	~8-inch	STICKUP	X	. FLl	JSHMOUNT			
DEPTH TO	WATER	24.08'	тот	TAL DEPTH	NA	STANDI	NG WATER_		NA
WELL WA	TER VOLUI	ME	Nt	gallons					
		WELL	VOLUME C	ALCULATIC	N FOR 2	-inch WELL	••••	<u></u>	
L		uuuunin 7461	PURGE	RECORD			Millen av 16777		
Time	Volu	me of Water	рН	Conduc	tance	Temp.	Comments		
1020	0 (B	efore purge)	NR	UL		rş			
1038	~5 5A /1	6 4 1	r L	**		w ¢.			
Oxida		Dissolve Oxygen (I Iction Potential (O							
WELL YIEL	.D gpm @	High Low 23 psi			arge Rate	e (if known)			*****
			SAMPLE	RECORD					
Time Sam	pled	1030	Turbidity	Class	Color	CLAAN	C)dor	YES
Laborator	y Analytica	al Parameters		VOC	s, SVOCs	i (incl. pyridi	nes), Ammo	nia	
Laborator	y-Supplied	Containers (prese	ervative)	3-40ml	(HCI), 2-	-100ml (unp	res), 1-250n	ni pla	stic (H ₂ SO ₄)
SAMPLE	S DELIVER	ED TO	Ра	ce Analytic	al Servic	ces, Inc Inc	dianapolis, II	V	

- Tau -

					М	ONITOR	ING WELL	•	RI-	45
MONITORING WELL RI- 4/s FACILITY Aurorium Indianapolis LLC/VIP LLC DATE 12/ 4/ / 2023 PURPOSE OF SAMPLING Quarterly Monitoring SAMPLER G. Stevenson WEATHER CONDITIONS - Temp 40 ° F Precip Wind PC - WEATHER CONDITIONS - Temp 40 ° F Precip Wind PC - WELL DIAMETER 2-inch STICKUP FLUSHMOUNT X DEPTH TO WATER /9. SU' TOTAL DEPTH 27. 4' STANDING WATER 7. 90' WELL VOLUME _1.2.9 gallons		/ 2023								
PURPOSE	OF SAMPL	ING	Qua	irterly Mo	nitoring	-	SAMPLER		G. Steve	nson
WEATHER		DNS -	Temp	40	°F	Precip	ø		Wind	pe 3
WELL DIA	METER	2-iı	nch	STICKUP		- FLU	JSHMOUNT	<u>x</u>		
DEPTH TO	WATER	<u>19.50</u>) ′	то	TAL DEPTH	27.4	Ś STANDII	NG WATER	7.9	o'
WELL WA	TER VOLUI	ME _	1.20		gallons					
	· · · · · · · · · · · · · · · · · · ·	Well Dept							s)	
				PURGE	RECORD		**********		wite	
Time					· ·			Comment		
1215	0 (B	efore pur	ge)	7.15	1334		19.5			······································
1223	ZJX WE	llwl. = 6	. 45gol	7.09	1244		18.2			
					Add 1				M itter,	
	[Dissolve O	xygen (D	O) [prior t	o purging]	0	. 48	mg /1	-	
Oxida	ation Redu	ction Pote	ential (OR	P) [prior t	o purging]	- 3	8.3		-	
WELL YIEL	D C	High	Low		Recha	rge Rate	(if known)	·····		
			-	SAMPLE	RECORD					
Time Samp	oled	1228	}	Turbidity o	C/R.M.	Color	clean		Odor	YES
Laboratory	/ Analytica	l Paramet	ers _		VOCs	s, SVOCs	(incl. pyridi	nes), Amm	ionia	
Laboratory	/-Supplied	Containe	rs (presei	vative)	3-40ml	(HCI), 2-	100ml (unp	res), 1-250	ml plast	ic (H ₂ SO ₄)
SAMPLES	5 DELIVERE	D TO		Pa	ce Analvtic	al Servic	es. lnc Ind	lianapolis	IN	

MONITORING WELL RI-4D

FACILITY	Aurorium Indi	anapolis LLC/VIP	LLC	DATE	12/	/ 2023
PURPOSE	OF SAMPLING	Quarterly Mo	nitoring	SAMPLER	G. Stev	enson
WEATHER	CONDITIONS -	Temp <u>42</u>	°F Precip	Ø	Wind	Ne3
	METER2-inc					
DEPTH TO	WATER 26.85	TO	TAL DEPTH 55.4	STANDI	NG WATER 28	. 55
WELL WA	TER VOLUME	4.66	gallons			
			ALCULATION FOR : ater (ft) X 0.1632 =			
			RECORD			
Time	Volume of Wate Removed (gallon		MS/cm Conductance	°ر Temp.	Comments	
1238	0 (Before purge		7-17-	18.7		
1320	24/× wellvols: 19	st/ 7.48	846	17.5		
- - 						
	Dissolve Oxy	/gen (DO) [prior t	o purging]	v. 38	mg/l	
Oxida	ation Reduction Poten	tial (ORP) [prior t	o purging]	F.3	and a subscription of the	
WELL YIEL	D High	Low	Recharge Rat	e (if known)		
		SAMPLE	RECORD			
Time Sam	pled <u>/325</u>	Turbidity	<u>Clean</u> Color	JEAN	Odor	KES
Laborator	y Analytical Paramete	rs	VOCs, SVOC	s (incl. pyrid	ines), Ammonia	
Laborator	y-Supplied Containers	(preservative)	3-40ml (HCl), 2	-100ml (unp	ores), 1-250ml pla	stic (H ₂ SO ₄)
SAMPLE	S DELIVERED TO	Pa	ice Analytical Servi	ces, Inc Inc	dianapolis, IN	

Attachment B

Laboratory Analytical Data

December 07, 2023

David Peterson Vertellus Integrated Pyridines LLC 201 N. Illinois Street Suite 1500 Indianapolis, IN 46242

RE: Project: Aurorium/Vertellus 3Q23 Pace Project No.: 50360862

Dear David Peterson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 04, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

1 In

Olivia Deck olivia.deck@pacelabs.com (317)228-3102 Project Manager

Enclosures

cc: Mark Thrine, Aurorium David Wilkes, Aurorium

CERTIFICATIONS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360862

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360862

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50360862001	PW-1S	Water	12/04/23 10:57	12/04/23 14:50
50360862002	PW-1D	Water	12/04/23 11:08	12/04/23 14:50

SAMPLE ANALYTE COUNT

Project:Aurorium/Vertellus 3Q23Pace Project No.:50360862

Lab ID S	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50360862001 I	PW-1S	EPA 8260	KLP	7	PASI-I
50360862002	PW-1D	EPA 8260	KLP	7	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

ANALYTICAL RESULTS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360862

Sample: PW-1S	Lab ID: 503	60862001	Collected: 12/04/2	3 10:57	Received: 12	2/04/23 14:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV UST	Analytical Met	hod: EPA 82	60					
	Pace Analytica	al Services -	Indianapolis					
Benzene	ND	ug/L	5.0	1		12/06/23 17:17	71-43-2	
Toluene	ND	ug/L	5.0	1		12/06/23 17:17	108-88-3	
Ethylbenzene	ND	ug/L	5.0	1		12/06/23 17:17	100-41-4	
Xylene (Total)	ND	ug/L	10.0	1		12/06/23 17:17	1330-20-7	
Surrogates		•						
Dibromofluoromethane (S)	94	%.	82-128	1		12/06/23 17:17	1868-53-7	
Toluene-d8 (S)	97	%.	73-122	1		12/06/23 17:17	2037-26-5	
4-Bromofluorobenzene (S)	88	%.	79-124	1		12/06/23 17:17	460-00-4	

ANALYTICAL RESULTS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360862

Sample: PW-1D	Lab ID: 503	60862002	Collected: 12/04/2	23 11:08	Received: 12	2/04/23 14:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV UST	Analytical Meth	nod: EPA 82	60					
	Pace Analytica	I Services -	Indianapolis					
Benzene	22.2	ug/L	5.0	1		12/06/23 17:49	71-43-2	
Toluene	ND	ug/L	5.0	1		12/06/23 17:49	108-88-3	
Ethylbenzene	ND	ug/L	5.0	1		12/06/23 17:49	100-41-4	
Xylene (Total)	ND	ug/L	10.0	1		12/06/23 17:49	1330-20-7	
Surrogates		-						
Dibromofluoromethane (S)	93	%.	82-128	1		12/06/23 17:49	1868-53-7	
Toluene-d8 (S)	98	%.	73-122	1		12/06/23 17:49	2037-26-5	
4-Bromofluorobenzene (S)	87	%.	79-124	1		12/06/23 17:49	460-00-4	

QUALITY CONTROL DATA

Project: Aurorium/Verte Pace Project No.: 50360862	Ilus 3Q23						
QC Batch: 766538		Analysis Met	thod:	EPA 8260			
QC Batch Method: EPA 8260		Analysis Des		8260 MSV UST	T-WATER		
		Laboratory:			I Services - Indi	ananolis	
Associated Lab Samples: 503608	362001, 50360862002	Luboratory.		1 doo / thaiy too		unupono	
METHOD BLANK: 3512025		Matrix:	Water				
Associated Lab Samples: 503608	362001, 50360862002						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Qualif	iers	
Benzene	ug/L	ND	5	5.0 12/06/23 12	2:56		
Ethylbenzene	ug/L	ND		5.0 12/06/23 12			
Toluene	ug/L	ND		0 12/06/23 12			
Xylene (Total)	ug/L	ND	10	0.0 12/06/23 12	2:56		
4-Bromofluorobenzene (S)	%.	87	79-12				
Dibromofluoromethane (S)	%.	93	82-12	28 12/06/23 12	2:56		
Toluene-d8 (S)	%.	95	73-12	22 12/06/23 12	2:56		
LABORATORY CONTROL SAMPLE	E: 3512026						
	3312020	Spike	LCS	LCS	% Rec		
Parameter	Units		Result	% Rec	Limits	Qualifiers	
Benzene	ug/L	50	52.9	106	74-124		
Ethylbenzene	ug/L	50	54.1	108	74-125		
Toluene	ug/L	50	55.6	111	72-119		
Xylene (Total)	ug/L	150	157	105	73-123		
4-Bromofluorobenzene (S)	%.			91	79-124		
Dibromofluoromethane (S)	%.			94	82-128		
Toluene-d8 (S)	%.			104	73-122		
MATRIX SPIKE SAMPLE:	3512028						
···· • ··· • • • • • • • • • • • • • •		50360860002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifier

Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	7.2	50	59.0	104	65-137	
Ethylbenzene	ug/L	ND	50	51.8	104	50-143	
Toluene	ug/L	ND	50	53.9	108	57-137	
Xylene (Total)	ug/L	ND	150	152	101	52-137	
4-Bromofluorobenzene (S)	%.				91	79-124	
Dibromofluoromethane (S)	%.				93	82-128	
Toluene-d8 (S)	%.				105	73-122	

SAMPLE DUPLICATE: 3512027

Parameter	Units	50360860001 Result	Dup Result	RPD	Max RPD	Qualifiers
Benzene	ug/L		ND		20	
Ethylbenzene	ug/L	ND	ND		20	
Toluene	ug/L	ND	ND		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: Aurorium/Vertellus 3Q23 Pace Project No.: 50360862

SAMPLE DUPLICATE: 3512027

Parameter	Units	50360860001 Result	Dup Result	RPD	Max RPD	Qualifiers
Xylene (Total)	ug/L	ND	ND		20)
4-Bromofluorobenzene (S)	%.	87	88			
Dibromofluoromethane (S)	%.	92	93			
Toluene-d8 (S)	%.	97	98			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360862

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

50360862002

PW-1D

QUALITY CONTROL DATA CROSS REFERENCE TABLE

766538

Project: Pace Project No.:	Aurorium/Vertellus 3Q23 50360862				
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50360862001	PW-1S	EPA 8260	766538		

EPA 8260

Submitting a sample of tion A uired Client Information: pany: Aurorium/Vertellus		in of custod Section B Required Pr Report To:	oject Inf		owledgm	The Ch ent and a		nce of	the P Sectio	ace T n C e Info		and C n:	Cor	5	036	086									1	Of	1
ress: 201 N. Illinois St., Ste. 1800		Copy To:						Company Name: Aurorium/vercenus								-			_	×							
anapolis, IN 46204		Durban O	4	440000	0055			_	Addres	10.4 G	201 N	I. Illino	ois St.	, Ste.	1800,	India	anapoli	s, IN 4	6204				Sec. 18	Regula	itory Ager	ncy	1.1
il: <u>dave@dmpetersonPE.com</u> ne: 216-554-0413 [Fax		Purchase Or Project Nam	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	440000 urorium/V	2.10.812 (20)	3023	_	_	Pace C Pace F		Manag	er:	oliv	ia da	ck@n	acela	bs.com			_	1			State	/ Locatio	0	-5.015
uested Due Date: STD 10 day TAT		Project #: G			citolido	JULL		_	Pace F			3586		10.00	crap		03.001	·,						oron	IN		
			1000-1010-00					-								1 and		Reque	sted A	nalysis	Filtered	d (Y/N)	1		1110	10.0 6	
	MATRIX	CODE	ss to left) COMP)		COLLE	ECTED		NOL			Pres	serva	itives	3		NIA	Ι										
SAMPLE ID	Drinking Wa Water Waste Wate Product Soil/Solid Oil	WT WW P SL OL	(see valid codes to left) (G=GRAB C=COMP)	ST	NRT	E	ND	COLLEC'	ERS							s Test								rine (Y/N)			
One Character per box. (A-Z, 0-9 / , -) Sample Ids must be unique	Wipe Air Other Tissue	WP AR OT TS	MATRIX CODE SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	H2SO4	HN03	HCI NaOH	Na2S203	Methanol	Other	Analyses	Benzene 8260							Residual Chlor			
PW-1S			WTG	12/11	1057	-			3		\square	3			Π		~	Π		\square							
			WTG	14/13	1109			Π	3		Π	3			Π			П									
PW-1D			MIM	140	1100			+	-	+	+	+	+	+	Н	ľ	+	+	+	++	+	\vdash	++		-		
No.			++	-				+	+	+	+	+	+	+	Н	H	+	+	+	+	+	\vdash	+	-	<u> </u>		
1																L											
51											\square		\top	\top	П	Ī		\square									
		_	++	-	-			+	+	+	++	+	+	+	Н	ŀ	+	+	+	+	+	\vdash	++	-			
1				-			-	\square	+	+	++	+	-	1	Н	ŀ	_	+	_	++	+	\vdash	+	-			-
1																L											
									T						Π	ſ											
(c)								H	+	+	+	+	-	\top	Η	ł	+	+	+	++	-	Ħ					
0							-	+	+	+	+	+	-	+	H	ŀ	+	+	+	++	-	\vdash	+	-			
1											\square				Ц			\square		\downarrow			+				
2																											
ADDITIONAL COMMENTS	1.26	10	RELINQU	ISHED BY I	AFFILIATIO	N	DAT	E	т	ME			ACC	CEPTI	ED BY	/ AFF	ILIATIO	N		D	ATE	TH	AE	1	SAMPLE	CONDITION	8
		Jou	y h	the	z,le	NCOR	12/4/	is	14	50		_		Т	Ĥ	_	_	_	_	ret	123	14	50	18	Y	Y	r
														_													
					SAMPLE	RNAME	AND SIG	NATU	IRE	17	2	2.9	25		in all	3.9	1.92	-	N. M.	1250		No. Star	100		c .		-
					PRI	NT Name	of SAMP	LER:	1		7	<1	~	16	116					-			_	C E	ed o	2	sa
					SIG	NATURE	of SAMP	LER	91	in	7.	37	21	/e	- 10	1	DA	TE Sig	ned:	1. 1.	11.	-		TEMP in (N)	Custody Sealed Cooler (V/N)	Pane
					0.0			1	in	n	Shi		5					0		12/	110	5		I	N es E	0805	int of

Date/Time and Initials of person examining conten		JETT [3 S-1S TH OTHER 5. Packing Material: □ Bubble Wrap	Bub	ble Bags	
2. Custody Seal on Cooler/Box Present: 12 Yes	🗆 No		□ None	🗆 Oth	er	
(If yes)Seals Intact: Yes No (leave blan	k if no seals	were pre	ent)			
3. Thermometer: 12345678 ABCD	EFGH		6. Ice Type: Wet 🗆 Blue 🗆 N	one		
4. Cooler Temperature(s):			7. If temp. is over 6°C or under 0°C, was the	M notified	7: 🗆 Ye	s 🗆 No
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECI			v to add more) Cooler temp should be above	reezing to 6	°C	
Ali	discrepand Yes	les will b No	written out in the comments section below.	Yes	No	N/A
USDA Regulated Solls? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)	100	/	All containers needing acid/base preservation have been pH <u>CHECKED</u> ?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, an any container with a septum cap or preserved with HCI.			
Short Hold Time Analysis (48 hours or less)? Analysis:		\checkmark	Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the containe count form			
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:		Residual Chlorine Check (SVOC 625 Pest/PCB 608)	Present	Absent	N/A
tush TAT Requested (4 days or less):		//	Residual Chlorine Check (Total/Amenable/Free Cyanide)			
Custody Signatures Present?		/	Headspace Wisconsin Sulfide?			1
containers Intact?:			Headspace in VOA Vials (>6mm): See Containter Count form for details	Present	Absent	<u>No VOA Vials Sen</u>
ample Label (IDs/Dates/Times) Match COC?: xcept TCs, which only require sample ID			[rlp Blank Present?			
xtra labels on Terracore Vials? (soils only)			Trip Blank Custody Seals?:	1		
OMMENTS: RELCEIVED 3	Trip R	10.015	Not On COC.			

Page 12 of 13

Sample Container Count

** Place a RED dot on containers

that are out of conformance **

	•		MeOH (only)		i. E	1					FR G	LASS			I.,			P	LAST	IC.				ľ	ОТ	HER		Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
	6		DI			ŀ				Ante			1				2		LAUI	10					011			Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	He Be	VOA VIAL HS >6mm	NG9U DG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	BP3U	BP3N	BP3F	BP3S	BP3B	BP3Z	CG3H	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac>9
1				3																							wt				
2				1												1.4											1				
3				V																							V				
4													5																		
5											1																				
6																															
7																															
8		1.1		-																											
9																															
10																															
11													1.																		
12													1. 1																		

Container Codes

*	Glas	SS		
DG9H	40mL HCI amber voa vial	BG1T	glass	
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass	
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass	
DG9T	40mL Na Thio amber vial	AGOU	100mL unpres amber glass	
DG9U	40mL unpreserved amber vial	AG1H	1L HCI amber glass	
VG9H	40mL HCI clear vial	AG1S	1L H2SO4 amber glass	
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass	
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass	
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass	1. 1. 201
NGKL	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass	
WGFL	4oz clear soil jar	AG2U	500mL unpres amber glass	1
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass	
ĊG3H	250mL clear glass HCI	AGSSF	250mL H2SO4 amb glass field filtered	1 6
ĊG3F	250mL clear, glass HCI, Fjeld Filter	AGSU	250mL unpres amber glass	
BG1H	1L HCI clear glass	AG3B	250mL NaOH amber glass	1 1
BG1S	1L H2SO4 clear glass		· · · · · · · · · · · · · · · · · · ·	-

			Plastic						
BP1B	1L NaOH plastic	BP4L	125mL unpreserved plastic						
BP1N	1L HNO3 plastic		125mL HNO3 plastic						
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic						
BP1U	1L unpreserved plastic	—	Miscellaneous						
BP1Z	1L NaOH, Zn, Ac		wiscenatieous						
BP2N	500mL HNO3 plastic	Syrin	yringe Kit LL Cr+6 sampling kit						
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag						
P2S	500mL H2SO4 plastic	R	Terracore Kit						
BP2U	500mL unpreserved plastic	SP51	120mL Coliform Sodium Thiosulfate						
BP2Z	500mL NaOH, Zn Ac	GN	General Container						
BP3B	250mL NaOH plastic	U	Summa Can (air sample)						
	250mL HNO3 plastic	WT	Water						
BP3F	250mL HNO3 plastic-field filtered	SL	Solid						
P3U	250mL unpreserved plastic	OL:	Oil						
P3S			Non-aqueous liquid						
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe						
3P3R	250mL Unpres. FF SO4/OH buffer								

December 19, 2023

David Peterson Vertellus Integrated Pyridines LLC 201 N. Illinois Street Suite 1500 Indianapolis, IN 46242

RE: Project: Aurorium/Vertellus 3Q23 Pace Project No.: 50360861

Dear David Peterson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 04, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

In

Olivia Deck olivia.deck@pacelabs.com (317)228-3102 Project Manager

Enclosures

cc: Mark Thrine, Aurorium David Wilkes, Aurorium

CERTIFICATIONS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360861

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Washington Dept of Ecology #: C1081 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project:Aurorium/Vertellus 3Q23Pace Project No.:50360861

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50360861001		Water	12/04/23 10:30	12/04/23 14:50

SAMPLE ANALYTE COUNT

Project:Aurorium/Vertellus 3Q23Pace Project No.:50360861

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50360861001	PW-2S	EPA 8270	FIP	20	PASI-I
		EPA 8260	KLP	7	PASI-I
		SM 4500-NH3 G	OAS	1	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

ANALYTICAL RESULTS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360861

8270 SVOC App9 Water Analytical Method: EPA 8270 Preparation Method: EPA 3510 Pace Analytical Services - Indianapolis 2,3-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 583-61-9 N2 2,4-Lutidine / 2,5-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 583-61-9 N2 3-Ethyl-4-MethylPyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 529-21-5 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 100-71-0 N2 3-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-78-7 N2 4-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-75-4 N2 2,6-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 583-58-4 N2 3,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 <th>Sample: PW-2S</th> <th>Lab ID: 5</th> <th>50360861001</th> <th>Collected: 12/04/2</th> <th>23 10:30</th> <th>Received: 12</th> <th>2/04/23 14:50 N</th> <th>latrix: Water</th> <th></th>	Sample: PW-2S	Lab ID: 5	50360861001	Collected: 12/04/2	23 10:30	Received: 12	2/04/23 14:50 N	latrix: Water	
Pace Analytical Services - Indianapolis 2.3-Luidine ND ug/L 9.5 1 12/06/23 15.55 12/07/23 32.8 58.4-1 NZ 2,4-Luidine ND ug/L 9.5 1 12/06/23 15.55 12/07/23 13.28 58.4-14 NZ 2.Ethyld-MethylPyridine ND ug/L 9.5 1 12/06/23 15.55 12/07/23 13.28 58.7-8-7 NZ 2.Ethylpyridine ND ug/L 9.5 1 12/06/23 15.55 12/07/23 13.28 58.7-8-7 NZ 2.Ethylpyridine ND ug/L 9.5 1 12/06/23 15.55 12/07/23 13.28 58.7-8-7 NZ 3.4-Luidine ND ug/L 9.5 1 12/06/23 15.55 12/07/23 13.28 58.58-4 NZ 3.4-Luidine ND ug/L 9.5 1 12/06/23 15.55 12/07/23 13.28 141.59-59-2 NZ <td< th=""><th>Parameters</th><th>Results</th><th>Units</th><th>Report Limit</th><th>DF</th><th>Prepared</th><th>Analyzed</th><th>CAS No.</th><th>Qual</th></td<>	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2.3-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 583-61-9 NZ 2.4-Lutidine / 2.5-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-47-4 NZ 3-Ethyl-MethylPyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 508-78-7 NZ 3-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-75-4 NZ 2-6-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 538-78-7 NZ 2-6-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-48-5 NZ 3-5-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-48-5 NZ 3-5-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-48-5 NZ 2-Methyl-S-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 NZ </td <td>8270 SVOC App9 Water</td> <td>Analytical N</td> <td>/lethod: EPA 82</td> <td>270 Preparation Met</td> <td>hod: EP</td> <td>A 3510</td> <td></td> <td></td> <td></td>	8270 SVOC App9 Water	Analytical N	/lethod: EPA 82	270 Preparation Met	hod: EP	A 3510			
2,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-47-4 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 508-47-7 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-78-7 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-78-7 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 588-58-4 N2 3,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-48-5 N2 3,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-45-5 N2 2-Methyl-S-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-S-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2		Pace Analy	tical Services -	Indianapolis					
3-Ethyl-4-MethylPyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 529-21-5 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-75-7 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-75-7 N2 2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-75-7 N2 2-Atutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 581-84-7 N2 3-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 591-82-0 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 149-95-5 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 149-95-5 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 141-55-60-0<	2,3-Lutidine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	583-61-9	N2
2-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 100-71-0 N2 3-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-73-7 N2 2.Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-74-7 N2 2.6-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 538-58-4 N2 3.5-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 1045	2,4-Lutidine / 2,5-Lutidine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	108-47-4	N2
3-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-78-7 N2 4-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-78-7 N2 2,6-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-78-4 N2 3,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 591-22-0 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-66-8 3/4-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-66-8 3/4-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-61-1 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 116-68-10-1 2-Fluorobiphenyl (S) 62	3-Ethyl-4-MethylPyridine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	529-21-5	N2
4-Ethylpyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 536-75-4 N2 2,6-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 588-75-4 N2 3,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 583-68-4 N2 3,5-Lutidine 11.8 ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 149-05-5 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 144-90-5 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 14159-59-2 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 10-06-8 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 110-86-1 12/06/23 15:55 12/07/23 13:28 116-50-0 1 2-Flourophenol(S) 62 %. 17-107 1 12/06/23 15:55 <	2-Ethylpyridine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	100-71-0	N2
2,6-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-48-5 N2 3,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 583-58-4 N2 3,5-Lutidine 11.8 ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 110-86-1 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 4165-60-2 2-Fluorophenyl (S) 62 %. 17-107 1 12/06/23 15:55 12/07/23 13:28 321-60-8 <td< td=""><td>3-Ethylpyridine</td><td>ND</td><td>ug/L</td><td>9.5</td><td>1</td><td>12/06/23 15:55</td><td>12/07/23 13:28</td><td>536-78-7</td><td>N2</td></td<>	3-Ethylpyridine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	536-78-7	N2
3,4-Lutidine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 583-58-4 N2 3,5-Lutidine 11.8 ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 591-22-0 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 110-86-1 2-Fluorobiphenyl (S) 62 % 11-15 1 12/06/23 15:55 12/07/23 13:28 321-60-8 2-Fluorobiphenyl (S) 63 % 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4.6-Tribromophenol (S) </td <td>4-Ethylpyridine</td> <td>ND</td> <td>ug/L</td> <td>9.5</td> <td>1</td> <td>12/06/23 15:55</td> <td>12/07/23 13:28</td> <td>536-75-4</td> <td>N2</td>	4-Ethylpyridine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	536-75-4	N2
3.5-Lutidine 11.8 ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 591-22-0 N2 2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-5 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-6-8 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 104-90-6-8 N2 3/4-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 105-66-1 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 115-66-1 N2 P-Terphenyl-141 (S) 91 % 364-19 1 12/06/23 15:55 12/07/23 13:28 118-56-62-2 2-Fluorobiphenyl (S) 455 % 10-71 1 12/06/23 15:55 12/07/23 13:28 118-79-6 2-Fluorobiphenyl (S	2,6-Lutidine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	108-48-5	N2
2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 14159-59-2 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 14159-59-2 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 N2 3/4-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-06-8 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2 Surrogates 1 12/06/23 15:55 12/07/23 13:28 165-62-2 2 1 12/06/2	3,4-Lutidine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	583-58-4	N2
2-Methyl-5-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 14159-59-2 N2 2-Methyl-3-ethyl pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 14159-59-2 N2 2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 N2 3/4-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 108-06-8 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2 2-Fluorobiphenyl (S) 62 %. 11-105 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2 2-Fluorobiphenyl (S) 62 %. 10-58 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2 2-Fluorobiphenyl (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 178-51-0 1 2-Fluorobiphenyl (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 18-62-2 </td <td>3,5-Lutidine</td> <td>11.8</td> <td>ug/L</td> <td>9.5</td> <td>1</td> <td>12/06/23 15:55</td> <td>12/07/23 13:28</td> <td>591-22-0</td> <td>N2</td>	3,5-Lutidine	11.8	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	591-22-0	N2
2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 3/4-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 N2 Pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 110-86-1 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2-Fluorobiphenyl (S) 62 %. 11-105 1 12/06/23 15:55 12/07/23 13:28 321-60-8 p-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2-Fluorophenol (S) 33 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2-Fluorophenol (S) 95 %. 35-149 1 12/06/23 14:34 71-43-2 2-Fluorophenol (S) 95 %.	2-Methyl-5-ethyl pyridine	ND	-	9.5	1	12/06/23 15:55	12/07/23 13:28	104-90-5	N2
2-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 109-06-8 3/4-Picoline ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 N2 Pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 N2 Surrogates ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2-Fluorobiphenyl (S) 62 %. 11-105 1 12/06/23 15:55 12/07/23 13:28 321-60-8 p-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 371-8-51-0 Phenol-d5 (S) 33 %. 10-58 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2.Fluorophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2.4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 14:34 71-43-2 Toluene ND ug	2-Methyl-3-ethyl pyridine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	14159-59-2	N2
Pyridine ND ug/L 9.5 1 12/06/23 15:55 12/07/23 13:28 110-86-1 Surrogates Nitrobenzene-d5 (S) 69 %. 17-107 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2-Fluorobiphenyl (S) 62 %. 11-105 1 12/06/23 15:55 12/07/23 13:28 321-60-8 P-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 371-60-8 P-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 4165-62-2 2-Fluorophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 118-79-6 8260/5030 MSV UST Analytical Method: EPA 8260 1 12/06/23 14:34 71-43-2 1 Benzene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L <	2-Picoline	ND		9.5	1	12/06/23 15:55	12/07/23 13:28	109-06-8	
Surrogates Nitrobenzene-d5 (S) 69 %. 17-107 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2-Fluorobiphenyl (S) 62 %. 11-105 1 12/06/23 15:55 12/07/23 13:28 321-60-8 p-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 171-8-51-0 Phenol-d5 (S) 33 %. 10-58 1 12/06/23 15:55 12/07/23 13:28 4165-62-2 2-Fluorophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 4165-62-2 2.4,6-Tribromophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2.4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2.4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 14:34 18-79-6 Benzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 X	3/4-Picoline	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28		N2
Surrogates Nitrobenzene-d5 (S) 69 %. 17-107 1 12/06/23 15:55 12/07/23 13:28 4165-60-0 2-Fluorobiphenyl (S) 62 %. 11-105 1 12/06/23 15:55 12/07/23 13:28 321-60-8 p-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 171-85-10-2 P-henol-d5 (S) 33 %. 10-58 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 14:34 174-3-2 S260/5030 MSV UST Analytical Method: EPA 8260 1 12/06/23 14:34 108-88-3 Toluene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND	Pyridine	ND	ug/L	9.5	1	12/06/23 15:55	12/07/23 13:28	110-86-1	
2-Fluorobiphenyl (S) 62 %. 11-105 1 12/06/23 15:55 12/07/23 13:28 321-60-8 p-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 1718-51-0 Phenol-d5 (S) 33 %. 10-58 1 12/06/23 15:55 12/07/23 13:28 4165-62-2 2-Fluorophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 187-9-6 Bez60/5030 MSV UST Analytical Method: EPA 8260 Pace Analytical Method: EPA 8260 Pace Analytical Services - Indianapolis 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1	Surrogates		-						
p-Terphenyl-d14 (S) 91 %. 36-149 1 12/06/23 15:55 12/07/23 13:28 1718-51-0 Phenol-d5 (S) 33 %. 10-58 1 12/06/23 15:55 12/07/23 13:28 4165-62-2 2-Fluorophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 118-79-6 Bez60/5030 MSV UST Analytical Method: EPA 8260 Pace Analytical Services - Indianapolis Benzene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 130-20-7 Surrogates	Nitrobenzene-d5 (S)	69	%.	17-107	1	12/06/23 15:55	12/07/23 13:28	4165-60-0	
Phenol-d5 (S) 33 %. 10-58 1 12/06/23 15:55 12/07/23 13:28 4165-62-2 2-Fluorophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 118-79-6 8260/5030 MSV UST Analytical Method: EPA 8260 Pace Analytical Services - Indianapolis Benzene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88	2-Fluorobiphenyl (S)	62	%.	11-105	1	12/06/23 15:55	12/07/23 13:28	321-60-8	
2-Fluorophenol (S) 45 %. 10-71 1 12/06/23 15:55 12/07/23 13:28 367-12-4 2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 118-79-6 8260/5030 MSV UST Analytical Method: EPA 8260 Pace Analytical Services - Indianapolis Benzene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 130-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water	p-Terphenyl-d14 (S)	91	%.	36-149	1	12/06/23 15:55	12/07/23 13:28	1718-51-0	
2,4,6-Tribromophenol (S) 95 %. 35-149 1 12/06/23 15:55 12/07/23 13:28 118-79-6 8260/5030 MSV UST Analytical Method: EPA 8260 Pace Analytical Services - Indianapolis Pace Analytical Services - Indianapolis Benzene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Oluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G 4500-NH3 G 1	Phenol-d5 (S)	33	%.	10-58	1	12/06/23 15:55	12/07/23 13:28	4165-62-2	
8260/5030 MSV UST Analytical Method: EPA 8260 Pace Analytical Services - Indianapolis Benzene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Strongates ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1330-20-7 Surrogates ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1330-20-7 Surrogates ND 10.0 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G 5 5 5<	2-Fluorophenol (S)	45	%.	10-71	1	12/06/23 15:55	12/07/23 13:28	367-12-4	
ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Kylbenzene ND ug/L 5.0 1 12/06/23 14:34 108-48-3 Strinogates ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Surrogates ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G 1 12/06/23 14:34 460-00-4	2,4,6-Tribromophenol (S)	95	%.	35-149	1	12/06/23 15:55	12/07/23 13:28	118-79-6	
Benzene ND ug/L 5.0 1 12/06/23 14:34 71-43-2 Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G 5 5 5 5	8260/5030 MSV UST	Analytical N	/lethod: EPA 82	260					
Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G		Pace Analy	tical Services -	Indianapolis					
Toluene ND ug/L 5.0 1 12/06/23 14:34 108-88-3 Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G	Benzene	ND	ug/L	5.0	1		12/06/23 14:34	71-43-2	
Ethylbenzene ND ug/L 5.0 1 12/06/23 14:34 100-41-4 Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G									
Xylene (Total) ND ug/L 10.0 1 12/06/23 14:34 1330-20-7 Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G	Ethylbenzene	ND	0	5.0	1		12/06/23 14:34	100-41-4	
Surrogates Surrogates Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G	2	ND	-	10.0					
Dibromofluoromethane (S) 94 %. 82-128 1 12/06/23 14:34 1868-53-7 Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G	•		÷9,-						
Toluene-d8 (S) 97 %. 73-122 1 12/06/23 14:34 2037-26-5 4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G SM 4500-NH3 G	0	94	%.	82-128	1		12/06/23 14:34	1868-53-7	
4-Bromofluorobenzene (S) 88 %. 79-124 1 12/06/23 14:34 460-00-4 4500 Ammonia Water Analytical Method: SM 4500-NH3 G 5 5 5 5		97	%.	73-122	1		12/06/23 14:34	2037-26-5	
		88		79-124	1		12/06/23 14:34	460-00-4	
Pace Analytical Sonvices Indiananalia	4500 Ammonia Water	Analytical N	/lethod: SM 450	00-NH3 G					
Face Analytical Services - Indianapolis		Pace Analy	tical Services -	Indianapolis					
Nitrogen, Ammonia 18.7 mg/L 5.0 10 12/12/23 20:21 7664-41-7	Nitrogen, Ammonia	18.7	mg/L	5.0	10		12/12/23 20:21	7664-41-7	

QUALITY CONTROL DATA

Pace Project No.: 50360861							
QC Batch: 766538		Analysis Meth		PA 8260			
QC Batch Method: EPA 8260		Analysis Desc	ription: 82	260 MSV UST-	WATER		
		Laboratory:	P	ace Analytical	Services - Indian	apolis	
Associated Lab Samples: 503608	861001						
METHOD BLANK: 3512025		Matrix:	Water				
Associated Lab Samples: 503608	361001						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifier	s	
Benzene	ug/L		5.0	12/06/23 12:	56		
Ethylbenzene	ug/L	ND	5.0				
Toluene	ug/L	ND	5.0				
Xylene (Total)	ug/L	ND	10.0				
4-Bromofluorobenzene (S)	%.	87	79-124	12/06/23 12:	56		
Dibromofluoromethane (S)	%.	93	82-128	12/06/23 12:	56		
Toluene-d8 (S)	%.	95	73-122	12/06/23 12:	56		
LABORATORY CONTROL SAMPLE	E: 3512026						
			.CS	LCS	% Rec		
Parameter	Units	Conc. Re	esult	% Rec	Limits	Qualifiers	
Benzene	ug/L	50	52.9	106	74-124		
Ethylbenzene	ug/L	50	54.1	108	74-125		
Toluene	ug/L	50	55.6	111	72-119		
Xylene (Total)	ug/L	150	157	105	73-123		
4-Bromofluorobenzene (S)	%.			91	79-124		
Dibromofluoromethane (S)	%.			94	82-128		
Toluene-d8 (S)	%.			104	73-122		
MATRIX SPIKE SAMPLE:	3512028						
	00.2020	50360860002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L		2 50	59.0	104	65-137	
Ethylbenzene	ug/L	NE		51.8	104	50-143	
Toluene	ug/L	NE		53.9	108	57-137	
Xylene (Total)	ug/L	NE		152	101	52-137	
4-Bromofluorobenzene (S)	%.				91	79-124	
Dibromofluoromethane (S)	%.				93	82-128	
Toluene-d8 (S)	%.				105	73-122	
SAMPLE DUPLICATE: 3512027							
Parameter	Units	50360860001 Result	Dup Result	RPD	Max RPD	Qualifiers	
Benzene	ug/L		ND		2		-
	ug/L				2	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ND

ND

ND

ND

ug/L

ug/L

REPORT OF LABORATORY ANALYSIS

Ethylbenzene

Toluene

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

20

20

QUALITY CONTROL DATA

Project: Aurorium/Vertellus 3Q23 Pace Project No.: 50360861

SAMPLE DUPLICATE: 3512027						
Parameter	Units	50360860001 Result	Dup Result	RPD	Max RPD	Qualifiers
Xylene (Total)	ug/L	ND	ND		20	D
4-Bromofluorobenzene (S)	%.	87	88			
Dibromofluoromethane (S)	%.	92	93			
Toluene-d8 (S)	%.	97	98			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360861

QC Batch:	766555	Analysis Method:	EPA 8270
QC Batch Method:	EPA 3510	Analysis Description:	8270 Water MSSV
		Laboratory:	Pace Analytical Services - Indianapolis
Associated Lab Sar	nples: 50360861001		
METHOD BLANK:	3512128	Matrix: Water	

Associated Lab Samples: 50360861001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
2.3-Lutidine	ug/L		10.0	12/07/23 12:23	N2
2,4-Lutidine / 2,5-Lutidine	ug/L	ND	10.0	12/07/23 12:23	N2
2,6-Lutidine	ug/L	ND	10.0	12/07/23 12:23	N2
2-Ethylpyridine	ug/L	ND	10.0	12/07/23 12:23	N2
2-Methyl-3-ethyl pyridine	ug/L	ND	10.0	12/07/23 12:23	N2
2-Methyl-5-ethyl pyridine	ug/L	ND	10.0	12/07/23 12:23	N2
2-Picoline	ug/L	ND	10.0	12/07/23 10:29	
3,4-Lutidine	ug/L	ND	10.0	12/07/23 12:23	N2
3,5-Lutidine	ug/L	ND	10.0	12/07/23 12:23	N2
3-Ethyl-4-MethylPyridine	ug/L	ND	10.0	12/07/23 12:23	N2
3-Ethylpyridine	ug/L	ND	10.0	12/07/23 12:23	N2
3/4-Picoline	ug/L	ND	10.0	12/07/23 12:23	N2
4-Ethylpyridine	ug/L	ND	10.0	12/07/23 12:23	N2
Pyridine	ug/L	ND	10.0	12/07/23 10:29	
2,4,6-Tribromophenol (S)	%.	79	35-149	12/07/23 10:29	
2-Fluorobiphenyl (S)	%.	48	11-105	12/07/23 10:29	
2-Fluorophenol (S)	%.	46	10-71	12/07/23 10:29	
Nitrobenzene-d5 (S)	%.	65	17-107	12/07/23 10:29	1d
p-Terphenyl-d14 (S)	%.	98	36-149	12/07/23 10:29	
Phenol-d5 (S)	%.	32	10-58	12/07/23 10:29	

LABORATORY CONTROL SAMPLE: 3512129

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyridine	ug/L		17.2	34	10-51	
2,4,6-Tribromophenol (S)	%.			78	35-149	
2-Fluorobiphenyl (S)	%.			57	11-105	
2-Fluorophenol (S)	%.			40	10-71	
Nitrobenzene-d5 (S)	%.			59	17-107	
p-Terphenyl-d14 (S)	%.			89	36-149	
Phenol-d5 (S)	%.			30	10-58	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Aurorium/Verte	ellus 3Q23										
Pace Project No .:	50360861											
QC Batch:	767506		Anal	ysis Metho	d:	SM 4500-NI	-13 G					
QC Batch Method:	SM 4500-NH	13 G	Anal	ysis Descri	ption:	4500 Ammo	nia					
			Labo	oratory:		Pace Analyt	ical Service	es - Indiana	polis			
Associated Lab Sam	nples: 50360	0861001										
METHOD BLANK:	3516353			Matrix: W	ater							
Associated Lab Sam	nples: 50360	861001										
			Bla	nk	Reporting							
Param	neter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	6			
Nitrogen, Ammonia		mg/L		ND	0.5	0 12/12/23	3 19:11					
LABORATORY CON	ITROL SAMPL	E: 3516354										
			Spike	LC	-	LCS	% Re					
Param	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers	_		
Nitrogen, Ammonia		mg/L		5	5.1	102	2 9	90-110				
MATRIX SPIKE & M	ATRIX SPIKE	DUPLICATE: 3516			3516357	7						
			MS	MSD								
Parameter		50360705001	Spike Conc.	Spike	MS	MSD	MS % Rec	MSD % Rec	% Rec		Max	0
		Jnits Result		Conc.	Result	Result			Limits	RPD	RPD	Qual
Nitrogen, Ammonia	r	ng/L ND	5	5	5.2	5.2	102	102	90-110	0	20	
MATRIX SPIKE SAM	MPLE:	3516358										
			50360	705002	Spike	MS		MS	% Rec			
Param	neter	Units	Re	esult	Conc.	Result	%	Rec	Limits		Qualif	iers
Nitrogen, Ammonia		mg/L		ND	5		5.1	102	90	-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360861

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

1d A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Aurorium/Vertellus 3Q23Pace Project No.:50360861

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50360861001	PW-2S	EPA 3510	766555	EPA 8270	766679
50360861001	PW-2S	EPA 8260	766538		
50360861001	PW-2S	SM 4500-NH3 G	767506		

tion A quired Client In	Submitting a sample formation: rorium/Vertellus		in of custoo Section B Required P Report To:	roject Ir		nowledgm	The Ch	IN-OF ain-of-C acceptanc	ustod ce of ti Se In	ly is he Pa action	a LEO ace Te n C Inform	GAL D	OCL nd Co	IMEN	IT ns								36:	ry: Deno Party		-	Of	1
	N. Illinois St., Ste. 1800		Copy To:	Dav	e reterst	n, FE			_		_	ne: /		-	_		-											
lianapolis, IN	46204								_	ddres						00, Ind	dianpa	olis,	IN 46204	4			137.3-	Re	gulat	ory Agen	cy	13. L.J. X.
	ImpetersonPE.com		Purchase O		44000	22003	2000		_	ace Q								1			-	_						
one: 216 quested Due Da	6-554-0413 Fax		Project Nam Project #: 0		urorium/	vertellus	3Q23		_		roject i rofile #	Manag	586-		deck@	pace	labs.c	com,		_	-	100		5	State /	Location	1	1021
	te: STD 10 day TAT		110,000 #. 0									. 0	200-	-			1.01	Re	quested	Anah	sis Filte	ered ((/N)			IN	2.00.00	100
		MATRIX Drinking Wa	CODE Iter DW	codes to left)	C=COMP)	COLL	ECTED		NOI			Pres	ervati	ves	-	NIA												1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	SAMPLE ID	Water Waste Wate Product Soil/Solid Oil Wipe	WT	(see valid	(G=GRAB	ART	Eł	ND	AT COLLECT	5						s Test									Chlorine (Y/N)			
	One Character per box. (A-Z, 0-9 / , -) imple lds must be unique	Air Other Tissue	AR OT TS	MATRIX CODE	SAMPLE TYPE DATE	TIME	DATE	TIME	SAMPLE TEMP AT		H2SO4	HN03	NaOH	Na2S203	Methanol Other	Analyse	Ammonia	BTEX by 8260	SVOC by 8270						Residual Chlo			
					5 12/4/2	_	DATE	TIME	3		+ +		-	-	-					+	++	+	++		F1			
1 PW-2S				WTC	2 17/2	1030			7		1	-	-	\vdash	+		×	x)	(-	++	+	++	-	łł	_		
1				\downarrow						+			+				\square	\rightarrow			++	\perp	$\downarrow \downarrow$					
3																												
100																1									11			
4					-	1			+	+	+		+	\vdash	+	1	H	+			++	+	++	+	łł			
5				+		-	-		-	+	+	-	+-		+		\vdash	+		+	+	+	++	-				
6																									11			
7																												
										+	\square		+		1	1	H	+			++	+	++		11			
8				+	+				+	+	+	-	+	\vdash	+		\vdash	+	++	+	++	+	++		łł			
9				+	-	-			_	-		_	+		-		\square	-			+	_	++	-			_	
10																												
11																		T					IT		[
-				$^{++}$	-					+	+		+	\vdash	+	1	\vdash	+			++	+	++		11			
2													-												Ц			
all and and	ADDITIONAL COMMENTS	1-2010	11		UISHED BY		20 - 5 - 5 - 5	DATE		TIM	1411		-	AND GRAD	PTED B	010110	FILIA	ION	When he had		DATE	-	TIME			SAMPLE	CONDITION	
70-Pyridines	only list		Da	7	th	shop	Christop	12/4/2	3	143	50				1.1	7	_			1	2/4/	23	145	so l	8	Y	Y	r
						SAMPLE	PNANE	AND SIGN	ATUS	E			-	100				2.4			200							
						PRI	NT Name	of SAMPL	ER:	1	m	· ·	sta	U.C.	USO	2		DATE	Signed:		14/	5.1			IEMPINC	eceived on	Custody Sealed Cooler (YNN)	age age the

Pace	PLECON	DITION	UPON RECEIPT FORM				
Date/Time and Initials of person examining content	s: 17/(417	3 SISTH				
		ETT	OTHER	-	/	/	34
			5. Packing Material:	Bubble Wrap	Bub	ble Bags	
2. Custody Seal on Cooler/Box Present: 🗹 Yes	□ No			□ None	Othe	er	
(If yes)Seals Intact: 🛛 Yes 🗆 No (leave bland	k if no seals v	were pres	ent)				
B. Thermometer: 12345678 ABCD	EFGH		6. Ice Type: Wet	Blue Non	e		
I. Cooler Temperature(s): US/US	IVED (use Com	ments belo	7. If temp. is over 6°C or i	under 0°C, was the PN p should be above fre			□ No
			written out in the comments section below.	p should be above he	CELING CO O	<u> </u>	
	Yes	No			Yes	No	N/A
JSDA Regulated Soils? (HI, ID, NY, WA, OR, CA, NM, TX, DK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		/	All containers needing acid/base preservation h			V	
hort Hold Time Analysis (48 hours or less)?			CHECKED?: Exceptions: VOA, coliform, LLHg, any container with a septum cap or preserved with Circle: HNO3 (<2) (+2SO4 (<2) NaOH (>10) NaOH/Zn Any non-conformance to pH recommendations will be count form	h HCI. Ac (>9)		1	
hort Hold Time Analysis (48 hours or less)? nalysis:	Time:		any container with a septum cap or preserved with Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/Zr Any non-conformance to pH recommendations will be	h HCI. Ac (>9) noted on the container	Present	Absent	N/A
short Hold Time Analysis (48 hours or less)? analysis: ime 5035A TC placed in Freezer or Short Holds To Lab	Time:		any container with a septum cap or preserved with Circle: HNO3 (<2) (+2SO4 (<2) NaOH (>10) NaOH/Zn Any non-conformance to pH recommendations will be count form	h HCI. NAC (>9) noted on the container 608)		Absent	N/A
short Hold Time Analysis (48 hours or less)? malysis:	Time:		any container with a septum cap or preserved with Circle: HNO3 (<2) (+2SO4 (<2) NaOH (>10) NaOH/Zn Any non-conformance to pH recommendations will be count form Residual Chlorine Check (SVOC 625 Pest/PCB	h HCI. NAC (>9) noted on the container 608)		Absent	NA
hort Hold Time Analysis (48 hours or less)? nalysis: ime 5035A TC placed in Freezer or Short Holds To Lab ush TAT Requested (4 days or less): ustody Signatures Present?	Time:		any container with a septum cap or preserved with Circle: HNO3 (<2) (+2SO4 (<2) NaOH (>10) NaOH/Zrr Any non-conformance to pH recommendations will be count form Residual Chlorine Check (SVOC 625 Pest/PCB Residual Chlorine Check (Total/Amenable/Free	h HCI. NAC (>9) noted on the container 608)			N/A Mo VOA Viels Sen
hort Hold Time Analysis (48 hours or less)? nalysis: ime 5035A TC placed in Freezer or Short Holds To Lab ush TAT Requested (4 days or less):	Time:		any container with a septum cap or preserved with Circle: HNO3 (<2) (+2SO4 (<2) NaOH (>10) NaOH/Zrr Any non-conformance to pH recommendations will be count form Residual Chlorine Check (SVOC 625 Pest/PCB Residual Chlorine Check (Total/Amenable/Free Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm):	h HCI. NAC (>9) noted on the container 608)	Present		

Page 13 of 14

i

	1 1
COC PAGE	of

Sample Container Count

** Place a RED dot on containers that are out of conformance **

	1		MeOH (only)	I				1											.*					ſ				Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
	4		SBS			-				AME	BER G	LASS	8	1				P	LAST	FIC					OTI	HER		Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U		DCBH	VOA VIAL HS >6mm	VG9U	VG9T	COU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	BP3U	BP3N	BP3F	BP3S	BP3B	BP3Z	CG3H	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4	NaOH >10	NaOH/Zn Ac >9
1				3				3								•					IT						wit		/		
2																- 39															
3																							4								
4																															
5	1																														
6											1																				
7				1																											
8				*																											
9												1																			
10																															
11			E]										10																1		
12													$-\infty$																		

Container Codes

*	Glass										
DG9H	40mL HCI amber voa vial	BG1T	glass								
DG9P	40mL TSP amber vial	BĢ1U	1L unpreserved glass								
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass								
DG9T		AG0U	100mL unpres amber glass								
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass								
VG9H	40mL HCI clear vial	AG1S	1L H2SO4 amber glass								
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass								
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass								
ï	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass								
WGKL	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass								
WGFL	4oz clear soil jar	AG2U	500mL uppres amber glass								
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass								
CG3H	250mL clear glass HCI	AGSSF	250mL H2SO4 amb glass -field filtered								
ĊG3F	250mL clear, glass HCI, Fjeld Filter	AG3U	250mL unpres amber glass								
BG1H	1L HCI clear glass	AG3B	250mL NaOH amber glass								
BG1S	1L H2SO4 clear glass		1955 (1954) 1964								

			Plastic
BP1B	1L NaOH plastic	BP4	125mL unpreserved plastic
BP1N	1L HNO3 plastic		125mL HNO3 plastic
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
-	1L unpreserved plastic		Miscellaneous
BP1Z	1L NaOH, Zn, Ac	1	Miscellaneous
BP2N	500mL HNO3 plastic	Syrin	ge Kit LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
BP2S	500mL H2SO4 plastic	R	Terracore Kit
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	General Container
BP3B	250mL NaOH plastic	U	Summa Can (air sample)
		WT	Water
BP3F	250mL HNO3 plastic-field filtered	SL	Solid
BP3U	250mL unpreserved plastic	OL:	Oil
			Non-aqueous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
BP3R	250mL Unpres. FF SO4/OH buffer		

.

December 19, 2023

David Peterson Vertellus Integrated Pyridines LLC 201 N. Illinois Street Suite 1500 Indianapolis, IN 46242

RE: Project: Aurorium/Vertellus 3Q23 Pace Project No.: 50360860

Dear David Peterson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 04, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

1 In

Olivia Deck olivia.deck@pacelabs.com (317)228-3102 Project Manager

Enclosures

cc: Mark Thrine, Aurorium David Wilkes, Aurorium

CERTIFICATIONS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360860

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Washington Dept of Ecology #: C1081 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360860

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50360860001	RI-4S	Water	12/04/23 12:28	12/04/23 14:50
50360860002	RI-4D	Water	12/04/23 13:25	12/04/23 14:50

SAMPLE ANALYTE COUNT

Project:Aurorium/Vertellus 3Q23Pace Project No.:50360860

Lab ID		Analysts	Analytes Reported	Laboratory		
50360860001	RI-4S	EPA 8270	 FIP	20	PASI-I	
		EPA 8260	KLP	7	PASI-I	
		SM 4500-NH3 G	OAS	1	PASI-I	
50360860002	RI-4D	EPA 8270	FIP	20	PASI-I	
		EPA 8260	KLP	7	PASI-I	
		SM 4500-NH3 G	OAS	1	PASI-I	

PASI-I = Pace Analytical Services - Indianapolis

ANALYTICAL RESULTS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360860

Sample: RI-4S	Lab ID: 503	60860001	Collected: 12/04/2	3 12:28	8 Received: 12	2/04/23 14:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 SVOC App9 Water	Analytical Met	hod: EPA 82	270 Preparation Meth	nod: EF	PA 3510			
	Pace Analytica	al Services -	Indianapolis					
2,3-Lutidine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	583-61-9	N2
2,4-Lutidine / 2,5-Lutidine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	108-47-4	N2
3-Ethyl-4-MethylPyridine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	529-21-5	N2
2-Ethylpyridine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	100-71-0	N2
3-Ethylpyridine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	536-78-7	N2
4-Ethylpyridine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	536-75-4	N2
2,6-Lutidine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	108-48-5	N2
3,4-Lutidine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	583-58-4	N2
3,5-Lutidine	70.1	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	591-22-0	N2
2-Methyl-5-ethyl pyridine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	104-90-5	N2
2-Methyl-3-ethyl pyridine	ND	ug/L	10.0	1	12/06/23 15:55	12/07/23 12:55	14159-59-2	N2
2-Picoline	ND	ug/L	10.0	1		12/07/23 12:55		
3/4-Picoline	ND	ug/L	10.0	1		12/07/23 12:55		N2
Pyridine	ND	ug/L	10.0	1		12/07/23 12:55	110-86-1	
Surrogates								
Nitrobenzene-d5 (S)	52	%.	17-107	1	12/06/23 15:55	12/07/23 12:55	4165-60-0	
2-Fluorobiphenyl (S)	43	%.	11-105	1	12/06/23 15:55	12/07/23 12:55	321-60-8	
p-Terphenyl-d14 (S)	98	%.	36-149	1	12/06/23 15:55	12/07/23 12:55	1718-51-0	
Phenol-d5 (S)	32	%.	10-58	1	12/06/23 15:55	12/07/23 12:55	4165-62-2	
2-Fluorophenol (S)	43	%.	10-71	1	12/06/23 15:55	12/07/23 12:55	367-12-4	
2,4,6-Tribromophenol (S)	92	%.	35-149	1	12/06/23 15:55	12/07/23 12:55	118-79-6	
8260/5030 MSV UST	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Indianapolis					
Benzene	ND	ug/L	5.0	1		12/06/23 20:32	71-43-2	
Toluene	ND	ug/L	5.0	1		12/06/23 20:32	108-88-3	
Ethylbenzene	ND	ug/L	5.0	1		12/06/23 20:32		
Xylene (Total)	ND	ug/L	10.0	1		12/06/23 20:32		
Surrogates		3/				,		
Dibromofluoromethane (S)	92	%.	82-128	1		12/06/23 20:32	1868-53-7	
Toluene-d8 (S)	97	%.	73-122	1		12/06/23 20:32	2037-26-5	
4-Bromofluorobenzene (S)	87	%.	79-124	1		12/06/23 20:32	460-00-4	
4500 Ammonia Water	Analytical Met	hod: SM 45	00-NH3 G					
	Pace Analytica	al Services -	Indianapolis					
Nitrogen, Ammonia	8.2	mg/L	2.5	5		12/12/23 20:17	7664-41-7	

ANALYTICAL RESULTS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360860

Sample: RI-4D	Lab ID:	50360860002	Collected: 12/04/2	3 13:25	6 Received: 12	2/04/23 14:50 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 SVOC App9 Water	Analytical	Method: EPA 82	270 Preparation Meth	od: EP	A 3510			
	Pace Anal	ytical Services -	Indianapolis					
2,3-Lutidine	NE	D ug/L	10.5	1	12/06/23 15:55	12/07/23 13:11	583-61-9	N2
2,4-Lutidine / 2,5-Lutidine	12.3	8 ug/L	10.5	1	12/06/23 15:55	12/07/23 13:11	108-47-4	N2
3-Ethyl-4-MethylPyridine	NE	D ug/L	10.5	1	12/06/23 15:55	12/07/23 13:11	529-21-5	N2
2-Ethylpyridine	NE		10.5	1	12/06/23 15:55	12/07/23 13:11	100-71-0	N2
3-Ethylpyridine	NE	D ug/L	10.5	1	12/06/23 15:55	12/07/23 13:11	536-78-7	N2
4-Ethylpyridine	NE	D ug/L	10.5	1	12/06/23 15:55	12/07/23 13:11	536-75-4	N2
2,6-Lutidine	15.	7 ug/L	10.5	1	12/06/23 15:55	12/07/23 13:11	108-48-5	N2
3,4-Lutidine	NE	-	10.5	1	12/06/23 15:55	12/07/23 13:11	583-58-4	N2
3,5-Lutidine	23 [.]	-	105	10	12/06/23 15:55	12/07/23 14:33	591-22-0	N2
2-Methyl-5-ethyl pyridine	12.3	-	10.5	1	12/06/23 15:55	12/07/23 13:11	104-90-5	N2
2-Methyl-3-ethyl pyridine	36.		10.5	1	12/06/23 15:55	12/07/23 13:11	14159-59-2	N2
2-Picoline	NE	0	10.5	1	12/06/23 15:55	12/07/23 13:11	109-06-8	
3/4-Picoline	NE	•	10.5	1	12/06/23 15:55	12/07/23 13:11		N2
Pyridine	NE	0	10.5	1		12/07/23 13:11	110-86-1	
Surrogates		0						
Nitrobenzene-d5 (S)	70	0%.	17-107	1	12/06/23 15:55	12/07/23 13:11	4165-60-0	
2-Fluorobiphenyl (S)	6	6%.	11-105	1	12/06/23 15:55	12/07/23 13:11	321-60-8	
p-Terphenyl-d14 (S)	94	4%.	36-149	1	12/06/23 15:55	12/07/23 13:11	1718-51-0	
Phenol-d5 (S)	3	3 %.	10-58	1	12/06/23 15:55	12/07/23 13:11	4165-62-2	
2-Fluorophenol (S)	4	5%.	10-71	1	12/06/23 15:55	12/07/23 13:11	367-12-4	
2,4,6-Tribromophenol (S)	9	5 %.	35-149	1	12/06/23 15:55	12/07/23 13:11	118-79-6	
8260/5030 MSV UST	Analytical	Method: EPA 82	260					
	Pace Anal	ytical Services -	Indianapolis					
Benzene	7.:	2 ug/L	5.0	1		12/06/23 21:38	71-43-2	
Toluene	NE	-	5.0	1		12/06/23 21:38		
Ethylbenzene	NE	0	5.0	1		12/06/23 21:38		
Xylene (Total)	NE	-	10.0	1		12/06/23 21:38	1330-20-7	
Surrogates				-				
Dibromofluoromethane (S)	93	3 %.	82-128	1		12/06/23 21:38	1868-53-7	
Toluene-d8 (S)	98	8%.	73-122	1		12/06/23 21:38	2037-26-5	
4-Bromofluorobenzene (S)	8	7 %.	79-124	1		12/06/23 21:38	460-00-4	
4500 Ammonia Water	Analytical	Method: SM 450	00-NH3 G					
	Pace Anal	ytical Services -	Indianapolis					
Nitrogen, Ammonia	14.:	3 mg/L	2.5	5		12/12/23 20:19	7664-41-7	

QC Batch: 7665	38		Analysis M	Aethod:	FDA 9	8260			
			•						
QC Batch Method: EPA	8260		•) MSV UST-V		P -	
Associated Lab Samples:	5036086000	01, 50360860002	Laboratory	/:	Pace	e Analytical S	ervices - India	anapolis	
METHOD BLANK: 35120	25		Matr	ix: Water					
Associated Lab Samples:	5036086000	01, 50360860002							
			Blank	Reporting					
Parameter		Units	Result	Limit		Analyzed	Qualifi	iers	
Benzene		ug/L	N	 D5.	.0 1	12/06/23 12:5	6		
Ethylbenzene		ug/L	N	-	-	12/06/23 12:5	-		
Toluene		ug/L	Ν	D 5.	.0 1	12/06/23 12:5	6		
Xylene (Total)		ug/L	Ν	D 10.	.0 1	12/06/23 12:5	6		
4-Bromofluorobenzene (S)		%.	8	79-12	4 1	12/06/23 12:5	6		
Dibromofluoromethane (S)		%.	9	3 82-12	8 1	12/06/23 12:5	6		
Toluene-d8 (S)		%.	9	5 73-12	2 1	12/06/23 12:5	6		
	SAMPLE: 2	3512026							
	SAMPLE: 3	3512026	Spike	LCS	LC	CS	% Rec	Qualifiara	
Parameter	SAMPLE: 3	Units	Spike Conc.	LCS Result	LC	CS Rec	% Rec Limits	Qualifiers	
Parameter	SAMPLE: 3	Units ug/L	Spike Conc. 50	LCS Result 52.9	LC	CS Rec	% Rec Limits 74-124	Qualifiers	
Parameter Benzene Ethylbenzene	SAMPLE: 3	Units ug/L ug/L	Spike Conc. 50 50	LCS Result 52.9 54.1	LC	CS Rec 106 108	% Rec Limits 74-124 74-125	Qualifiers	
Parameter Benzene Ethylbenzene Toluene	SAMPLE: 3	Units ug/L ug/L ug/L	Spike Conc. 50 50 50	LCS Result 52.9 54.1 55.6	LC	CS Rec 106 108 111	% Rec Limits 74-124 74-125 72-119	Qualifiers	
Parameter Benzene Ethylbenzene Toluene Xylene (Total)	SAMPLE: 3	Units ug/L ug/L ug/L ug/L	Spike Conc. 50 50	LCS Result 52.9 54.1	LC	CS Rec 106 108 111 105	% Rec Limits 74-124 74-125 72-119 73-123	Qualifiers	
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S)	SAMPLE: 3	Units ug/L ug/L ug/L ug/L %.	Spike Conc. 50 50 50	LCS Result 52.9 54.1 55.6	LC	CS Rec 106 108 111	% Rec Limits 74-124 74-125 72-119 73-123 79-124	Qualifiers	
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S)	SAMPLE: 3	Units ug/L ug/L ug/L ug/L	Spike Conc. 50 50 50	LCS Result 52.9 54.1 55.6	LC	CS Rec 106 108 111 105 91	% Rec Limits 74-124 74-125 72-119 73-123	Qualifiers	
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S)	SAMPLE: 3	Units ug/L ug/L ug/L ug/L %. %.	Spike Conc. 50 50 50	LCS Result 52.9 54.1 55.6	LC	CS Rec 106 108 111 105 91 94	% Rec Limits 74-124 74-125 72-119 73-123 79-124 82-128	Qualifiers	
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S) Toluene-d8 (S)		Units ug/L ug/L ug/L ug/L %. %.	Spike Conc. 50 50 50	LCS Result 52.9 54.1 55.6	LC	CS Rec 106 108 111 105 91 94	% Rec Limits 74-124 74-125 72-119 73-123 79-124 82-128	Qualifiers	
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S) Toluene-d8 (S)		Units ug/L ug/L ug/L %. %. %. %.	Spike Conc. 50 50 50	LCS Result 52.9 54.1 55.6 157	LC	CS Rec 106 108 111 105 91 94	% Rec Limits 74-124 74-125 72-119 73-123 79-124 82-128	Qualifiers % Rec	
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S) Toluene-d8 (S)		Units ug/L ug/L ug/L %. %. %. %.	Spike Conc. 50 50 50 150	LCS Result 52.9 54.1 55.6 157	LC % F	CS Rec 106 108 111 105 91 94 104	% Rec Limits 74-124 74-125 72-119 73-123 79-124 82-128 73-122		Qualifie
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S) Toluene-d8 (S) MATRIX SPIKE SAMPLE: Parameter		Units ug/L ug/L ug/L %. %. %. %. 3512028	Spike Conc. 50 50 50 150 503608600	LCS Result 52.9 54.1 55.6 157 02 Spike	LC % F	CS Rec 106 108 111 105 91 94 104 MS	% Rec Limits 74-124 74-125 72-119 73-123 79-124 82-128 73-122 MS	% Rec Limits	Qualifie
Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S) Toluene-d8 (S) MATRIX SPIKE SAMPLE:		Units ug/L ug/L ug/L w. %. %. 3512028 Units	Spike Conc. 50 50 50 150 503608600	LCS Result 52.9 54.1 55.6 157 02 Spike Conc. 7.2 50 ND 50	LC % F	CS Rec 106 108 111 105 91 94 104 MS Result	% Rec Limits 74-124 74-125 72-119 73-123 79-124 82-128 73-122 MS % Rec	% Rec Limits 4 65-137	Qualifier
Parameter Benzene Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenzene (S) Dibromofluoromethane (S) Toluene-d8 (S) MATRIX SPIKE SAMPLE: Parameter Benzene		Units ug/L ug/L ug/L ug/L %. %. %. 3512028 Units ug/L	Spike Conc. 50 50 50 150 503608600	LCS Result 52.9 54.1 55.6 157 02 7.2 50	LC % F	CS Rec 106 108 111 105 91 94 104 MS Result 59.0	% Rec Limits 74-124 74-125 72-119 73-123 79-124 82-128 73-122 MS % Rec 10	% Rec Limits 4 65-137 4 50-143 8 57-137	Qualifier

SAMPLE DUPLICATE: 3512027

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

Toluene-d8 (S)

Parameter	Units	50360860001 Result	Dup Result	RPD	Max RPD	Qualifiers
						Guainioro
Benzene	ug/L	ND	ND		20	
Ethylbenzene	ug/L	ND	ND		20	
Toluene	ug/L	ND	ND		20	

%.

%.

%.

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

91

93

105

79-124

82-128

73-122

Project: Aurorium/Vertellus 3Q23 Pace Project No.: 50360860

SAMPLE DUPLICATE: 3512027			_		_	
Parameter	Units	50360860001 Result	Dup Result	RPD	Max RPD	Qualifiers
Xylene (Total)	ug/L		ND		20	0
4-Bromofluorobenzene (S)	%.	87	88			
Dibromofluoromethane (S)	%.	92	93			
Toluene-d8 (S)	%.	97	98			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360860				
QC Batch: 766555	Analysis M	ethod: EF	PA 8270	
QC Batch Method: EPA 3510	Analysis De	escription: 82	70 Water MSSV	
	Laboratory	Pa	ace Analytical Serv	vices - Indianapoli
Associated Lab Samples: 50360860001, 50			,	
METHOD BLANK: 3512128	Matrix	k: Water		
Associated Lab Samples: 50360860001, 50	0360860002			
	Blank	Reporting		
Parameter	Units Result	Limit	Analyzed	Qualifiers
2,3-Lutidine	ug/L NE	0 10.0	12/07/23 12:23	N2
2,4-Lutidine / 2,5-Lutidine	ug/L NE	0 10.0	12/07/23 12:23	N2
2,6-Lutidine	ug/L NE	0 10.0	12/07/23 12:23	N2
2-Ethylpyridine	ug/L NE	0 10.0	12/07/23 12:23	N2
2-Methyl-3-ethyl pyridine	ug/L NE	0 10.0	12/07/23 12:23	N2
2-Methyl-5-ethyl pyridine	ug/L NE	0 10.0	12/07/23 12:23	N2
2-Picoline	ug/L NE) 10.0	12/07/23 10:29	
3,4-Lutidine	ug/L NE) 10.0	12/07/23 12:23	N2
3,5-Lutidine	ug/L NE	0 10.0	12/07/23 12:23	N2
3-Ethyl-4-MethylPyridine	ug/L NE) 10.0	12/07/23 12:23	N2
3-Ethylpyridine	ug/L NE) 10.0	12/07/23 12:23	N2
3/4-Picoline	ug/L NE) 10.0	12/07/23 12:23	N2
4-Ethylpyridine	ug/L NE) 10.0	12/07/23 12:23	N2
Pyridine	ug/L NE) 10.0	12/07/23 10:29	
2,4,6-Tribromophenol (S)	%. 79	35-149	12/07/23 10:29	
2-Fluorobiphenyl (S)	%. 48	3 11-105	12/07/23 10:29	
2-Fluorophenol (S)	%. 46	6 10-71	12/07/23 10:29	
Nitrobenzene-d5 (S)	%. 65	5 17-107	12/07/23 10:29	1d
p-Terphenyl-d14 (S)	%. 98	36-149	12/07/23 10:29	
Phenol-d5 (S)	%. 32	2 10-58	12/07/23 10:29	

LABORATORY CONTROL SAMPLE: 3512129

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyridine	ug/L	50	17.2	34	10-51	
2,4,6-Tribromophenol (S)	%.			78	35-149	
2-Fluorobiphenyl (S)	%.			57	11-105	
2-Fluorophenol (S)	%.			40	10-71	
Nitrobenzene-d5 (S)	%.			59	17-107	
o-Terphenyl-d14 (S)	%.			89	36-149	
Phenol-d5 (S)	%.			30	10-58	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Pace Project No.:	Auroriu 503608	um/Vertellus 860	3Q23										
QC Batch: QC Batch Method:	7675 SM 4	06 500-NH3 G			ysis Metho ysis Descr		SM 4500-Nł 4500 Ammo						
Associated Lab Sam	nples:	503608600	001, 5036086000		oratory:		Pace Analyt	ical Service	es - Indiana	apolis			
METHOD BLANK:	35163	53			Matrix: V	Vater							
Associated Lab Sam	nples:	503608600	001, 5036086000	2									
_				Bla		Reporting							
Param	neter		Units	Res	sult	Limit	Analy	/zed	Qualifier	S			
Nitrogen, Ammonia			mg/L		ND	0.5	0 12/12/23	3 19:11					
LABORATORY CON	NTROL	SAMPLE:	3516354										
Param	neter		Units	Spike Conc.		CS sult	LCS % Rec	% R Limi		Qualifiers			
Nitrogen, Ammonia			mg/L		5	5.1	102	 2	90-110		_		
MATRIX SPIKE & M	IATRIX	SPIKE DUP	LICATE: 3516	356 MS	MSD	351635	7						
			50360705001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, Ammonia		mg/L	ND	5	5	5.2	5.2	102	102	90-110	0	20	
MATRIX SPIKE SAM	MPLE:		3516358	5000									
Param	neter		Units		0705002 esult	Spike Conc.	MS Result		MS 6 Rec	% Rec Limits		Qualif	iers
Nitrogen, Ammonia			mg/L		ND	5		5.1	102	90	-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Aurorium/Vertellus 3Q23

Pace Project No.: 50360860

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

1d A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Aurorium/Vertellus 3Q23Pace Project No.:50360860

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50360860001	 RI-4S	EPA 3510	766555	EPA 8270	766679
50360860002	RI-4D	EPA 3510	766555	EPA 8270	766679
50360860001	RI-4S	EPA 8260	766538		
50360860002	RI-4D	EPA 8260	766538		
50360860001	RI-4S	SM 4500-NH3 G	767506		
50360860002	RI-4D	SM 4500-NH3 G	767506		

tion /	Submitting a sample via this c	nain of custor Section B Required P	roject lr	nformation:	nowledgm	The Ch	ain-of-C	usto ce of	dy is a	al ace nC)8 					tely. ard-ter Pag		11. 1	Of	1
npany		Report To:	Dav	e Peterso	n, PE			_	Attention: 50350850																		
iress:	201 N. Illinois St., Ste. 1800 polis, IN 46204	Copy To:	_				_	_	Company 1 Address: 201 N. Illinois St., Ste. 1800. Indianapolis, IN 46204																		
	dave@dmpetersonPE.com	Purchase C	rder #	440000	0855			_	Address: 201 N. Illinois St., Ste. 1800, Indianapolis, IN 46204 Pace Quote:										Regulatory Agency								
ne:	216-554-0413 Fax	Project Nan	10.127.027	Aurorium/		3023		-	Pace Pr		Manad	aer:	olivis	.deck	Page	alahe								Clate	/ Locatio	-	1 20 2 3
	d Due Date: STD 10 day TAT	Project #:G		aronann	ontendo	UGLU		_	Pace Pr			6586		.ueck	What	eiaus	.00111,	-	_		-	1000.00		State	IN		
	ond to day inti							_			-	0000			The second se	100	R	equeste	d Ana	lysis Fil	tered	(Y/N)	100		IN		
# W	MATRIX Drinking Water Waste Wa	WT Vater WW P		GRAB	COLLI	ECTED	ND	LE TEMP AT COLLECTION	# OF CONTAINERS Unpreserved	24		serva		anol	Analvses Test Y/N		3260	SVOC by 8270						ual Chlorine (Y/N)			
			MATR	DATE	TIME	DATE	TIME		# OF (H2SO4	HN03	NaOH	Na2S203	Methanol	A	Ammonia	BTEX	SVOC						Residual			
	RI-4S		WTE	12/4/23	1228			-	73	1		3	Ħ		Т	x		x	\square		H			П			
1.1	RI-4D		WTG	. 111.1	1325	-		1	73	1		3				x		x	Ħ					11			
3			WT							Π			Π						Π					1			
	•		wf	6 C						\square			Ħ	+					\square				+	11			
			WT					1		\square		+	\square	+	1	F	H		\square				+	11	-		
			WT						+	Ħ	\uparrow	+	Ħ	+	1	F		-	Ħ		\vdash		+	11			
			WT					+	+	+		+	Ħ	+		F		+	+	-		++	+	11			
								┢	+	+	+	+	\vdash	+		F		+	+		\vdash	++	-	11			
			WT	-				+	+	+	+	+	+	+		F	Η		+	-	\vdash	++	+				
			WT					+	-	+	+	+	+	+	+	\vdash	\square	+	$\left \right $	-	\vdash	++	+	+			
)			++		-			+	+	+	-	+	\vdash	+	-	\vdash	\square	-	\mathbb{H}	-		++	+	11	-		
			++					+	+	+	+	+	\vdash	+	-	\vdash		+	+	-	\vdash	++	-	11			
	ADDITIONAL COMMENTS	100	RELINO	UISHED BY /	AFENIATIS		DATE		TIM			1.1.1	4000	DIEG	BY (C												
- 2		M				Sal .		100	1 APAR		e-1	11-	ACCE			PHLIA	TION	0.28		DATE		TIME	-	5	SAMPLE	CONDITION	8
0-P	yridines only list	King	13	tunes,	CENC	OK.	12/4/2	.3	195	-0				1.7	d					2/41	13	1450	21.	8	Y	Y	Y
_								-		_			_						_				+				
					SAMPLE	R NAME	AND SIGN	ATUR	RE	2		3			Y	100									ç		
							of SAMPL		G	fra	4	Śŧ	EUI	EN.	500)								TEMP in C	eived on	Custody Sealed Cooler (Y/N)	Page 1
					SIG	NATURE	of SAMPL	ER:	V.	h	10		-				DATE	Signed 141	1, 2	0				EN.	e V/N	Cool	Sam

Date/Time and Initials of person examining content	and the second se	JETT [07 S-15	king Material:	Bubble Wrap	Bubl	ole Bags	8
2. Custody Seal on Cooler/Box Present: 🗹 Yes	□ No				□ None	🗌 Othe	r	
lfyes)Seals Intact: 🗹 Yes 🗆 No (leave blan	nk if no seals	were pres	ent)	/				
. Thermometer: 12345678 ABCE	EFGH		6. Ice T	Type: 🛛 Wet	Blue Non	э		
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS REC	EIVED (use Cor	nments belo			under 0°C, was the PN p should be above fre			□ No
and the second			written out in the comments					
	Yes	No				Yes	No	N/A
SDA Regulated Solls? (HI, ID, NY, WA, OR,CA, NM, TX, K, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)			All containers needing acid/bd <u>CHECKED</u> ?: Exceptions: VO/ any container with a septum ca Circle:	A, coliform, LLHg,	O&G, RAD CHEM, and			
nort Hold Time Analysis (48 hours or less)? nalysis:		\checkmark	HNO3 (<2) (H2SO4 (<2) NaO Any non-conformatice to pH recor count form	H (>10) NaOH/Zn mmendations will be	Ac (>9) noted on the container			
me 5035A TC placed in Freezer or Short Holds To Lab	Time:		Residual Chlorine Check (SVC	OC 625 Pest/PCB	608)	Present	<u>Absent</u>	N/A
sh TAT Requested (4 days or less):		//	Residual Chlorine Check (Tota	al/Amenable/Free	Cyanide)			
stody Signatures Present?		/	Headspace Wisconsin Sulfide?					
ntainers Intact?:			Headspace in VOA Vials (>6mm See Containter Count form for			<u>Present</u>	Absent	<u>6 voa vials S</u>
mple Label (IDs/Dates/Times) Match COC?: apt TCs, which only require sample ID			Trip Blank Present?)	
			Trip Blank Custody Seals?:				1	
ra labels on Terracore Vials? (soils only)	a subscription of the last	and the second second						

Page 14 of 15

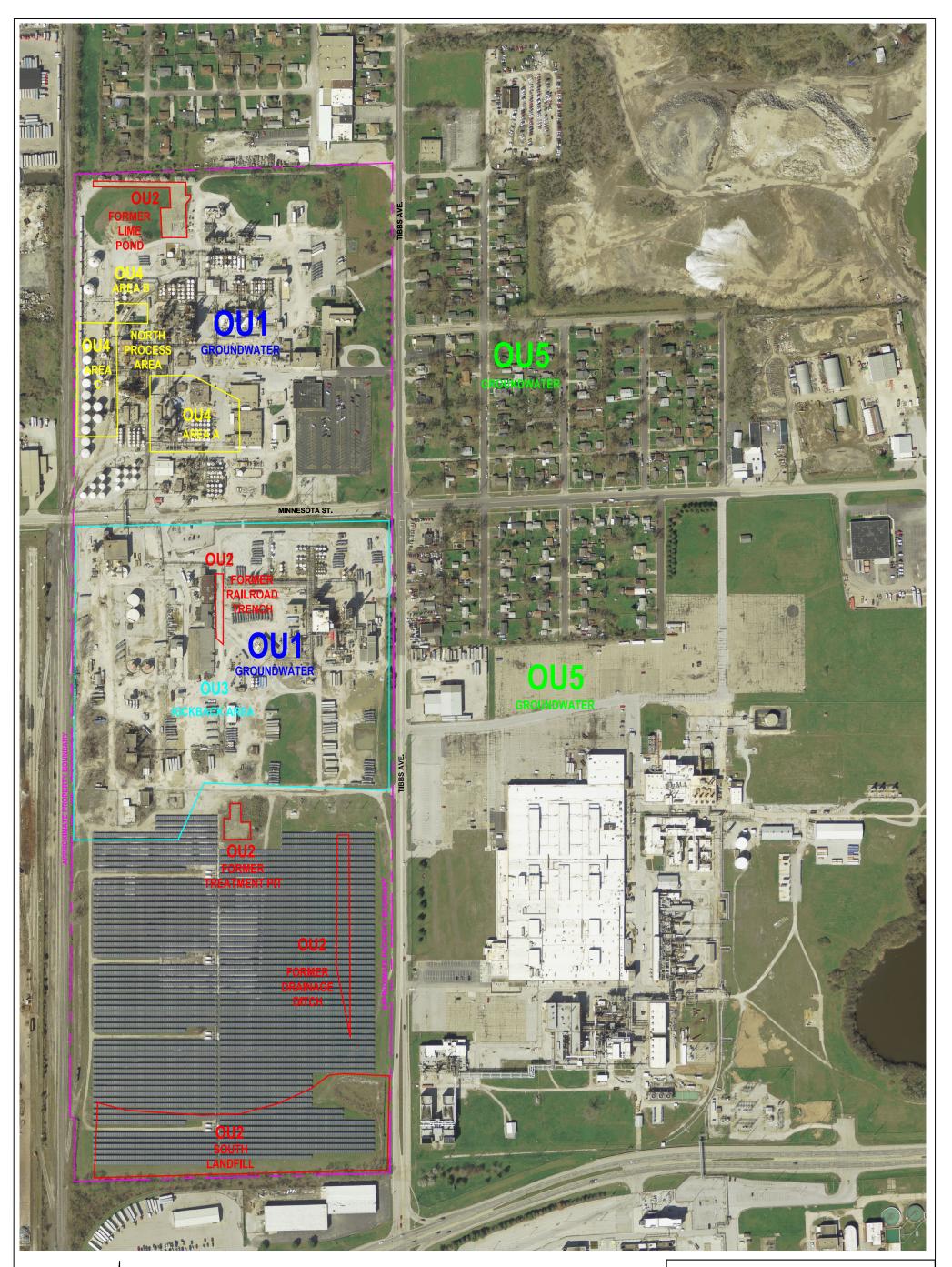
1

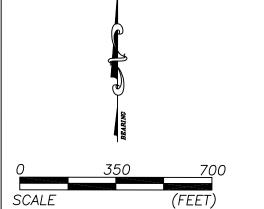
Sample Container Count

** Place a RED dot on containers

that are out of	conformance	**
-----------------	-------------	----

	1		MeOH (only)	1				1					4		1				•					ľ				Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
	÷		SBS		10.11	1				AME	BER G	LASS	5		1			P	LAST	TIC					OTI	HER		Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	Hegel	VOA VIAL HS >6mm	VG9U DG9U	VG9T	AGOUS	AG1H	AG1U	AG3U .	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	BP3U	BP3N	BP3F	(SEdB	BP3B	BP3Z	CG3H	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4	NaOH >10	NaOH/Zn Ac >9
1		-		Ş	+		4	3																			3		5		
2				2				10								2.4					V						Y		V		
3																											Τ				
4														-																	
5											1																				
6											4																				
7								1																							
8				*																											
9																														4	
10																															
11													10							*							T		1		
12													2. 4														T				


Container Codes


0	lass					39).	Plastic
DG9H 40mL HCI amber voa vial	BG11	glass		BP1B	1L NaOH plastic	BP4L	125mL unpreserved plastic
DG9P 40mL TSP amber vial	BG1L	1 1L unpreserved glass	1	BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic
DG9S 40mL H2SO4 amber vial	CG3L	250mL Unpres Clear Glass		BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
DG9T 40mL Na Thio amber vial	AGOL	100mL unpres amber glass	1	BP1U	1L unpreserved plastic		Missellance
DG9U 40mL unpreserved amber via	AG1H	1L HCI amber glass	1	BP1Z	1L NaOH, Zn, Ac	1	Miscellaneo
VG9H 40mL HCI clear vial	AG1S	1L H2SO4 amber glass	1	BP2N	500mL HNO3 plastic	Syrin	ge Kit LL Cr+6 sampling kit
VG9T 40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass	1	BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
VG9U 40mL unpreserved clear vial	AGIU	1liter unpres amber glass		BP2S	500mL H2SO4 plastic	R	Terracore Kit
I 40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass	1.39	BP2U	500mL unpreserved plastic	SP51	120mL Coliform Sodium Thiosulfate
WGKU 8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass	1	BP2Z	500mL NaOH, Zn Ac	GN	General Container
WGFU 4oz clear soil jar	AG2U	500mL uppres amber glass	1.30	BP3B	250mL NaOH plastic	U	Summa Can (air sample)
JGFU 4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass		BP3N	250mL HNO3 plastic	WT	Water
CG3H 250mL clear glass HCI	AGSS	250mL H2SO4 amb glass field filtered	1	BP3F	250mL HNO3 plastic-field filtered	SL	Solid
CG3F 250mL clear glass HCI, Fjeld Filt		250mL unpres amber glass	1	BP3U	250mL unpreserved plastic	OL:	Oil
BG1H 1L HCI clear glass	AG3B	250mL NaOH amber glass	1.5			and the second second	Non-aqueous liquid
BG1S 1L H2SO4 clear glass				BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
					250mL Unpres. FF SO4/OH buffer		

Miscellaneous

Attachment C

Cover Inspection and Maintenance Checklist

OPERABLE	UNITS	(1-5)
----------	-------	-------

- OU1 ON-SITE GROUNDWATER OU2 CERCLA AREAS OU3 KICKBACK AREA OU4 NORTH PROCESS AREAS OU5 OFF-SITE GROUNDWATER

SEMI-ANNUAL COVER INSPECTIONS AND MAINTENANCE ACAD FILE: INDY PLANT.DWG DRAWING DATE: DEC. 2019 REV. DATE: MAP APPROXIMATING THE OPERABLE UNITS CLIENT: REILLY SUPERFUND SITE DMP LOCATION: 1500 S. TIBBS AVE. INDIANAPOLIS, INDIANA DRAWING: 1 designed: DMP DETAILED: PROJECT NO .:

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

OU2 Former Lime Pond	OU2 Former Railroad Trench	OU2 Former Treatment Pit
OU2 Former Drainage Ditch	OU2 Former South Landfill	
OU3 Kickback Areas		
OU4 Tank 69 Area	OU4 Tank 260 Area	OU4 Base Stills Area

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1. None; Tree limb fallen on north end of pad

2.	
3.	
4.	
5.	
6.	
7.	
~	

Comments:

COVER SURFACE INSPECTION

Observed Anomaly	Position
(Describe Corrective Measure)	(Use and attach map if necessary)
1. None, caulk seams appear satisfactory. I	Noted weeds growing from a couple caulk joints
2. at northeast corner & southwest area	a of pad
3	-
4	
5.	
6.	
7.	
Comments:	

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

Pit

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1. None		
2.		
3.		
4.		
5.		
6.		
7.		
Comments:		

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure)

Position (Use and attach map if necessary)

1. <u>N</u>	Ione, gravel cover graded
2.	
3.	
4.	
5.	
6.	
7.	
Con	nments:

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

OU2 Former Railroad Trench	OU2 Former Treatment Pit
OU2 Former South Landfill	
OU4 Tank 260 Area	OU4 Base Stills Area
	OU2 Former South Landfill

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

	1.	None,	Trees	lining	pad	growing	in t	fence	line
--	----	-------	-------	--------	-----	---------	------	-------	------

2.	
3.	
4.	
5.	
6.	
0	

Comments:

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1.	None,	caulk	seams	ap	pear	satisfactory	7

2.	
3.	
4.	
5.	
5	
7.	
Comments.	

Comments:

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

OU2 Former Lime Pond	OU2 Former Railroad Trench	OU2 Former Treatment Pit
OU2 Former Drainage Ditch	OU2 Former South Landfill	
OU3 Kickback Areas		
OU4 Tank 69 Area	OU4 Tank 260 Area	OU4 Base Stills Area

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly	
(Describe Corrective Measure)	

Position (Use and attach map if necessary)

1. <u>None</u>			
2.			
3.			
4.			
5.			
6.			
7.			
Comments:			

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1.	None

2	
3.	
4.	
5.	
7.	
Comments:	

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

OU2 Former Lime Pond	OU2 Former Railroad Trench	OU2 Former Treatment Pit
OU2 Former Drainage Ditch	OU2 Former South Landfill	
OU3 Kickback Areas		
OU4 Tank 69 Area	OU4 Tank 260 Area	OU4 Base Stills Area
	OU4 Tank 260 Area	OU4 Base Stills Area

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly	
(Describe Corrective Measure)	

Position (Use and attach map if necessary)

1. <u>N</u>	one			
2.				
3.				
4.				
5.				
6.				
7.				
Con	nments:			

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1.	None

2		
3.		
4.		
5.		
Comments:		

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

OU2 Former Lime Pond	OU2 Former Railroad Trench	OU2 Former Treatment Pit
OU2 Former Drainage Ditch	OU2 Former South Landfill	
OU3 Kickback Areas		
OU4 Tank 69 Area	OU4 Tank 260 Area	OU4 Base Stills Area

INSPECTOR: <u>G. Stevenson</u> **DATE:** <u>12/4/23</u>

COVER PERIMETER INSPECTION

Observed Anomaly	
(Describe Corrective Measure)	

Position (Use and attach map if necessary)

1. None		
2.		
3.		
4.		
5.		
6.		
7.		
Comments:		

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1.	None,	Gravel	cover	graded.	Some	water	puddling	on	surface
~				-					

2			
3.			
4.			
5.			
Comments:			

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

OU2 Former Lime Pond	OU2 Former Railroad Trench	OU2 Former Treatment Pit
OU2 Former Drainage Ditch	OU2 Former South Landfill	
OU3 Kickback Areas		
OU4 Tank 69 Area	OU4 Tank 260 Area	OU4 Base Stills Area

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly	
(Describe Corrective Measure)	

Position (Use and attach map if necessary)

1. <u>None</u>			
2.			
3.			
4.			
5.			
6.			
7.			
Comments:			

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1. Concrete cut to east of Tank 62, excavation filled w/ stone, no concrete cap replaced**

2.	
3.	
4.	

5. _____

Comments:

** Check concrete surface repairs during 1st Half 2024 inspection

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

2 Former Railroad Trench	OU2 Former Treatment Pit
2 Former South Landfill	
4 Tank 260 Area	OU4 Base Stills Area
	2 Former Railroad Trench 2 Former South Landfill 4 Tank 260 Area

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly	Position		
(Describe Corrective Measure)	(Use and attach map if necessary)		
1. None			
2			
3.			
4.			
5.			
6.			
7.			
Comments:			

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

I. INUNC	1.	None
----------	----	------

2	
3.	
4.	
5.	
6.	
7.	
Comments:	

Aurorium/VIP LLC 1500 S. Tibbs Avenue Indianapolis, IN 46241

INSPECTION AREA: (Highlight One)

U2 Former Line Pond	OU2 Former Railroad Trench	OU2 Former Treatment Pit
U2 Former Drainage Ditch	OU2 Former South Landfill	
U3 Kickback Areas		
U4 Tank 69 Area	OU4 Tank 260 Area	OU4 Base Stills Area
U3 Kickback Areas		OU4 Base Stills Area

INSPECTOR: G. Stevenson DATE: 12/4/23

COVER PERIMETER INSPECTION

Observed Anomaly	
(Describe Corrective Measure)	

Position (Use and attach map if necessary)

1. None		
2.		
3.		
4.		
5.		
6.		
7.		
Comments:		

COVER SURFACE INSPECTION

Observed Anomaly (Describe Corrective Measure) Position (Use and attach map if necessary)

1.	None
----	------

2.			
3.			
4.			
5.			
6.			
7.			
Com	nments:		